
Application-Level Fault Tolerance in Real-Time
Embedded Systems

Francisco Afonso Carlos Silva Adriano Tavares
Department of Industrial Electronics

University of Minho
Guimarães, Portugal

{fafonso, csilva, atavares}@dei.uminho.pt

Sergio Montenegro
Compact Satellite Project

German Space Agency (DRL)
Bremen, Germany

sergio.montenegro@dlr.de

Abstract— Critical real-time embedded systems need to make use
of fault tolerance techniques to cope with operation time errors,
either in hardware or software. Fault tolerance is usually applied
by means of redundancy and diversity. Redundant hardware
implies the establishment of a distributed system executing a set
of fault tolerance strategies by software, and may also employ
some form of diversity, by using different variants or versions for
the same processing.

This work proposes and evaluates a fault tolerance framework
for supporting the development of dependable applications. This
framework is build upon basic operating system services and
middleware communications and brings flexible and transparent
support for application threads. A case study involving radar
filtering is described and the framework advantages and
drawbacks are discussed.

Keywords: Real-time systems; Fault tolerance.

I. INTRODUCTION
Real-time embedded systems are applied in several safety-

critical domains as aerospace, automotive and industrial. In
these applications, high dependability [1] must be a goal in the
system design. Dependability involves several attributes like
reliability, availability and safety, and may be achieved with
fault prevention and removal at design and implementation
phases. However, hardware faults, either permanent or transient
ones, and residual software faults, may happen during system
operation. Therefore, fault tolerance (FT) must be considered in
system design, to prevent faults from becoming system failures.

Fault tolerance is usually applied by means of redundancy
and diversity. Redundant hardware involves extra software
coordination, which makes the software system more complex
and prone to errors. Software fault tolerance may be
implemented by software re-execution or multiple versions
techniques, which also requires the application of additional
control mechanisms.

Generally a real-time system executes a series of tasks
subjected to deadlines and jitter constraints. For many of these
applications, there are serious limitations in physical size and
energy consumption, which imply reduced processing power
and memory size.

The contribution of this work is the proposal and evaluation
of a framework for developing real-time embedded fault-
tolerant software. In contrast with previous works, we target
the application thread level, based on a thread model
commonly used for embedded systems software development.

Our approach is to provide support for the implementation
of a wide variety of fault tolerance strategies at the application
level with maximum transparency. For this reason, an FT
framework was developed and integrated to a real-time
embedded operating system (BOSS). The proposed framework
was evaluated in terms of flexibility and performance in a case
study involving radar filtering.

This paper is organized as follows. Section II introduces the
fault tolerance mechanisms applied in this work. Section III
makes a brief description of the BOSS operating system.
Section IV presents our thread model and describes the FT
framework application. Section V describes the implementation
of the framework. Section VI presents the case study and its
results. Section VII evaluates the framework. Section VIII
contains the related work, and Section IX concludes this paper.

II. FAULT TOLERANCE CONCEPTS
Fault tolerance is a means of achieving a continuous system

service in the presence of active faults [1]. Several FT
strategies have been proposed and applied in the last 30 years.
Some strategies are based on single version software, and can
only be effective with hardware faults and transient software
faults. One example is Rollback/Retry, also called “checkpoint
and restart” [2]. In this strategy the detection of an error
triggers a system rollback to a previously saved state and a re-
execution of the same processing. This technique is based on
backward error recovery and needs an efficient error detection
mechanism. Other strategies apply hardware redundancy to
detect and mask errors, as Triple Modular Redundancy (TMR)
[3], in which error detection is performed by comparison of the
results of multiple hardware/software units.

In order to deal with permanent software faults, multiple
version software (software diversity) is needed. Several
strategies have been proposed as Recovery Blocks (RB) [4],
Distributed Recovery Blocks (DRB) [5] and N-Version
Programming (NVP) [6].

978-1-4244-1995-1/08/$25.00 ©2008 IEEE. 126

RB and DRB perform backward error recovery like Roll-
back/Retry, but use different software versions, or variants, in
each execution block. The main difference between RB and
DRB is the distributed nature of the latter, which allows
concurrent execution of variants in two distinct nodes and
coordination between them to define what node will send the
final output.

