
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11356-023-25137-y

RESEARCH ARTICLE

Potential of rainwater harvesting in the retail sector: a case study 
in Portugal

Ana Ferreira1  · Vitor Sousa1 · Manuel Pinheiro1 · Inês Meireles2 · Cristina Matos Silva1 · Jorge Brito1 · 
Ricardo Mateus3

Received: 30 August 2022 / Accepted: 30 December 2022 
© The Author(s) 2023

Abstract
Water is a crucial resource for life, and it is increasingly scarce in many regions of the globe. In addition, retail water use is 
responsible for up to 19% of public water globally supplied. Hence, this study has set out to explore the technical and eco-
nomic feasibility of rainwater harvesting systems as an alternative water source for a retail store located in southern Portugal. 
Water consumption data from 2018 to 2021 was collected from water bills, placing average monthly water consumption 
at around 400  m3. Next, rainfall data was collected from the nearest meteorological station, comprising 54 years of daily 
rainfall data between 1932 and 2008 with an annual average of 685 mm. The simulation of a rainwater harvesting system 
was performed, resorting to the mass-balance model. The optimal tank size was found to be 100  m3 considering simply the 
relation with the relative water savings variation on the graph relating the water savings with the tank size. Results show that 
the simulated rainwater harvesting system would allow saving 32–36% of the water consumed, despite the store’s location in 
a dry climate, representing a financial gain of €330–372 per month. Findings suggest a substantial potential for the technical 
and economic feasibility of rainwater systems in retail stores, which makes them relevant solutions to achieve important 
water-savings in the retail sector, thus positively influencing retailers’ direct water footprint.

Keywords Rainwater harvesting (RWH) systems · Retail store · Water stress · Water savings · Water footprint · Water 
intensity

Introduction

The global pressure on potable water is increasing due 
to population growth, poor land use management, pollu-
tion of water bodies, and climate change (Symeonidou 

and Vagiona 2018). Water scarcity is an important issue in 
many parts of the world. According to the United Nations 
(FAO and UN-Water 2021; UN-Water 2021), 2.3 billion 
people live in water-stressed countries, of which 733 mil-
lion live in high and critically water-stressed countries. 
Even if most of these countries are in northern Africa 
and southern Asia, the area and population afflicted by 
droughts in the European Union (EU) augmented by 
almost 20% over the last 30 years. The situation is more 
expressive in Southern Europe, but is also increasingly 
present in countries such as the UK or Germany (European 
Parliament 2012). According to the Aqueduct Projected 
Water Stress Country Rankings (World Resources Insti-
tute 2015), Mediterranean countries are at high risk (level 
3). High-risk water stress means that total annual water 
withdrawals (municipal, industrial, and agricultural) rep-
resent 40 to 80% of the total annual available blue water. 
In Portugal, in particular, water stress predictions for 2030 
under a business-as-usual scenario are of high risk across 
the domestic, industrial, and agricultural sectors, with a 
tendency to grow in 2040.
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Therefore, water is a threatened natural resource and 
improving water management, especially in countries with 
higher water stress levels, is of the utmost importance (UN-
Habitat 2005). As such, water management in economic sec-
tors with high water intensities, such as retail, is critical. It is 
estimated that water use in commercial buildings accounts for 
up to 20% of water withdrawal (US Environmental Protection 
Agency 2009; US Energy Information Administration 2012). 
Moreover, the mean water intensity of retail stores was found 
to be at 1123 L/m2 per year, and 47  m3 per worker per year 
(Ferreira et al. 2022). Water consumption in retail buildings 
could be reduced through more sustainability-driven manage-
ment solutions. International regulations, such as the Water 
Framework Directive (European Parliament 2000) or the 
European Communication on Water Scarcity and Droughts 
(European Parliament 2012), are urging retailers toward sus-
tainable water practice. Likewise, voluntary standards fol-
lowed by top revenue retailers, such as goal 6 of the United 
Nations' Sustainable Development Goals, propose water 
access and sanitation for all people (United Nations 2015).

Improved water use in retail not only addresses political and 
social concerns but also enhances operational costs and envi-
ronmental performance. In addition, the reduction of potable 
water consumption reduces greenhouse gas emissions associ-
ated with the water industry, distribution capture, and operation 
expenditures at a national level. Also, becoming water posi-
tive or closing the water cycle is a publicly expressed goal of 
some top revenue retailers (Coop Group 2015; ICA Gruppen 
2015; Kohl’s_Corporation 2015; Lidl 2015; Norgesgruppen 
2015; Walmart 2015; Kingfisher 2016; IKEA 2018), which 
aim firstly at reducing their water consumption and secondly 
their supply chain’s (ENDS Carbon - University of Edinburgh 
Business School 2009). To address water management issues 
in retail stores, top revenue retailers typically resort to two 
main categories of solutions: i) the reduction of water con-
sumption mainly through water efficiency fixtures and ii) the 
identification of new water sources, mainly through rainwater 
harvesting (RWH) systems (BREEAM 2021). This study will 
focus in a RWH system applicable to a retail store in Southern 
Europe. A background of existing studies on RWH systems 
will be explored in the flowing subsections, as well as of water 
consumption patterns in retail stores. Water-saving solution 
currently used by retailers, which include RWH systems, will 
also be briefly disclosed.

