
Dynamic Management of Distributed Machine
Learning Projects

Filipe Oliveira and André Alves and Hugo Moço and José Monteiro and Óscar
Oliveira and Davide Carneiro and Paulo Novais

Abstract Given the new requirements of Machine Learning problems in the last
years, especially in what concerns the volume, diversity and speed of data, new
approaches are needed to deal with the associated challenges. In this paper we
describe CEDEs - a distributed learning system that runs on top of an Hadoop cluster
and takes advantage of blocks, replication and balancing. CEDEs trains models in
a distributed manner following the principle of data locality, and is able to change
parts of the model through an optimization module, thus allowing a model to evolve
over time as the data changes. This paper describes its generic architecture, details
the implementation of the first modules, and provides a first validation.

1 Introduction

Despite all the recent advances in the field of Machine Learning (ML) and related
supporting areas, many new challenges keep emerging [1]. These stem mostly from
the volume and diversity of data in current ML problems, as well as from the need to
deliver services in real-time, which led to the emergence of streaming data, streaming
analytics [2] and streaming ML [3].

ML applications nowadays require such a volume that datasets must be distributed
across clusters. Consequently, ML algorithms need to learn in a distributed manner,
from multiple sources of data. Moreover, these data change over time, leading to the
need formodels to be updated or fully retrained, which has an increasingly significant
cost on the organizations’ infrastructure.

Filipe Oliveira, André Alves, Hugo Moço, José Monteiro, Óscar Oliveira, Davide Carneiro
CIICESI,ESTG, Politécnico do Porto, Portugal, e-mail: {fvol,afba,hmsm,jmgm,oao,dcarneiro}
@estg.ipp.pt

Paulo Novais
Algoritmi Center/Department of Informatics, University of Minho, Portugal e-mail:
pjon@di.uminho.pt

1



2 Authors Suppressed Due to Excessive Length

In this paper we describe the initial work being developed in the context of the
CEDEs project - Continuously Evolving Distributed Ensembles. CEDEs aims to
build an environment for the distributed training of MLmodels, in which the models
can evolve over time as data change, in a cost-effective way. Therefore, not only
does it address the issue of learning from large datasets, but also that of learning
continuously from streaming data.

CEDEs takes advantage of existing block-based distributed file systems, such as
theHadoopDistributed File System (HDFS) [4], to parallelize and distribute learning
tasks, following the principle of data locality. That is, the computation is moved to
where the data reside, rather than the other way around [5]. Moreover, instead of
more traditional models, CEDEs uses Ensembles [6]: a base model is trained for a
block of a dataset, where the data resides. Then, Ensembles are built in real time by
combining available models according to criteria such as their performance or the
state of the nodes where the base models reside. This is done by the optimization
module that adapts the Ensemble as data changes.

The system also makes use of two other mechanisms: replication and balancing.
Replication allows to automatically create replicas of blocks so that the same block
is available in multiple locations simultaneously. This increases the use of storage
space, but makes it easier for the optimization module to find suitable nodes for
carrying out tasks. Balancing, on the other hand, distributes the blocks evenly across
the cluster, so that the load when executing tasks is appropriately distributed.

Finally, CEDEs also stores the base models themselves in the HDFS, which
are then replicated. This means that, not only, the Ensemble itself is distributed,
which speeds up predictions, but also that, thank to replication, multiple nodes
will have the same base models available for making predictions. Once again, it is
up to the optimization module to decide which base models to use and in which
nodes to make predictions. This paper describes the implementation, operation and
testing/validation of the core modules of this system.

2 Conceptualization

This section details the proposed system in terms of its main components and
functionalities. It first describes the underlying data model (Section 2.1), and then
the proposed architecture (Section 2.2).

2.1 Data Model

The data model that supports an instance of the proposed system is composed of
seven main entities, as depicted in Figure 1, which are described next.

