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Abstract
Embedding CRDT counters has shown to be a challeng-
ing topic, since their introduction in Riak Maps. The desire
for obliviousness, where all information about a counter is
fully removed upon key removal, faces problems due to the
possibility of concurrency between increments and key re-
movals. Previous state-based proposals exhibit undesirable
reset-wins semantics, which lead to losing increments, unsat-
isfactorily solved through manual generation management
in the API. Previous operation-based approaches depend on
causal stability, being prone to unbounded counter growth
under network partitions. We introduce a novel embeddable
operation-based CRDT counter which achieves both desir-
able observed-reset semantics and obliviousness upon resets.
Moreover, it achieves this while merely requiring FIFO de-
livery, allowing a tradeoff between causal consistency and
faster information propagation, being more robust under
network partitions.

CCS Concepts: • Theory of computation→ Distributed
algorithms.
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1 Introduction
Conflict-free Replicated Data Types (CRDTs) [6, 7] are highly
available replicated data types used in distributed key-value
stores [4] and collaborative web apps [5]. A basic counter
CRDT is a simple CRDT with a query function value, to

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PaPoC ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9256-3/22/04.
https://doi.org/10.1145/3517209.3524084

obtain the counter value, and an update operation increment,
which adds 1 to the counter.

Frequently many counters may be needed, with patterns
such as dynamic counter creation and removal. Therefore, it
is desirable to be able to embed counters (or other CRDTs)
as values in replicated maps. One of the first popular us-
ages was in the Riak data store [4], which supported a map
CRDT, that could store sets, registers, flags, counters and
even, recursively, other maps.
Embedding CRDTs in maps posed the problem of what

to do for a key removal. Simply removing the map entry
would (for state-based CRDTs, such as the Riak map) cause
the removed value to resurface when merging with other
replicas using the semilattice join. A tentative solution was
to use tombstones, but it is not satisfactory as it effectively
makes the map state grow with the number of keys ever
used, even if only a small number is currently present.
To allow maps with embedded CRDTs to apply a key re-

moval in a uniform way motivated the introduction of a reset
operation in CRDTs. A removal can simply invoke the reset
for the embedded value, which desirably would lead to the
entry being removed, if it becomes equivalent to the default
value (e.g., a zero counter or an empty set) which is assumed
for non-mapped keys, and does not need to be explicitly
stored.
A reset at a given replica should cancel the effect of all

operations that have been observed (applied) at that replica
when the reset is issued. As such, this can be said to have
observed-reset semantics. When the reset is applied at other
replicas, it should cancel the same operations at those repli-
cas. An observed-reset has in general desirable semantics.
For counters, it has the nice property of not cancelling con-
current increments, allowing a usage pattern in which a
given node periodically samples-and-resets the counter, to
obtain a series of increments over time.
Delta CRDTs [1] defined a framework and taxonomy in

which Causal CRDTs can be embedded in maps in a way that
allows a key removal to fully remove the map entry, only re-
quiring a top-level global causal context, shared by all entries,
instead of an ever growing number of map entries serving as
tombstones. The causal context is basically a version vector,
which compactly describes the causal history of observed
operations (that have been applied at the replica). Several

https://doi.org/10.1145/3517209.3524084
https://doi.org/10.1145/3517209.3524084
https://doi.org/10.1145/3517209.3524084


PaPoC ’22, April 5–8, 2022, RENNES, France Matthew Weidner and Paulo Sérgio Almeida

CRDTs such as flags, registers, sets, or maps themselves can
be described as causal CRDTs.

For state-based CRDTs, the problemwith embbeding coun-
ters is that, contrary to most CRDTs, that can afford to as-
sign a dot (unique event identifier as a pair replica-id and
sequence number) per operation, for counters we can have
millions of increments. Counter CRDTs cannot afford to tag
each individual increment and as such are not causal CRDTs.
One approach [2] to embedding makes counters be causal
CRDTs by grouping increments in generations, but abandons
the desirable observed-reset semantics, and allows a reset to
cancel concurrent increments.

