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Abstract— In this paper, a strategy for the control
of the water levels of a cascade of reservoirs is pre-
sented. This is achieved by operating a pumping sta-
tion or discharge structures. The system is disturbed
by reservoirs inflows resulting from rainfall-runoff
events. Some examples of these systems are reservoirs
that must be operated to satisfy navigation or leisure
requirements or their operation during flood events.
The presented controller reveals a good performance
and has the advantage of being simple to implement.
Moreover, it was proven that the described control
law ensures asymptotic reference tracking, reaches
several convergence rates, by tuning, and it allows the
changing of the desired water levels reference values
during the control process.

I. Introduction
The water levels of certain reservoirs must be managed

under stringent ranges. The open water systems, used
for navigation and recreation, should be operated in
such a way that the water level is maintained near a
desired predefined value, independently of their inflows.
The rules for the operation of the reservoirs during flood
events usually imply maintaining the water level as much
as possible near a guide curve. A failure the control the
water level can lead to dams over-topping during a flood
event. On the other hand, inadequate low water levels
may disrupt some water uses like navigation. Thus, an
automatic controller that maintains an adequate water
level in reservoirs constitutes an important tool to help
the operational management of controlled reservoirs.

Many studies have been made in this context, see
for instance [1], [2], [3]. A distributed linear quadratic
Gaussian controller is presented in [4], and a model
predictive controller (MPC) is used in [5] and in [6],
however, the MPC is in general very time-consuming
and highly dependent on the weather forecast quality.
A proportional integral derivative (PID) controller is
described in [7]. Although, a controller based on PID may
lead to an oscillatory signal bringing forth an unstable
output and it depends on a proper integral gain value,
which could be also time-consuming to obtain.

In this paper, we propose a control law for automatic
water level control through proper pumping/discharge
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values computation in a cascade of reservoirs, presenting
rainfall-runoff inflows disturbances. Although this con-
trol law is designed with a linear function, it is considered
to be nonlinear due to the positivity restriction. The
controller is based on a state space representation, which
makes it very easy to be implemented and very low
computation time-consuming. It also has the advantage
of allowing the change of the desired reference values
during the control process, which is appropriate for reser-
voirs control during flood events, and it reaches several
convergence rates by tuning.

The present paper is structured as follows. In Section 2
a cascade of reservoirs model is presented and in Section
3 a nonlinear water level controller for reservoirs in
cascade is designed. In Section 4 several simulations are
made under different circumstances. Conclusions follow
in Section 5.

II. Model description

Here we consider a model of n reservoirs in cascade as
illustrated in Fig. 1. The water level of the reservoir i,
for i = 1 · · ·n, is represented by hi(k) and is measured in
meters, m, with respect to a reference datum; the control
flow that pumps/discharge water out of the reservoir i
is represented by Qi

c, whereas the disturbance rainfall-
runoff inflow is represented by Qi

d. Both Qi
c and Qi

d are
measured in m3/s. Mathematically, this model may be
described as:

h(k + 1) = h(k) +Bc Qc(k) +Bd Qd(k), (1)

where

h(k) =


h1(k)

· · ·

hn(k)

 , Qc(k) =


Q1

c(k)

· · ·

Qn
c (k)

 ,

Qd(k) =


Q1

d(k)

· · ·

Qn
d (k)

 , Bd =


B1 0 · · · 0
0 B2 · · · 0

. . .
0 0 · · · Bn

 ,

(2)



Bc =

 B1
c

· · ·
Bn

c

 =


−B1 0 0 · · · 0 0
B2 −B2 0 · · · 0 0
0 B3 −B3 0 · · · 0

· · ·
0 0 0 · · · Bn −Bn

 ,
(3)

Bi = − Tc

Ai
s

, Ai
s is the average storage area (m2) of the

reservoir i, Tc is the control time step (s), k ∈ N, and
hi(k) < 0, for i = 1 · · ·n.

Fig. 1. Scheme of water reservoirs in cascade.

This model was designed taking into account the bal-
ance equation for the water volume, Ah(t), in a reservoir:

dAh(t)
d t

= Qin(t)−Qout(t), (4)

where A is the average storage area, h is the water level,
Qin is the inflow water, Qout is the outflow water, and
t represents the time. Moreover, the balance equation 4
may be discretized and approximated by the state space
model

h(k + 1) = h(k) + T

A
(Qin(k)−Qout(k)), (5)

where T is the control time step.

