
Speculative computation - application scenarios

João Ramos ∗, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

Abstract Artificial Intelligence and Machine Learning have been widely applied in
several areas with the twofold goal of improving people’s wellbeing and accelerat-
ing computational processes. This may be seen in medical assistance (for example,
automatic verification of MRI images), in personal assistants that adapt the content
to the user based on his/her preferences or, to optimize query response times in rela-
tional databases and accelerate the information retrieval process. Most of Machine
Learning algorithms used need a dataset to train on, so that the resulting models
can be used, for example, to predict a value or enable user-specific results. Consid-
ering predictive methods, when new data arrives a new training of the model may
be needed. Speculative Computation is a Machine Learning sub-field that seeks to
enable computation to be one step ahead of the user by speculating the value that
will be received to be computed. A change in the environment may affect the exe-
cution, but the adjustments are rapidly performed. This paper intends to provide an
overview of the field of Speculative Computation, describing its main characteristics
and advantages, and different scenarios of the medical field in which it is applied.
It also provides a critical and comparative analysis with other Machine Learning

João Ramos
CIICESI, Escola Superior de Tecnologia e Gestão, Politécnico do Porto, Portugal e-mail: jrmr@
estg.ipp.pt

Tiago Oliveira
Algoritmi Centre, University of Minho, Braga, Portugal e-mail: toliveira@di.uminho.pt

Davide Carneiro
CIICESI, Escola Superior de Tecnologia e Gestão, Politécnico do Porto, Portugal

Ken Satoh
National Institute of Informatics, Tokyo, Japan e-mail: ksatoh@nii.co.jp

Paulo Novais
Algoritmi Centre, University of Minho, Braga, Portugal e-mail: pjon@di.uminho.pt

∗ corresponding author

1

jrmr@estg.ipp.pt
jrmr@estg.ipp.pt
toliveira@di.uminho.pt
ksatoh@nii.co.jp
pjon@di.uminho.pt

2 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

methods, and a description of how to apply different algorithms to create better
systems.

1 Introduction

Digital data are increasing in volume every day. Thus, companies and researchers
are seeking new methods to deal with such raw resources in a faster and less
resource-dependent way. A major goal is to extract valuable information from raw
data in order to, for example, predict a value or to adapt the results to user prefer-
ences. In huge volumes of data is frequent the appearance of patterns, which may
occur at specific situations, or repeat at a specific cycle time. This pattern evaluation
is time-consuming and may be impossible to detect to the human-being. Though the
study of data with date labels (denoted as time-series) is possible to detect trends
as, for example, sales trends and take better selling decisions. Adeyemi et al. (2018)
studied the data flow in an University for a 12-months period and created a set of
statistics and graphics which allowed to identify possible trends. These may be es-
pecially important to ensure a better quality of the service. Similarly, in Adekitan
et al. (2019) the authors went as far as developing a model to predict Internet traffic.

Deep Learning (DL) approaches for computer vision (Voulodimos et al. 2018),
for example, enable the machine to understand the objects that are present in a fig-
ure. These approaches also have other application scenarios such as human activity
recognition (Ronao and Cho 2016). In classification tasks, other Machine Learning
(ML) methods such as Support Vector Machines (SVM) or Linear Regression (LR)
can be used. The aforementioned methods are able to predict a value using a model
that is built based on a previous training phase. The use of such algorithms and
models implies a present-oriented and real-time target, i.e., they are not be able to
anticipate future value since the future input data is not yet available.

Other techniques, such as those deemed as unsupervised learning, may not re-
quire a training step. However, the quality of the results obtained may not be as-
sured since there is no ground truth to compare with. Nevertheless, these techniques
are especially used in anomaly detection or collaborative filtering (for example, to
estimate user preferences).

Speculative Computation represents an entirely different take on the problem. It
is a technique that is able to anticipate the possible answer. Considering, for ex-
ample, Neural Networks, it will estimate a given input and, instead of being in a
idle state while the actual input is not received, it tries to speculate its possible
value. Thus, the computation continues and, if necessary, when the actual value is
received, the computation is revised. This kind of techniques have, however, been
used in other domains, such as in spectre attacks Kocher et al. (2020).

The main objective of this paper is to analyze the advantages and disadvantages
of applying speculative computation, through a comparison with other Machine
Learning (ML) techniques whenever possible. Two applications of this type of com-
putation are also analyzed and demonstrated.

Speculative computation - application scenarios 3

The paper is divided into five sections, which are organized as follows: Section 2
contains the main supervised and unsupervised machine learning techniques; Sec-
tion 3 details the Speculative Computation method and, in Section 4 two different
cases of application are described. Finally, in Section 5, the main conclusions are
drawn and future investigation lines are highlighted.

2 Literature Review: ML techniques

Machine Learning is considered a branch of Artificial Intelligence (AI). In this field,
the goal is to create mechanisms to mimic the human behaviour in what concerns
learning, reasoning and problem solving and, eventually, achieve a performance that
surpasses human capabilities. For this kind of processes, there is the need for large
sets of data in order to provide the learning algorithms with a representative range
of the different possibilities. The algorithms that fall under this field use statistical
methods in order to be trained and to make classifications or predictions based on
trained data. The use of big data enables the algorithms to uncover key insights and
to better assist the decision maker.

Artificial Intelligence and ML are often used interchangeably, but AI has a
broader goal, i.e., AI intends to enable computers to mimic human problem-solving
and decision-making abilities. Instead of providing a prediction or a classification
and enabling the human to take an action, AI goes further and also perform this last
step. Most common examples of real world applications of AI systems are speech
recognition, computer vision, text translation or recommendation systems.

Focusing on ML algorithms, there are several prominent methods. The main goal
of the paper is not to provide a detailed description of each method, but to identify
the ones that may be used and compared to speculative computation.

In broad terms, ML algorithms can be categorized as supervised or unsupervised.
The former makes use of labeled data to train a model, which is then able to classify
or predict outcomes for new unlabeled data. Overfitting and underfitting are com-
mon problems to supervised learning algorithms, depending on the characteristics
of the input data. On the other hand, unsupervised learning is able to find patterns in
unlabeled data. The goal is to discover hidden patters or to group data that may be
considered similar. Table 1 summarizes the most prominent algorithms in Machine
Learning.

