
Understanding the Motivations, Challenges, and

Practices of Software Rejuvenation

Walter Lucas

Computer Science Department

University of Brası́lia

Brası́lia, Brazil

walter.mendonca@aluno.unb.br

Rodrigo Bonifácio

Computer Science Department

University of Brası́lia

Brası́lia, Brazil

rbonifacio@unb.br

João Saraiva

Department of Informatics

Universidade do Minho

Braga, Portugal

saraiva@di.uminho.pt

Abstract—The continuous evolution of programming languages
has brought benefits and new challenges for software developers. In
recent years, we have witnessed a rapid release of new versions
of mainstream programming languages like Java. While these
advancements promise better security, enhanced performance, and
increased developers’ productivity, the constant release of new
language versions has posed a particular challenge for practitioners:
how to keep their systems up-to-date with new language releases.
This thesis aims to understand the pains, motivations, and practices
developers follow during rejuvenating efforts—a particular kind
of software maintenance whose goal is to avoid obsolesce due
to the evolution of programming languages. To this end, we are
building and validating a theory using a mixed methods study. In
the first study, we interviewed 23 software developers and used
the Constructivist Grounded Theory Method to identify recurrent
challenges and practices used in rejuvenation efforts. In the second
study, we mined the software repositories of open-source projects
written in C++ and JavaScript to identify the adoption of new
language features and whether or not software developers conduct
large rejuvenation efforts. The first study highlights the benefits of
new feature adoption and rejuvenation, revealing developer methods
and challenges. The second study emphasizes open-source adoption
trends and patterns for modern features. In the third and final
study, our goal is to share our theory on software rejuvenation
with practitioners through the Focus Group method with industrial
patterns.

Index Terms—Grounded Theory, Software Rejuvenation, Software
Engineering, Software Evolution

I. INTRODUCTION

Software systems are in a state of constant evolution, driven

by different reasons, including not only domain and technol-

ogy evolution, but also the recent short release cycles of new

versions of mainstream programming languages. As software

languages progress, they bring forth a plethora of new features

and enhancements, promising improved security, performance,

and developer productivity [1]–[3]. To illustrate the short release

cycle of programming languages, from 2014 to 2023, twelve new

Java language versions were officially released (Java 8 — Java

20). Contrasting, from 1996 to 2014, only eight major releases

of the Java language have been made available (Java 1.0 to Java

8). However, with this rapid evolution comes a set of challenges

that developers must deal with, particularly when it comes to

software maintenance and the intricacies of legacy systems [4].

In particular, it is hard to maintain a system that contains new

and old program language constructs and idioms that implement

the same concern. Failure to rejuvenate a system might lead the

software to age, resulting in obsolescence, rendering once-vibrant

applications ineffective in the face of modern demands [4].

Therefore, software systems can benefit from source code

rejuvenation, a process that aims at transforming the source code

to support more recent features of a programming language [5].

The rejuvenation of legacy code is vital to avoid obsolescence and

maintain compatibility with modern software. Recent research [6],

[7] presented a set of benefits related to software rejuvenation

(including increased flexibility, agility, and productivity). Lucas

et al. [2], [8] suggested that replacing legacy constructs (such as

anonymous inner classes and foreach statements) with lambda

expressions improves the understanding of Java programs in

specific scenarios and can make the code more concise.

Despite its potential benefits, the motivations and challenges

developers face are shortly unexplored in the existing literature,

creating a significant gap in understanding the strategies to

overcome the side effects of software aging. In particular, as

initial results of our research suggest, the demand to address

critical updates and bug fixes often takes precedence over software

rejuvenation, postponing these efforts for years in some cases.

This Ph.D. thesis explores the following research questions to

address this literature gap.

RQ1: What are the motivations that lead software developers

to rejuvenate their software? This question aims to

explain the factors, phenomena, and situations that motivate

software developers to rejuvenate their code;

RQ2: What are the challenges that hinder software developers

from rejuvenating their software? This question aims to

explain which situations and factors make it difficult or

prevent developers to rejuvenate their programs.

II. THESIS OUTLINE

This thesis aims to build a theory on the pains, motivations,

and practices developers follow during rejuvenating efforts—

a particular kind of software maintenance whose goal is to

avoid software obsolesce due to the evolution of programming

languages. To achieve this goal, we have conducted two studies

so far. In the first, we interviewed 23 software practitioners and,

using the Constructivity Ground Theory Method, we identified

recurrent challenges and practices used in rejuvenation efforts.