For operation-based CRDTs, a solution to embedding coun-
ters was devised [8], but it relies on causal stability [3]. As it
keeps individual not-yet-causally-stable increments, it can
lead to unacceptably large state growth, given a high incre-
ment rate, under network partitions.
In this paper, we present a novel embeddable counter

CRDT that simultaneously satisfies two desirable properties:

1. observed-reset semantics: a reset cancels all incre-
ments that have been observed (applied) at the replica
where the reset is issued;

2. oblivious resets: a fully reset counter allows key re-
moval from the map where it is embedded, i.e., allows
discarding all per-counter metadata.

The state size is bounded by the number of replicas, in-
dependent of the number of increments. More specifically,
each counter’s state size is proportional to the number of
replicas that have sent outstanding increments—either not
yet reset, or reset but not yet received. The only other storage
space required is a single global version vector, containing
one entry per replica, that can be shared by all counters in a
map (or recursively, by all counters embedded in all maps . . .
embedded in a map).
The novel design is an op-based CRDT which draws in-

gredients from both op-based and state-based designs:

• Although op-based, the CRDT state is based on state-
based designs, notably causal CRDTs, with per-node
entries both in per-key metadata and the global causal
context.
• It draws inspiration from grouping increments in gen-
erations, but contrary to the previous design [2], not
only it does not require any manual generation man-
agement in the API, but it also ensures observed-reset
semantics; one key difference from the previous de-
sign is that here the global version vector has a finer
accounting granularity, while in that design it had
generation granularity.
• It exploits the exactly-once delivery guarantee (present
in the causal delivery mechanisms used in op-based
designs) but it does not need causal delivery, requiring
only the much simpler and cheaper FIFO order.

Not requiring causal delivery has the advantage of pro-
viding faster increment and reset propagation, and makes
the algorithm more robust to network partitions. While for
complex data types causal consistency is the norm of what
to aim for in highly available systems, for counting it may
not always be needed, and it may be beneficial to be able to
tradeoff between freshness and causal consistency.

Depending only on FIFO order posed subtle problems, that
were solved in the novel design, such as a reset arriving at
a replica where some of its cancelled increments have not
yet been delivered, while allowing oblivousness when the
pending increments arrive later, if possible.

2 Observed-Reset Counters
For state-based CRDTs or op-based CRDTs when causal de-
livery is used, defining the acceptable semantics for what
is an observed-reset CRDT is simple: a reset cancels the
increments from the causal past.
However, for op-based CRDTs aiming for more general

designswith lessmessaging requirements, namely not requir-
ing causal delivery, gaining freshness but forgoing causal
consistency, defining acceptable semantics requires some
care.
In general, knowledge about both increments and resets

issued can travel independently, carried by either resets or
increments that are delivered. Given the incremental nature
of op-based designs, full transitive knowledge propagation is
unrealistic, specially when increments are delivered, but for
resets (assuming that they are a more rarely issued operation)
more knowledge propagation is realistic.
Regardless of slower or faster propagation, any given al-

gorithm step will have to respect constraints, according to
what the algorithm did in the past, that led to the current
replica state. To define acceptable semantics, first we define
two sets, as a function of the set of operations 𝑆 applied at
the replica (i.e., its state):

• increments(𝑆): the increments propagated by 𝑆 ;
• cancelled(𝑆): the cancellations propagated by 𝑆 .

The increments that are being observed, i.e., that reached
the replica and were not yet cancelled, is the observed set:

observed(𝑆) = increments(𝑆) \ cancelled(𝑆),

and the counter value is just the size of this set:

value(𝑆) = |observed(𝑆) | .

When a reset is issued it must cancel this set, no less
and no more. However, both increments and resets, when
delivered (applied) to a replica, may propagate information
about both increments(𝑆) and cancelled(𝑆) for state 𝑆 where
the operation is issued.
We define cancels(𝑂) as the set of cancellations that are

propagated by an operation 𝑂 , to be joined to the cancelled
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increments when delivered to replica state 𝑆 :

cancelled(𝑆 ∪ {𝑂}) = cancelled(𝑆) ∪ cancels(𝑂).
The possible boundaries, given an operation issued at

replica state 𝑆 , for an increment operation 𝐼 :

∅ ⊆ cancels(𝐼 ) ⊆ cancelled(𝑆),
i.e., an increment does not need to propagate cancellations
at all, but may propagate all known cancellations. For a reset
operation 𝑅:

observed(𝑆) ⊆ cancels(𝑅) ⊆ increments(𝑆),
i.e., a reset needs to cancel at least the observed set, resulting
in a zero counter when it is applied at the origin, but may
propagate more information to other replicas, limited to the
locally known increments. This prevents resetting not yet
know increments, avoiding increment loss.