Table 1 Most prominent Machine Learning algorithms.

Supervised Learning Unsupervised Learning
Neural Networks k-means clustering

Convolutional Neural Networks Principal Component Analysis
Linear/Logistic Regression

Random Forest
Support Vector Machines

4 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

Neural Networks were inspired by biological systems and are able to model com-
plex problems (Vadla et al. 2021). These networks are composed by multiple inter-
connected units called neurons and the connections represent synapses. Neurons are
placed on a set of layers where the first and last are deemed the input and output
layer, respectively. Intermediary layers, also named hidden layers, may have differ-
ent activation functions. The goal of the activation function is to simulate the process
that goes on in the mammal’s nervous system, in which a neuron’s input value must
be above a given threshold to activate that neuron and send information to the next
layer.

A special type of Neural Networks is the Convolutional Neural Network (CNN)
(Khan et al. 2020). It diverges from traditional NN due to the existence of con-
volutional layers, which provide powerful learning ability. Indeed, there are mul-
tiple stages that provide feature extraction and enable the CNN to automatically
learn different representations of the data. CNNs have successfully been applied on
Computer Vision and Image Processing, Natural Language Processing and Speech
Recognition (Khan et al. 2020; Voulodimos et al. 2018). Contrary to a NN that have
a set of interconnected layers of neurons, a CNN is composed by a set of convolu-
tional layers, pooling layers and fully-connected layers.

Logistic Regression is applied to classify a given input, usually a nominal vari-
able, as belonging or not to a given group, i.e., output values may be of yes-no
type, inclusion or non-inclusion (George and Mallery 2018). Linear or multiple re-
gression has the goal to output a continuous variable (predict a value) considering
one or more independent variables. Pun et al. (2019) used a multiple regression to
estimate traffic flow in a city. In their study, the authors needed to analyze the corre-
lation between independent variables and the dependent variable and defined which
factors contributed to estimate the traffic flow accurately.

Contrary to linear regression, that assumes that there is linearity between the
variables, the Random Forest algorithm does not make such assumption. Thus, this
algorithm is more flexible, being able to better adapt to nonlinearities and, there-
fore, to make better predictions for such type of data (Schonlau and Zou 2020).
This statistical learning algorithm is often used on datasets where the number of
observations is smaller than the number of variables. In this case, linear or logistic
regression may not be used. Random Forests may be applied on classification and
regression problems alike.

Support Vector Machine (SVM) is typically used for classification and the de-
cision function of the algorithm is an optimal hyperplane that separates the dataset
with the best accuracy. Thus, SVM tries to indicate the class that an observation
belongs to based on patterns of information (Pisner and Schnyer 2020).

When facing unlabeled data, the previously described algorithms cannot be ap-
plied since the lack of a label renders the learning/fitting task, in which a cost func-
tion is minimized, impossible. In the absence of labeled data, the algorithms that are
able to extract insights are those under the unsupervised learning umbrella.

K-means (as depicted in Table 1) is an algorithm that tries to create groups of
data, i.e., clusters. Each element present in a cluster is consider to be similar to oth-
ers in the same cluster, but different from those of other clusters. Indeed, k-means

Speculative computation - application scenarios 5

clustering is a method for partitioning data objects according to perceived intrinsic
characteristics (Xie et al. 2019). This algorithm is applied in image segmentation,
text mining, among other problems. The creation of clusters may be performed by
partitioning or by hierarchical methods. The former creates k clusters simultane-
ously and each data sample is attributed to one cluster. The latter creates a hierarchy
of clusters, in which a top-level cluster may be subdivided into two or more clus-
ters. Despite some limitations, such as noise susceptibility, k-means clustering is an
efficient algorithm and is easy to implement (Xie et al. 2019).

Principal Component Analysis (PCA) may be considered as one of the most im-
portant unsupervised techniques in data mining (Gewers et al. 2021). PCA may be
briefly described as a statistical method that applies a rotation to the axes of the
feature vector. This rotation, among each axis of the vector, considers the direc-
tion of maximum possible data dispersion. Given the results of such rotation, and
that the axes are ordered by its maximum data dispersion (i.e., the first axis has the
highest value), the axes with the lowest dispersions may be discarded without great
loss of data variation. Thus, reducing the number of axes is equal to removing the
size of the feature space and enables the application of other ML techniques in a
more efficient way. Indeed, the original data (which contains a high vector space) is
simplified with minimal loss, thus reducing its dimensionality (Gewers et al. 2021).
This technique is applied, for example, for data visualization when the number of
features (number of vector axis) is higher than three and plots are hard to create and
interpret.

Other types of learning exist, such as Semi-supervised Learning or Reinforce-
ment Learning (RL), although their use is less frequent. In Semi-supervised Learn-
ing, labeled and unlabeled data are used together. Thus, these methods fall some-
what between Supervised and Unsupervised Learning. Reinforcement Learning, on
the other hand, is similar to supervised learning, but the training of the algorithm is
not supported by training examples. Instead, using a reward function and interacting
with the world, the algorithm is able to self-train through trial and error. When an
action provides a good result, the reward obtained is high in contrast with an unde-
sirable result. Thus, successful outcomes reinforce the associated behaviors, while
unsuccessful one weaken them.

3 Speculative Computation

The anticipation ability may be considered an essential feature for a reasoning sys-
tem and, more specifically, for the machine learning process. Indeed, by starting the
learning job as early as possible, it is possible to accomplish it sooner. A goal of
Speculative Computation is to start part of the work before being necessary (Burton
1985). As stated in (Burton 1985) “if work which is known to be necessary (manda-
tory work) is given priority over other work (speculative work), then performing
speculative work can only speed computation”. Thus, computing such non-essential
jobs in parallel, jobs that are speculated to be useful in the near future, will accel-

6 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

erate computation and achieve results in less time. The past work of (Burton 1985)
was a simple functional feature to control the speculative work. More recently, other
frameworks have been proposed that explore this main feature of speculative com-
putation, such as Satoh et al. (2000); Satoh and Yamamoto (2002); Satoh (2005);
Hosobe et al. (2007); Fukuta et al. (2008); Boudol and Petri (2010).