Background

Literature review

In general, a rainwater-harvesting RWH system comprises 
the collection, treatment, storage, and use of rainwater as 
a main or secondary water source (Silva et al. 2015). The 
collection of water usually takes place in roofs and terraces, 

which impact rainwater runoff quality and quantity. Next, 
the collected rainwater undergoes treatment, typically via 
a first flush device and a filtration device, and is stored in a 
tank, from which it is distributed to the projected end use 
point (Silva et al. 2015).

The literature review on RWH water-savings potential 
encompassed studies on multi-unit residential buildings and in 
arid regions of Australia (Eroksuz and Rahman 2010; Hajani 
and Rahman 2014), single and multi-family buildings in Spain 
(Domènech and Saurí 2011), and single-family buildings in 
Portugal (Silva et al. 2015). Other studies identified RWH 
water-savings potential for specific end uses (Basinger et al. 
2010) and no particular building configuration (Palla et al. 
2011, 2012; Campisano and Modica 2012; Mun and Han 2012; 
Rahman et al. 2012; Rashidi Mehrabadi et al. 2013). According 
to these studies, RWH-savings potential is context dependent. 
To obtain more robust results, a daily simulation of the RWH, 
which considers local climate and rainfall, water consumption 
pattern per end use, and RWH system configuration, is needed 
(Ghisi et al. 2007; Campisano and Modica 2014; Imteaz et al. 
2015; Silva and Ghisi 2016). As such, to assess the feasibility 
of a RWH system in a retail store in southern Europe, a case 
study should be investigated, which is the aim of this research.

In European countries, namely, France, Germany, or Belgium, 
and in Japan, New Zealand, and the USA, RWH system use is 
being mostly for non-potable water in toilet flushing, washing, 
and irrigation (Herrmann and Schmida 2000; Schets et al. 2010). 
A comprehensive literature review on RWH system research can 
be found in Silva et al. (2017), which has found limited studies 
reporting on the efficacy of the performance of existing RWH 
systems, alike Zaizen et al. (2000) and Ward et al. (2010).

RWH systems have received relatively short research interest 
in Portugal: a study by Oliveira (2008) assessed the economic fea-
sibility of RWH systems using 10-year rainfall data. Amado and 
Barroso (2013) assessed the feasibility of RWH systems in resi-
dential buildings, predicting water savings of 43.2% and 31.5% for 
single-family buildings and multi-family buildings, respectively.

There are, however, very few studies regarding RWH sys-
tems in commercial buildings, even though in these buildings, 
the proportion of water that does not need to be potable may 
represent up to 75% of total water consumption (Proenca and 
Ghisi 2010). Studies regarding RWH systems in commercial 
buildings included the evaluation of alternative water sources 
for commercial buildings in Australia (Cook et al. 2014), the 
design of a wall-mounted rainwater harvesting system faced 
with limited space (Foo et al. 2017), the cost comparison of 
new or retrofitted RWH systems in commercial buildings 
(Lani et al. 2019), the performance of small- and large-scale 
RWH systems in commercial buildings in Malaysia according 
to future water tariffs (Lani et al. 2018), the life cycle assess-
ment of a RWH system (Ghimire et al. 2017), and alternative 
water sources in New Zealand’s commercial buildings (Bint 
et al. 2019). Other authors studied tank sizing and conducted 
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the economic analysis of a rainwater-harvesting system in a 
commercial building (Matos et al. 2013a, 2015).

Out of the studies mentioned, only three addressed RWH sys-
tems in retail buildings in the regions of Malaysia and New Zea-
land (Lani et al. 2018, 2019; Bint et al. 2019), and an additional 
one analyzed case studies in Portugal and Brazil (Sousa et al. 
2019). Hence, this study is novel in assessing the feasibility of a 
RWH system in a retail store in a Mediterranean climate, where 
the water stress level is higher, and the rainwater frequency tends 
to be lower. To the best of the authors’ knowledge, no other stud-
ies examine the economic feasibility of RWH systems in retail 
buildings, which is a gap in knowledge this study will address.

Water use in the retail sector—water consumption pattern

Assessing water consumption indicators in retail is not 
straightforward. Water consumption patterns may vary 
according to the sector’s diversity (Morales and Heaney 
2014), namely, store type, customer frequency, sales area, 
number of workers, installed equipment, and landscaping. 
In a water intensity indicators’ study (Ferreira et al. 2022), 
specific water use metrics for retail buildings were identified, 
which included the water intensity per store area (WIA), water 
intensity per store (WIS), water intensity per worker (WIW), 
or water intensity per revenue (WIR). This study has placed 
mean WIA values per store area at 1123 l/m2/year; mean WIS 
values at 4411  m3/store/year; mean WIW values at 47  m3/
worker/year; and mean WIR values at 483 l/billion$/year.