Similarly, we define adds(𝑂) as the set of increments that
are propagated by an operation𝑂 , to be joined to increments(𝑆)
when delivered to replica state 𝑆 :

increments(𝑆 ∪ {𝑂}) = increments(𝑆) ∪ adds(𝑂).
The possible boundaries, given an operation issued at

replica state 𝑆 , for an increment operation 𝐼 :

{𝐼 } ⊆ adds(𝐼 ) ⊆ increments(𝑆) ∪ {𝐼 },
i.e., an increment needs to propagate itself, but may propa-
gate all known increments. For a reset operation 𝑅:

∅ ⊆ adds(𝑅) ⊆ increments(𝑆),
i.e., a reset may propagate from nothing up to the full set of
known increments.

As a further constraint, a reset does not need to propagate
increments at all, but if it chooses to do so, given that all
those increments were already or are being cancelled at the
origin, it should propagate at least those also as cancellations,
i.e., the constraint:

adds(𝑅) ⊆ cancels(𝑅).

3 Design
Our counter is an operation-based CRDT [7]. Each operation
has a generator and an effector. The generator is called by the
acting replica and returns a message to be broadcast to the
other replicas. Each replica, including the sender, applies the
operation by inputting this message to the corresponding
effector.
We assume that operations are applied exactly once. We

also assume FIFO order: for each replica 𝑗 , all other replicas
apply operations from 𝑗 in the order they were sent, across
all counter instances sharing the same global version vector.
We do not require causal delivery.

Algorithm 1 gives the complete counter CRDT. We use
𝑖 to denote the local replica, so in the generators, 𝑖 is the
sender, while in the effectors, 𝑖 is the receiver and 𝑗 is the

1 types:
2 I, set of replica identifiers

3 global replica state:
4 𝐶 : I⇀ N

5 // assuming 𝐶 [ 𝑗] = 0 for unmapped keys

6 per-instance CRDT state:
7 𝑀 : I⇀ (p : N, n : N, c : N)
8 // assuming𝑀 [ 𝑗] = (0, 0, 0) for unmapped keys

9 query value() : N
10 return

∑{𝑝 − 𝑛 | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀}
11 update inc()
12 generator ()
13 if 𝑖 ∉ dom(𝑀) then
14 return (inc, 𝑖,𝐶 [𝑖] + 1, true)
15 else
16 return (inc, 𝑖, 𝑀 [𝑖] .p + 1, false)
17 effector (inc, 𝑗, 𝑝, 𝑠𝑡𝑎𝑟𝑡)
18 let 𝑐 = 𝐶 [ 𝑗] + 1
19 if 𝑠𝑡𝑎𝑟𝑡 ∨ 𝑗 ∉ dom(𝑀) then
20 𝑀 [ 𝑗] ← max(𝑀 [ 𝑗], (𝑝, 𝑝 − 1, 𝑐))
21 // max is taken entry-wise
22 else
23 𝑀 [ 𝑗] ← max(𝑀 [ 𝑗], (𝑝, 0, 𝑐))
24 if 𝑀 [ 𝑗] .p = 𝑀 [ 𝑗] .n ∧𝑀 [ 𝑗] .c = 𝑐 then
25 𝑀. remove( 𝑗)
26 𝐶 [ 𝑗] ← 𝑐

27 update reset()
28 generator ()
29 return (reset, {( 𝑗, 𝑝, 𝑐) | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀})
30 effector (reset, 𝑅)
31 for ( 𝑗, 𝑝, 𝑐) in 𝑅 do
32 if 𝑗 ∉ dom(𝑀) then
33 if 𝑐 > 𝐶 [ 𝑗] then
34 𝑀 [ 𝑗] ← (𝑝, 𝑝, 𝑐)
35 else
36 𝑀 [ 𝑗] ← max(𝑀 [ 𝑗], (𝑝, 𝑝, 𝑐))
37 if 𝑀 [ 𝑗] .p = 𝑀 [ 𝑗] .n ∧𝑀 [ 𝑗] .c ≤ 𝐶 [ 𝑗] then
38 𝑀. remove( 𝑗)

Algorithm 1: Counter algorithm for replica 𝑖 .

sender. Each CRDT and replica has its own map 𝑀 , while
the map 𝐶 is shared by all CRDTs on a given replica.