Satoh et al. (2000) developed a method for solving the problem of communi-
cation in a multiagent system. In their work, the authors applied speculative com-
putation to anticipate the answer of an agent to another. By using communication
channels such the Internet, the messages may be delayed (or lost), but agents’ pro-
cesses should not be stopped. For this process, the developed framework makes use
of three objects: current computation status; already used defaults (values used when
the real information is missing or has not been received); and answers substitutions
for the initial query (received values that may differ from the default ones used). The
framework was extended to a master-slave multiagent system (Satoh and Yamamoto
2002), where the authors applied Speculative Computation to the task of booking an
hotel room, with two personal agents (representing two persons) and the hotel room
reservation agent (that acted as the hotel receptionist).

Satoh, in (Satoh 2005), defined the master-slave Speculative Computation system
framework with the following tuple 〈Σ , E , ∆ , A , P , I 〉. The elements of the tuple
are defined as:

- Σ is a finite set of constants and each element is denoted as a system module;
- E is the set of external predicates, where each elements is a function. Consider-

ing Q as a literal that belongs to a given external predicate and S the information
source identifier, Q@S is an askable literal. The negative form of the askable
literal is defined as ∼(Q@S) or (∼Q)@S;

- ∆ denotes the default answer set, which contains the ground askable literals. For
this set the following askable literals may not be simultaneously present

. p(t1, . . . , tn)@S; and

. ∼ p(t1, . . . , tn)@S

- A corresponds to the set of abducible predicates. The literal Q is abducible
whenever it is a literal with an abducible predicate;

- P is the set of rules of the Logic Program (LP). Such rules are in the form:

. p← p1, p2, . . . , pn, where
· p is a positive ordinary literal, and
· each of p1, . . . , pn may be an ordinary literal, an askable literal or an ab-

ducible;
. the head of rule R is represented by p, which may also be written as as

head(P). The rule’s head must always be non-empty. The body of the rule
R, body(P), is represented by p← p1, . . . , pn. For some specific situations the
body may be replaced by the boolean value true.

- I denotes the set of integrity constraints in the form:

Speculative computation - application scenarios 7

?(p1, p2, . . . , pn)

. the symbol “?” represents “falsity”, i.e. contradiction,

. p1, p2, . . ., pn may be ordinary literals, askable literals or abducibles

. at least one of p1, p2, . . . , pn is an askable literal or an abducible.

According to the set that an askable literal be, there is a different meaning. In-
deed, an askable literal may be:

1. a question put to a system module S, when Q@S is in a rule P; or
2. a default truth value (true or false), when it is present in ∆

• p(t1, . . . , tn)@S ∈ ∆ , p(t1, . . . , tn)@S is usually true for a question to a system
module S, and

• ∼p(t1, . . . , tn)@S ∈ ∆ , p(t1, . . . , tn)@S is generally false for a question to a
system module S.

Considering the aforementioned definitions, the execution of the Speculative
Computation framework enables the process to continue even under an incomplete
information scenario. Indeed, when some data are needed, an information source
is queried through an askable literal, and the computation continues by using the
default value. Whenever new data are retrieved by an information source, the com-
putation is revised and, if necessary, new execution branches are started. Speculative
Computation may be considered an iterative process that at one point is in the Pro-
cess Reduction Phase in order to obtain a tentative solution and, when a real value
is obtained, changes to the Fact Arrival Phase (Fig. 1).

Fig. 1 Speculative computation cycle

Formal definitions of the processes that are executed in each phase are given in
Sections 3.1 through 3.4.

8 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

3.1 Preliminary Definitions

In order to apply the Speculative Computation framework and better understand its
two phases (described in Sections 3.4 and 3.3) there are important concepts that
must be defined.

Definition 1 An extended literal is either a literal or an expression of the form
f ail({l1, . . . , ln}) where li is a literal (Satoh 2005). �

The keyword fail is used to prove that there is no valid proof for li.

Definition 2 The tuple 〈GS,OD, IA,ANS〉 defines a process where

• GS (Goal Set) denotes the set of extended literals. This set also defines the current
computation status of an alternative solution;

• OD (Outside Defaults) denotes the set of askable literals, which is the set that
contains the assumed information regarding the outside world;

• IA (Inside Assumptions) represents the set of negative literals or abducibles, con-
sidering the values that were assumed during a computation; and

• ANS (Answers) denotes the set with the initials values (instantiated values) for
the variables. These values are used to start the computation. �

Definition 3 The Process Set (PS) contains a subset of askable literals denoted
Already Asked Questions (AAQ), and a subset of askable literals called Current
Belief State (CBS). �

The Process Set contains all execution branches (alternative computations) that
have been considered at a given computation point. During the execution, the AAQ
reduces the number of duplicated questions to the information sources. Indeed, be-
fore questioning a source for a given value, the computation verifies if such question
has been posed to the information sources and only if the question is asked for the
first time, the information source is queried. The Current Belief State (CBS) denotes
the current status of the outside world. During the execution, processes may be in an
active or suspended state, exchanging it state according to the current computation
status and the information retrieved by the information sources.

Definition 4 Let 〈GS,OD, IA,ANS〉 be a process and CBS be a current belief state.
A process considered to be active with respect to CBS if OD ⊆ CBS. A process is
considered as suspended with respect to CBS otherwise. �

The definition of an active process emphasizes that it is a process whose outside
defaults have to be consistent with the current belief state.

3.2 Process Reduction Phase

The Process Reduction Phase represents the active execution of the computation,
i.e., the process that queries the information source for real world data and contin-

Speculative computation - application scenarios 9

ues the execution using the default assumed values until such information is ob-
tained. Indeed, the Process Set may be changed during this execution. In order to
demonstrate the changes in the process set, changed PS, AAQ and CBS are defined
as NewPS, NewAAQ and NewCBS; otherwise they stay unchanged.

