UM OLHAR SOBRE <mark>OS SE</mark>NSORES NA PENÍNSULA IBÉRICA E AMÉRICA LATINA: ANO 2022

UNA MIRADA A LOS SENSORES EN LA PENÍNSULA IBÉRICA Y AMÉRICA LATINA: AÑO 2022

A LOOK AT SENSORS IN THE IBERIAN PENINSULA AND LATIN AMERICA: YEAR 2022

Coordenadoras M. Teresa S. R. Gomes Marta I. S. Veríssimo

universidade de aveiro theoria poiesis praxis

Ibersensor 2022

UM OLHAR SOBRE OS SENSORES NA PENÍNSULA IBÉRICA E AMÉRICA LATINA: ANO 2022

UNA MIRADA A LOS SENSORES EN LA PENÍNSULA IBÉRICA Y AMÉRICA LATINA: AÑO 2022

A LOOK AT SENSORS IN THE IBERIAN PENINSULA AND LATIN AMERICA: YEAR 2022

12º Congresso Ibero-Americano de Sensores Aveiro – PORTUGAL

M. Teresa S. R. Gomes e Marta I. S. Veríssimo

(coordenadoras)

FICHA TÉCNICA

Título:

Um olhar sobre os sensores na Península Ibérica e América Latina: Ano 2022

Coordenadoras:

M. Teresa S. R. Gomes, Marta I. S. Veríssimo

Revisores:

Carlos Domínguez-Horna | Carlos Silva Cárdenas | Cecilia Jiménez-Jorquera | Cyro Ketzer Saul | Enrique Ernesto Valdés Zaldívar | Fredy Segura-Quijano | Hesner Coto Fuentes | Idalia Ramos | Jahir Orozco Holguín | João A. B. P. Oliveira | José Antonio Plaza | José Antonio Rodríguez | Julián Alonso-Chamarro | Manel del Valle | Manuela Vieira | Marcelo Bariatto | María Gabriela Calle | M. Teresa S. R. Gomes | Mariano Aceves | Mário Ricardo Gongora-Rubio | Marta I. S. Veríssimo | Olimpia Arias de Fuentes | Salvador Alegret

Design e paginação:

Marta I. S. Veríssimo

Editora: UA Editora

Universidade de Aveiro Serviços de Documentação, Informação Documental e Museologia 1ª edição – Julho 2022

e-ISBN: 978-972-789-792-6

DOI:

https://doi.org/10.48528/h76t-t092

Os conteúdos apresentados são da exclusiva responsabilidade dos respetivos autores. © Autores. Esta obra encontra-se sob a Licença Internacional Creative Commons Atribuição 4.0.

Agradecemos o apoio financeiro ao CESAM através da FCT/MCTES (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020UIDP), através de fundos nacionais.

ÍNDICE | ÍNDICE | INDEX

Prefácio	9
Prefacio	
Preface	
CONVIDADOS INVITADOS INVITED	15
Implantable neural probes	
Recent developments in nanostructured electrochemical se applications	ensors and biosensor platforms and21
Chemical sensors and "real" analytical chemistry	
SENSORES ELECTROQUÍMICOS SENSOF	RES ELECTROQUÍMICOS
<i>Electrochemical nano-immunosensor based on cerium oxi for the detection of anti-p53 autoantibodies</i>	ide-doped PEDOT nanocomposite 31
Sensing ferrocene derivatives using a modified glassy carl PEDOT/carbon microspheres thin-film	bon electrode with a 34
Modified ISFETs with silk fibroin membrane for pH measu	urements in biological matrices38
Lignosulfonate-based polyurethanes doped with carbon no applications	anotubes towards sensor 43
Microelectrode sensors for corrosion studies	
Optimization of an electrochemical phagomagnetic assay GLU-Cu ₃ (PO ₄) ₂ hybrid nanoflowers for selective quantific monocytogenes	based on signal amplification of β- cation of live Listeria 53
Two potentiometric microsensors for Cu^{2+} determination is	in corrosion processes58
Dissolved oxygen biosensing using electrochemical electro	odes and solid electrolyte polymer 65
Inkjet-printed electrode modified with magnetite particles enzymatic amperometric determination of hydrogen perox	and carbon nanotubes for the non- ide70
Novel ISE's membranes formulation solvent and polymeri	c matrix free74

