
 
 

 
 

Abstract— Cephalometric analysis is an important and 
routine task in the medical field to assess craniofacial 
development and to diagnose cranial deformities and midline 
facial abnormalities. The advance of 3D digital techniques 
potentiated the development of 3D cephalometry, which includes 
the localization of cephalometric landmarks in the 3D models. 
However, manual labeling is still applied, being a tedious and 
time-consuming task, highly prone to intra/inter-observer 
variability. In this paper, a framework to automatically locate 
cephalometric landmarks in 3D facial models is presented. The 
landmark detector is divided into two stages: (i) creation of 2D 
maps representative of the 3D model; and (ii) landmarks’ 
detection through a regression convolutional neural network 
(CNN). In the first step, the 3D facial model is transformed to 2D 
maps retrieved from 3D shape descriptors. In the second stage, 
a CNN is used to estimate a probability map for each landmark 
using the 2D representations as input. The detection method was 
evaluated in three different datasets of 3D facial models, namely 
the Texas 3DFR, the BU3DFE, and the Bosphorus databases. An 
average distance error of 2.3, 3.0, and 3.2 mm were obtained for 
the landmarks evaluated on each dataset. The obtained results 
demonstrated the accuracy of the method in different 3D facial 
datasets with a performance competitive to the state-of-the-art 
methods, allowing to prove its versability to different 3D models.  

 
Clinical Relevance— Overall, the performance of the 

landmark detector demonstrated its potential to be used for 3D 
cephalometric analysis. 

I. INTRODUCTION 

Cephalometric analysis refers to the assessment of the 
craniofacial structure to evaluate its growth and development 
and to diagnose cranial deformities, midline facial 
abnormalities, and orthodontic problems [1]. Traditionally, 2D 
radiographs are used for cephalometric analysis, but 
Computed Tomography (CT) and Magnetic Resonance (MR) 
imaging systems have been enabling 3D cephalometry [2]. 
More recently, some works proposed to use 3D digital models 
(e.g. laser scans) to perform the cephalometric analysis [3]. To 
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evaluate the craniofacial anatomy in the scanned 3D models, 
manual identification of anatomic landmarks is performed, 
followed by the calculation of established measurements. 
However, the manual identification of the landmarks is a time-
consuming task that it is also highly prone to observer 
variability [4], [5]. Thus, automated solutions to detect the 
landmarks can be useful tools to clinical practice. 

Recently, with the improvement of computing capabilities, 
deep neural networks have been widely used for medical and 
computer vision tasks, such as landmark localization [4], [6]–
[8]. In fact, deep learning (DL) showed superior performance 
over the conventional machine learning strategies or 
registration-based approaches [9]. Our team have already 
demonstrated the added-value of the DL techniques to detect 
some landmarks in 3D infant’s head surfaces [10]. Overall, the 
proposed strategy is a two-stage method that includes creation 
of 2D maps representative of the 3D head model and detection 
of anthropometric landmarks in the 2D maps using a DL 
strategy. In this paper, inspired by our previous work, we 
sought to extend the proposed methodology and evaluate its 
performance for the detection of other cephalometric 
landmarks in generic facial databases with heterogenous 
populations (not only infants) and compare its performance 
against state-of-the-art landmark detection methods.  

II. METHODS 

A. General overview 

The proposed landmark detector relies on two-stage 
approach (Figure 1). In the first stage, the 3D model is 
transformed into a 2D representation that is embedded with 
shape descriptors information to create 2D maps 
representative of the geometry of the 3D model. This stage 
decreases the detection complexity by decreasing the 
dimensionality of the data, while maintaining surface 
information in the shape descriptors. The second stage relies 
on a regression convolutional neural network (CNN) that 
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estimates the localization of the landmarks on the 2D 
representations. Here, the CNN regress landmark pixel 
positions by generating a probability map of them.  

B. 2D representation of the 3D facial model  

1) 3D shape descriptors 

3D digital scanning technics allow the creation of 3D 
models represented by points spatially correlated. In the 
absence of texture information, shape descriptors can be used 
to collect 3D point signatures retrieved from the model’s 
surface. In this work, four different descriptors were studied 
to retrieve enhanced information of the 3D facial model. The 
first descriptor concerns the depth map of the model, which 
consists in the distance between each point of the 3D model 
and its center. The second descriptor is represented by the 
radial distance between a point and the principal axis of the 
model. In opposite to the first two descriptors that concern the 
3D localization of the model’s points in respect to a given 
reference, the third descriptor quantifies the local curvature of 
the surface, being retrieved by estimating the Gaussian 
curvature of each point of the model. Finally, the fourth shape 
descriptor concerns the number of point connections needed 
to fully recover the details of a region of the facial model, 
quantifying the level of detail in the different regions. Figure 
2 illustrates the different shape descriptors.  