We detail the first study in Section IV. This research is in the final

stage, lacking some revisions of the results and the conclusion of

writing a scientific paper (to be submitted by the end of September

2023).

In the second study our goal was to mine the source code

repository of C++ and JavaScript open source projects to find

evidence that developers replace legacy programming language

constructs and idioms by new ones and even conduct large

rejuvenation efforts. Regarding the C++ study, we conducted

a large-scale exploratory study of 272 C++ projects from the

611

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00082

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
9-

8-
35

03
-2

78
3-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

88
46

.2
02

3.
00

08
2

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

KDE community [9]. The KDE Open Community is a globally

recognized open-source community that is actively engaged in

the development of a wide range of applications across various

domains, such as games, education, and development frameworks.

We analyzed the adoption of a set of modern C++ features

and then contacted developers participating in code rejuvenation

efforts we mined. Our findings have multiple ramifications. First,

we present a list of benefits and rejuvenation scenarios that

C++ programmers can implement, indicating that using lambda

expressions, range-based for loops, and auto-typed variables

improves code readability and software maintenance.

In addition, we report that automated tools such as Clazy,

Clang-tidy, KDevelop, and Clion assist KDE developers in iden-

tifying opportunities for rejuvenation. Finally, the set of contri-

butions that characterize rejuvenation efforts provides valuable

examples for both developers and tool builders. Improving soft-

ware development practices, the C++ study provides insights

and recommendations that can benefit both the KDE community

and a broader audience of C++ developers. We replicated the

C++ study to characterize the trends in the adoption of modern

JavaScript features. As such, we mined the source code history

of 100 JavaScript open-source projects. This study offers insights

into the adoption patterns and trends for modern JavaScript

features within open-source communities’ applications. Our initial

findings underscore the widespread incorporation of these fea-

tures, underscoring their pivotal role in present-day development

practices. The early integration of specific features revealed that

JavaScript developers have a forward-looking mindset and eager-

ness to infuse quality improvements into their projects, thereby

rejuvenating their codebases. Although we have already published

the results of the C++ study [9], our plan is to submit the results

of the JavaScript study in October 2023. We detail the second

study in Section V.

These studies aim to improve and validate our theory about

software rejuvenation efforts through new data found in the his-

tory of the analyzed software repositories, which bring evidence

to support the facts presented in our theory. We are planning a

third and final study of this research to collect evidence from the

industry about the usefulness of our theory. We intend to apply

the focus group method [10] to evaluate the emerging theory and

refine it according to the new data collected. The objective is

that the MSR studies on C++ and JavaScript and the focus group

study will help us improve and validate our theory. During the

next twelve months (from August 2023 to July 2024), I intend to

conduct the third study and then (a) consolidate the results of our

research, (b) finish writing my thesis, and (c) present my research

to the defense committee.

Research Method. As we mentioned in this section, this

research involves three studies that use different methods.

• First Study aims to build a theory on software rejuvenation

using the Constructivity Grounded Theory method [11], [12].

• Second Study aims to identify (a) how C++ and JavaScript

developers replaces legacy constructs by modern language

features and (b) whether or not they conduct large rejuve-

nation efforts. The second study relies on mining software

repository efforts [1], [9].

• Third Study aims to improve and validate our theory

on software rejuvenation efforts with the feedback from

industry. To this end, our goal is to use the Focus Group

method [10] that should be conducted in at least three

companies.

III. BACKGROUND AND RELATED WORKS

Software maintenance can be comprehended as a collection

of discrete alterations carried out on a software system dur-

ing its entire life cycle [13]. According to the ISO/IEC/IEEE

14764:2022 [14] standard, a basic process for software mainte-

nance may contain the following phases: process implementation,

problem analysis, and modification, modification implementation,

revision /acceptance of software maintenance, migration, and

retirement.

Bragagnolo et al. [7] discusses the concepts of modernization,

such as legacy systems, their decline, approaches to recovering

from decline, and the material relation between these processes

and software engineering. The authors present a taxonomy of

software migrations that can be performed in a program that

include, but not limited to Web Migration, which involves the

transition from a desktop application (client-server) to a web

application [15], Service Migration when application functionality

can be made available as a service [16], Library Migration, which

consists of delegating a concern to a given library/structure [17],

Language migration, which involves translating source code from

one programming language to another (e.g. Java to Kotlin [18]),

and Paradigm migration, which implies changes in the organi-

zation and semantics of the code (e.g. from the procedural to

object-oriented paradigm [19]). The study results in a theory that

unifies the acknowledgment of methods, processes, and planning

from legacy systems migrations.