NVP is a FT strategy that uses forward error recovery in
which multiple variants (at least 3) run sequentially or
concurrently. A decision mechanism selects the correct
response usually by majority voting. In a multi-computer
system, each variant runs in a different node and the decision
mechanism (voter) may be replicated too.

In this work, RB, DRB and NVP strategies are supported,
as well as single version techniques related to them, as Roll-
back/Retry, Pair of Self-Checking Processors (PSP) [7] and
TMR.

III. BOSS OPERATING SYSTEM
BOSS is a real-time operating system developed by FHG-

FIRST. The BIRD (Bi-Spectral Infrared Detection) satellite [8],
designed for early detection of fires, uses BOSS as its multiple-
computer control operating system. BOSS has also been
applied in several other projects, and future utilizations include
CubeSat satellites [9] and robotics in space [10].

BOSS design has been driven by reducing software
complexity as a means to achieving dependability, as
complexity is the cause of most development faults. The
system had several parts validated by formal verification. It
was developed using object-oriented programming with C++
and it has been ported to several platforms as PowerPC, x86
and Atmel AVR. There is also available an on-top-of Linux
porting, primarily used for early testing.

BOSS supports fault tolerance in hardware redundant
systems, by including a middleware layer which carries out
transparent communications between nodes, using the
publisher-subscriber protocol. A message object can be sent
locally or to the network, using a string as message subject.
Receiving messages must specify which subject they are
expected to receive from. Threads are usually consumers of
receiving messages, by attaching to mail box objects. The
middleware also supports message marshaling and the
elimination of duplicate messages, based on a message
identification number.

IV. FAULT TOLERANCE FRAMEWORK
This Section describes our thread model, the basic features

of the tolerance framework which was integrated to the BOSS
operating system to support application level fault tolerance,
and how this framework is applied.

Fault tolerance can be applied to several layers of software,
as at the operating system level, function/method level, object
level or process level. Our work applies FT techniques to the
thread level, but targeting only application threads, as operating
system threads are supposed to be more robust.

Our purpose is presenting a general description of the
framework fault tolerance capacities and how they are
employed by the application programs.

A. Thread Model
Figure 1 shows the thread model required for fault-tolerant

threads. The thread to be made fault-tolerant runs in an infinite
loop, reading from input devices or receiving input messages
from other threads. After processing the inputs, an output is
generated either by writing to an output device or sending a
result message to other threads. The model supports both state
threads and stateless threads. For state threads, the output result
will depend both on the input data and on the previous state
data.

An example of a candidate thread for fault tolerance
implementation is presented in Figure 2.

class ExampleThread : public Thread {

 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20>
 incommingMessages;
public:
 ExampleThread(){ ... // init code}

 void run () {
 while(1) {
 recMsg = incommingMessages.receive();
 process();
 output();
 }
 }

 void process(){
 ... // uses msg data and state data
 }

 void output(){
 ... // prepares output message
 outMsg.send("exampleResult");
 }
};

ExampleThread myThread;

Figure 2. Example of application thread.

In BOSS, all application threads must inherit from the
Thread class and implement the run virtual function, which
defines the thread run-time behavior. In this example,

Figure 1. Thread model.

127

ExampleThread runs cyclically, reading messages from an
IncommingMessageAdministrator object, which consists of a
mailbox for messages of the Msg class. The process method is
executed next, and implements some computing algorithm
using data from the incoming message and possibly from an
internal state (attributes not shown). Finally the output method
prepares the output message and sends it locally and over the
network, using the string exampleResult as subject. The
instantiation of thread objects is normally static, as shown in
the last line of Figure 2. Dynamic memory allocation is
normally avoided for performance reasons.

B. Framework description
A simplified FT framework class diagram is shown in

Figure 3. A fault-tolerant thread must inherit from the
FTThread class and must define an FTStrategy object that will
implement the fault tolerance functionality. Presently, three FT
strategies have been implemented: RB, DRB and NVP, but
others can be developed and integrated to the framework. The
FTThread class declares several virtual functions which must
be defined by the FT application thread, depending on the
selected FT strategy.