Each instance of the system is expected to address a specific Machine Learning
problem or domain (e.g. Healthcare, Fraud Detection, Finance). While the system



Dynamic Management of Distributed Machine Learning Projects 3

allows multiple organizations to be part of an instance, they are expected to be in
someway related to the domain of that instance.Moreover, organizations can perform
different roles, depending on how they use the available services. For example, an
organizationmayprimarily be a contributor of data,when it contributeswith data and,
consequently, models, but makes little to no use of predictive services. Alternatively,
an organization may essentially be a consumer, when it contributes with little to
no data, but makes a heavy use of predictive services. Any intermediary range is
also possible. Given that this characterization is volatile through time (i.e. the stance
of each organization may change), it is not part of the data model. Instead, this is
derived from the blockchain, as detailed further below.

Fig. 1 Simplified view of the Data Model that supports the proposed system.

Each organization may have multiple users, who are the central entity in the data
model. A user may create and edit ML projects and import or access datasets. The
access of each user to each dataset is governed by a system of roles and permissions.
Each organization may define multiple roles, according to its internal organization
(e.g. Data Scientist, ML Engineer, Data Engineer). Each user may then have one or
more roles inside her/his organization. Permissions are then attributed on the basis
of user roles. Moreover, when a user uploads a new dataset, she/he becomes the
owner of the dataset. This is important to determine the provenance of the data.

When a user creates a new ML project she/he must provide some information,
including: name and general description of the project, the underlying dataset, which
algorithm(s) is/are to be used in the training of the base models, configurations of
the algorithms, etc.

Multiple algorithms can be used in a single project. This is done when the user
wants to build a heterogeneous ensemble, composed of models of different types.
In this case, the user must provide the relative proportion of each algorithm (e.g.
50/30/20) as well as the configuration to use for each algorithm. The configuration
is dependent on the type of each algorithm. For example, a Decision Tree may be
configured in terms of maximum depth or minimum number of instances per leaf
(among others), while a neural network may be configured in terms of activation
function or the number of layers and respective neurons (among others). This allows
for a great range of different ensembles to be built.

When the user requests for a given model to be trained, in the context of a specific
ML project, this actually results in the training of multiple base models: one for each
block (excluding block replicas) of the dataset. While this is completely transparent



4 Authors Suppressed Due to Excessive Length

to the user, the resulting information is stored in the Base Metrics entity. This table
has one line for each base model of each ensemble and contains, among others, data
describing the type of algorithm used, the node where the training took place, the
resulting performance metrics (e.g. RMSE, MAE, R2) and the computational cost
of training the model (e.g. training time, memory and CPU consumption).

There are also relevant additional data, that are not stored in this data model.
Namely, we do not store the meta-data regarding the blocks of each dataset and
their location, as these are dynamic and change through time. This information is
requested in real-time from the HDFS, when needed, lest we risk using outdated
information. The same goes for the location of the base models of a project when
there’s the need to constitute an ensemble and making predictions.

The architecture of the proposed system, which makes use of this data model, is
described in the following Section.

2.2 Architecture

The architecture of the proposed solution is composed of a number ofmajormodules,
which are described in this section. The central element is the Storage Layer. This
is implemented in the form of an HDFS cluster. Here, large datasets are split into
smaller chunks called blocks, of a fixed size (typically 128MB).Multiple data sources
can be considered, ranging from files in different formats (e.g. CSV, Parquet, Avro)
to databases. The whole process starts with a user uploading a data source into the
HDFS, which is then split, distributed and replicated across the cluster.

Once this process finishes, the dataset becomes available to be used in a new
ML project. The user can thus create a new project, select the intended dataset, and
provide the necessary information already detailed in the previous Section. Once
the configuration of the project is complete, the user may start the training of a new
ensemble. This process is managed by the Coordination module, which interacts
with the Optimization and Metadata modules.

The training of an ensemble takes place in a distributed manner and takes advan-
tage of two aspects: the fact that the blocks that constitute each file are replicated
and available in multiple nodes simultaneously, and the principle of data locality.
An ensemble is thus trained by training one base model for each block of a file
(excluding replicas) which, when combined, constitute the ensemble. There is thus
the need to select the most appropriate node where to train each base model for each
block, according to criteria such as the state of each node of the cluster where that
block is available.