Khadka et al [6] present a set of benefits related to software

migration/modernization. They conducted five retrospective case

studies of software modernization were analyzed in an empirical

study. The researchers assessed whether the business objectives

established before the modernization activities were met. Ac-

cording to the study, the goals were only partially met, and

there are benefits (Like Increased flexibility, Increased agility,

and Cost reduction) and negative consequences (decreasing of

performance and user resistance) resulting from modernization

efforts. These studies provide a classification system for various

types of migrations, as well as a compilation of advantages

and disadvantages associated with them. However, they do not

delve into the subject of source code rejuvenation driven by the

evolution of programming languages.

In addition, Pirkelbauer et al [5] present the migration between

versions of the same programming language called source code

rejuvenation, which consists of evolving the source code of the

programs through code transformations to support the modern

features of programming languages. In this thesis, we are inter-

ested exclusively in this kind of migration.

Also, studies in the literature report that developers can benefit

from tools of automated code transformations to replace legacy

constructions with modern programming language features [20]–

[22]. Kumar et al [20] present a tool set to rejuvenate C++

libraries by replacing macros with modern constructs introduced

into the C++11 standard library. Dantas et al [21] present a library

of Java transformations developed in the RASCAL language [23]

that rejuvenates legacy systems to support Java programming

language constructs in version 8. The study revealed that simple

transformations such as introducing the diamond operator are

more likely to be accepted than substantial transformations that

substantially change the code, such as enhanced refactor loops

612

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

for the new functional style. Mazinanian et al. [1] reported the

need for improvements in Java language design and suggested

that developers make changes manually and need smarter tool

support with suggestions for appropriate code changes.

The previous studies highlight the advantages and difficulties

associated with the use of automated tools for code rejuvenation.

However, these studies do not address the specific challenges that

developers encounter when engaging in rejuvenation activities.

IV. A THEORY ABOUT SOFTWARE REJUVENATION

In our study, we seek to better understand how industry

professionals evolve their software from the evolution of pro-

gramming languages. We use the Grounded Theory approach

(GT) [11] to find factors that can block, delay, and motivate the

evolution of software to adopt modern features of new versions

of programming languages. We use GT because it allows us to

better understand social interactions and behaviors, as software

is mostly developed and maintained by humans. GT is also

suitable in underexplored areas and research on software evolution

motivated by language evolution in the view of professionals is

still a mystery to software engineering. Among the approaches

existent, we will follow the steps proposed by [11], as we

believe that to conduct a robust and in-depth investigation in

software engineering, it is necessary to have knowledge and skills

beyond those normally available to social science researchers.

Contrary to the previous strands, the constructivist GT considers

the experience and knowledge of researchers in the explored area.

A. Study Settings

In this study, we present a comprehensive grounded theory

study aimed at understanding the motivations and challenges be-

hind code rejuvenation among professional developers. Our data

collection process involved conducting semi-structured interviews

with experienced developers, focusing on their experiences with

software and programming language evolution. To ensure the

validity of our interview script, we conducted a pilot study with

five developers to validate the open-ended questions. Our target

population consisted of experienced developers with at least four

years of industry experience, as they are more likely to encounter

software and programming language evolution throughout their

careers.

Initially, we sought to recruit developers with three or more

years of experience contributing to popular open-source projects

on GitHub. However, this strategy did not yield the desired

results. Consequently, we adopted alternative methods, such as

reaching out to developers through social networks like LinkedIn

and sending emails to individuals in our contact network. We

conducted interviews with a total of 23 developers, employing

theoretical sampling [11] to ensure adequate data representation.

The demographic data of the participants, including their

identification (Id), years of experience (Exp), role at work (Role),

and domain of the participant company (Domain), are presented

in Table I. The next sections refer to specific participants using

the assigned IDs. Next, all 23 interviews were transcribed (a total

of 82100 words).