For non-food retailers, such as in the case of the present case 
study, the number of workers was a reliable predictor of water 
consumption. Statistically significant differences in the mean 
confirmed that WIA varied according to the continent where 
the stores were located, and WIS varied according to the domi-
nant operational size of the stores. In a unidimensional analysis, 
WIS had a statistically significant correlation with the number 
of stores, the average store area, and the total stores. In addi-
tion, WIW and WIR were correlated with store area. Store type 
was statistically significant in a multidimensional analysis when 
controlling for the continent in the WIW indicator. Additionally, 
ordinary least square (OLS) methods showed that the continent 
and the stores had a statistically significant influence on WIA.

Food retailers seem to have a higher mean of WIA when 
compared to non-food retailers, which may be explained by 
display and preparation requirements in food departments, 
as well as icemakers (US Environmental Protection Agency 
2009). Also, floor sanitation in food preparation and receiving 
areas is more water intensive than non-food retail. In contrast, 
non-food retailers seem to use water primarily for restrooms, 
space cooling (Gleick et al. 2003), and landscape irrigation.

Other general differences in retailers’ water performance may 
be related to merchandising, store occupancy, water efficiency 
and choice of water fixtures, occupant’s behavior, and mainte-
nance. Marketing and client segmentation strategies may also 

influence water consumption in heating and cooling systems, 
restrooms, and landscape irrigation. Local culture could also 
impact the variability of water intensity since most of the lowest 
water intensity values were found in retailers in European coun-
tries, followed by American, and lastly by Asian countries. In a 
RWH system study, it is important to characterize the water con-
sumption of the retail store to estimate the percentage of savings 
that can be expected and determine the feasibility of the system.

Water‑saving solutions in retail

RWH systems are one of the water-saving solutions most cited 
by retailers. Overall, the most reported water-saving solutions 
by top revenue retailers are high-efficiency fixtures (48%), water 
management systems (48%), and rainwater harvesting (41%) 
(Ferreira et al. 2019). Working with non-governmental organi-
zations in water programs also ranked high among retailers 
(41%), which reinforces water as an important corporate social 
responsibility issue. Retailers, in their sustainability reports, 
do not disclose the extent to which water-saving solutions are 
implemented in the stores. While high-efficiency fixtures may 
be more generalized for their low cost and ease of installation, 
RWH systems, for instance, may be restricted to a few stores. 
Regarding landscaping, the use of indigenous plants (22%) and 
smart irrigation systems (15%) were the most cited solutions 
by top revenue retailers. Cleaning systems were not frequently 
cited by top revenue retailers, though optimizing cleaning-in-
place processes, reusing rinse water to clean truck tanks, and 
dry ice blasting were mentioned by 4% of them (Ferreira et al. 
2019). As for water management solutions, water sub-metering 
(15%) and leak repair (11%) were the most cited measures by 
retailers. Additionally, water consumption reduction could be 
hampered by behavior and maintenance factors, highlighting 
the importance of human demeanor in water reduction strate-
gies. Staff training on water savings was mentioned by 15% 
of retailers, whereas selling water sensitive products to clients 
scored 22%. Lastly, 4% of retailers mentioned the need of devel-
oping a water manual for suppliers as a mean to address the 
supply chain’s indirect water footprint (Ferreira et al. 2019).

Cost reduction and the minimization of water risks seem to be 
corporate driving factors in retail toward water stewardship (Best 
Buy 2015; Costco 2015; Walmart 2015; E. Leclerc 2016; Wes-
farmers 2016; Auchan 2017; Rewe 2017; Target 2017; Sainsbury 
plc 2018; Woolworths 2018). Nonetheless, studies estimate that 
the financial payback of water-efficiency strategies, namely, that 
of RWH systems, is context dependent, despite the environmen-
tal benefits of water savings (Sousa et al. 2019). Cost-effective 
RWH systems could include the pretreatment of rainwater to be 
reused safely onsite, particularly on toilets, flushers, cleaning, and 
landscaping (namely, in smart irrigation systems, such as drip 
irrigation), in turn reducing water demand during drought or in 
water-stressed regions in new or renovated retail stores.
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Alongside legal requirements, investment cost, management 
beliefs, and treatment requirements have been some of the most 
important barriers hindering the application of RWH systems 
in retail stores. On the contrary, water scarcity issues, corporate 
social responsibility concerns, and operational costs of domes-
tic water have been pushing retailers to try different solutions to 
address natural resource efficiency. Hence, the following case 
study has been developed to support decision-making regarding 
the technical and economic feasibility of a RWH system in a 
Portuguese retail store, in a Mediterranean climate.

