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Dynamics of Multibody Systems
With Spherical Clearance Joints
This work deals with a methodology to assess the influence of the spherical clearance
joints in spatial multibody systems. The methodology is based on the Cartesian coordi-
nates, with the dynamics of the joint elements modeled as impacting bodies and con-
trolled by contact forces. The impacts and contacts are described by a continuous contact
force model that accounts for geometric and mechanical characteristics of the contacting
surfaces. The contact force is evaluated as function of the elastic pseudo-penetration
between the impacting bodies, coupled with a nonlinear viscous-elastic factor represent-
ing the energy dissipation during the impact process. A spatial four-bar mechanism is
used as an illustrative example and some numerical results are presented, with the effi-
ciency of the developed methodology discussed in the process of their presentation. The
results obtained show that the inclusion of clearance joints in the modelization of spatial
multibody systems significantly influences the prediction of components’ position and
drastically increases the peaks in acceleration and reaction moments at the joints. More-
over, the system’s response clearly tends to be nonperiodic when a clearance joint is
included in the simulation. �DOI: 10.1115/1.2198877�
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ntroduction
In recent years, the influence of clearance joints on the dynam-

cs of multibody systems has been the topic for many research
ctivities �1–4�. Several researchers have devoted special attention
o planar systems �5,6�. However, the utility of the methodologies
eveloped is somewhat restricted because they are not valid for
patial multibody systems such as vehicle models, car suspen-
ions, and robotic manipulators, where the system motion is not
imited to be planar. In fact, even planar systems may exhibit
ut-of-plane motion due to misalignments, thus justifying the de-
elopment of mathematical models to assess the influence of the
learance joints in spatial multibody systems. Clearances at dif-
erent joints of mechanical systems are known as sources for im-
act forces, resulting in wear and tear of the joint. The impacts
ithin the clearances of machines are transmitted throughout the
ultibody system, which can seriously degrade their performance.
he evolution of the contact forces are of paramount importance

n the analysis and design of mechanical systems with clearance
oints �3–6�.

The present work deals with a methodology to assess the influ-
nce of the spherical clearance joints in spatial multibody systems
hat are composed by rigid bodies connected by kinematic joints.

hen there is a clearance in a spherical joint, impacts between the
ocket and the ball can occur, and consequently, local deforma-
ions take place. The impact is internal and the response of the
ystem is performed using a continuous contact force model. The
ormal force is evaluated as a function of the elastic pseudo-
enetration between the impacting bodies, coupled with a nonlin-
ar viscous-elastic factor representing the energy dissipation dur-
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ing the impact process �7�. The collision between the joints
elements is known as an impact during which forces are devel-
oped that act and disappear over a short period of time. The du-
ration of the contact period governs the choice of the method used
to analyze the impact. The type of energy dissipation governs the
modeling of the contact-impact force �7–9�. Thus, in modeling a
spherical clearance joint, the three kinematic constraints associ-
ated with the ideal joints are removed and three extra degrees of
freedom are introduced instead. The dynamics of the joint is then
controlled by forces developed on the socket and ball. While an
ideal spherical joint in a multibody system imposes kinematic
constraints, a spherical clearance joint leads to force constraints.

A detailed discussion of the results relative to a spatial four-bar
mechanism simulation, which include a spherical joint with clear-
ance, is presented.

Modeling Spherical Joints With Clearance
In this section, a mathematical model of a spherical joint with

clearance in spatial multibody systems is presented. In standard
multibody models, it is assumed that the connecting points of two
bodies, linked by an ideal spherical joint, are coincident. The in-
troduction of the clearance in a spherical joint separates these two
points and the bodies become free to move relative to each other.
Consequently, the three kinematic constraints associated with the
ideal joint are removed and three relative degrees of freedom are
allowed instead. Thus, a spherical joint with clearance does not
constrain any degree of freedom from the system like the ideal
spherical joint. In a spherical clearance joint, the dynamics of the
joint is controlled by contact-impact forces that result from the
collision between the bodies connected. Thus, these types of joints
can be referred to as force joints, since they deal with force con-
straints instead of kinematic constraints.