VoterThread is a class designed to support the development
of voters, as required in the NVP strategy. A voter thread must
inherit from VoterThread and define some virtual functions,
such as findEqualSolution. A standard voter class (StdVoter) is
supplied. This class provides exact voting when both inputs
and outputs depend on message passing.

The MiddlewareScheduler (MS) class controls all FT and
voter threads. This thread periodically searches for active
FT/voter threads and executes part of the required control logic.
Besides, this thread triggers periodic middleware messages for
executing role definitions and thread state synchronization.

The modifications required to make an application thread
fault-tolerant include:

• Instantiation and registration of an FTStrategy object
that will implement the desired fault tolerance strategy,
as RB, DRB and NVP.

• Execution of the executeFT method of the FTStrategy
object after the thread activation.

• Implementation of application specific methods related
to the selected fault tolerance strategy (as the
acceptance test in RB and DRB). Some of them consist
of new functionality but others will contain the code
originally defined in the processing and output
methods.

Figure 4 shows an example of fault-tolerant implementation
for ExampleThread of Figure 2, using the DRB strategy. The
main differences between this version and the original code in
Figure 2 are highlighted. The thread itself now inherits from
the FTThread class, instead of the Thread class. A concrete
FTStrategy is instantiated as a DRBStrategy (myDRB). In the
class constructor, the maximum response time for execution is
set to 20,000 microseconds and the setFTStrategy method is
called, assigning the address of the DRBSstrategy to the
ftStrategy pointer. In the run method, the original process and
output methods are replaced by a call to the executeFT method
of the FTStrategy class. This method is responsible for
executing the particular strategy and for activating the
application specific methods defined in the application thread,
as for example, variant1 (primary block) and acceptanceTest.
Some of these methods correspond to original
implementations, but others, like variant2 (recovery block) and
saveCheckpoint should be defined to allow the DRB strategy
operation.

In this example, ExampleThread is stateless; otherwise
FTExampleThread should also implement the methods getState
and setState, to provide state initialization between the primary
and the shadow nodes in DRB. None of these methods are
necessary in the original version, as only one ExampleThread
instance runs in a single node.

Figure 3. FT framework class diagram.

128

class FTExampleThread : public FTThread {

 DRBStrategy myDRB;
 Msg* recMsg;
 Msg outMsg;
 IncommingMessageAdministrator<Msg, 20>
 incommingMessages;
public:

 FTExampleThread(){
 ... // init code
 myDRB.setMaxResponseTime(20000);
 setFTStrategy(&myDRB);
 }

 void run () {
 while(1) {
 recMsg = incommingMessages.receive();
 ftStrategy->executeFT();
 }
 }

 void variant1(){
 ... // same code of original process method
 }

 void sendResult(){
 ... // same code of original output method
 }
 // to be defined
 void variant2(){ ...}
 void saveCheckpoint(){ ... }
 void restoreCheckpoint(){...}
 bool acceptanceTest(){...}
};

Figure 4. Example of FT application thread.

C. Application Specific Entities
Each FT strategy instantiation and usage demands the

definition of strategy attributes and application specific
behavior. These requirements are summarized in Tables I, II
and III. Table I represents requirements for multiple version
software, Table II for single version software and Table III for
voters.

The fault tolerance strategies in Table II use the same
FTStrategy objects of RB, DRB and NVP, but do not
implement their full functionality, as several methods don’t
need to be defined. In these cases they inherit a default
implementation. For example, the default implementation for
save/restoreCheckpoint is empty and for acceptanceTest is to
return true (success).

The simplest FT strategy in Table II is the Restart strategy.
In this technique only one variant is defined, and the
acceptance test is not implemented. Therefore, the only
possible error detection mechanism is deadline expiration,
which is set by the Response Time parameter. Rollback/Retry
can be implemented as single version simplification of the RB
strategy. In this case, only one real variant is defined, and the
body of variant2 should contain a call to the variant1 method.
In a similar way, PSP is implemented with the DRB strategy
and TMR with the NVP strategy.

TABLE I. MULTIPLE VERSION STRATEGIES REQUIREMENTS.

TABLE II. SINGLE VERSION STRATEGIES REQUIREMENTS.