The initial coding phase involved analyzing the interview data,

resulting in 80 unique codes and 441 codifications. We derived

codes such as improving code maintenance and improving

code comprehension from a developer’s reported benefits of

rejuvenating code. Memoing, an essential aspect of the coding

and analysis process, involved taking informal notes about par-

ticipants, phenomena, and the investigation. We crafted a memo

reflecting the motivation for code rejuvenation and associated

the codes improving code maintenance and improving code

comprehension with the category quality improvements.

To ensure consistency and accuracy, we conducted constant

comparisons throughout the analysis process, involving two re-

searchers. The focused coding phase involved a systematic eval-

uation of the codes obtained during the initial coding phase to

identify categories. Based on participants’ responses, we observed

that rejuvenating source code could lead to various benefits.

Consequently, we grouped related codes under the category

quality improvements, which encompassed six unique codes:

improving code maintenance, improving code comprehension,

improving software architecture, improving code performance,

new language features might improve correctness, and new

language features can improve security.

Theoretical sampling played a role in shaping our interview

questions, enabling us to delve deeper into participants’ sig-

nificant experiences, practices, obstacles, and perspectives. We

included additional questions in subsequent interviews to explore

specific aspects further. Theoretical saturation signified the end

of data collection when the coding process, refinement, and re-

interviews no longer yielded new insights or theoretical knowl-

edge. With this, we finalized our coding process, resulting in 63

unique codes and 438 codifications, thereby attaining a coherent

grounded theory consistent with the data.

TABLE I
GROUNDED THEORY PARTICIPANT DEMOGRAPHICS.

Id Exp Role Domain

P1 12 years Senior Developer Public Prosecutor’s Office

P2 17 years Software Architect Consultancy

P3 18 years Software Architect Enterprise software

P4 6 years Developer Software tooling

P5 5 years Developer Enterprise software

P6 12 years Senior Developer Public Prosecutor’s Office

P7 10 years Tech lead Enterprise software

P8 6 years Developer Military Institute of Engi-
neering

P9 5 years Developer Consul-
tant

Software tooling

P10 6 years Developer Enterprise software

P11 17 years Senior Developer Enterprise software

P12 years Senior Developer
Researcher

Institute of Research
Software tooling

P13 4 years Developer Military Institute of Engi-
neering

P14 20 years Senior Developer Enterprise software

P15 11 years Tech lead
Co-Founder

Enterprise software

P16 30 years Founder Enterprise software

P17 9 years Tech lead Enterprise software

P18 5 years Developer Public Prosecutor’s Office

P19 8 years Senior Developer Public Prosecutor’s Office

P20 25 years Senior Developer Enterprise software

P21 15 years Senior Developer Banking
Health

P22 30 years Professor
Senior Developer

Enterprise software
Academic

P23 6 years Researcher
Developer

Enterprise software
Academic

B. Results

In this section, we introduce the codes of theoretical categories

that surfaced throughout our investigation. We structure this sec-

tion based on the motivations, challenges, and practices develop-

ers adopt during code rejuvenation endeavors. We emphasize the

categories and codes, including direct quotes from the interviews.

613

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

Also, we present the number of occurrences for codes in the text

Superscript (*) with color blue.

1) Motivations

The study participants emphasize that code rejuvenation efforts

can be instrumental in preventing software obsolescence8 (P1,

P3, P6, P11, and P19). Obsolescence becomes a concern when

support for a specific version of a programming language is

discontinued, and programs continue to utilize that version. In

such cases, developers feel compelled to rejuvenate the software.

An essential motivation for rejuvenating software is to enhance

the overall program quality. Participants noted that new language

features often improve both security9 (P3, P12, P17, 21, and P22)

and performance12 (P2, P3, P8, P11, P12, P17, 22, and P23) of

systems. Minor language revisions, such as Java SE 13.0.1 and

13.0.2, often include security patches and bug fixes for standard

libraries. Furthermore, the Java Platform Module System [24], a

prominent feature in Java 9, aims to enhance the scalability of the

Java SE Platform and boost performance by employing whole-

program optimization techniques for complete configurations of

platform, library, and application components [24].

P2

“Yes, it is important. Mainly because of security issues,

performance issues, and code readability issues.)”