Initial Step: Let GS be an initial goal set. The tuple 〈GS, /0, /0,ANS〉 is given
to the proof procedure where ANS is a set of variables in GS. That is, PS =
{〈GS, /0, /0,ANS〉}. Let AAQ = /0 and CBS = ∆ .

Iteration Step: Do the following:

. Case 1: If there is an active process 〈GS, /0, /0,ANS〉 with respect to CBS in PS,
terminate the process by returning outside defaults OD, inside assumptions IA,
and instantiation for variables ANS. This case may only be applied on the first
iteration step since OD and IA are empty sets;

. Case 2: If there is no active process, terminate the process by reporting a failure
of the goal;

. Case 3: Select an active process 〈GS,OD, IA,ANS〉 with respect to CBS from PS
and select an extended literal L in GS. Let PS′ = PS−{〈GS,OD, IA,ANS〉} and
GS′ = GS−{L}. For the selected extended literal L, do the following:

− Case 3.1: If L is a positive ordinary literal, NewPS = PS′
⋃
{〈({ body(R)}

⋃
GS′)θ ,OD, IA,ANSθ〉|∃R ∈P and ∃most general unifier θ so that
head(R)θ = Lθ .

− Case 3.2: If L is a ground negative ordinary literal or a ground abducible then:
· Case 3.2.1: If L ∈ IA then NewPS = PS′

⋃
{〈GS′,OD, IA, ANS〉}.

· Case 3.2.2: If L ∈ IA then NewPS = PS′.
· Case 3.2.3: If L /∈ IA then NewPS=PS′

⋃
{〈NewGS,OD, IA,

⋃
{L},ANS〉}

where NewGS = { f ail(BS)|BS ∈ resolvent(L, P
⋃

I)}
⋃

GS′ and
resolvent(L,T) is defined as follows:
· If L is a ground negative ordinary literal, resolvent(L,T) = {{L1θ , . . . ,

Lkθ}|H← L1, . . . ,Lk ∈ T so that L = Hθ by a ground substitution θ}
· If L is a ground abducible, resolvent(L,T) = {{L1θ , . . . , Li−1θ , Li+1θ ,

. . . ,Lkθ}|⊥← L1, . . . ,Lk ∈ T so that L = Liθ by a ground substitution
θ}.

− Case 3.3: If L is f ail(BS), then
· If BS = /0, NewPS = PS′;
· IF BS 6= /0, then do the following:

(1) Select B from BS and let BS′ = BS−{B}.
(2) Case 3.3.1: If B is a positive ordinary literal, NewPS=PS′

⋃
{〈NewGS⋃

GS′,OD, IA,ANS〉}where NewGS= { f ail(({body(R)}
⋃

BS′)θ |∃R∈
P and ∃MGU θ so that head(R)θ = Bθ}
Case 3.3.2: If B is a ground negative ordinary literal or a ground ask-
able literal or an abducible,

10 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

NewPS = PS′
⋃
{〈{ f ail(BS′)}

⋃
GS′,OD, IA,ANS〉}

⋃
{〈{B}

⋃
GS′,

OD, IA, ANS〉}.
− Case 3.4: If L is a ground askable literal, Q@S, then do the following:

(1)If L /∈ AAQ and L /∈ AAQ, then send the question Q to the slave agent S and
NewAAQ = AAQ

⋃
{L}.

(2)If L∈OD then NewPS=PS′ else NewPS=PS′
⋃
{〈GS′, OD

⋃
{L}, IA,ANS〉}.

3.3 Fact Arrival Phase

The Fact Arrival Phase represents an interruption on the normal execution of the
computation. Indeed, whenever an information source (sensor) returns a real value,
the normal execution of the computation is stopped and revised. Supposing that an
answer Q is returned by the information source S regarding the askable literal Q@S.

Let L = Q@S. After finishing the active step of the process reduction, do the
following

• If L ∈CBS, then NewCBS =CBS−{L}
⋃
{L}

• Else if L /∈CBS, then NewCBS =CBS
⋃
{L}.

After executing the previous step, some askable literals that were considered
in the initial belief state may be removed. In this case, processes that were being
executed considering such askable literals are suspended.

3.4 Correctness of the Proof Procedure

The correctness of the proof procedure, initially introduced by Kakas and Mancar-
ella (1990), ensures that the model is stable concerning its semantics. Through this
procedure, and applying the concept of integrity constraints, it is ensured that when
a literal is positive it is not possible to keep its negative value in the default set.

Definition 5 Considering T the set of rules and integrity constraints. ∏T is the set
of ground rules that are obtained by the replacement of every variables in all rules
or integrity constraint T by each ground term. �

Definition 6 Let T be a set of rules and integrity constraints. Let M be a set of
ground atoms and ∏

M
T be the following program: ∏

M
T = {H ← B1, . . . ,Bl |H ←

B1, . . . ,Bl ,∼ A1, . . . ,∼ Ah.∈∏P and Ai /∈M for each i= 1, . . . ,h.}. Let min(∏M
T) be

the least model of ∏
M
T . A stable model for a logic program T is M iff M = min(∏T

M)
and ⊥/∈M. �

Definition 7 Consider Θ the set of ground abducibles. �

Speculative computation - application scenarios 11

To a process evaluation strategy, when the proof procedure returns an answer
with a set of outside defaults and a set of inside assumptions, this answer is correct
with respect to a stable model, regarding the inside assumptions of the program.

Theorem 1. Let LP be the Logic Program that is used in the speculative frame-
work and has a set of integrity constraints that are satisfiable. Consider LP =
〈Σ ,E ,∆ ,A ,P,I 〉, where P is a call-consistent logic program. Let GS be reduced
to an /0 when OD is outside defaults. Let IA be the set of inside assumptions, ANS
the variables instantiations’ set of GS, and CBS the current belief state. Consider
GS′ as a new set that is obtained from GS where all variables in GS are replaced by
ANS. Then, there is a generalized stable model M(Θ) for P

⋃
I

⋃
F (CBS), such

that M(Θ) � GS′ and OC ⊆CBS and IA⊆Θ . �

Proposition 1. Since P is a call consistent logic program, so is P
⋃

I
⋃

F (CBS).
Then, an abducible derivation may be constructed (Kakas and Mancarella 1990)
using a set of reduction steps applied to 〈GS, /0, /0,ANS′〉 to 〈 /0,OD, IA,ANS〉 where
ANS′ is a set of variables in GS. This derivation is correct for generalized stable
model semantics for a call-consistent logic program (Kakas and Mancarella 1990).
Thus, M(Θ) � GSθ and OD⊆Θ . �

For the reduction process, the following strategy is used:

. Whenever a positive literal is reduced, new processes are created considering the
rule order defined in the program, which are unifiable with the positive literal;

. The left-most literal is always selected, which may be a newly created or newly
resumed process.