TABLE III. VOTER REQUIREMENTS

The onFailure method in Tables I and II is always optional.

It can be used to define application dependent fault handling
mechanisms when a failure in the strategy execution occurs.
After running the code defined in the onFailure method, the
thread will be restarted by the operating system.

Table III displays the requirements for voting threads.
These threads are only needed when using TMR or NVP. In the
general case, a voter is application specific and this thread must
implement the VoterThread methods shown in Table III.
However, for exact majority voting using messages, a StdVoter
class which compares results byte by byte may be used. Using
this standard voter, some other parameters must be defined, as
the subject of the input and output messages. The coordination
method parameter defines if all replica voters will execute the
sendResult method or if only a master voter will do it. The
definition of the master voter in a coordinated voting is
performed by the FT framework.

129

V. IMPLEMENTATION
The MiddlewareScheduler (MS) thread runs at the

beginning of every clock tick interval (e.g. 1ms) and controls
the behavior and execution of each FT thread and voter.
Besides, this thread is also responsible for activating other
middleware threads, as the one that delivers external incoming
messages.

Figure 5 shows an example of the execution of a RB thread.
The MS thread runs periodically and releases message
reception each two activation periods. The message reception is
not executed in every cycle in order to reduce CPU utilization
and to provide at least one period in two for FT threads free
execution. In the first cycle, the RB thread receives a message
and starts the FT execution. This example shows a failure in the
primary block and a success in the recovery block.

Figure 6 contains an activity diagram showing the
interaction between the FT Thread and the
MiddlewareScheduler thread in the execution of the RB
strategy. After setting up a deadline for execution, based on the
actual time and the maximum allowed response time, the
thread suspends. In subsequent MS activations, this thread
verifies if the deadline has expired and, in that case, restarts the
RB thread. This represents a failure in delivering the correct
response on time, but after restarting, the RB thread is ready
again for receiving the next request or activation. If the
deadline has not expired, the MS thread commands the next
actions to be performed by the RB thread and schedules it for
execution. After executing the right operations (save/restore
state, run primary/recovery block, run acceptance test) the RB
thread suspends again and the MS thread checks the acceptance
test (AT) result. If the RB thread succeeds in AT, the MS
thread allows it to send the results and the interaction finishes.
If the RB thread fails in both blocks it is restarted by the MS
thread.

The control algorithm of an FT Strategy is executed in two
separate threads: the FT thread and the MiddlewareScheduler
thread. However, all this code is defined by the FTStrategy
concrete class. As seen in the class diagram of Figure 7, every
FTStrategy must implement the executeFT method, which
corresponds to the FT thread execution code, and the
executeMSControl method, which is called by the MS.

Using this approach, the MiddlewareScheduler does not
depend on any FT Strategy implementation, and FT strategies

can be added to the framework transparently.

In contrast with the RB strategy presented so far, other FT
strategies involve the utilization of multiples instances of the
FT thread, running in different nodes. These FT threads have to
communicate in order to establish roles and initialize states. In
this framework, the required communication between FT
threads is executed by message passing between the
MiddlewareScheduler threads of each node. If an FT thread
needs to send a message it calls the sendMiddlewareMessage
method of MS. Then, the message is broadcasted to all other
nodes and their MS threads will distribute it to the related FT
threads in their nodes, if any, by calling the
processMiddlewareMessage method of the corresponding FT
strategy.

Another feature performed by MiddlewareScheduler is the
activation of FTStrategies periodically (e.g. 300ms) in order to
trigger the execution of periodic tasks as, for instance, role
conflicts detection in the DRB strategy. In that case, the
startPeriodicMsg of FTStrategy is called.

Finally, the MiddlewareScheduler thread is responsible for
changing the FT threads priorities according to the Earliest
Deadline First (EDF) scheduling. Therefore, in each MS
activation the FT thread with earliest deadline is found and its
priority is raised to a maximum among application threads.
This feature can be enabled or disabled in the framework.

The MS thread also controls VoterThreads execution, in a
similar way of the control of FT Threads. However, the MS
control is simpler, as only detects if the voting deadline has
elapsed. The algorithm implemented in VoterThread uses
single match voting. Upon receiving a solution message, the
voter thread compares the solution with the previous ones just

Figure 5. RB execution timing example.