SENSORES ÓTICOS E FOTOACÚSTICOS SENSORES ÓPTICOS Y FOTOACÚSTICOS OPTICAL AND PHOTOACOUSTIC SENSORS
Biosensor based on polymer optical fiber and gold nanoparticle for rapid detection of Escherichia coli
Colorimetic based test-strips with virus-like particles as a recognition layer for SARS-CoV-2 virus
Single and cascaded long period fiber grating coated with a polydimethylsiloxane sensing film for acetone detection
Fe_3O_4 -coated plastic optical fiber for H_2S sensing
Proposition of a photoacoustic based sensor for microplastic identification in marine environment
Oxygen sensor for oceanographic applications107
Towards a NOx microanaliser: miniaturized nitric oxide (NO) chemioluminescence analyzer prototype, for automotive industry applications
BIOSSENSORES E APLICAÇÃO À ANÁLISE DE ALIMENTOS BIOSENSORES Y APLICACIONE AL ANÁLISIS DE ALIMENTOS BIOSENSORS AND APPLICATION TO FOOD ANALYSIS
Colorimetric pyranoflavylium-containing sensor films for food spoilage monitoring
Determinação cinética de histamina usando uma sonda raciométrica fotoluminescente combinando pontos quânticos de carbono e pontos quânticos ternários
Development of an electrochemical aptasensor for the detection of a banned antimicrobial in milk
Disposable molecularly imprinted electrochemical sensor containing reduced graphene oxide and nickel nanoparticles for determination of p-coumaric acid in fruit peels
NOVOS MATERIAIS NUEVOS MATERIALES NEW MATERIALS
Laser-induced graphene on polyimide and paper substrates for low-cost and flexible electrochemical biosensors
UV photodetector based on reduced graphene oxide and n-type Si heterojunction
Host-guest sensing system based on sulfonatocalixarene and pyranoflavylium dye for biogenic amine sensing during food spoilage148
Photosensitive nanopolymersomes as electroactive species carriers: towards the development of biosensors
Natural nanostructured materials as tuneable photonic sensing platforms

Ibersensor 2022

Colorimetric assays for cardiovascular biomarkers detection using gold nanoparticles159
A flow injection setup to determine oxytetracycline with a piezoelectric quartz crystal164
Simultaneous voltammetric determination of acetaminophen, ascorbic acid and uric acid by use of integrated array of sensors modified with mesoporous carbon and metallic nanoparticles and electronic tongue principles169
Modification of natural photonic crystals by tailoring of the refractive index contrast174
Synthesis of microparticles of Cu2ZnSnS4 by hydrothermal method and its application as Congo Red photocatalyst178
Characterization of Al ₂ O ₃ and SiO ₂ ultra-thin films deposited by ALD for microfabricated rubidium vapor cells
Structural and optical properties of sprayed undoped ZnO thin films suitable for resistive gas sensors
SRO/nitride-based electrophotonics for sensing applications
CoNi and Ni-based barcodes toxicity for tagging and magnetic manipulation of HeLa cells
Photonic planar taper waveguide
Sistema electrónico para medición de calidad de sustancias: diseño e implementación209
Projeto de encapsulamento de sensores inerciais usando tecnologia LTCC214
MEMS-based fabrication of an atomic vapor cell for brain magnetic field measurement218
MEMS rubidium vapor cell for optically pumped magnetometers
MEMS-based waveguide SiO ₂ fabricated by RIE process for optical sensing227
Rubidium vapor cells fabricated by additive manufacturing231
CONDICIONAMENTO DE SINAL E INSTRUMENTAÇÃO ACONDICIONAMIENTO DE SEÑAL Y INSTRUMENTACIÓN SIGNAL CONDITIONING AND INSTRUMENTATION
Inexpensive corn starch based supercapacitor for signal conditioning and detection238
Feature extraction acceleration by the prediction of the steady state response for solid state gas sensors
Integración de redes neuronales con sistemas analíticos integrados para la cuantificación de metales pesados en solución acuosa 247