4 Speculative Computation: Application Scenarios

The aforementioned Speculative Computation framework (Section 3) has an antic-
ipation feature that may not be seen in other reasoning methods. The goal of the
current section is to demonstrate two different scenarios in which this type of com-
putation has been applied. In both cases, Speculative Computation is not used to
replace a specific reasoning method, but to enhance the abilities of the systems that
integrate it.

4.1 CogHelper

CogHelper (Ramos et al. 2018, 2017a,b) is a system which contains different mod-
ules to achieve several objectives. The main objective is to assist an impaired person
when traveling outside. In this assistance, the indicated path is adjusted to the user

12 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

and the Speculative Computation framework is able to anticipate possible user mis-
takes and alert the user in advance. A different goal is to provide a localization mod-
ule, which enables caregivers to receive, in real time, the geographic coordinates of
the person with cognitive disabilities.

To better understand the target population of the system, it is important to under-
stand the definition of cognitive disability and its possible implications to the daily
life of the person with disabilities. According to American Psychiatric Association
(2013), a cognitive disability may be defined as a medical condition that involves a
person that presents more difficulties in one or more types of tasks when compared
to a neurotypic. Such tasks fall under mental effort tasks, like ensure own-safety,
correct development of daily work, keep health conditions, tasks that require orien-
tation abilities, among others.

The diagnostic of such condition may not be an easy process since there are sev-
eral areas to analyze and the degree of incidence may vary. A stroke, for example,
may affect different brain areas and the disabilities that may arise may not be easy
to classify. Thus, the main criterion to evaluate the incidence degree is the intellec-
tual function. A person with cognitive disabilities usually has more difficulties in
accomplishing some specific mental tasks (Schalock et al. 2010).

According to the incidence level, disabilities may be divided into mild, moderate,
severe or extreme. For the last two, the individual is usually completely dependent
on a caregiver, whereas moderate cognitive disabilities may only imply increased
surveillance by the caregiver. The freedom of the person with disabilities is often
reduced since she/he may not be able to go outside the home unaccompanied. In-
deed, the person with care needs may become a prisoner of her/his own home, and
dependent on the availability of the caregiver.

Lack of orientation may be another relevant factor contributing to decreased au-
tonomy. Consequently, there is a social pressure to develop applications or systems
that try to mitigate the loss of autonomy and provide the person with disabilities
with as much of an ordinary life as possible. Nevertheless, such applications must
consider the end-user characteristics into its design in order to maximize its us-
ability and accessibility. By reducing cognitive processing requirements to a min-
imum, developed applications may be used by a larger number of individuals. For
instance, written text may be replaced by pictures, animations and/or sounds (Lanyi
and Brown 2010).

CogHelper (Ramos et al. 2018, 2017a,b) is a system that is being developed by
the authors that takes into consideration the aforementioned specifities of the end-
users. Indeed, the system considers people with cognitive disabilities as the main
target, but also takes into consideration the corresponding caregivers. The system is
made by three main modules (Fig. 2).

The module dedicated to the person with disabilities consists in a application for
smartphone with the main goal of guiding the user to a pre-selected destination. The
interface is based on augmented reality, which tried to minimize the mental effort
the user need to perform to understand the provided information. Through it, the
user is able to orientate the mobile device to any direction and, when the path that
should be traveled is line with the device, an arrow overlaps the real image captured

Speculative computation - application scenarios 13

Fig. 2 Coghelper system overview

by the camera. Through the Speculative Computation unit the system is able to
anticipate an user mistake and trigger an alert to the user before he/she takes the
wrong turn. Considering user preferences and specifities, the indicated travel path
is adapted to her/him through a trajectory data mining unit. Here, the Speculative
Computation framework is used in symbiosis with the trajectory mining module.
Indeed, the default values set of the framework is created based on the selected
destination and most frequent streets traveled by the user. However, as depicted in
Fig. 3, when there is no historical data of the user, the shortest path is calculated.

Fig. 3 Pattern mining process, retrieved from Ramos et al. (2018)

When the system has historic data about the user, i.e., when it has some pre-
viously traveled paths, it may use them to adapt future paths. Indeed, a data pre-
processing module is applied to the paths stored in the database that addresses sev-
eral situations: to remove points that were mistakenly retrieved by the GPS sensor
of the mobile device (for example, a point that is at a bigger distance of the last
known location due to signal reflection); to remove excessive points (e.g. remove

14 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

unnecessary intermediate locations, such as points between two intersections that
only have one possible path). Then, a map matching process is executed in order to
reduce raw data variation from the data recorded in geographic information systems
(such OpenStreetMap2). An example of the result of the map matching module is
represented in Fig. 4.

Fig. 4 Trajectory map matching processing, obtained from Ramos et al. (2017b)

After ending the pre-processing stage, similar routes are retrieved by the system,
considering the user’s current location and selected destination. Then, the trajectory
mining module is able to define the entire route to travel or sub-routes (frequent trav-
eled paths) that will be used to calculate the entire travel path. This is then consid-
ered as the default set in the Speculative Computation framework, with information
regarding locations where the user is systematically taking the wrong turn.