Figure 6. RB execution activity diagram.

130

received and if a match is found (findEqualSolution method) it
is considered as correct and the output is immediately sent. In
this case, further messages are discarded. If only one solution
message arrives and the deadline occurs, this solution is also
considered correct and it is sent as the output. For the
implementation of voting, it is required sequential message
identification, already supported by the middleware. Voter
threads can also send and receive middleware messages for
establishing the role in coordinated voting (Master or Slave).

VI. CASE STUDY: RADAR FILTERING SYSTEM
We applied this FT framework in the development of a

radar filtering system. This setup is composed of a portable PC
and three PowerPC 823 boards connected by an Ethernet
network. The portable PC runs an application, using an on-top-
of-Linux implementation of BOSS, which simulates a radar
system, generating detection data of several planes
periodically. The data generation includes simulated errors in
bearing and distance, typical of this kind of equipment. This
data is received by the PowerPC 823 boards running a BOSS
application that filters the planes’ position, using an alpha-beta
filter, and also calculates the planes’ course and speed. The
results are sent back to the portable PC, where they are
displayed by a Java GUI program in Linux.

Three basic configurations are applied, as shown by the
UML deployment diagrams of Figures 8, 9 and 10. The first
configuration uses a single node version of the filtering
application, without any fault tolerance mechanism. The other
configurations implement the PSP and TMR strategies. In
these figures, broadcast messages are represented by buses with
the message subject on top. The Radar thread in the PC always
sends its data using radar_data as subject. Similarly, the final
result data from the PowerPC boards are sent to the Display
with filter_data as subject. For the PSP configuration in Figure
9, both Filter threads receive the radar data and execute the

computation, but only the primary thread sends its results. In
the TMR configuration of Figure 10, all Filter threads send
their results with unvoted_data as subject, which are received
by the voter threads. In this particular configuration,
coordinated voting is used and so only the master voter thread
sends the final results to the Display thread. Messages between
FT threads and voters are sent with FTStatus as subject as
shown in Figure 9 (omitted in Figure 10). Figure 11 presents an
example of display output for the TMR configuration.

In FT configurations, hardware faults were simulated by
turning PowerPC boards off and software faults were simulated
by introducing value errors in the filter calculation. In the PSP
configuration, a hardware fault in a board running as primary
causes a switch to primary in the other node. A software fault is
detected by the acceptance test, and a rollback and retry is
performed with the same algorithm. If the simulated fault is
still present, the PSP thread will restart. For the TMR
configuration, a hardware fault in the board with the master
voter will imply in a new master voter board after the next
master election. A software fault in one of the boards will be
masked by the voter mechanism.

If a board is initialized, or if an FT thread is restarted, a
state initialization is needed, as the filter output depends on the

Figure 7. FTStrategy execution methods.

Figure 8. Non-FT configuration

Figure 10 TMR configuration.

Figure 9. PSP configuration

131

planes’ last position and alpha-beta parameters. This
initialization algorithm is performed by the corresponding
FTStrategy object, transparently to the application program,
which has only to define the getState and setState methods.

A. Performance
The radar simulation periodically sends planes´ data every

2 seconds. This corresponds to the rotation period of the radar
antenna. To test the system under more severe timing
conditions and compare the performance of the FT
configurations we varied the radar simulation period, reducing
it by factors of two. Figure 12 shows performance results in
terms of CPU utilization for several configurations and
simulation frequencies varying form 0.5 Hz (2 seconds) to 32
Hz (31.25 ms).

The curves labeled “Non-FT” are related to the non-fault
tolerant single node version shown in Figure 8. The “Non-FT
#1” setup employed an operating system version with no FT
framework, while in #2 the FT framework was integrated. We

can notice that the utilization of the FT framework implies a
performance cost of about 3%. This difference is due to the
periodic activation of the MiddllewareScheduler thread in
addition to the operating system scheduler.

The PSP and TMR configurations present poorer
performance than non-FT configurations as expected. The
reason is the extra processing time associated with the FT
control, application specific procedures and message
communication. The TMR configuration achieved the worst
results as it demands more threads for voting and more
message exchanges.