Research goals

Given the lack of studies of RWH systems in retail buildings, 
in general, and in Mediterranean climates, in particular, this 
paper aims to assess the technical and economic potentials of 
a RWH system in a large standalone retail store in southern 
Portugal, owned by a top revenue global non-food retailer. This 
store is characterized by a large roof surface and by 70–90% 
water consumption in non-potable end uses, such as irrigation, 
cleaning services, carpark washing, and toilets. This is in line 
with the Portuguese decree-law 23/95 which authorizes non-
potable water use exclusively for irrigation, pavement washing, 
firefighting, and other nonfood-related activities (Ministério 
das Obras Públicas 1995). Likewise, the Water and Waste Ser-
vices Regulation Authority (ERSAR) guidelines on water use 
efficiency limit the use of harvested rainwater to non-potables 
uses, essentially irrigation (Almeida et al. 2006a).

In this study, two specific questions were investigated as 
research goals: i) “Are climate conditions in southern Portugal 
compatible with the implementation of RWH systems in retail 
stores?” and ii) “Is it economically feasible to install RWH sys-
tems in retail stores?” The present case study provides insight 
regarding the economic feasibility of RWH systems in retail stores 
as efficient alternative water sources, which is a contribution to the 
existing body of knowledge. Furthermore, lessons learned in the 
retail sector are easily disseminated among peers, thus fostering 
enhanced sustainable water management across the sector.

Materials and methods

Description

A retail store located in the South of Portugal (Algarve region) 
was selected as a case study (Fig. 1). The store is part of one 
of the top global do-it-yourself (DIY) and home improvement 
retail groups, operating in Europe, South America, and China.

In addition to the availability of the data on water con-
sumption at the store, this store was selected as a case study 
because it is one of the group’s most recent stores in Portugal 
(it opened to the public in 2017), with enough years in opera-
tion to collect data from. Therefore, the water consumption of 

the store reflects modern water consumption standards of the 
group (and of the sector) and water losses from leaking water 
installations should be residual or inexistent.

Data collection and assessment

The data required were obtained from two sources: i) the 
retail store management and ii) the National Information 
Service on Water Resources.

The retail store management provided the monthly water bills 
from December 2018 to July 2021 (the last available month at 
the time of the data collection). This allowed the analysis of the 
water consumption pattern during a non-COVID period (until 
March 2019) and a COVID period (since April 2019) (Fig. 2).

Detailed measurements of the water consumption by end 
use in the store are not available, so expert insight from the 
retail store management was required to estimate the propor-
tion of the total water consumed in non-potable uses (e.g., 
toilet flushing, cleanings, and heating, ventilation, and air—
HVAC). According to the retail store management, the non-
potable water consumption ranges between 70 and 90% of 
the total water consumption, with an average value of 85%. 
The expert estimates from the store management team are 
consistent with the end uses reported by Gleick et al. (2003), 
in which 70% of the water consumed in retail building is 
in exclusively non-potable end uses (HVAC, landscaping, 
and other uses), 30% in restrooms (26%) and kitchens (4%). 
Regarding the water consumption in the restrooms, in a retail 
store it is split only into toilet flushing and tap use. Consid-
ering the study of Almeida et al. (2006b) that analyzed the 
detailed water end use in 40 households in Portugal, it is 
possible to extrapolate that toilet flushing corresponds to 
65% and tap use 35% of the water consumption in restrooms. 
Combining the information from both sources results in an 
estimated non-potable water consumption of 86.9%. This 
is a conservative estimate considering that this store does 
not have a kitchen and that the tap water consumption in 
residential building restrooms satisfies needs that are not 
present in retail buildings (e.g., shaving, brushing teeth). 
The expert estimates are also consistent with the non-potable 
water consumption of the largest shopping mall in Portugal. 
From the study of Sousa et al. (2019), the non-potable water 
consumption outside the stores (HVAC, fountains, cleaning, 
and landscaping) of the Colombo shopping center is 70.2%. 
In this mall, the separate metering of 4 restrooms using gray-
water in the toilets revealed that 90% of the water is used 
in the toilets and only 10% in the taps. This corresponds to 
a non-potable water fraction of 97%, indicating again that 
the expert estimate for the retail store under analysis is most 
probably conservative.

The roof has an area of 9315  m2, which is approxi-
mate to the net store floor area (the parking is under the 
store). This corresponds to specific water consumptions 
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of 0.55  m3/m2, in 2019, and 0.45  m3/m2, in 2020. This is 
also consistent with the specific water consumption of 
the 15 retail stores reported by the US Energy Informa-
tion Administration (US Energy Information Adminis-
tration 2012), ranging from 0.34 to 1.01  m3/m2, with an 
average value of 0.58  m3/m2.