Specifically, the Coordination module needs the following inputs:
Block location. For a given ML problem, the Coordination module needs to

know what blocks are part of the respective dataset, and where each of its replicas
are available at the moment of training. Each block is typically available in at least 3
nodes, but this is dependent on the configuration of the HDFS. The number of blocks
of a dataset determines the number of base models to be trained (1:1 relationship).



Dynamic Management of Distributed Machine Learning Projects 5

This information is obtained from the Metadata module;
Task cost prediction. The duration and cost, in terms of computational resources,

of the training of a given base model depends on multiple factors, including the size
of the dataset (lines and columns) and the type and configuration of the algorithm
used. To have an estimate of the cost of each individual task (i.e. the training of each
base model), an approach based on meta-learning was developed that uses multiple
meta-models, one to predict each intended cost metric, based on metadata collected
from a large group of ML problems. This approach, which provides a fairly good
estimate of task complexity/cost is further described in [7, 8]. This information is
obtained from the Optimization module;

Nodes state. Another relevant aspect to considerwhen decidingwhere to train base
models is the state of each node in the cluster. The state of a node is characterized by
its health (which is calculated and maintained by Hadoop’s health checker service),
its current load (e.g. memory, CPU, disk) and the size and cost of its tasks queue.
This information is provided by the Optimization module;

Task allocation. In order to implement the actual training of the models of the
ensemble, the Coordination module also needs information regarding where each
task (basemodel training)will take place. For instance,when there are three candidate
nodes to train a base model for a specific block (thanks to replication), the system
will have to choose the best candidate node. The Optimization module carries out
a global optimization heuristic, which will provide as output the best allocation of
all the necessary tasks across the cluster, based on the elements mentioned in the
previous two points (i.e. Tasks cost prediction and nodes state);

Fig. 2 Depiction of the proposed architecture with a possible sample scenario.

Once the Coordination module receives the tasks allocation for a given ML
project, it is ready to start the training process. This process is implemented in
ZeroMQ: a brokerless asynchronous messaging library that implements multiple
socket communication patterns, useful for implementing distributed systems.



6 Authors Suppressed Due to Excessive Length

As the distributed training process goes on, each worker node updates the coor-
dinator at regular intervals about its individual progress. This information can thus
be accessed in real time by the client applications. As the training of each individual
base model ends, the coordinator is notified and the worker node can move on to the
next task in its queue, if there is one.

As soon as the training of a base model ends, another process takes place. The
model is serialized and is stored in the HDFS. Automatically, the base model will
be replicated and distributed across the cluster, according to the replication and
balancing factors. This means that soon after the training of a base model, it will be
available for making predictions in multiple nodes of the cluster.

This is illustrated in Figure 2, in which the following nomenclature is used:
FiBjRk represents a replica k of block j of file i. The same logic is used for models,
which start with the letter M. An arrow between a specific block replica and a model
means that that base model was trained from that block, on that node. Replicas of
that base model may however exist in other nodes, created through the replication
mechanism of Hadoop after the base model was stored in the HDFS.

Thus, when the client requests for predictions from a given ensemble, a similar
process takes place to that of training models. First, the Coordination module needs
information regarding which of the base models will be used as part of the ensemble.
Indeed, depending on the configuration of the ML project, not all the base models
may be part of the ensemble. The user may decide to have an ensemble with a number
of base models that is smaller than the number of blocks of the dataset. In that case,
the Optimization module will decide, according to the performance metrics of the
base models and the state of the nodes where they reside, the best group of base
models to constitute the ensemble. In the past, we have implemented this process
using genetic algorithms, as described in [9]. However, a more efficient approach is
now being implemented.

Once the Coordination module receives information about task allocation, it
distributes the tasks accordingly by the cluster by means of messages, and awaits for
the predictions of each base model. The predictions are then combined to calculate
the final prediction by the ensemble. To this end, the mean is used for regression
problems, and the mode is used for classification.