The speculative computation module is an essential piece of the CogHelper sys-
tem since it provides the anticipation feature. This is important since by alerting the
user in advance, the mistake may be avoided and, consequently, the user does not
enter in distress. Indeed, before executing the framework, the system requires the
following information:

1. The knowledge base has the facts that allow the correct movement between the
origin and user desired destination. These facts are all possible paths that enable
the user to reach his/her destination;

2. The itineration that is usually executed by the user in the form of default values;
3. The inlcusion of a specific point in the set of recommended points as default

values; and
4. The set of rules that assist the computation by considering the path that is more

likely to be performed by the user. These rules also include the eventual alert
triggering when a deviation from the initial defined path is detected.

2 https://www.openstreetmap.org/

https://www.openstreetmap.org/

Speculative computation - application scenarios 15

To ensure the correct execution of the speculative computation framework and
that the user stays in the correct path, the following structure was specified in terms
of the logic programming suite:

. Σ = {gps sensor,recognizer}

. E = {user travel, included}

. ∆ = {user travel(1,2)@gps sensor,
user travel(2,3)@gps sensor,
user travel(3,4)@gps sensor,
user travel(3,6)@gps sensor,
user travel(6,7)@gps sensor,
user travel(7,8)@gps sensor,
included(1)@recognizer,
included(2)@recognizer,
included(3)@recognizer,
included(4)@recognizer,
∼ included(5)@recognizer,
∼ included(6)@recognizer,
included(7)@recognizer,
included(8)@recognizer}

. A = {show next point,show user warning}

. P is the following set of rules:
guide(A,A)← .
guide(A,B)←

path(A,F),
show next point(F),
user travel(A,F)@gps sensor,
guide(F,B).

guide(A,B)←
path(A,F),
user travel(A,F)@gps sensor,
show user warning(F),
guide(F,B).

path(1,2)← .
path(2,3)← .
path(2,5)← .
path(3,4)← .
path(3,6)← .
path(5,6)← .
path(6,7)← .
path(7,8)← .
path(8,4)← .

. I denotes the following set of integrity constraints or invariants:
?(show next point(F),
∼ included(F)@recognizer).

16 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

?(show user warning(F),
included(F)@recognizer).

In the previous logic programming path(a,b) denotes a connection between loca-
tion a and b. The location that the user should travel to is indicated by show next point.
An alert should be triggered and the user must be advised to take the right turn with
show user warning. Default values for the user path (calculated by the trajectory
mining module) are set in ∆ . Finally, user travel(a,b) indicates that the system as-
sumes the correct user displacement from a to b; and through included(a) is possible
to indicate that a point a is part of the path. The logic programming is complete ac-
cording to the example provided in Fig. 5.

Fig. 5 Tentative (example) paths to travel from 1 to 4

The integrity set of the logic program has two invariants that ensure that the next
place shown to the user may not be indicated if it is not part of the path; and that an
alert should not be shown to the user if he is traveling through the correct path.

4.2 CompGuide

In the medical field, errors may happen whose consequences may not be reversible.
Indeed, during her/his practice, physicians constantly face first-time scenarios where
decisions must be taken in short time. Medical errors may occur, which increase
spending and loss of quality life for both patients and physicians. To prevent such
situations, defensive medicine approaches are adopted, which consist of avoiding
difficult cases (and inherent difficult decisions) in order to prevent lawsuits or, or-
dering a large amount of complementary exams before taking a final decision.

Clinical Practice Guidelines (CPG) were created as a means to disseminate
evidence-based medicine. Through such guidelines, physicians may support their
decisions based on accepted and approved medical decisions (therapies). CPG’s
are, as defined by the Institute of Medicine of the United States, systematically
developed statements with recommendations about medical procedures considering
the clinical patient circumstances (Field and Lohr 1992). CPG’s are accepted by
healthcare professionals as they are viewed as a means to integrate the most current
evidence into the patient management. However, they present some disadvantages

Speculative computation - application scenarios 17

that should be considered: they are very long documents and only a small part of
them are actual clinical recommendations. Indeed, the difficulty in consulting such
documents are evidenced by their ambiguity regarding misunderstanding of medi-
cal terms, conflicting instructions, and incorrect structure of the statements. There
are also other types of vagueness such as using probabilistic terms such as probable
or unlikely, making it hard for the physician to quantify and to fit the patient to a
specific guideline.

Oliveira et al. (2013) addressed this problem by creating a representation model
for CPG’s in OWL (Ontology Web Language). Their work was able to take into
consideration guidelines of any category (diagnosis, evaluation, management and
treatment) and medical specialty (e.g. pediatrics, cardiology). Through this work,
Oliveira et al. improved existing systems since they included the definition about
clinical constraints, temporal properties, and clinical task scheduling. This enabled
the transition from the paper to Computer-Interpretable Guidelines, that benefit from
the CPG’s formalisms, but are easier to use.

Clinical Practice Guidelines, if correctly understood and used, have the advan-
tage of supporting clinical decisions. Indeed, the guidelines provide an execution
careflow with an appropriate order between procedures and the modeling of de-
cision points. At such points, one must choose between alternative paths based on
the patient’s conditions. Clinical Decision Support Systems consider all information
necessary to assist the decision, but whenever an alternative point is reached there
may be some missing information and it is impossible to achieve an outcome, since
the system waits for the information that may never come. Considering this issue,
Oliveira et al. (2014) used Speculative Computation to increase the efficiency of the
process by enabling the system to continue the computation of a possible solution
while waiting for the necessary information.

Indeed, based on a set of default values, whenever a decision must be taken,
the system asks for the real data, but keeps the computation based on the default
value. When the data is retrieved from the information source, the computation is
revised. In this process, if the default value used is consistent with the returned
value, the system is in an advanced stage of computation and there is no delay
regarding the provided decision. In the case in which the value is not consistent,
the executed branch is paused and a new one is started in order to consider the
new value. Oliveira et al. (2014) applied the speculative computation framework
to the CompGuide model, which enabled the creation of Computer-Interpretable
Guidelines.

With this, authors achieved a Clinical Decision Support System that was tested
against colon cancer data of several patients. When a patient is diagnosed with this
form of cancer, there are a batch of tests that must be performed and the results
may take some time. Through the speculative computation framework, the clinical
decision support system maintains its execution since there is a possible scenario
for each next procedure of the guideline. Thus, a possible clinical decision may be
taken (or may be considered) based on the default values (most likely values).