The National Information Service on Water Resources 
(Agência Portuguesa do Ambiente 2021) provides histori-
cal weather records from more than 700 meteorological sta-
tions spread over Portugal. Analyzing the stations’ records 

closest to the store, the Loulé station (code 31I/01UG) pre-
sented the most extended and complete rainfall series, with 
54 years of daily rainfall data between 1932 and 2008. The 
data from the most recent years is not available because 
the economic crisis that affected Portugal harshly com-
promised the maintenance of most stations and the quality 
check of the data. Loulé station is located roughly 7 km 
north of the retail store. The average annual rainfall is 
685 mm, one of the lowest in Portugal, ranging from less 
than 400 to over 1200 mm (Fig. 3).

Store

Fig. 1  Approximate location of the retail store in Algarve, Portugal

Fig. 2  Total water consumption 
pattern from 2019 to 2021
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Methodology

The approach adopted in the research entails two main com-
ponents: i) the statistical analysis of the base data and ii) the 
simulation of a hypothetical RWH system.

The water consumption data and rainfall records were ana-
lyzed to identify the existence of trends, outliers, correlations, 
and statistically distinct groups. Trends were assessed for both 
water consumption and rainfall record resorting to the typical 
OLS regression. The t-test was applied to assess if the average 
water consumption was distinct before and during the COVID 
period. Outliers were identified in the rainfall record using 
the Tukey criterion, which is a non-parametric method and 
does not require the assumption of normality of methods such 
as the Z-score. Also, non-parametric Spearman and Kendall 
correlations were used to evaluate the existence of statistical 
correlations between the annual rainfall and the rainfall in 
each month and between the different months.

The simulation of a hypothetical RWH system was done, 
resorting to the typical mass-balance model. The model states 
that the mass entering the system must equal the mass leaving 
it plus the mass accumulation within the system, which cor-
responds simply to applying the mass continuity equation to 
a RWH system in each time step of the simulation. Herein, a 
daily time step was considered because it corresponds to the 
rainfall data’s resolution. Since the water consumption data has 
a monthly resolution and the store is open 7 days per week, 
uniform daily water consumption was considered in each month.

Linking the mass-balance model with the components of a 
RWH system and considering the tank as the central component, 
the mass accumulation is governed exclusively by the tank vol-
ume, while the water entering and leaving the system depends on 
the dynamic interaction of various factors. Herein, the tank vol-
ume varied between 20 and 1000  m3. A volume of 1000  m3 cor-
responds roughly to 3 months of water consumption of the retail 
store and was simulated only to capture the maximum potential 
rainwater use, since in practice a tank this size is not viable from 

a financial point of view and raises water quality problems due to 
the storage of the rainwater for a long period of time.

The water entering depends on the interaction between the 
rainfall pattern, the collection area, and the runoff coefficient. 
The rainfall pattern can be adequately characterized from his-
torical rainfall records, assuming that the observed values in 
the past are an accurate representation of the future. This may 
not be the case under the climate changes context in many 
regions of the globe. Disregarding the potential influence of 
wind-driven rain, the collection area is accurately represented 
by the area of the horizontal projection of the roof from which 
the rainwater is drained to the tank. The runoff coefficient 
defines the fraction of the rainwater precipitating in the collec-
tion area flowing into the tank. Basically, it represents the water 
losses in the collection and is the most complex factor driving 
the water entering the system. In fact, it is the most complex 
factor driving the performance of a RWH system because it 
depends on the dynamic interaction between endogenous and 
exogenous building characteristics. The former are the char-
acteristics of the roof, namely, slope and material, and the 
existence of first-flush devices. In theory, sloped roofs present 
higher runoff coefficients than flat roofs, and impervious, regu-
lar, non-porous materials (e.g., metal sheets) will have higher 
runoff coefficients than pervious, irregular, porous materials 
(e.g., green roof). The first-flush devices discharge the initial 
rainwater collected, which usually are the most polluted. The 
exogenous characteristics influence the evapotranspiration and 
surface retention, including aspects such as temperature, radia-
tion, wind speed, and humidity. Furthermore, these endoge-
nous and exogenous factors have a variable interaction over 
time. The best example is probably the case of a green roof, 
with the development level of the vegetation and the water 
content in the soil before each rainfall event varying through-
out the year and affecting the evapotranspiration and surface 
retention. The first-flush devices may also be dynamic because 
some discharge a fixed volume of rainwater while others define 
the amount of rainwater discharged depending on some water 

Fig. 3  Annual rainfall pattern in 
mm from 1932 to 2007
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quality parameter (e.g., turbidity). The collection area consid-
ered is the entire roof area, and two alternatives were consid-
ered to model the water losses: i) a runoff coefficient of 0.8 and 
ii) an initial water loss of 2 mm. In the first option, the rainfall 
in each day is simply multiplied by 0.8, which accounts for 
all water losses in the collection. In the second option, only 
the first 2 mm of a series of consecutive days with rain is lost, 
implying that the evapotranspiration is insignificant after this 
initial loss (surface retention and first flush). The first option 
is the most typical for residential buildings. Still, the second 
may be adequate to represent a typical retail store roof (metal 
sheets) and drainage system (siphon roof drainage).