Algorithm 1 is a modification of the delta state-based PN-
counter CRDT [1], as we now explain in four steps.

1. Start with Delta State-Based PN-Counter. The state
of a delta state-based PN-counter CRDT is a partial map
𝑀 : I ⇀ (𝑝, 𝑛), where I is the set of replica identifiers
and the values 𝑝, 𝑛 are nonnegative integers. Its value is
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𝑖 broadcasts𝑀 [𝑖] .𝑝 + 1; each replica then takes the max of
this with its own𝑀 [𝑖] .𝑝 entry. Ordinarily, the 𝑛 entries are
used in an analogous way for decrements, but we can instead
use them for resets: to reset the counter, replica 𝑖 broadcasts
{( 𝑗, 𝑝) | ( 𝑗, (𝑝, 𝑛)) ∈ 𝑀}; then for each ( 𝑗, 𝑝), each replica
sets𝑀 [ 𝑗] .𝑛 ← max(𝑀 [ 𝑗] .𝑛, 𝑝).

This modified PN-counter implements the observed-reset
semantics and has a small state. However, once such a counter
is used, its state is always nontrivial: even when reset, it
stores the largest 𝑝 value sent out by each replica. Thus it is
not oblivious.

2. Delete Fully-Reset Entries. To fix the issue, we can
delete any entries 𝑀 [ 𝑗] such that 𝑀 [ 𝑗] .𝑝 = 𝑀 [ 𝑗] .𝑛. This
does not affect the counter’s value, and it means that fully-
reset counters have empty𝑀 . Hence fully-reset counters in a
map can be stored without any per-key metadata. However,
the resulting design is broken: it has the wrong semantics,
and it is not even a CRDT.

3. Fix Semantic Problems. The first problem comes when
replica 𝑗 sends an increment 𝑝 concurrently to a reset. A
replica that receives the reset first will delete 𝑀 [ 𝑗]. Then
after receiving the increment, it will set 𝑀 [ 𝑗] = (𝑝, 0). But
the correct entry—what it would have been in the original
PN-counter—is 𝑀 [ 𝑗] = (𝑝, 𝑛), where 𝑛 is whatever 𝑀 [ 𝑗] .𝑛
was before deletion.

To fix this, we observe: assuming FIFO order, the old value
of 𝑛 must be 𝑝 − 1. Indeed, the new increment 𝑝 is the first
increment sent by 𝑗 that is not cancelled by the reset. Thus
the reset must have cancelled all of 𝑗 ’s prior increments,
which went up to 𝑝 − 1. By this observation, when a replica
receives the increment 𝑝 , it should set 𝑀 [ 𝑗] = (𝑝, 𝑝 − 1)
instead of𝑀 [ 𝑗] = (𝑝, 0) (line 20).

The second problem comes when replica 𝑗 wants to send
an increment just after receiving a reset. It is supposed to
send 𝑝 + 1, where 𝑝 is whatever𝑀 [ 𝑗] .𝑝 was before the reset,
but𝑀 [ 𝑗] may have been deleted. However, the PN-counter
still works if 𝑗 sends a value 𝑝 ′ ≥ 𝑝 + 1, so long as they also
instruct recipients to set𝑀 [ 𝑗] .𝑛 = 𝑝 ′ − 1 (using a 𝑠𝑡𝑎𝑟𝑡 flag
to signal whether a new generation of consecutive 𝑝 values
is starting). One such value is 𝑝 ′ = 𝐶 [ 𝑗] + 1, where 𝐶 [ 𝑗] is a
global value, shared by all CRDT instances, that counts the
total number of increments issued by replica 𝑗 .