To achieve better results, a next step was taken by Oliveira et al. (2017a) where
the default set was created and revised based on Bayesian Networks. Instead of

18 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

having a static set of defaults, which are assumed while the real value is not re-
ceived, this set is dynamically calculated. Indeed, when facts arrive, default values
are calculated based on the Bayesian Network, indicating the most likely values.
The developed architecture is represented in Fig. 6, which is composed of four main
modules:

• guideline engine: interprets the instructions of the clinical guideline based on the
current patient state;

• knowledge base: contains the set of guidelines in the form of computer-interpretable
guidelines, i.e., a version that the computer is able to use for computation, which
is represented in an ontology;

• local repository: contains information about other patients regarding previous
executions of the clinical guidelines;

• speculative module: this module is hosted by the guideline engine and imple-
ments a speculative framework with dynamically generated default constraints,
ensuring the continuous execution of the computation.

Fig. 6 Architecture of the clinical decision support system with its basic components, retrieved
from Oliveira et al. (2017a)

To facilitate the creation, edition or removal of a clinical guideline, the system
was enhanced with an editor based on the Protégé OWL API, which also provided
a graphical user interface (Gonçalves et al. 2017).

Clinical Practice Guidelines provide recommendations for medical treatment in-
cluding exams that should be done or have temporal constraints. These were intro-
duced by Oliveira et al. (2017b), in which the temporal constraints were automati-
cally interpreted and added to the physician’s and patient’s calendar. Thus, both of
them could know in advance the next appointments or exams that should be exe-
cuted. The system was tested against a dataset of colon cancer in order to prove its
efficiency.

Speculative computation - application scenarios 19

More recently, Oliveira et al. (2020) further improved CompGuide to include
computational argumentation. This last step is useful when reasoning in cases of
multimorbidity. When facing this scenario, the clinical decision process is more
difficult, since the number of variables increases, optimization goals may be con-
flicting, and constraints may be impossible to be fully satisfied. Indeed, using an
argumentation system, it is possible to achieve a solution that is consistent with the
patient’s multiple conditions and centered on the best goals for that patient.

5 Conclusions

Over the last years, the processing capacity of machines has evolved. Through them,
it was possible to create more robust systems which included more functionalities.
Indeed, nowadays the decision maker is supported by the results provided by deci-
sion support systems, which are able to consider a wider number of variables and,
through machine learning algorithms, create connections between data that weren’t
possible to generate by humans.

There are different Artificial Intelligent algorithms, some of which may be more
suitable in specific situations than others. These algorithms, with the huge volumes
of data that are being generated, are able to achieve good results in a wide variety
of fields, namely computer vision, optical character recognition, fraud detection,
recommendation systems, among others. Despite the quality of such models, they
lack in the ability to speculate a future yet unknown value, and thus prevent the
execution of the model until such value is known. Speculative Computation is able
to surpass this drawback, but it needs to have a default value set. For this process,
different ML techniques may be used in order to improve the quality of the values
that are considered as default, i.e., generate a set that contains the most appropriate
values to be considered when real information is missing.

The application of different techniques may enhance the features of Specula-
tive Computation, which could be used in different scenarios. Previous sections de-
scribed its application in two scenarios where the goals of each system considered
distinct areas. The former introduced an adaptive localization system that, through
virtual reality, guided the user during her/his outdoors walks. The path was adjusted
to the user’s specificities, and the speculative framework was able to anticipate user
mistakes and alert in advance to try to prevent them from happening. The latter was
used under a colon cancer scenario by interpreting clinical practice guidelines and
adjust the treatment regarding the medical recommendations and patient health.

There are several Machine Learning algorithms and throughout this paper the
goal was to demonstrate that the use of multiple techniques may enhance the final
system and better adapt the results to the scenario it is being developed for. Indeed
both cases presented show that, by applying trajectory data mining or Bayesian net-
works, the construction default revision set was improved and the system could ben-
efit from better results provided by the advantages of the Speculative Computation
framework.

20 João Ramos, Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais

Acknowledgments

This work has been supported by national funds through FCT - Fundação para a
Ciência e a Tecnologia within the Project Scope: UIDB/00319/2020 and UIDB/04728/2020.

References

Adekitan, A. I., Abolade, J., and Shobayo, O. (2019). Data mining approach for predicting the
daily Internet data traffic of a smart university. Journal of Big Data, 6(1):11.

Adeyemi, O. J., Popoola, S. I., Atayero, A. A., Afolayan, D. G., Ariyo, M., and Adetiba, E. (2018).
Exploration of daily Internet data traffic generated in a smart university campus. Data in Brief,
20:30–52.

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders
(DSM-5). 5 edition.

Boudol, G. and Petri, G. (2010). A Theory of Speculative Computation. In Gordon, A. D., editor,
Programming Languages and Systems, pages 165–184, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Burton, F. W. (1985). Speculative computation, parallelism, and functional programming. IEEE
Transactions on Computers, C-34(12):1190–1193.

Field, M. J. and Lohr, K. N., editors (1992). Guidelines for Clinical Practice. National Academies
Press.

Fukuta, N., Satoh, K., and Yamaguchi, T. (2008). Towards “kiga-kiku” services on speculative
computation. In Yamaguchi, T., editor, Proceedings of the 7th International Conference on
Practical Aspects of Knowledge Management (PAKM 2008), LNAI, volume 5345, pages 256–
267, Berlin, Heidelberg. Springer Berlin Heidelberg.

George, D. and Mallery, P. (2018). Logistic Regression. In IBM SPSS Statistics 25 Step by Step.
Taylor & Francis.

Gewers, F. L., Ferreira, G. R., Arruda, H. F. D., Silva, F. N., Comin, C. H., Amancio, D. R., and
Costa, L. D. F. (2021). Principal component analysis: A natural approach to data exploration.
ACM Comput. Surv., 54.

Gonçalves, F., Oliveira, T., Neves, J., and Novais, P. (2017). Compguide: Acquisition and editing
of computer-interpretable guidelines. In Rocha, Á., Correia, A. M., Adeli, H., Reis, L. P., and
Costanzo, S., editors, Recent Advances in Information Systems and Technologies, pages 257–
266, Cham. Springer International Publishing.