Participants emphasized that code rejuvenation efforts can

significantly improve the internal quality attributes of a system,

particularly through reductions in boilerplate code6 (P1, P7, P12,

P14, and P19) and advancements in program comprehension34

(P1-P7, P10-P14, P16-P20, P22, and P23). The introduction of

new language constructs aimed at reducing verbosity allows

developers to achieve the same functionality with fewer lines

of code, streamlining the codebase and facilitating software

maintenance and management. Rejuvenation efforts also have

positive effects on developer productivity16 (P3, P4, P8, P10,

P11, P13, P14, P16, P17, P19 and P20) and software correct-

ness13 (P3, P8, P11, P16, P17, P19, P21 and P22). For instance,

the JDK Enhancement Proposal 359 (JEP395) introduces the

record construct as an alternative to certain Lombok features,

allowing developers to migrate legacy code and reduce library

dependencies, further enhancing productivity.

2) Challenges

Despite the numerous benefits of rejuvenation, developers en-

counter challenges that may impede their efforts. Time constraints

arise from the need to modern language features need some

time for being adopted28 (P2, P3, P9, P10, P12-P15, P18-P20,

P12, and P23), and It is hard to keep updated with language

evolution14 (P1, P3, P6, P7, P10, P15, P16, P18, P20, P21 and

P23), which require developers to allocate time for understanding

and incorporating these features effectively. The findings of our

mining study [9] indicate that the prompt and extensive integration

of modern language features is not instantaneous. The findings

of our study indicate that the widespread adoption of modern

features occurred approximately five years after the release of

the C++11 specification.

Keeping pace with the rapid evolution of programming lan-

guages, like C++ and Java, also presents challenges, particularly

when dealing with multiple languages for different system com-

ponents. For example, a new version of C++ is released every

three years; while a new version of the Java language is being

released every 6 months 1. Another key challenge is balancing

development and maintenance time16 (P4, P6, P8, P9, P11, P13-

P15, P18, and P20-P22), where developers must strike a delicate

equilibrium between implementing new features and maintaining

existing code. Additionally, cultural aspects within organizations

may undervalue maintenance tasks like rejuvenation, hampering

the prioritization of these efforts.

P21

“The main issue we had there was time, as I worked alone

and had to meet many demands at the same time. And a

process like this, of renewing a code construction that’s

not very good is not that fast.”

Furthermore, developers perceive certain factors that may pre-

vent software rejuvenation. The difficulty of migrating large

legacy codebases16 (P1, P4, P5, P7, P8, P11, P13-P15, P17, and

P20-P22) to the latest language version stands as a significant

obstacle, particularly due to the complexity involved in such

migrations. Additionally, the apprehension of introducing bugs

during rejuvenation22 (P2, P3, P8, P9, P11-13, P16-P18, P17,

and P20-P22) creates reluctance among developers to embark on

rejuvenation efforts. However, developers are aware of incremen-

tal migration strategies to minimize these challenges.

3) Practices

Developers adopt diverse approaches to rejuvenating software,

with differing opinions on the ideal timing for rejuvenation.

Some prioritize software stability4 (P1, P10, P20, and P22) over

staying up-to-date with language versions, while others advocate

for prompt rejuvenation to reduce migration efforts and associated

risks. Factors like implementing new features4 (P4, P9, and P18),

altering system architecture, encountering critical bugs, or facing

the discontinuity of language support influence the decision to

rejuvenate. A reactive-based approach may emerge when recon-

ciling rejuvenation with ongoing development proves challenging.

However, practices are influenced by organizational and product-

specific considerations, and developers must carefully weigh the

benefits and risks of rejuvenation efforts9 (P12, P13, P15, P16,

P18, P22 and P23).

P12

“In general, the best attitude from my point of view is:

to what extent is it worth changing a project in order

to evolve a language to reach a new feature or new

functionality? The impact on the project must be taken

into consideration.”

Most participants in the study rejuvenate their systems without

specialized tools, despite the availability of IDEs (such as IntelliJ

and Eclipse) and command-line tools for support. Reasons for

this vary; some developers rely on manual rejuvenation15 (P1-

P3, P11-P13, P15, P16, and P20-P23) with confidence in their

1https://blogs.oracle.com/javamagazine/post/java-long-term-support-lts

614

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

test suites, while others only use static analysis tools to identify

opportunities for rejuvenation15 (P3, P4, P10, P11, P14, P15,

P20, P22 and P23). The lack of awareness about helpful rejuve-

nation tools and concerns about potential risks and the need for

tool configuration contribute to the preference for manual efforts.