Multi-photon microscopy setup for integration in colonoscopes: an overview				
Simulación de la instrumentación electrónica asociada al isfet mediante el circuito inte CD-4007				
IICROSSISTEMAS ANALÍTICOS INTEGRADOS E LAB-ON-A-CHIP IICROSISTEMAS ANALÍTICOS INTEGRADOS Y LAB-ON-A-CHIP ANALYTICAI NTEGRATED MICROSYSTEMS AND LAB-ON-A-CHIP				
Microreactors in protein pegylation: towards higher yields and specificity				
Functionalization of a fully integrated electrophotonic silicon circuit for sensing biomolecule				
Microanalizadores automáticos modulares para la monitorización de metales pesados en procesos hidrometalurgicos				
Optimización del sistema analítico integrado para el monitoreo de ión cobre en efluentes de una mina				
Development of a microswitch made in LTCC-PDMS technology applicable to micro total analysis systems				
Integração e automatização do funcionamento e do processo de aquisição de dados leitura de um sistema de sensores numa bancada de calibração de medidores de vazão de líquidos 28				
ENSORES INTELIGENTES E REDES SEM FIOS SENSORES INTELIGENTES Y EDES INALÁMBRICAS SMART SENSORS AND WIRELESS NETWORKS				
Architecture of a bi-directional VLC system for navigation and message transmission 29				
Intelligent split intersections using cooperative vehicle visibility communication				
A visible light communication system to support indoor guidance				
Wireless sensor network system for landslide monitoring				
ENSORES DE ONDAS ACÚSTICAS SENSORES DE ONDAS ACÚSTICAS ACOUSTIC /AVE SENSORS				
Automation of the drop-casting deposition method for polymeric sensing films over a quartz crystal microbalance				
Development of a relative humidity pid control for the characterization of gas sensors based on quartz resonators				
Response measurement acceleration of QCM-based gas sensors using the transient response				

APLICAÇÕES AO MEIO AMBIENTE E AGRICULTURA. POUPANÇA DE ENERGIA
APLICACIONES AL MEDIO AMBIENTE Y A LA AGRICULTURA. AHORRO DE ENERGÍA APPLICATIONS TO THE ENVIRONMENT AND AGRICULTURE. ENERGY
SAVING
Plastic-optical-fiber-based solar tracker development applied for ambiences illumination.334
Aveiro steam city project: a good practice with urban air quality sensors network
Intercomparison between air quality microsensors and conventional monitoring data344
Sistema para el monitoreo de la calidad del aire en la zona metropolitana de la laguna348
Evaluation of in-soil nutrient probes in different types of soils
Inductive salinity sensor
APLICAÇÕES À BIOMEDICINA E À SAÚDE APLICACIONES A LA BIOMEDICINA Y
A LA SALUD APPLICATIONS TO BIOMEDICINE AND HEALTH
Biosensing strategies for exosomes
Simultaneous quantitative analysis of several electrolytes in sweat samples using a flow
system and potentiometric devices
Impedimetric and capacitive biosensing of β-1,4-galactosyltransferase-v colon cancer biomarker
Disposable biomedical devices for at-home monitoring of different metabolic diseases379
Surface modification of gallium nanoparticles and their interaction with human serum
albumin
Detection of defects on displays based on microscopic and optical coherence tomography examination
<i>Cu₂O/CuO composite synthesis by thermal treatment of Cu₂O thin films and its application as a non-enzymatic glucose sensor</i>
Gallium nanoparticles interaction with IAPP: can GaNPs inhibits oligomerization?
ÍNDICE DE AUTORES ÍNDICE DE AUTORES AUTHORS' INDEX 401

P20 |

MEMS RUBIDIUM VAPOR CELL FOR OPTICALLY PUMPED MAGNETOMETERS

J. N. Vieira^{*}, H. M. Pereira, E. M. F. Vieira^{*}, J. A. Rodrigues, M. J. Maciel, J. H. Correia

¹ CMEMS - UMinho, University of Minho, 4800-058, Guimarães, Portugal ² LABBELS - Associate Laboratory, Braga, Guimarães, Portugal *e-mail: a83520@alunos.uminho.pt; d8408@dei.uminho.pt