In addition to the water losses in the collection, which 
represent water exiting the RWH system but not the tank, 
the water exits the RWH tank through consumption within 
the building and overflow. The monthly water consumption 
reported by the store management is assumed to be uni-
formly distributed over the days of the respective month. 
Still, there may be differences depending on the number of 
visitors in each day and the maintenance schedule. Overflow 
occurs whenever the amount of water collected exceeds the 
available storage capacity of the tank. This last aspect may 
be affected by the spillage algorithm adopted, namely, if 
the consumption occurs before or after the rainfall. This is 
a modeling simplification necessary to represent the order 
in which the demand for water and the supply of rainwater 
occurs in each time step of the simulation. In addition to the 
traditional demand before rain (DBR) and demand after rain 
(DAR), herein, a mixed option (MIX) was also considered, 
in which 50% of the rain precipitates before the consumption 
and 50% after. This third option is introduced since rainfall 
may occur before, after, and during the demand. The error 
introduced by this assumption decreases with the reduction 
of the time step and the increase of the water tank volume.

The option of considering annual continuity implicitly 
implies that a specific sequence of years in term of rainfall will 
occur in the future. Therefore, simulations were done consider-
ing that there is no inter-annual continuity, so the tank is con-
sidered empty at the beginning of each year. Three parameters 
were computed in all simulations: i) the total water savings, ii) 
the non-potable water savings, and iii) the rainwater wasted. 
The first two parameters reflect the percentage of the total and 
non-potable water consumption that is supplied with rainwater, 
respectively. The total water savings have a limit correspond-
ing to the fraction of the water consumed in non-potable uses, 
while the non-potable water savings have a limit of 100%. The 
rainwater wasted is the ratio between rainwater discharged by 
overflow of the tank and the rainwater that precipitates over the 
roof. It has a limit of 100%, and the complementary indicates 
the amount of rainwater consumed for non-potable uses in the 
building plus the water losses in the collection.

The calculation process and the formulas are detailed in 
Figs. 9 and 10 of the Appendix.

Results and discussion

Water consumption and rainfall pattern analysis

The COVID pandemic affected the water consumption in 
the store, but with a time delay (Fig. 2). Therefore, the water 
consumption patterns in each period are statistically distinct 
according to the t-test results using bootstrapping to com-
pensate for the small sample size and the variability between 
months regardless of the COVID (t(30) = 4.757, p < 0.01). The 
year 2018 was not included in the analysis because there is 
always a period of optimization of the operation and main-
tenance of any new store, still noticeable in the decreasing 
water consumption pattern at the beginning of 2019. However, 
between March 2019 and March 2020, the water consump-
tion was relatively stable, ranging from 350 to 400  m3 in most 
months. Assuming that the water consumption pattern since 
the start of the COVID pandemic is abnormal, the analysis will 
be done using the water consumption records of 2019, which 
averaged 430  m3 per month.

Despite the inter-annual variability, there are no statistically 
significant increasing or decreasing trends in the total annual rain-
fall. However, the 3 years with the highest rainfall (1963, 1989, 
and 1996) are identified as outliers using the Tukey criterion.

With an average of 57 mm, the monthly rainfall pattern 
(Fig. 4) reveals marked wet (winter) and dry (summer) sea-
sons, with smooth transitions in spring and autumn. The dis-
persion of the rainfall amount in each month is substantially 
higher, with several months having outliers based on the 
Tukey criterion (dots). These outliers indicate the existence of 
extremely wet months, in some cases recording over 300 mm.

Using the Spearman’s rho and Kendall’s tau correlations, 
because the rainfall distribution in each month is not normally 
distributed, it was found that there are statistically signifi-
cant positive correlations between the rainfall in the months 
of November (Spearman: r(52) = 0.361, p < 0.01; Kendall: 
r(52) = 0.244, p < 0.01), December (Spearman: r(52) = 0.386, 
p < 0.01; Kendall: r(52) = 0.256, p < 0.01), January (Spearman: 
r(52) = 0.536, p < 0.001; Kendall: r(52) = 0.391, p < 0.001), 
and February (Spearman: r(52) = 0.320, Kendall: p < 0.05; 
r(52) = 0.215, p < 0.05) and the annual rainfall. This indicates 
that it is the variation of the rainfall in these wetted months that 
governs the variability of the total rainfall. This has implica-
tions on the expected performance of RWH systems since a 
wetter year does not necessarily imply a higher potential for 
rainwater use. The concentration of the extra rainfall in the 
wettest months is more probable to increase the volume of 
overflow because it is not viable to build a tank large enough 
to store the excess water to use in the dry months.