4. Extend to FIFO Order. Finally, we need to handle non-
causally-ordered delivery. Specifically, the algorithm breaks
if we receive a reset, delete𝑀 [ 𝑗] because of it, then receive a
causally prior increment sent by 𝑗 . We fix this by waiting to
delete𝑀 [ 𝑗] until after we have received all such increments.
Algorithm 1 tracks that condition using a third entry, 𝑐 , in
𝑀 [ 𝑗] = (𝑝, 𝑛, 𝑐). That entry tells us to wait to delete 𝑀 [ 𝑗]
until we have received the first 𝑐 increments from 𝑗 (across
all CRDT instances). In order to track this condition, each

replica 𝑖 stores not just its own 𝐶 entry 𝐶 [𝑖], but also an
entry 𝐶 [ 𝑗] for each replica 𝑗 , counting the total number of
increments received from replica 𝑗 .

4 Correctness
Theorem 4.1. Algorithm 1 is an observed-reset counter. That
is, there are functions cancels(𝑂) and adds(𝑂), satisfying
the constraints in Section 2, such that in any execution of
Algorithm 1 with FIFO order, a replica that has applied the set
of operations 𝑆 has value value(𝑆).
In particular, the algorithm exhibits strong eventual con-

sistency: two replicas that have applied the same sets of
operations have the same value.
We prove Theorem 4.1 indirectly using Algorithm 2. Al-

gorithm 2 is like Algorithm 1, except it does not delete fully-
reset entries. This makes it easier to analyze. We will prove
that the two algorithms are equivalent, then prove that Algo-
rithm 2 is an observed-reset counter, fromwhich Theorem 4.1
follows.
The specific changes in Algorithm 2 relative to Algo-

rithm 1 are:
• 𝐶 and𝑀 are renamed to 𝐶 ′ and𝑀 ′, for clarity in the
discussion below.
• The lines 𝑀. remove( 𝑗) and their if statements are
removed (lines 24–25 and 37–38).
• The condition if 𝑖 ∉ dom(𝑀) (line 13) is replaced with
if 𝑖 ∉ dom(𝑀 ′) ∨𝑀 ′[𝑖] .p = 𝑀 ′[𝑖] .n.
• The condition if 𝑠𝑡𝑎𝑟𝑡 ∨ 𝑗 ∉ dom(𝑀) on line 19 is
simplified to if 𝑠𝑡𝑎𝑟𝑡 .
• The reset generator (line 29) is changed to

return (reset, {( 𝑗, 𝑝, 𝑐) | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀 ′

∧¬(𝑝 = 𝑛 ∧ 𝑐 ≤ 𝐶 ′[ 𝑗])})
• In the reset effector, only the second case is present
(line 36).

Proposition 4.2. In any execution, a replica using Algo-
rithm 2 will have the same behavior as the same replica
using Algorithm 1, i.e., it will output the same messages and
return the same query values.

Proof sketch. We claim that in any execution, using both
algorithms side-by-side identically, the original state (𝐶,𝑀)
and the alternate state (𝐶 ′, 𝑀 ′) always satisfy the following
correspondence:

𝐶 ′ = 𝐶 , and𝑀 is the same as𝑀 ′ except that𝑀
omits any entries 𝑗 such that𝑀 ′[ 𝑗] .𝑝 = 𝑀 ′[ 𝑗] .𝑛
and𝑀 ′[ 𝑗] .𝑐 ≤ 𝐶 ′[ 𝑗].

Using this correspondence claim, one can check that in
every case, the two algorithms output the same messages
and return the same query values.