2) Explicit functions for 2D representation 

To decrease the complexity of the 3D detection, a 2D 
representation of the 3D facial model is used. Here, the 3D 
model is represented as an explicit function where one of the 
coordinates of the points on the model is given explicitly as a 
function of the remaining coordinates. Thus, one can obtain a 
representation function which has one less dimension than the 
original model. The first step to define the geometric function 
that maps 3D points to 2D is the definition of a coordinate 
system. In this work, the cylindrical coordinate system was 
chosen. Thus, the cartesian coordinates of each point 𝒑 =
{𝑥, 𝑦, 𝑧} are converted in cylindrical coordinates 𝒑 =
{𝜌, 𝜑, 𝑧}, where 𝜌 represents the radial distance from the 
model principal axis to 𝒑, 𝜑 is the azimuth angle, and 𝑧 is the 
height of 𝒑. The second step to formulate the explicit function 
is to select the coordinates that will define the explicit 
coordinate. Here, it was defined that the explicit coordinate 
𝜌′  is obtained as a function of the azimuth angle 𝜑 and height 
𝑧. Mathematically, this can be defined as [11]: 

 𝑔: ℝ𝑛−1 ↦ ℝ, 𝜌′ = 𝑔(𝜑, 𝑧). ( 1 ) 

Finally, for each (𝜑, 𝑧), the value of 𝜌′ was defined to be 
the value of a given shape descriptor studied in this work at 

the corresponding (𝑥, 𝑦, 𝑧) point, promoting the inclusion of 
the descriptors into the 2D representation (Figure 3). Thus, 
four 2D representative maps were obtained for a given 3D 
model, each one related to one shape descriptor.  

C. Regression CNN for probability maps estimation 

After creating the 2D representative maps, a regression 
CNN was applied to estimate probability maps for the 
landmarks’ localization. Similar to [10], a multi-branch 
approach was implemented where a CNN was applied to 
process each 2D map individually. This generates a set of 
feature maps 𝑉𝑟 , with 𝑟 ∈ {1 … 4}, that are afterward 
concatenated into a global one. The global feature map is then 
feed to the second part of the CNN that is used to predict 
confidence maps for each landmark position. For that, a 
Sigmoid activation layer was added to the end of the network, 
considering that the confidence maps can be given by a 
Gaussian-like function where its maximum represents the 
landmark position. To guide the network training, a loss 
function 𝑓𝑙𝑜𝑠𝑠 that calculates the Euclidean distance between 
predicted maps and the ground-truth maps was used: 

 
𝑓𝑙𝑜𝑠𝑠 =  ∑ ||𝐿𝑖 − 𝐿𝑖

∗||
𝑀

𝑖=1
, ( 2 ) 

where 𝐿𝑖 and 𝐿𝑖
∗ are the prediction and ground truth maps for 

landmark 𝑖, respectively, and 𝑀 is the number of landmarks. 
For each landmark, the ground-truth map was generated by 
applying a Gaussian-like function where the maximum of the 
gaussian map represents the landmark position. In the test 
phase, each landmark is detected by estimating the respective 
probability map, being the optimal position defined as the 
peak of the map, after a non-maximum suppression 
processing. In the final step, the obtained landmarks are 
transferred to the 3D world by reverting the transformation 
between the 3D model and 2D representation.   

III. EXPERIMENTS AND RESULTS 

A. 3D facial databases 

The accuracy of the proposed landmark detector was 
evaluated in three different 3D facial surfaces benchmarks: 

• Texas 3D Database: contains 1149 pairs of facial color 

and depth images of 105 subjects. In this work, 3D models 

were obtained from the depth using the specified 

acquisition parameters [12]–[14]; 

• BU3DFE Database: composed by 2500 facial expression 

models of 100 subjects [15]; 

• Bosphorus 3D Face Database: comprises 4666 3D faces 

from 105 subjects, including facial expressions, rotations, 

 

Figure 1 – Overview of the proposed landmark detector. 
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and occlusions [16]. In this work, 2921 models referring 

to facial expressions were evaluated;  

For all datasets, color/texture images were discarded, 
being only used the 3D models. Eleven landmarks were 
evaluated: glabella (G), sellion (SL), right/left exocanthions 
(EX), right/left endocanthions (EN), right/left subalare (SN), 
nose tip (NP), and right/left mouth corner (MC). Once 
BU3DFE and Bosphorus databases do not contain labelling 
for GL and SL, these landmarks were estimated from the inner 
eyebrows and nose saddle points, respectively.  

B. Implementation details 

In the first stage of the method, 2D representation maps 
with a size of 368 × 368 pixels were created. To overcome 
overfitting problems during training, data augmentation 
techniques were applied to the images, namely geometric 
transformations (i.e. small rotations and scaling) and 
intensity-based transformations (i.e. brightness and contrast 
modification and blur). The network was trained with a mini-
batch size of 10 images and using the Adam optimizer with 
an initial learning rate of 0.0004 and with a regularization 
term of 0.01. At the end of each epoch, the learning rate was 
updated using a polynomial learning rate decay policy. The 
training convergency was analyzed to select the epoch used 
for testing. Finally, to evaluate the accuracy of the proposed 
methodology in all 3D facial models, a four-fold cross 
validation strategy was applied for each dataset, using 75% of 
data for training and 25% for testing at each experiment.  