III. Controller description
The control law design for the automatic water pump-

ing, in order to achieve and maintain a certain desired
water level in each reservoir, may be regarded as an
output reference tracking problem. This problem may be
solved by designing first an auxiliary control law, Q̃c, and
then imposing a restriction of positivity to Q̃c such that
a positive control input Qc is obtained.

Let

Q̃c(k) =

 Q̃1
c

· · ·
Q̃n

c


= B−1

c ((1− α) (h∗ − h(k))−Bd Qd(k)) , (6)

where

h∗ =

 h∗1
· · ·
h∗n

 , (7)

0 < α < 1 is a design parameter and h∗i is the desired
reference value for the water level in the reservoir i.

Applying this controller to the system we obtain:

h(k + 1) = h(k) +Bd Qd(k)
+Bc B

−1
c ((1− α) (h∗ − h(k))−Bd Qd(k))

(8)
= α(h(k)− h∗) + h∗. (9)

Defining

∆h(k) =

 ∆h1(k)
· · ·

∆hn(k)

 = h(k)− h∗, (10)

we get

∆h(k + 1) = α∆h(k), (11)

which implies that

∆h(k) = αk∆h(0). (12)

Hence,

lim
k→∞

∆h(k) = 0 (13)

and

lim
k→∞

h(k) = h∗, (14)

thus, the water levels of the reservoirs converge asymp-
totically for the desired references.

Hereafter, we prove that the system still converges also
in the presence of the positivity constraint

Qi
c = max

(
0, Q̄i

)
, (15)

for Q̄i := Qi−1
c + Q̂i, Q0

c := 0, and

Q̂i := −B−1
i

(
(1− α) (h∗i − hi(k))−Bi Q

i
d(k)

)
. (16)

This restriction was designed taking into account that

Q̃i
c = Q̃i−1

c + Q̂i, (17)

for i = 1 · · ·n, considering Q̃0
c := 0, and replacing Q̃i−1

c

for the control input Qi−1
c in (17).

It may be proven that all trajectories converge to h∗,
by applying the LaSalle’s invariance principle (see [8]) to
the Lyapunov function

V (h(k)) =

 V1(h(k))
· · ·

Vn(h(k))

 =

 (h1(k)− h∗1)2

· · ·
(hn(k)− h∗n)2

 (18)

for the system (1) on Rn
−.



In conclusion, when the control law

Qc(k) =


max(0, Q̄1(k)

· · ·

max(0, Q̄n(k)

 , (19)

with



Q̄i = Qi−1
c + Q̂i

Q̂i = −B−1
i

(
(1− α) (h∗i − hi)−Bi Q

i
d

)
Q0

c := 0

0 < α < 1

(20)

is applied to the system (1), the water level h converges
to the reference value h∗.

IV. Simulations

In this section, several simulations under different
circumstances are presented in order to show the perfor-
mance of the proposed controller. We consider two reser-
voirs in cascade, as illustrated in Fig. 2, subjected to two
different disturbances. Moreover, an estimation, Q̂d, is
used in (6) instead of Qd, due to the fact that in practice
the real value of the disturbance rainfall-runoff inflow is
unknown. The value chosen for Q̂d =

[
Q̂1

d Q̂2
d

]T was
based on the rainfall-runoff flow event presented in [10].
On the other hand, the value for Qd was computed by
adding to each component of Q̂d a Gaussian white noise
with zero mean and standard deviation σ = 0.5. This
noise is used to emulate the uncertainty associated with
the rainfall-runoff forecasts when the controller is used in
a water management forecast framework. We also assume
that the desired reference values for the water level value
of reservoir 1, h∗1, and for the water level value of reservoir
2, h∗2, are respectively −0.40m (MSL) and −0.30m
(MSL). The maximum control flow for the reservoir 1,
Q1

c,max, is 100m3/s, and the maximum control flow for
the reservoir 2, Q2

c,max, is 70m3/s. The minimum control
flow Qc,min is 0m3/s for both reservoirs. The storage
area of the reservoir 1, A1

s, and of the reservoir 2, A2
s, are,

respectively, 7.3×106 m2 and 7×105 m2. The control time
step, Tc, was set to be 900s. Once these values are fixed,
the control law only depends on the design parameter
α (0 < α < 1). This parameter influences the speed
of convergence to the reference value, as can be seen in
Figures 3 and 4 where the values α = 0.1, α = 0.7, and
α = 0.9 were respectively taken.