Ensembles are thus abstract constructs, depicted in Figure 2 in the Model Layer,
built out of a selection of available base models for a given ML problem.

There are three modemodules in this architecture. The Blockchainmodule is used
to record all the actions of users or clients in the system, including who imported
datasets, who requested the training of models, who requested predictions etc. The
API module includes all the endpoints necessary for interacting with the services
of the system, which in turn communicate with the Coordination module, when
applicable, through ZeroMQ messages. This API can be used by external client
applications. Finally, there is also a User Interface meant to be used by Human users,
which communicates with the previously mentioned API.

The described system is not fully implemented yet. Work is currently undergoing
in the Blockchain and Optimization modules. Currently, the Coordinator assigns
tasks randomly among available and valid candidate nodes, for each ML project.



Dynamic Management of Distributed Machine Learning Projects 7

3 Validation

This section describes the methodology followed for validating the proposed system,
and its results. Given the lack of a physical infrastructure, the distributed system
was simulated as a Docker application with 4 containers: 1 acting as the coordinator
and 3 acting as workers. Each container is based on the same image, built on top of
the ubuntu:bionic image, and in which all the Hadoop ecosystem was installed. To
simulate the actual conditions of a real cluster, Hadoop was installed in distributed
mode.

The characteristics of the datasets used for testing the system are described in
Table 1. Given that the sizer of the datasets is relatively small for what is standard in
an Hadoop cluster, HDFS’s block size was reduced to 8MB, to force a larger number
of blocks and parallelism.

dataset rows columns size blocks

city temperatures 2906327 8 140.6 MB 18
mnist 70000 785 127.9 MB 16
sales records 1048575 14 130.9 MB 16

Table 1 Brief characterization of the datasets used for validation.

For each dataset, an Ensemble was trained using the proposed system. A het-
erogeneous Ensemble was used, containing a mixture of three algorithms from
the scikit-learn library: random forest (sklearn.ensemble.RandomForestClassifier),
decision trees (sklearn.tree. DecisionTreeClassifier) and neural networks (sklearn.
neural_network.MLPClassifier). The configuration of algorithms used is detailed in
Table 2. String features were transformed using scikit-learn’s label encoder.

algorithm parameter value

decision tree

max_depth 5
min_samples_split 2
max_leaf_nodes 5
ccp_alpha 0

neural network

hidden_layers_size [5,2]
activation relu
solver adam
alpha 0.0001
learning_rate constant
max_iter 200

random forest nr_estimators 5

Table 2 Configurations used to train the heterogeneous Ensembles (defined arbitrarily).



8 Authors Suppressed Due to Excessive Length

In the proposed system, the user can also select the weight of each algorithm
in the Ensemble (Figure 3), which results in a proportional number of models for
each algorithm in the Ensemble. For instance, given a dataset split into 18 blocks
and the weights of 50, 30 and 20 for the algorithms random forest, decision trees
and neural networks, respectively, the Ensemble would have 12 random forest, 3
neural networks and 3 decision trees. For the purpose of these tests, these were the
weights used. Moreover, the holdout method was used to evaluate each base model,
with 75% of the data used for training and the remaining 25% used for testing. The
performance of the model is obtained by computing the average value of a given
performance metric (e.g. RMSE, MAE).

In order to compare the results obtained with a baseline, we trained 3 random
forests using a commercially available tool (H2O), using the pre-defined configu-
ration of the algorithm, namely 50 trees with a maximum depth of 20. The results
are compared with those of the proposed system in Table 3 in terms of the RMSE,
R2 and training time. The performance is equivalent, both in terms of predictive
performance or training time. However, it must be stated that the goal at the time is
not to have the most accurate models possible but rather to test if all the components
of the system are working as intended.

Fig. 3 Prototype of the UI: page for editing the properties of a new ML project.