Figure 1 depicts two bodies i and j connected by a spherical
joint with clearance. A spherical part of body j, the ball, is inside
of a spherical part of body i, the socket. The radii of socket and
ball are Ri and Rj, respectively. The difference in radius between

the socket and the ball defines the radial clearance: c=Ri-Rj. The
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enter of mass of bodies i and j are Oi and Oj, respectively.
ody-fixed coordinate systems ��� are attached at their center of
ass, while XYZ represents the global coordinate system. Point Pi

ndicates the center of the socket, being the center of the ball
enoted by Pj. The vector that connects the point Pi to point Pj is
efined as the eccentricity vector e, as shown in Fig. 1. Note that,
n real mechanisms, the magnitude of the eccentricity is typically

uch smaller than the radius of the socket and ball.
As displayed in Fig. 1, the eccentricity vector e, which connects

he centers of the socket and the ball, is given by

e = r j
P − ri

P �1�

here both r j
P and ri

P are described in global coordinates with
espect to the inertial reference frame �10�

rk
P = rk + Aksk�

P, �k = i, j� �2�

here Ai is the transformation matrix and sk�
P is the local position

ector of point P. The magnitude of the eccentricity vector is
valuated as

e = �eTe �3�

here eT is the transpose of vector e. The magnitude of the ec-
entricity vector expressed in the global coordinates is written as

e = ��xj
P − xi

P�2 + �yj
P − yi

P�2 + �zj
P − zi

P�2 �4�

nd the rate of change of the eccentricity in the radial direction,
hat is, in the direction of the line of centers of the socket and the
all is

ė =
�xj

P − xi
P��ẋj

P − ẋi
P� + �yj

P − yi
P��ẏ j

P − ẏi
P� + �zj

P − zi
P��ż j

P − żi
P�

e

�5�
n which the dot denotes the derivative with respect to time.

A unit vector n normal to the collision surface between the
ocket and the ball is aligned with the eccentricity vector, as can
e observed in Fig. 2. Therefore,

n =
e

e
�6�

Figure 2 illustrates the situation in which the socket and the ball
odies are in contact, which is identified by the existence of a
elative penetration. The contact or control points on bodies i and

j are Qi and Qj, respectively. The global position of the contact
oints in the socket and ball are given by

rk
Q = rk + Aksk�

Q + Rkn, �k = i, j� �7�

here Ri and Rj are the socket and ball radii, respectively.
The velocity of the contact points Qi and Qj in the global co-

rdinate system is obtained by differentiating Eq. �7� with respect

Fig. 1 Spherical joint with clearance in a multibody system
o time, yielding

ournal of Computational and Nonlinear Dynamics
ṙk
Q = ṙk + Ȧksk�

Q + Rkṅ, �k = i, j� �8�

where ṅ is evaluated by differentiating Eq. �6�.
Let the components of the relative velocity of contact points in

the normal and tangential direction to the surface of collision be
represented by vN and vT, respectively. The relative normal veloc-
ity determines whether the contact bodies are approaching or
separating, and the relative tangential velocity determines whether
the contact bodies are sliding or sticking. The relative scalar ve-
locities, normal and tangential to the surface of collision, are ob-
tained by projecting the relative impact velocity onto the tangen-
tial and normal directions

vN = ��ṙ j
Q − ṙi

Q�Tn�n �9�

vT = �ṙ j
Q − ṙi

Q�T − vN � vTt �10�

where t represents the tangential direction to the impacted sur-
faces. It is assumed that there is no contact between the ball and
the opening area in the socket.

Observing Fig. 2, it is clear that the geometric condition for
contact between the socket and ball can be defined as

� = e − c �11�

where e is the magnitude of the eccentricity vector given by Eq.
�3� and c is the radial clearance. It should be noted that here the
clearance is taken as a specified parameter. When the magnitude
of the eccentricity vector is smaller than the radial clearance there
is no contact between the socket and the ball and, consequently,
they can freely move relative to each other. When the magnitude
of eccentricity is larger than radial clearance, there is contact be-
tween the socket and ball, being the relative penetration given by
Eq. �11�. Then a constitutive contact law, such as the continuous
contact force model proposed by Lankarani and Nikravesh �7�, is
applied in order to evaluate the contact force developed in the
direction perpendicular to the plane of collision. Thus, the module
of the contact force, or joint reaction force, can be written as

� FN = 0, if � � 0

FN � 0, if � � 0
� �12�

The normal and tangential force vectors at the contact points,
which result from the contact, are represented by fN and fT, re-
spectively. Since these forces do not act through the center of
mass of the bodies i and j, the moment components for each body
need to be evaluated. Furthermore, the contribution of the contact
forces to the generalized vector of forces are found by projecting
the normal and tangential forces onto the X, Y, and Z directions.
Based on Fig. 3, the equivalent forces and moments working on
the center of mass of body i are given by

Fig. 2 Penetration between the socket and the ball
fi = fN + fT �13�

JULY 2006, Vol. 1 / 241
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mi = s̃i
Qfi �14�

here a tilde ��� placed over a vector indicates that the compo-
ents of the vector are used to generate a skew-symmetric matrix
10�.