Between the various months, there is a statistically significant 
negative correlation between May versus July and September 
versus June for both Spearman’s rho and Kendall’s tau corre-
lations. Based on the Kendall correlation alone, there is also 
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a positive statistically significant correlation between January 
and February. This implies that the rainfall in each month may 
be regarded as independent in most cases since even the statisti-
cally significant results present very low correlation coefficients.

Similar patterns were found analyzing the rainfall pattern con-
sidering the hydrological year (October 1 to September 30) instead 
of the civil year (January 1 to December 31), but the correlations 
are stronger. This was expected since a wet October, November, and 
December is more likely to be related to a wetter January and Febru-
ary and January of the following year than in the same year. In terms 
of the annual rainfall, only the hydrological years of 1962–1963 
and 1995–1996 are identified as outliers using the Tukey criterion.

RWH system performance simulation

Influence of the tank size

Figure 5 presents the typical evolution of the water savings 
with the tank volume. Since the non-potable water uses 
are assumed as a constant fraction of the total water con-
sumption, the curves are parallel, and the conclusion drawn 
from analyzing one applies to the other. Unless specifically 
stated otherwise, the following results will report the total 
water consumption. The total water savings tends to 66%, 
considering a constant runoff coefficient, and 69%, assum-
ing a constant initial water loss, when considering a tank 
with infinite volume. This means that the rainfall possible 
to capture in the store’s roof is not enough to supply the 
total water demand.

The tank is the most expensive component of a RWH system 
without any water treatment. Both the tank and the rainwater dis-
tribution network are higher in an existing building than in a new 
building. Therefore, the transition between exponential and the 
asymptotic water savings growth in the tank volume versus water 

savings graph tends to correspond to the optimal volume from a 
financial point of view. In this case study, the transition takes place 
for a tank volume of approximately 100  m3, that is, the place in 
Fig. 6’s graphics where the growth rate of water savings starts 
to reduce significantly. Hence, a tank volume of approximately 
100  m3 will be used as the reference for the following analysis.

Influence of the algorithms used

The histograms of the annual total water savings and rain-
water use efficiency for the simulations considering a con-
stant runoff coefficient or a constant initial water loss and 
using the DBR spillage algorithm are depicted in Fig. 7. 
The histograms are similar regarding the total and non-
potable water savings, with higher water savings being 
slightly more frequent on the constant runoff coefficient 
simulations. This is reflected in a 2% difference in the 
average water savings between the two approaches, which 
is consistent with the 3% difference found when compar-
ing the case of a tank with infinite capacity. The difference 
is not statistically significant using the t-test, regardless 
of the spillage algorithm used (DAR, DBR, MIX). The 
histograms of the rainwater use efficiency are statisti-
cally different based on the t-test results (t(106) = 9.039, 
p < 0.001). The parametric t-test was used because the 
results considering a constant runoff coefficient and a 
constant initial water loss were found to be normally dis-
tributed using the Shapiro–Wilk test (W = 0.973, p > 0.05). 
Still, similar conclusions were obtained using the equiva-
lent non-parametric Mann–Whitney U test (Mann–Whit-
ney U = 330, n1 = n2 = 54, p < 0.001 two tailed).

The influence of the spillage algorithm used for the total 
water savings was assessed along with the length and start-
ing year of the rainfall series, as depicted in Fig. 8.

Fig. 4  Total water consumption 
pattern functions from 2019 to 
2021 y = 5E+176x-37.51

R² = 0.7607
y = 7E+36e-0.002x

R² = 0.5478
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The spillage algorithm used was found to have a neg-
ligible effect on the results, which was expected since the 
tank volume is between 6 and 10 times the daily non-pota-
ble water consumption. For the retail store analyzed, the 
rainfall pattern and the roof area create conditions for the 
results to be independent of the spillage algorithm used 
regardless of the tank volume. The rainfall data, however, 
is found to influence the results. Using the first years of 
the series yields higher water savings than the last years of 
the series. This is explained by differences in the rainfall 
patterns, with the first years being wetter than the previous 
years of the series. The average annual rainfall of the first 
20 years of the series is 706 mm, not much higher than 
the 692 mm of the last 20 years. However, the average is 
not a robust measure of central tendency. When compar-
ing the medians, the difference becomes noticeable, with 

the first 20 years having a median of 715 mm while the 
last 20 years only 630 mm. These results highlight the 
impact of the rainfall variability at an annual scale on the 
performance of the RWH system. In this case study, the 
water savings decrease roughly 1% when the annual rain-
fall pattern changes from relatively homogeneous to being 
characterized by a more marked alternation of dry and 
wet years. The length of the rainfall series used has the 
most significant impact in the results, with a 4% difference 
between using a series of 4 or 20 years long. Consider-
ing that the water savings using the full rainfall series is 
35%, using a constant runoff coefficient, and 33%, using 
a constant initial water loss, selecting at least 11 years for 
simulating the RWH system would result in a difference 
of less than 1.5% in terms of water savings regardless of 
using the first or last years of the series.