Overall, developers’ approaches to rejuvenation and tool adoption

are shaped by their confidence in manual efforts, familiarity with

available tools, and risk tolerance for automated code changes.

V. THE ADOPTION OF NEW LANGUAGE FEATURES

In the Second study, we conducted an analysis on the soft-

ware repositories of open-source projects implemented in C++

and JavaScript in order to ascertain the extent to which new

language features are adopted and whether software developers

realize rejuvenation endeavors. These studies are guided by some

questions:

(Q1) To what extent do software systems rely on modern fea-

tures?

(Q2) When did software developers start using modern features?

(Q3) Is there any trend in the adoption of modern features in

open-source applications?

(Q4) Do software developers conduct maintenance efforts having

the sole goal of rejuvenating their code?

(Q5) Which tools do software developers use to support mainte-

nance efforts for code rejuvenation?

(Q6) What are the reasons that motivate software developers to

conduct maintenance efforts for code rejuvenation?

(Q7) Are the Core Developers of the projects responsible for

conducting rejuvenation efforts?

Exploring these research questions enhances our grasp of

modern C++ and JavaScript feature adoption, temporal transitions

in project codebases, and potential code rejuvenation trends. It

clarifies developer involvement, what tools for rejuvenation are

used or not, motivations that lead developers to rejuvenate their

programas, and identifies key contributors.

A. Study Settings

We analyzed C++ repositories that we checked out from the

GitHub of The KDE Open Community [9]. We filtered out

projects with a small percentage of C++ code (below 50%)

and projects that started after 2010 or that did not have recent

updates—that is, we only consider projects that have at least one

commit in 2022. Our dataset contains 272 KDE programs and

libraries written in C++. We analyzed the adoption of a set of

modern features such as lambda expressions, auto-typed vari-

ables, range-based for, and contacting developers participating

in code rejuvenation efforts.

Next, we replicate the study to characterize the trends in the

adoption of modern JavaScript features. The dataset containing

the 100th most rated JavaScript repositories was selected using the

SEART tool [25]. The parameters of the search were JavaScript

projects whose number of commits was more than 1000 (one

thousand), the creation date to be before 2012 with at least

one update on January of 2023. We analyzed the adoption of

a set of modern features such as Async Declarations, Const

Declarations, Arrow Function Declarations, Let Declarations,

and Object Destructuring.

B. Results

Regarding the C++ study, Our findings suggest that KDE

developers extensively use auto-typed variables, lambda expres-

sions, and range-based for in more than 60% of the projects [9].

Futhermore, the findings of our study indicate that the integration

of new language features does not occur instantaneously, as it

took approximately five years for the widespread adoption of

modern features following the release of C++11. The results of

our study also indicate a consistent pattern of growing acceptance

and adoption of modern C++ language features within KDE

projects. Additionally, there is a noticeable inclination towards

transitioning existing codebases to incorporate auto-typed vari-

ables, lambda expressions, and range-based for.

KDE developers actively pursue rejuvenation efforts for code

modernization, notably adopting new features through refactoring.

Our study revealed over 50 such endeavors, impacting hundreds

of lines in C++ code. Our findings also indicate that KDE

developers employ tools (Clazy, Clang-tidy, KDevelop, Clion)

for rejuvenation, mainly identifying scenarios for improvement.

Automation aids significant efforts, reducing costs, particularly

for range-based for and auto-typed variables; however, lambda

expressions incorporation demands extra cognitive effort, per

developer reports.

Finally, KDE developers leverage modern C++ features

(lambda expressions, range-based for, auto-typed variables) for

enhanced code readability and reduced errors, streamlining main-

tenance. Code rejuvenation serves dual purpose: attracting con-

tributors and extending software lifespan. Applying the Truck

Factor method [26], we observed 63.2% (36 out of 57) major

rejuvenation commits linked to core project developers. This

underscores the significance of technical leaders’ engagement in

extensive maintenance for effective software rejuvenation.