Introduction

Magnetoencephalography (MEG) is the technique that allows direct imaging of the human brain electrophysiology, through the measurement of the magnetic fields generated by the neuronal currents in the brain scalp [1,2]. MEG technology uses superconducting quantum interference devices (SQUIDs), which require a cryogenic cooling system, and, consequently, thermal isolation. The main disadvantage of the SQUIDs is the loss of the neuromagnetic field detection, as the distance between magnetic source and sensor increases. In very recent years, there has been a scientific effort in the development of alternatives to SQUIDs, eliminating the need for cryogenic cooling equipment [3,4]. Optically pumped magnetometers (OPM) based on vapor cells of alkali-metals have emerged as a promising alternative to SQUIDs [5]. The main benefit of OPMs compared to SQUIDs is the precision of measurement in very low magnetic fields, without the requirement of complex cryogenic equipment, which reduces the volume of the MEG system and the maintenance costs [1-3,6,7]. The vapor cells allow for precise measurement of the magnetic fields using optical spectroscopy: the spin of the atoms forms a collective moment that changes in the presence of an external magnetic field, resulting in the variation of the transmittance of the vapor cell containing the atoms of the alkali-metal [3]. One significant advantage of OPMs is the microfabrication possibility [3,8], which is addressed in this work. The two most used and commercially available alkali-metals vapor cells (cesium and rubidium) were firstly compared. As a result of this comparison, a miniaturized cell fabrication based on the generation of alkali-metal vapor inside a sealed MEMS structure is proposed.

Methods

In OPMs, the increase of the external magnetic field is translated into a decrease of the light transmitted by the pump beam through the alkali-metal vapor cell.

This phenomenon is more prominent if the direction of the magnetic field is perpendicular to the light beam emitted. To compare the most used alkali-metal vapor cells for low magnetic field applications, a convenient optical-magnetic setup was created. Two commercially available alkali-metal vapor cells, from Thorlabs, were acquired for this purpose: rubidium-87 (⁸⁷Rb) isotope [9] and cesium (Cs) [10]. According to the results of this study, a complete design of the vapor cell miniaturization is here addressed. The fabrication process is based on the conventional glass-silicon-glass sandwich structure. Three main chemical reactions are currently used for the production of Rb/Cs considering the MEMS cells application, and are summarized in **Table I**.

Table I: Summary of the main chemical reactions used for alkali-metals production. X is Rb or Cs.

Chemical reaction	Temperature	Observations	Ref.
$BaN_6 + XCl \rightarrow BaCl + 3N_2 + X$	200 °C	Reversible reaction could be occurred which limits the sensitivity of the magnetometer.	[8]
$2XN_3 {\rightarrow} 2X + 3N_2$	450 °C	Azide decomposition through UV light.	[11]
$2XCl + Ca \rightarrow 2X + CaCl_2$	720 °C	Deformation of glass windows due to high temperature reaction. Granular Ca forms limits dispensing in MEMS cells.	[12]

Considering the proposed reactions, the alkali-metal azide decomposition is the most promising method for our proposed MEMS cells. It presents itself as a costeffective solution, without the need for complex technological equipment, and the UV activation simplifies the decomposition process. Moreover, the photodecomposition method is advantageous in the sense that the azide product form is more stable at room temperature than the metal form of the material.

Results

Figure 1 represents the transmittance of the commercially available 87Rb and Cs vapor cells for D1 transitions, 795 nm and 895 nm, respectively. The results obtained follow a biphasic exponential decay, characterized by being the sum of two decay processes happening at the same time: an initial fast decay for weak magnetic fields and a slow decay for stronger magnetic fields. Therefore, these results show a higher sensitivity for Rb vapor cells, as a more significant drop in the light transmittance is observed as a function of the magnetic field increase. According to this analysis, the Rb alkali-metal vapor cell is more suitable to be incorporated in OPMs.

DESENHO E TECNOLOGIA DE SENSORES E MEMS | DISEÑO Y TECNOLOGÍA DE SENSORES Y MEMS | DESIGN AND TECHNOLOGY OF SENSORS AND MEMS

Figure 2 - (a-f) Process steps for obtaining the millimeter-level Rb vapor cell through decomposition of the alkali-metal azide by UV photolysis (not to scale).