Fig. 5  Water savings evolution 
in % and tank volume in  m3 
considering a constant runoff 
coefficient (left) and a constant 
initial water loss (right)
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Financial value of the water savings

Despite being in one of the driest regions of Portugal, a 
RWH system with a tank of 100  m3 would allow saving 
roughly a third of the total water consumed in the retail 
store studied. Assuming an average monthly consumption 
of 400  m3, this corresponds to direct financial savings 
of around €360 per month. This is because water costs 
are relatively low (€1.07/m3, plus a fixed fee of €2.68), 
but the sanitation and solid waste costs are indexed to 
the amount of water consumed from the public network, 
totaling almost €2.5/m3. An accurate estimate of the 

investment cost associated with the RWH system is not 
available, since the cost of installing the rainwater dis-
tribution network in a store in operation is not straight-
forward. Furthermore, the characteristics of the pumping 
system required could only be defined by analyzing the 
water infrastructure of the store in detail (number, flow-
rate, and location of the water points to determine the 
peak discharge and the minimum pressure). Nevertheless, 
results show a potential to reduce water consumption in 
the retail sector by implementing RWH systems. In addi-
tion, increasing populations, urbanization, and climate 
change will push the rising demand for alternative water 
management options, as pointed out by Bint et al. (2019).

Unfortunately, there is no measurement of the water end 
use. This is a limitation since the non-potable water fraction 
had to be estimated based on expert opinion from the store 
management. Nevertheless, this is limitation common to most 
of the studies on RWH. In fact, some studies on commer-
cial buildings in Portugal did not even have the total water 
consumption data (Matos et al. 2013b) and assume constant 
monthly water consumption estimated from typical capita-
tions. Still, varying the fraction of non-potable water between 
70 and 90% the water savings ranges between 32 and 36%, 
respectively. The corresponding monthly savings in terms of 
the water bill vary between 330 and €372, which should be a 
big impact on the financial viability of a RWH system.

Conclusions

This study examined whether Mediterranean climate conditions 
in southern Portugal could be compatible with the implemen-
tation of RWH systems in retail stores, with a positive result. 
Despite the store’s location in Algarve, one of Portugal’ driest 
areas, a RWH system with a tank of 100  m3 would allow sav-
ing approximately one-third of the total water consumed in this 
store. Nevertheless, rainfall data influence water-saving results 
and, for the case study analyzed, selecting at least 11 years 
as a baseline for simulating the RWH system would produce 
more robust results, despite the choice of years selected from 
Loulé meteorological station’s rainfall series. Still, with 6 or 
more years, the results start to become stable. Results are thus 
encouraging in analyzing RWH systems’ technical feasibility 
in other regions, where rainfall is more abundant.

The findings suggest a high potential for the technical 
and economic feasibility of RWH systems in retail stores, 
contrary to popular management belief that presumes RWH 
systems as cost ineffective. The major limitation of the 
study is the fact that the non-potable water fraction had to 
be estimated based on expert opinion from the store man-
agement, as there were no measurements of the water end 
use. Still, the sensibility analysis carried out reveals a differ-
ence of only 4% in terms of water savings, but representing 
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savings (middle), and rainwater use efficiency (bottom) for a tank vol-
ume of 100 m.3
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a difference of roughly €50 per month in financial terms. 
Taking the lowest non-potable water consumption fraction 
(70%), this amount represents an increase of 15% in water 
cost savings. Nevertheless, RWH systems are relevant solu-
tions to achieve important water saving in the retail sector, 
which would influence retailers’ direct water footprint posi-
tively and there is a high probability for the financial viability, 
particularly if considered during the design stage to avoid the 
need to duplicate the water distribution network.

Climate change increasingly encourages the search for 
resources’ conservation solutions, either individually by 
local promoters or in partnerships with local authorities. 
In the future, to promote the widespread of RWH systems, 
the analysis of case studies in other geographic locations 
could be of relevance. A more detailed estimation of the 
cost structure for the implementation of RWH systems 
in new or existing stores is also foreseen in our future 
research.

Fig. 8  Total water savings using 
the DBR (top), DAR (middle), 
and MIX (bottom) algorithms, 
considering a constant runoff 
coefficient (left) and a constant 
initial water loss (right) for a 
tank volume of 100 m.3

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20
]

%[ sgnivas latoT

Years [-]

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20

]
%[ sgnivas latoT

Years [-]

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20

]
%[ sgnivas latoT

Years [-]

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20
]

%[ sgnivas latoT
Years [-]

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20

]
%[ sgnivas latoT

Years [-]

29

30

31

32

33

34

35

36

37

38

0 5 10 15 20

]
%[ sgnivas latoT

Years [-]

From the beginning From the end

42437Environmental Science and Pollution Research (2023) 30:42427–42442



1 3

Appendix

Figures 9 and 10

Fig. 9  Rainwater harvesting 
simulation using a constant 
runoff coefficient to model the 
water losses
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