In relation to the JavaScript study, our results suggest that,

JavaScript developers extensively employ Arrow Function Dec-

larations, Const Declarations, Async Declarations, Let Declara-

tions, and Object Destructuring (adoption rates: 97%, 91%, 88%,

86%, 75%). Additionally, Default Parameters, Await Declara-

tions, Promise Declarations, Import Statements, and Spread Ar-

guments are significantly used (45% to 60%), while Class Decla-

rations, Rest Statements, Export Declarations, and Promise All()

and Then() exhibit moderate adoption (33% to 50%). These find-

ings illuminate JavaScript feature usage patterns, emphasizing key

features in modern development. JavaScript developers quickly

embraced Arrow Function Declarations and Async Declarations,

signifying early adoption of these modern features. Additionally,

other modern JavaScript features gained widespread acceptance

within 1-2 years of their introduction in new JavaScript versions.

Finally, Our analysis of JavaScript apps reveals a notable rising

adoption trend for various modern JavaScript features, confirmed

by significant upward trends in regression analysis. For example,

depicted in Figure 1, underscore the consistent and growing

utilization of Arrow Function Declarations over time.

Our plan is to finish the analysis and consolidate all results to

submit the study in October 2023.

VI. FINAL REMARKS

The outcomes of this thesis enrich our comprehension of

the ever-evolving realm of software development, underscoring

remaining updated on novel features to harness their potential

optimally. Our study provides insights into code rejuvenation’s

615

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Distribution of Arrow Function Declarations usage across the JavaScript
projects in our dataset.

�����

������

������

������

���� ���� ���� ���� ���� ����

	
��
���������
��

�
�
�

�

�
�

�
��
�
��
��
��
�

motivations and challenges. It highlights benefits and hurdles like

time constraints, evolving features, and organizational culture,

aiding developers in navigating the process for enhanced software

practices. With Programming language’s ongoing evolution, forth-

coming studies can leverage these findings to delve into the effects

of these features on software caliber, developer efficiency, and

overall application performance. In our future works , we aims

to investigate the efforts made by developers in incorporating the

most recent language features. This will result in the creation of a

comprehensive collection of recommended practices and transfor-

mations. The purpose of this catalog is to assist fellow developers,

communities, and organizations in maintaining the integrity of

their existing programs and enhancing their practicality.

REFERENCES

[1] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding the use
of lambda expressions in java,” Proceedings of the ACM on Programming

Languages, vol. 1, no. OOPSLA, pp. 1–31, 2017.

[2] W. Lucas, R. Bonifácio, E. D. Canedo, D. Marcilio, and F. Lima,
“Does the introduction of lambda expressions improve the comprehension
of java programs?” in Proceedings of the XXXIII Brazilian Symposium

on Software Engineering, SBES 2019, Salvador, Brazil, September

23-27, 2019. ACM, 2019, pp. 187–196. [Online]. Available: https:
//doi.org/10.1145/3350768.3350791

[3] J. L. Overbey and R. E. Johnson, “Regrowing a language: refactoring tools
allow programming languages to evolve,” in Proceedings of the 24th ACM

SIGPLAN conference on Object oriented programming systems languages

and applications, 2009, pp. 493–502.

[4] D. L. Parnas, “Software aging,” in Proceedings of 16th International

Conference on Software Engineering. IEEE, 1994, pp. 279–287.

[5] P. Pirkelbauer, D. Dechev, and B. Stroustrup, “Source code rejuvenation is
not refactoring,” in International Conference on Current Trends in Theory

and Practice of Computer Science. Springer, 2010, pp. 639–650.

[6] R. Khadka, P. Shrestha, B. Klein et al., “Does software modernization
deliver what it aimed for? A post modernization analysis of five software
modernization case studies,” in 2015 IEEE International Conference on

Software Maintenance and Evolution, ICSME 2015, Bremen, Germany,

September 29 - October 1, 2015. IEEE Computer Society, 2015, pp.
477–486. [Online]. Available: https://doi.org/10.1109/ICSM.2015.7332499

[7] S. Bragagnolo, N. Anquetil, S. Ducasse, A. Seriai, and M. Derras, “Soft-
ware migration: A theoretical framework (a grounded theory approach on
systematic literature review),” Empirical Software Engineering, 2021.