Fig. 2. Scheme of two water reservoirs in cascade.
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Fig. 3. Control of the water level of the reservoir 1 for different
α parameter values. The evolution of the water level is illustrated
on the top graph, where the dashed black line corresponds to the
desired reference value. The pump control flow is represented on
the second graph. On the bottom graph the rainfall-runoff inflow,
Qd, is marked in solid red line, whereas the estimated disturbance,
Q̂d, is marked in dashed blue line.

Figures 5 and 6 illustrate the performance of the con-
trol algorithm in the presence of a change of the reference
profile. For reservoir 1, in the first 6 hours it is intended
that the water level follows the reference h∗1 = −0.40m,
in the following 6 hours the reference for the water level
is set to be h∗1 = −0.45m and in the last twelve hours
the water level should again follow the reference level
h∗1 = −0.40m. For reservoir 2, in the first 6 hours it
is intended that the water level follows the reference
h∗2 = −0.30m, and in the last eight hours the water level
should follow the reference level h∗2 = −0.35m. It may
be seen that the controller has a good performance also
in this case. As expected, for both reservoirs, when the
reference decreases there is an increase of the pumped
flow water, Q1

c = Q1
c,max for reservoir 1 and Q2

c = Q2
c,max

for reservoir 2, until the reference value is achieved. On
the other hand, when the reference values increase no
water is pumped. Note that the speed with which the
water level rises depends on the disturbance Qd.

In Figures 7 and 8, we tested the performance of the
controller assuming a minimum change in the control
flow ∆Qc,min = 2m3/s, that could be an operational re-
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Fig. 4. Control of the water level of the reservoir 2 for different
α parameter values. The evolution of the water level is illustrated
on the top graph, where the dashed black line corresponds to the
desired reference value. The pump control flow is represented on
the second graph. On the bottom graph the rainfall-runoff inflow,
Qd, is marked in solid red line, whereas the estimated disturbance,
Q̂d, is marked in dashed blue line.

striction in real open water systems. In case the required
flow change is smaller than this value, the control action
is postponed, i.e. if |Qi

c(k + 1) − Qi
c(k)| < ∆Qc,min we

make Qi
c(k+1) = Qi

c(k), for i = 1, 2. As we may observe,
even in these circumstances, the desired reference value
is tracked.

V. Conclusion
A control law was designed and implemented for the

operational management of open water systems, intended
to maintain predefined water levels in a reservoirs cas-
cade, based on a state space representation, and subject
to rainfall-runoff inflow events.

This controller has the advantage of being simple
to implement and its performance is not very time-
consuming, it reaches several convergence rates, by tun-
ing, and it allows the changing of the desired water levels
reference values during the control process.

Several simulations were made under different cir-
cumstances, like considering errors associated with the
disturbances uncertainties, changes in the water level
reference profiles, consideration of a required minimum
change in the control flow, and changes in the conver-
gence speeds. The obtained results encourage the use
of the proposed control strategy in real controlled open
water systems.
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Fig. 5. Control of the water level of the reservoir 1 assuming
changes in the reference level during the control period. (h∗ =
−0.40 m from the beginning till t = 6 hours, h∗ = −0.45 m
from t = 6 hours till t = 12 hours, and h∗ = −0.4 m from then
on), for α = 0.1. The evolution of the water level is illustrated
on the top graph, where the dashed black line corresponds to the
desired reference value. The pump control flow is represented on
the second graph. On the bottom graph the rainfall-runoff inflow,
Qd, is marked in solid red line, whereas the estimated disturbance,
Q̂d, is marked in dashed blue line.

[2] D. Schwanenberg, I. Sheret, T. Rauschenbach, S. Galelli, J.
M. P. Vieira, J. L. S. Pinho, Adjoint modeling framework
for water resources models., 10th International Conference on
Hydroinformatics (HIC 2012) (2012) 1–8.