We conclude that the performance cost of fault tolerance
implementation is still acceptable, considering the benefits in
system reliability. However, for systems already demanding
high CPU utilization, the introduction of fault tolerance might
be a problem, and special care must be taken, including in the
selection of the FT strategy.

VII. EVALUATION
The utilization of a FT framework in the development of

embedded fault-tolerant systems has several benefits:

• Simplifies the application level programming, as
programs don’t have to implement fault tolerance
mechanisms, and only have to provide application
specific parameters and procedures.

• The application program follows a standard structure in
which changing the FT strategy becomes easy and
straightforward. This reduces efforts in strategy
selection, configuration and testing.

• Facilitates the creation and integration of new fault
tolerance strategies. The proposed framework is easily
extendable by adding new FTStrategy and
VoterThread derived classes.

• Provides a means of implementing adaptive fault
tolerance [11], as changing the FT strategy can be
performed at run-time by simply calling the setStrategy
method. The strategy can be modified based on the
reliability requirements of each the mission phase, or
even for other factors as resource availability and
power consumption.

 An addition benefit of this framework is that it makes easy
to modularize all fault-tolerant code using Aspect Oriented
Programming (AOP) [12]. This framework has been applied in
[13] to provide a full separation between the application
functionality and the fault tolerance concern.

The drawbacks of the FT framework are not related with
the framework itself but with the fault tolerance domain. This
includes the usage of more physical resources and, for each
system node, more run-time overhead and memory
consumption.

VIII. RELATED WORK
Several patterns and frameworks for fault tolerance design

using object-oriented approaches have been proposed in the last

Figure 12. Performance results.

Figure 11. Display example.

132

ten years [15][16][17][18]. In all them, concepts as
checkpointing, try-blocks, acceptance tests, versions and voters
are represented by classes. Each proposal has its own class
structure, using abstract classes to represent more general
concepts as variants and adjudicators. Some common patterns
are used in these frameworks, like the composite pattern [14] as
in [17] and [18]. In general, these proposals do not address
thread models and distributed architectures.

Few implementations of fault tolerance support by the
operating system or by a middleware were found.

FT-RT-Mach, an academic general purpose operating
systems, and the DEOS operating system, a certified operating
system for critical avionics applications, use re-execution of
tasks as the primary method for achieving fault tolerance [19].
In these systems, an error can be detected either by an
acceptance test or any other exception, and the operating
system scheduler tries to guarantee the rescheduling of the
thread before its deadline.

ROAFTS (Real-Time Object-Oriented Adaptive Fault
Tolerant Support) is a middleware architecture that can support
several strategies of fault tolerance, like RB and DRB, and
dynamically switches the units operating mode in response to
changes in the resource and application modes [20]. This
middleware is applied as a component of the TMO (Time-
triggered Message-triggered Object structuring scheme) model
of computation [21] where the basic units of computation are
time-triggered and service methods of real-time distributed
objects.

Despite having the same goal of this work, the systems
described target large-scale critical systems, and do not fit into
embedded systems applications because of its intense resource
utilization and complexity.

IX. CONCLUSION
We have presented a framework for supporting the

development of application-level fault tolerance for real-time
embedded systems. The framework already implements a wide
set of FT mechanisms and extending the framework is
considered very simple. Other advantages include easiness of
configuration and high flexibility both at compile and run-time.

Additionally, a case study using radar filtering was
presented and the performance of several configurations were
measured and compared. The extra costs involved with the
introduction of FT mechanisms are considered acceptable for
systems demanding high dependability.

ACKNOWLEDGMENT
This work has been supported by the Portuguese

Foundation for Science and Technology (FCT).

REFERENCES
[1] A. Avizienis, J.-C. Laprie and B. Randell, “Fundamental Concepts of

Dependability,” in Technical Report 739, Department of Computing
Science, University of Newcastle upon Tyne, 2001.

[2] D.K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall,
Inc., 1996.

[3] B. Randell, P. Lee and P.C. Treleaven, “Reliability Issues in Computing
System Design,” in ACM computing Surveys, vol. 10, issue 2, pp. 123-
165, 1978.