To prove the correspondence claim, we need to show that
if it is true before effecting a message𝑚, then it is also true
afterwards.
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1 types:
2 I, set of replica identifiers

3 global replica state:
4 𝐶 ′ : I⇀ N

5 // assuming 𝐶 ′[ 𝑗] = 0 for unmapped keys

6 per-instance CRDT state:
7 𝑀 ′ : I⇀ (p : N, n : N, c : N)
8 // assuming𝑀 ′[ 𝑗] = (0, 0, 0) for unmapped keys

9 query value() : N
10 return

∑{𝑝 − 𝑛 | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀 ′}
11 update inc()
12 generator ()
13 if 𝑖 ∉ dom(𝑀 ′) ∨𝑀 ′[𝑖] .p = 𝑀 ′[𝑖] .n then
14 return (inc, 𝑖,𝐶 ′[𝑖] + 1, true)
15 else
16 return (inc, 𝑖, 𝑀 ′[𝑖] .p + 1, false)
17 effector (inc, 𝑗, 𝑝, 𝑠𝑡𝑎𝑟𝑡)
18 let 𝑐 = 𝐶 ′[ 𝑗] + 1
19 if 𝑠𝑡𝑎𝑟𝑡 then
20 𝑀 ′[ 𝑗] ← max(𝑀 ′[ 𝑗], (𝑝, 𝑝 − 1, 𝑐))
21 // max is taken entry-wise
22 else
23 𝑀 ′[ 𝑗] ← max(𝑀 ′[ 𝑗], (𝑝, 0, 𝑐))
24 𝐶 ′[ 𝑗] ← 𝑐

25 update reset()
26 generator ()
27 return (reset, {( 𝑗, 𝑝, 𝑐) | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀 ′
28 ∧ ¬(𝑝 = 𝑛 ∧ 𝑐 ≤ 𝐶 ′[ 𝑗])})
29 effector (reset, 𝑅)
30 for ( 𝑗, 𝑝, 𝑐) in 𝑅 do
31 𝑀 ′[ 𝑗] ← max(𝑀 ′[ 𝑗], (𝑝, 𝑝, 𝑐))
Algorithm 2: Alternate algorithm for replica 𝑖 , used in
the proof of Theorem 4.1.

This is a case analysis. The only interesting case is when
𝑚 = (inc, 𝑗, 𝑝, false) is an increment that does not start a
new generation, but Algorithm 1 does not have an entry
𝑀 [ 𝑗]. That can only happen if we previously received a
concurrent reset that caused us to delete entry 𝑀 [ 𝑗]. Thus
we are in the setting of Step 3 in Section 3. From the argument
there, it follows that Algorithm 2 ends the effector with
𝑀 ′[ 𝑗] .𝑛 = 𝑝 − 1, just like in Algorithm 1. □

Proof sketch for Theorem 4.1. By Proposition 4.2, it suffices
to prove that Algorithm 2 is an observed-reset counter.

It is easy to check that after applying the set of operations
𝑆 , the state of Algorithm 2 satisfies:
• For each 𝑗 ,𝑀 ′[ 𝑗] .𝑝 is the maximum of:

– the value 𝑝 in the most recent increment message
(inc, 𝑗, 𝑝, 𝑠𝑡𝑎𝑟𝑡) ∈ 𝑆 , and

– the maximum across all values 𝑝 such that ( 𝑗, 𝑝, 𝑐)
appears in a reset message in 𝑆 .

(If there are no suchmessages, then𝑀 ′[ 𝑗] is not present.)
• For each 𝑗 ,𝑀 ′[ 𝑗] .𝑛 is the maximum of:
– the value 𝑝 − 1 corresponding to the most recent
increment message of the form (inc, 𝑗, 𝑝, true) ∈ 𝑆 ,
and

– the maximum across all values 𝑝 such that ( 𝑗, 𝑝, 𝑐)
appears in a reset message in 𝑆 .

(If there are no suchmessages, then𝑀 ′[ 𝑗] is not present.)
We can translate this point-by-point into definitions for

adds(𝑂) and cancels(𝑂):
• adds:
– For an increment operation 𝐼 , adds(𝐼 ) = {𝐼 }.
– For a reset operation 𝑅, adds(𝑅) is the set of incre-
ments 𝐼 = (inc, 𝑗, 𝑝 ′, 𝑠𝑡𝑎𝑟𝑡) such that there exists
( 𝑗, 𝑝, 𝑐) ∈ 𝑅 with 𝑝 ′ ≤ 𝑝 .