Hosobe, H., Satoh, K., and Codognet, P. (2007). Agent-based speculative constraint processing.
IEICE TRANSACTIONS on Information and Systems, E90-D:1354–1362.

Kakas, A. C. and Mancarella, P. (1990). On the relation between truth maintenance and abduction.
pages 438–443.

Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2020). A survey of the recent architectures
of deep convolutional neural networks. Artificial Intelligence Review, 53(8):5455–5516.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., and Yarom, Y. (2020). Spectre Attacks: Exploiting Speculative
Execution. Commun. ACM, 63(7):93–101.

Lanyi, C. S. and Brown, D. J. (2010). Design of Serious Games for Students with Intellectual
Disability. In Joshi, A. and Dearden, A., editors, IHCI10 Proceedings of the 2010 international
conference on Interaction Design International Development, pages 44–54. British Computer
Society Swinton, UK.

Oliveira, T., Dauphin, J., Satoh, K., Tsumoto, S., and Novais, P. (2020). Goal-driven structured
argumentation for patient management in a multimorbidity setting. In Dastani, M. and van der

Speculative computation - application scenarios 21

Torre, H. D. L., editors, Logic and Argumentation, 3rd Internatinoal Conference, CLAR 2020,
LNAI21061, pages 166–183, Cham. Springer International Publishing.

Oliveira, T., Neves, J., Novais, P., and Satoh, K. (2014). Applying speculative computation to
guideline-based decision support systems. In Proceedings of the 2014 IEEE 27th International
Symposium on Computer-Based Medical Systems, CBMS ’14, pages 42–47, USA. IEEE Com-
puter Society.

Oliveira, T., Novais, P., and Neves, J. (2013). Representation of Clinical Practice Guideline Com-
ponents in OWL, volume 221. Springer Verlag.

Oliveira, T., Satoh, K., Novais, P., Neves, J., and Hosobe, H. (2017a). A dynamic default revi-
sion mechanism for speculative computation. Autonomous Agents and Multi-Agent Systems,
31:656–695.

Oliveira, T., Silva, A., Neves, J., and Novais, P. (2017b). Decision support provided by a temporally
oriented health care assistant: An implementation of computer-interpretable guidelines. Journal
of Medical Systems, 41.

Pisner, D. A. and Schnyer, D. M. (2020). Chapter 6 - Support vector machine. In Mechelli, A. and
Vieira, S., editors, Machine Learning, pages 101–121. Academic Press.

Pun, L., Zhao, P., and Liu, X. (2019). A Multiple Regression Approach for Traffic Flow Estimation.
IEEE Access, 7:35998–36009.

Ramos, J., César, A., Neves, J., and Novais, P. (2017a). Adapting the user path through trajectory
data mining. In Paz, J. F. D., Julián, V., Villarrubia, G., Marreiros, G., and Novais, P., editors,
Ambient Intelligence– Software and Applications – 8th International Symposium on Ambient
Intelligence (ISAmI 2017), pages 195–202, Cham. Springer International Publishing.

Ramos, J., Oliveira, T., Satoh, K., Neves, J., and Novais, P. (2017b). An orientation method with
prediction and anticipation features. Inteligencia Artificial, 20:82.

Ramos, J., Oliveira, T., Satoh, K., Neves, J., and Novais, P. (2018). Cognitive assistants-an analysis
and future trends based on speculative default reasoning. Applied Sciences (Switzerland), 8.

Ronao, C. A. and Cho, S.-B. (2016). Human activity recognition with smartphone sensors using
deep learning neural networks. Expert Systems with Applications, 59:235–244.

Satoh, K. (2005). Speculative computation and abduction for an autonomous agent. IEICE - Trans.
Inf. Syst., E88-D:2031–2038.

Satoh, K., Inoue, K., Iwanuma, K., and Sakama, C. (2000). Speculative computation by abduction
under incomplete communication environments. In Proceedings Fourth International Confer-
ence on MultiAgent Systems, pages 263–270.

Satoh, K. and Yamamoto, K. (2002). Speculative computation with multi-agent belief revision.
In Proceedings of the First International Joint Conference on Autonomous Agents and Mul-
tiagent Systems: Part 2, AAMAS ’02, pages 897–904, New York, NY, USA. Association for
Computing Machinery.

Schalock, R. L., Borthwick-Duffy, S. A., Bradley, V. J., Buntinx, W. H. E., Coulter, D. L., Craig,
E. M., Gomez, S. C., Lachapelle, Y., Luckasson, R., Reeve, A., Shogren, K. A., Snell, M. E.,
Spreat, S., Tasse, M. J., Thompson, J. R., Verdugo-Alonso, M. A., Wehmeyer, M. L., and Yea-
ger, M. H. (2010). Intellectual Disability: Definition, Classification, and Systems of Supports.
Eleventh Edition. American Association on Intellectual and Developmental Disabilities.

Schonlau, M. and Zou, R. Y. (2020). The random forest algorithm for statistical learning. The
Stata Journal, 20(1):3–29.

Vadla, P. K., Ruwali, A., Prakash, K. B., Lakshmi, M. V. P., and Kanagachidambaresan, G. R.
(2021). Neural Network, pages 39–43. Springer International Publishing, Cham.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep Learn-
ing for Computer Vision: A Brief Review. Computational Intelligence and Neuroscience,
2018:7068349.

Xie, H., Zhang, L., Lim, C. P., Yu, Y., Liu, C., Liu, H., and Walters, J. (2019). Improving k-means
clustering with enhanced firefly algorithms. Applied Soft Computing, 84:105763.

	Speculative computation - application scenarios
	João Ramos , Tiago Oliveira, Davide Carneiro, Ken Satoh and Paulo Novais
	Introduction
	Literature Review: ML techniques
	Speculative Computation
	Preliminary Definitions
	Process Reduction Phase
	Fact Arrival Phase
	Correctness of the Proof Procedure

	Speculative Computation: Application Scenarios
	CogHelper
	CompGuide

	Conclusions
	References