Dynamic Management of Distributed Machine Learning Projects 9

proposed approach commercial tool
dataset rmse r2 time (s) rmse r2 time (s)
city temperatures 21.40 0.51 120.06 20.13 0.61 128.44
mnist 1.82 0.59 244.50 0.86 0.91 101.23
sales records 63198.12 0.93 17.34 7623.67 0.99 577.5

Table 3 Results of the models trained using the proposed system.

4 Discussion, Conclusions and Future Work

This paper described the initial steps in the implementation of a distributed learning
system that has some key innovative features: it trains models for big distributed
datasets following the principle of data locality; it decides in which nodes to carry out
the training and predicting tasks according to the state of the cluster; it allows to use
heterogeneous Ensembles; and it abstracts all the complexity of distribute learning
and associated coordinated tasks from the user. The optimization mechanism is
especially important as it will allow for the performance of the ensemble to be
improved by adjusting which base models make part of it and with which weight.

The main goal of this paper was to validate the proposed system and test its
functionalities rather than to obtain the best possible models. For this reason, we
did not invest time in finding the best possible configuration for each ML problem
and used the same configuration for all. This may explain the relatively poorer
performance of the trained models when compared to those of a commercial tool.
Figure 4 shows how the value of the RMSE varies significantly according depending
on the base model for the "city temperatures" ensemble, hinting that improvements
could be achieved by tweaking the configurations used.

Fig. 4 Distribution of the RMSE for the 18 base models trained for the "city temperatures" dataset,
by algorithm.

Moreover, given that we have no dedicated infrastructure yet, we have imple-
mented and tested the system on a Docker instance. In this scenario, we chose to



10 Authors Suppressed Due to Excessive Length

deliberately use a very small block size for HDFS (8MB), in order to increase the
number of blocks, so as to validate the communication protocol and overall per-
formance of the system. This leads to very small training sets, which may lead to
relatively poorer models, and in turn, lead to generally poor ensembles.

Work now continues on the implementation of the Optimization and Blockchain
modules. Moreover, a streaming module based on Kafka is now also being imple-
mented, that will allow data to change over time and new base models to be added
to the Ensemble. The Optimization module will be used to determine which models
will make part of a given Ensemble in real time, allowing for the Ensemble to evolve
over time, as new models are added and others removed. This is only possible due
to the decisions taken during the implementation of this system, that allow for this
flexibility that is absent in other similar tools. Ultimately, it will allow to better deal
with the significant challenges that the field of ML faces today, namely in what
concerns learning continuously from large volumes of streaming data.

Acknowledgments

This work was supported by FCT – Fundação para a Ciência e Tecnologia within
projects UIDB/04728/2020 and EXPL/CCI-COM/0706/2021.

References

1. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: Opportunities and
challenges. Neurocomputing 237 (2017) 350–361

2. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for iot big data
and streaming analytics: A survey. IEEE Communications Surveys & Tutorials 20(4) (2018)
2923–2960

3. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.: Machine learning for streaming data:
state of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter 21(2)
(2019) 6–22

4. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010
IEEE 26th symposium on mass storage systems and technologies (MSST), Ieee (2010) 1–10

5. Attiya, H.: Concurrency and the principle of data locality. IEEE Distributed Systems Online
8(9) (2007) 3–3

6. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Frontiers of
Computer Science 14(2) (2020) 241–258

7. Carneiro, D., Guimarães, M., Silva, F., Novais, P.: A predictive and user-centric approach to
machine learning in data streaming scenarios. Neurocomputing (2021)

8. Carneiro, D., Guimarães, M., Carvalho, M., Novais, P.: Using meta-learning to predict perfor-
mance metrics in machine learning problems. Expert Systems (2021) e12900

9. Ramos,Diogo,C.D.,Novais, P.: Using evolving ensembles to dealwith concept drift in streaming
scenarios. In: proceedings of the 14th International Symposium on Intelligent Distributed
Computing (IDC 2021). Volume 1026 of Studies in Computational Intelligence., Springer
(2022)