C. Landmark detector performance 

To validate the proposed method, the automatic results 
were compared against a manual ground-truth using the mean 
error, defined as the Euclidean distance between the estimated 
landmarks and the true positions. Table 1 summarizes the 
performance of the method on the different databases. The 
method’s performance is assessed in terms of mean distance 
error and compared with state-of-the-art methods described in 
[6], [12], [17]–[20]. Figure 4 presents example results of the 
detector. 

IV. DISCUSSION 

Analyzing Table 1, it is possible to verify the detector’s 
accuracy since low landmark detection errors were achieved. 

Specifically, a mean error of 2.8 mm for all landmarks was 
obtained, which can be considered an acceptable distance 
error. The good detection results among all landmarks 
corroborated the feasibility of performing 3D landmark 
detection using 2D maps that represents the geometric 
properties of the 3D facial model. Thus, the results suggest 
that the chosen shape descriptors accurately preserve the most 
important features of the model. Moreover, these features 
represent specific characteristics for each landmark, 
promoting that the landmark can be correctly distinguished. 
Regarding the configuration of the proposed DL model, it can 
be concluded that the multi-branch regression network can 
effectively generated good predictions for the probability 
maps that represent the optimal landmark positions. 

When compared to the remaining methods, our method 
obtained the best results for most of the landmarks. Moreover, 
the results showed that the performance of the proposed 
method is consistently good for different datasets, which can 
be also visualized in Figure 4. This corroborates the added 
value of the proposed methodology for different applications. 

As a remark, the original landmark detection strategy was 
not specifically developed for the detection of cephalometric 
landmarks on heterogeneous facial models. Instead, the 
method was proposed to detect anthropometric landmarks on 
synthetic head models and head models retrieved from MR 
images. However, the extension and adaptation of the 
landmark detector proposed in [9] to different landmarks and 
different datasets, where the data is acquired with different 
acquisition techniques and presents different type of facial 
features (e.g. facial expressions or presence of hair and 
beard), showed to be effective, with stable results and always 
competitive (or even outperforming) the state-of-the art.  

V. CONCLUSION 

In this work, a landmark detection method for 3D facial 
models was proposed. The results obtained by the proposed 
method in different facial datasets demonstrated its high 
accuracy and competitiveness with state-of-the-art landmark 
detectors. Overall, the proposed method can be used in 
clinical practice for 3D cephalometric analysis. Moreover, 
craniofacial pathologies, e.g. midfacial abnormalities, can 
also be evaluated using the proposed method.  

 

Figure 2 – Shape descriptors. (A) 3D Model; (B) Depth map; (C) Radial map; (D) Gaussian curvature map; (E) Point connections map. 
 

 

Figure 3 – Creation of 2D map representative of the 3D shape. The intensity of each 2D map concerns the values of the shape descriptors. 
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Table 1 – Landmark detection errors (in mm) on 3D facial datasets. Best results for each landmark and dataset are presented in bold. 

  
GL R-EX R-EN SL L-ED L-EX R-SN NT L-SN R-MC L-MC 

Mean of pairs 

  EX EN SN MC 

T
ex

a

s Proposed 2.55 2.49 1.98 2.06 2.09 2.52 2.38 2.13 2.33 2.15 2.33 2.50 2.03 2.35 2.24 

Gupta et al.[12] - 4.36 2.38 - 2.16 4.13 2.25 - 2.33 5.19 4.97 4.25 2.27 2.29 5.08 

B
U

3
D

F
E

 Proposed 3.32 2.94 2.17 2.69 2.16 3.04 3.29 3.47 3.30 3.41 3.69 2.99 2.16 3.30 3.55 

Salazar et al. [17] - 8.49 6.14 - 6.75 9.63 7.17 5.87 6.47 - - 9.06 6.45 6.82 - 

Gilani et al. [6] - 3.30 2.40 2.90 2.20 3.80 - 2.50 - - - 3.55 2.30 2.30 4.60 

Sun et al. [18] - 3.02 2.63 - 2.77 3.22 3.19 - 3.30 3.43 3.32 3.12 2.70 3.25 3.38 

Fanelli et al. [19] - 4.00 2.80 - 2.60 3.60 4.10 - 3.90 3.10 4.41 3.80 2.70 4.00 3.76 

B
o

sp
h
o

ru
s Proposed 2.09 3.32 2.04 4.48 3.74 2.13 3.10 2.60 5.81 3.45 2.90 2.73 2.89 4.45 3.18 

Gilani et al. [7] 2.63 - - - - - - 2.24 - - - 2.98 2.68 2.68 2.76 

Vezzetti et al. [20] - - - 3.74 - - - 2.62 - - - 5.38 4.36 4.83 - 

Gilani et al. [6] - 4.01 2.40 2.32 2.35 3.57 2.99 2.82 2.5 4.91 4.85 3.79 2.38 2.75 4.88 
 

 

Figure 4 – Example of detection results (red) and manual labelling (green). First row - Bosphorus database; Second row – Texas database. 
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