[8] W. L. M. de Mendonça, J. Fortes, F. V. Lopes et al., “Understanding
the impact of introducing lambda expressions in java programs,”
J. Softw. Eng. Res. Dev., vol. 8, 2020. [Online]. Available: https:
//doi.org/10.5753/jserd.2020.744

[9] W. Lucas, F. Carvalho, R. C. Nunes et al., “Embracing modern c++
features: An empirical assessment on the kde community,” Journal of

Software: Evolution and Process, vol. n/a, no. n/a, p. e2605, 2023. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2605

[10] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as
an empirical tool in software engineering,” in Guide to Advanced

Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjøberg, Eds. Springer, 2008, pp. 93–116. [Online]. Available: https:
//doi.org/10.1007/978-1-84800-044-5 4

[11] K. Charmaz, Constructing grounded theory : a practical guide

through qualitative analysis. London; Thousand Oaks, Calif.:
Sage Publications, 2006. [Online]. Available: http://www.amazon.com/
Constructing-Grounded-Theory-Qualitative-Introducing/dp/0761973532

[12] ——, “Grounded theory as an emergent method,” in Handbook of emergent

methods, S. N. Hesse-Biber and P. Leavy, Eds. New York, NY: Guilford
Press, 2008, pp. 155–170.

[13] H. C. Benestad, B. Anda, and E. Arisholm, “Understanding software
maintenance and evolution by analyzing individual changes: a literature
review,” J. Softw. Maintenance Res. Pract., vol. 21, no. 6, pp. 349–378,
2009. [Online]. Available: https://doi.org/10.1002/smr.412

[14] ISO/IEC/IEEE, “Iso/iec/ieee international standard - software engineering -
software life cycle processes - maintenance,” ISO/IEC/IEEE 14764:2022(E),
pp. 1–46, 2022.

[15] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Developing
legacy system migration methods and tools for technology transfer,”
Software: Practice and Experience, vol. 38, no. 13, pp. 1333–1364, 2008.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.870

[16] M. Razavian and P. Lago, “A lean and mean strategy for migration
to services,” in Proceedings of the WICSA/ECSA 2012 Companion

Volume, ser. WICSA/ECSA ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 61–68. [Online]. Available: https:
//doi.org/10.1145/2361999.2362009

[17] H. Zhou, J. Kang, F. Chen, and H. Yang, “Optima: An ontology-based
platform-specific software migration approach,” in Seventh International

Conference on Quality Software (QSIC 2007), 2007, pp. 143–152.
[18] M. Martinez and B. G. Mateus, “Why did developers migrate

android applications from java to kotlin?” IEEE Trans. Software

Eng., vol. 48, no. 11, pp. 4521–4534, 2022. [Online]. Available:
https://doi.org/10.1109/TSE.2021.3120367

[19] Y. Zou and K. Kontogiannis, “A framework for migrating procedural code
to object-oriented platforms,” in Proceedings Eighth Asia-Pacific Software

Engineering Conference, 2001, pp. 390–399.
[20] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating C++ programs

through demacrofication,” in 2012 28th IEEE International Conference on

Software Maintenance (ICSM). IEEE, 2012, pp. 98–107.
[21] R. Dantas, A. Carvalho, D. Marcilio et al., “Reconciling the past and the

present: An empirical study on the application of source code transforma-
tions to automatically rejuvenate java programs,” in 2018 IEEE 25th In-

ternational Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2018, pp. 497–501.
[22] L. Franklin, A. Gyori, J. Lahoda, and D. Dig, “LAMBDAFICATOR: from

imperative to functional programming through automated refactoring,” in
35th International Conference on Software Engineering, ICSE ’13, San

Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng, and
K. Pohl, Eds. IEEE Computer Society, 2013, pp. 1287–1290. [Online].
Available: https://doi.org/10.1109/ICSE.2013.6606699

[23] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A domain
specific language for source code analysis and manipulation,” in Ninth

IEEE International Working Conference on Source Code Analysis and

Manipulation, SCAM 2009, Edmonton, Alberta, Canada, September 20-21,

2009. IEEE Computer Society, 2009, pp. 168–177. [Online]. Available:
https://doi.org/10.1109/SCAM.2009.28

[24] JSR-376 Expert Group, “Java platform module system (jsr 376),” OpenJDK,
Tech. Rep., 2017. [Online]. Available: https://openjdk.org/projects/jigsaw/
spec/

[25] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for MSR
studies,” in 18th IEEE/ACM International Conference on Mining Software

Repositories, MSR 2021. IEEE, 2021, pp. 560–564.
[26] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “A novel approach for

estimating truck factors,” in 2016 IEEE 24th International Conference on

Program Comprehension (ICPC). IEEE, 2016, pp. 1–10.

616

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on March 25,2024 at 09:59:23 UTC from IEEE Xplore. Restrictions apply.