• cancels:
– For an increment operation 𝐼 = (inc, 𝑗, 𝑝, 𝑠𝑡𝑎𝑟𝑡), if
𝑠𝑡𝑎𝑟𝑡 = true, then cancels(𝐼 ) is the set of prior in-
crements sent by replica 𝑗 ; else cancels(𝐼 ) = ∅.

– For a reset operation 𝑅, cancels(𝑅) is the same as
adds(𝑅).

With these definitions, the query value∑︁
{𝑝 − 𝑛 | ( 𝑗, (𝑝, 𝑛, 𝑐)) ∈ 𝑀 ′}

equals value(𝑆). Finally, one can check that adds(𝑂) and
cancels(𝑂) satisfy the constraints in Section 2. □

5 Efficiency
5.1 State Size
The per-instance state for a counter using Algorithm 1 is just
the map 𝑀 . Thus the per-instance state size is proportional
to the number of entries in𝑀 . There is also the global version
vector𝐶 , shared by all CRDT instances, which has one entry
per replica.
The number of entries in𝑀 is always upper bounded by

the number of replicas. However, we can get a more precise
guarantee:

Proposition 5.1. In any execution of Algorithm 1 with FIFO
order, a replica that has applied the set of operations 𝑆 has
an entry𝑀 [ 𝑗] for replica 𝑗 if and only if either:

(a) observed(𝑆) contains an increment sent by 𝑗 , i.e., 𝑗 has
sent a not-yet-reset increment; or

(b) there is an increment 𝐼 sent by 𝑗 such that

𝐼 ∈ cancelled(𝑆) \ 𝑆,

i.e., the increment has been cancelled but not yet re-
ceived, due to a reset applied out-of-order.
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Proof sketch. By the correspondence in the proof of Propo-
sition 4.2, 𝑀 [ 𝑗] exists if and only if in the corresponding
execution of Algorithm 2,𝑀 ′[ 𝑗] exists and either𝑀 ′[ 𝑗] .𝑝 ≠

𝑀 ′[ 𝑗] .𝑛 or 𝑀 ′[ 𝑗] .𝑐 > 𝐶 [ 𝑗]. The characterization of 𝑀 ′ in
the proof of Theorem 4.1 shows that 𝑀 ′[ 𝑗] .𝑝 ≠ 𝑀 ′[ 𝑗] .𝑛 if
and only if case (a) holds. Meanwhile, one can check that
𝑀 ′[ 𝑗] .𝑐 > 𝐶 [ 𝑗] if and only if case (b) holds. □

In particular, if a replica has received all increments can-
celled by its received resets, then its state size is proportional
to the number of replicas that contribute to the current value.
In this case, if the counter is fully reset (value 0), then its state
is trivial and can be discarded. Thus the counter is oblivious.

5.2 Message Size
Increment messages have constant size (ignoring logarith-
mic factors, i.e., using fixed sized integers as usually done
in practice). This holds even when counting metadata for
enforcing exactly-once delivery and the FIFO order, namely,
the sender’s id 𝑖 and a sequence number.
Reset messages have the same asymptotic size as the

sender’s state. In particular, if the sender had received all in-
crements cancelled by its received resets, then the reset mes-
sage’s size is proportional to the number of replicas whose
increments are being reset. In any case, the size is upper
bounded by the number of replicas.

6 Conclusions and Future Work
Due to being unrealistic to track individual increments in
state-based counter CRDTs, and given their gossip-based
state propagation, achieving both goals of observed-reset
semantics and obliviousness remains an unsolved problem
for state-based embeddable counter CRDTs.

By combining state-designs from state-based CRDTs and
the generator-effector execution model, we have designed an
operation-based embeddable CRDT counter which achieves
both goals of observed-reset and obliviousness. Moreover,
not only it does not rely on causal stability, but it also does
not depend on causal delivery, requiring only cheap FIFO
messaging, with the added benefit of allowing faster infor-
mation propagation under network problems.

One direction for future work could be to relax the FIFO or-
der requirement to just exactly-once delivery, but we suspect
that FIFO is the essential ingredient, and given the oblivi-
ousness goal we cannot “implement FIFO” in the CRDT. A
conjecture, to be proved (or refuted) is then that FIFO is the
most relaxed messaging order that can be used to achieve
both goals.
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