[4] B. Randell, “System Structure for Software Fault Tolerance,” in IEEE
Trans. Software Engineering, vol. 1, no.2, pp. 220-232, June 1975.

[5] K. Kim and O. Welch, “ Distributed Execution of Recovery Blocks: An
Approach for Uniform Treatment of Hardware and Software Faults in
Real-Time Applications,” in IEEE Transactions on Computers, vol. 38,
Nº 5, pp. 626-636, 1989.

[6] L. Chen and A. Avizienis, “ N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation,” in Proceedings of
FTCS-8, pp. 3-9, Toulouse, France, 1978.

[7] K. Kim, “Toward Integration of Major Design Techniques for Real-
Time Fault-Tolerant Computer Systems,”, in Journal of Integrated De-
sign and Process Science, vol. 6, issue 1, pp. 83-101, 2002.

[8] S. Montenegro and F. Zolzky, “BOSS /EVERCONTROL
OS/Middleware Target Ultra High Dependability,” in Proceedings of
Data Systems on Aerospace -DASIA, Edinburgh, Scotland, 2005.

[9] S. Montenegro, K. Briess and H. Kayal, “Dependable Software (BOSS)
for the BEESat Pico Satellite,” in Proceedings of Data Systems on
Aerospace - DASIA, Berlin, Germany, 2006.

[10] P. Massa, et al.,”HiPeRCAR: the High Performance Resilient Computer
for Autonomous Robotics,” in Proceedings of Data Systems on
Aerospace - DASIA, Berlin, Germany, 2006.

[11] M. Hecht, H. Hecht and H. Shokri, "Adaptive fault tolerance for
spacecraft," in Aerospace Conference Proceedings, IEEE 2000 , vol.5,
pp.521-533 vol.5, 2000.

[12] G. Kiczales et al., “Aspect Oriented Programming,” in Proceedings
European Conference on Object-Oriented Programming - ECOOP´97,
LNCS 1241, pp. 220-242, 1997.

[13] F. Afonso, C. Silva, N. Brito, S. Montenegro and A. Tavares, “Aspect-
Oriented Fault Tolerance for Real-Time Embedded Systems,” in
Proceedings of the 7th Workshop on Aspects, Components and Patterns
for Infrastructure Software – ACP4IS, Brussels, Belgium, 2008.

[14] E. Gamma, R Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley,
1994.

[15] K. Tso, E. Shokri, A. Tai and R. Dziegiel, “A Reuse Framework for
Software Fault Tolerance,” in Proceedings of AIAA 10th Computers in
Aerospace Conference, San Antonio, March, 1995.

[16] F.. Daniels, K. Kim, and M.A. Vouk, “The Reliable Hybrid Pattern - A
Generalized Software Fault Tolerant Design Pattern,”, in Proceedings of
Pattern Language of Programming Conference - PLOP'97, 1997.

[17] R. Duncan and L. Pullum, “Object-Oriented Executives and
Components for Fault Tolerance,” in IEEE Proceedings of Aerospace
Conference, vol. 6, pp. 2849-2855, 2001.

[18] J. Xu, B. Randell and A. Romanovsky, “A Generic Approach to
Structuring and Implementing Complex Fault-Tolerant Software,” in
Proceedings of the 5th International Symposium on Object-Oriented
Real-Time Distributed Computing, pp. 207-214, 2002.

[19] L. Dong et al., “Implementation of a Transient-Fault-Tolerance Scheme
on DEOS,” in Proceedings of the 5th IEEE Real-Time Technology and
Applications Symposium, pp. 56-65, 1999.

[20] K. Kim, “ROAFTS: A Middleware Architecture for Real-Time Object-
oriented Adaptive Fault Tolerance Support,” in Proceedings of the 3rd
IEEE International High-Assurance Systems Engineering Symposium,
pp. 50-57, Washington, D.C., 1998.

[21] K. Kim, M. Ishida and J. liu, “An Efficient Middleware Architecture
Supporting Time-Triggered, Message-Triggered Objects and an NT-
based Implementation,” in Proceedings of the 2nd IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, pp.
54-63, 1999.

133