One of the methods of MEMS cell fabrication includes the alkali compound decomposition induced by exposing encapsulated cells to UV radiation (see **Table I**). As a result, Rb and N₂ are obtained inside the cell. The steps of the proposed cell fabrication are shown in **Figure 2**, which include the preparation of silicon and borosilicate wafers; deep reactive ion etching (DRIE) of a silicon wafer, to obtain a millimeter-level cavity (Figure 2 (a)); anodic bonding between the first glass wafer and the bottom of the Si wafer (Figure 2 (b)); coating of all the cell walls with a Al₂O₃ thin layer to improve the vapor cell lifetime (Figure 2 (c)); micro-dispensing of the rubidium azide (RbN₃) aqueous solution into the millimeter-level cavity and dried at ambient atmosphere (Figure 2 (d)) and second anodic bonding of the top glass wafer, that will be performed at low temperature,

in order not to thermally decompose the alkali-metal azide compound (< 300 °C), under controlled Ar atmosphere (Figure 2 (e)). In the last step, the metallic Rb and N₂ buffer gas will be created through UV irradiation of the RbN₃ aqueous solution, following the decomposition reaction: $2RbN_3 \rightarrow 2Rb+3N_2$ - Figure 2 (f). For this purpose, a low-pressure lamp emitting at UV (peak wavelength of 254 nm) will be used. Long exposure is necessary to get a high yield decomposition of RbN₃.

Conclusions

The transmittance results show that the ⁸⁷Rb alkali-metal vapor cell is more suitable to be incorporated in OPMs over the Cs cell. The fabrication of a millimeter-level alkali-metal vapor cells by using borosilicate and silicon wafers, through microfabrication technology is here proposed. This approach opens the perspective for massive production of OPMs and, therefore will contribute to the new generation of MEG based on OPMs, that will have high impact in diagnoses of some neurological diseases affecting the worldwide population, such as epilepsy and dementia.

References

1. T. H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe, Biomed. Opt. Express **3**, 981 (2012).

 E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S. S. Meyer, L. D. Muñoz, K. J. Mullinger, T. M. Tierney, S. Bestmann, G. R. Barnes, R. Bowtell, and M. J. Brookes, Nature 555, 657 (2018).
 C. Johnson, P. D. D. Schwindt, and M. Weisend, Appl. Phys. Lett. 97, (2010).

4. M. Xie, J. F. Schneiderman, M. L. Chukharkin, A. Kalabukhov, B. Riaz, D. Lundqvist, S. Whitmarsh, M. Hamalainen, V. Jousmaki, R. Oostenveld, and D. Winkler, IEEE Trans. Biomed. Eng. **64**, 1270 (2017).

5. T. M. Tierney, N. Holmes, S. Mellor, J. D. López, G. Roberts, R. M. Hill, E. Boto, J. Leggett,

V. Shah, M. J. Brookes, R. Bowtell, and G. R. Barnes, Neuroimage 199, 598 (2019).

6. V. K. Shah and R. T. Wakai, Phys. Med. Biol. 58, 8153 (2013).

7. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, Nat. Photonics 1, 649 (2007).

8. L.-A. Liew, S. Knappe, J. Moreland, H. Robinson, L. Hollberg, and J. Kitching, Appl. Phys. Lett. 84, 2694 (2004).

9. Thorlabs - Rb, (2012).

10. Thorlabs - Cs, (2012).

11. L.-A. Liew, J. Moreland, and V. Gerginov, Appl. Phys. Lett. 90, 114106 (2007).

12. W. Wei, J. Shang, W. Kuai, S. Qin, T. Wang, and J. Chen, in 2012 13th Int. Conf. Electron. Packag. Technol. High Density Packag. (IEEE, 2012), pp. 1639–1641.

Acknowledgments

This work is supported by: Project MME reference 105399; CMEMS-UMinho Strategic Project UIDB/04436/2020 and UIDP/04436/2020; and Infrastructures Micro&NanoFabs@PT, NORTE-01-0145-FEDER-022090, Portugal 2020.

H. M. Pereira thanks FCT for the Ph.D. grant 2021.06647.BD.