[3] J. L. S. Pinho, J. M. P. Vieira, D. Schwanenberg, R. Montero,
Modelling of reservoirs in management and control frame-
works, First International Symposium on Energy Challenges
and Mechanics. (2014) 1–8.

[4] J. M. Lemos, L. F. Pinto, L. M. Rato, M. Rijo, Multivariable
and distributed lqg control of a water delivery canal., Irriga-
tion and Drainage Engineering 139(10) (2013) 855–863.

[5] J. M. Maestre, P. J. van Overloop, M. Hashemy, A. Sadowska,
E. F. Camacho, Human-in-the-loop model predictive control of
an irrigation canal., IEEE control systems 35(4) (2015) 19–29.

[6] P. J. van Overloop, S. V. Weijs, S. Dijkstra, Multiple model
predictive control on a drainage canal system., Control Engi-
neering Practice 16(5) (2008) 531–540.

[7] A. Lacasta, M. Morales-Hernandez, P. Brufau, P. Garcia-
Navarro, Simulation of pid control applied to irrigation chan-
nels., Proceedings of the 12th International Conference on
Computing and Control for the Water Industry, Procedia
Engineering 70 (2014) 978–987.

[8] V. Sundarapandian, An invariance principle for discrete-time
nonlinear systems, Applied Mathematics Letters 16 (2003)
85–91.

[9] J. P. LaSalle, The Stability of Dynamical Systems, SIAM,
Bristol, Eng- land, 1976.

[10] JP. J. van Overloop, Model predictive control on open water
systems., Ph.D. dissertation. Delft University of Technology,
The Netherlands. (2006).



0 5 10 15 20
−0.4

−0.2

0

Time (h)

W
at

er
 le

ve
l (

m
M

S
L)

 Reservoir 2

 

 

h∗
Water level evolution

0 5 10 15 20
0

50

100

Time (h)

C
on

tr
ol

 fl
ow

 (
m

3 /s
)

 

 

Qc

0 5 10 15 20
0

5

10

Time (h)D
is

tu
rb

an
ce

 fl
ow

 (
m

3 /s
) 

 

 

Qd

Q̂d

Fig. 6. Control of the water level of the reservoir 2 assuming
changes in the reference level during the control period. (h∗ =
−0.30 m from the beginning till t = 16 hours, h∗ = −0.35 m
from t = 16 hours from then on), for α = 0.1. The evolution of the
water level is illustrated on the top graph, where the dashed black
line corresponds to the desired reference value. The pump control
flow is represented on the second graph. On the bottom graph the
rainfall-runoff inflow, Qd, is marked in solid red line, whereas the
estimated disturbance, Q̂d, is marked in dashed blue line.

0 5 10 15 20
−0.4005

−0.4

−0.3995

−0.399

Time (h)

W
at

er
 le

ve
l (

m
M

S
L)

Reservoir 1

 

 

h∗
Water level evolution

0 5 10 15 20
0

20

40

60

Time (h)

C
on

tr
ol

 fl
ow

 (
m

3 /s
)

 

 

Qc

0 5 10 15 20
0

20

40

Time (h)D
is

tu
rb

an
ce

 fl
ow

 (
m

3 /s
)

 

 

Qd

Q̂d

Fig. 7. Control of the water level of the reservoir 1 assuming
∆Qc,min = 2m3/s, for α = 0.1. The evolution of the water
level is illustrated on the top graph, where the dashed black line
corresponds to the desired reference value. The pump control flow is
represented on the second graph. On the bottom graph the rainfall-
runoff inflow, Qd, is marked in solid red line, whereas the estimated
disturbance, Q̂d, is marked in dashed blue line.
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Fig. 8. Control of the water level of the reservoir 2 assuming
∆Qc,min = 2m3/s, for α = 0.1. The evolution of the water
level is illustrated on the top graph, where the dashed black line
corresponds to the desired reference value. The pump control flow is
represented on the second graph. On the bottom graph the rainfall-
runoff inflow, Qd, is marked in solid red line, whereas the estimated
disturbance, Q̂d, is marked in dashed blue line.