The forces and moments acting on body j are written as

f j = − fi �15�

m j = − s̃ j
Qfi �16�

odes of the Ball Motion Inside the Socket
When some amount of clearance is included in a spherical joint,

he ball and socket can move relative to each other. Figure 4
llustrates the different possible types of ball motion inside the
ocket; namely: contact or following mode, free flight mode, and
mpact mode. In the contact or following mode, the ball and the
ocket are in permanent contact and a rolling or sliding motion
elative to each other exists. This mode ends when the ball and
ocket separate from each other and the ball enters in free flight
ode. In the free flight motion, the ball moves freely inside the

ocket boundaries, that is, the ball and the socket are not in con-
act, hence there is no joint reaction force. In the impact mode,
hich occurs at the termination of the free flight motion, impact

orces are applied to the system. This mode is characterized by an
brupt discontinuity in the kinematic and dynamic responses, and
significant exchange of momentum occurs between the two im-

acting bodies is observed. At the termination of the impact mode,
he ball can enter either in free flight or in the following mode.
uring the dynamic simulation of a spherical joint with clearance,

f the path of the socket center is plotted for each instant, the

ig. 3 Contact forces defined at the points of contact between
ocket and ball
Fig. 4 Modes of the ball motion inside the socket

42 / Vol. 1, JULY 2006
different modes of motion of the socket inside the ball can easily
be observed. The stiction between ball and socket is not consid-
ered in the present work.

Contact Force Model
Impact, such as it happens in a spherical clearance joint, is one

of the most common types of dynamic loading conditions that
give rise to impulsive forces, which in turn excite higher vibration
modes and affect the dynamic characteristics of the mechanical
systems. Thus, for a spherical joint with clearance, the contact
between the socket and the ball can be modeled by the well
known Hertz contact law �11�

FN = K�n �17�

where K is the stiffness coefficient and � is the relative penetra-
tion. The exponent n is set to 1.5. The parameter K depends on the
material and geometric properties of the contacting surfaces. For
two spherical surfaces in contact, the generalized stiffness param-
eter is given by �9�

K =
4

3��i + � j�
	 RiRj

Ri + Rj

1/2

�18�

where the material parameters �i and � j are given by

�k =
1 − �k

2

Ek
, �k = i, j� �19�

and �k and Ek are the Poisson’s ratio and the Young’s modulus
associated with each sphere, respectively.

The Hertz contact law given by Eq. �18� is a pure elastic model;
that is, it does not include any energy dissipation. Lankarani and
Nikravesh �7� extended the Hertz contact law to include energy
loss due to internal damping as

FN = K�n	1 +
3�1 − ce

2�
4

�̇

�̇�−�
 �20�

where the stiffness coefficient K can be evaluated by Eqs. �18� and

�19�, ce is the restitution coefficient, �̇ is the relative penetration

velocity, and �̇�−� is the initial impact velocity.
Equation �20� is only valid for impact velocities lower than the

propagation speed of elastic waves across the bodies �7�. This
criterion is fulfilled in the applications used this work. While, the
clearance joints are designed to operate at high speed mechanical
systems. However, with low values of clearance size, the impact
velocities in the joint are within a tolerable range of validity of the
contact force model given by Eq. �20� �6,8�.

The force expressed by Eq. �20�, when drawn versus penetra-
tion, results in a hysteresis loop as shown in Fig. 5. The area of
this hysteresis loop is equal to the energy loss due to the internal
damping of the material. The hysteresis damping function as-
sumes that the loss in energy during impact is due to the material
damping of the colliding bodies, which dissipates energy in the
form of heat �7�.

Multibody Systems Formulation
This section presents a brief revision of the formulation of the

general multibody mechanical systems. The methodology pre-
sented was implemented in the computer program DAP-3D,
which has been developed for the spatial dynamic analysis of
general multibody systems �10�. Due to its simplicity and compu-
tational easiness, Cartesian coordinates are used to formulate the
dynamics of the spatial multibody systems. In this approach, the
equations of motion can easily be assembled automatically by the
computer package.

Let Fig. 6 represent a rigid body i to which a body-fixed coor-

dinate system �����i is attached at its center of mass.

Transactions of the ASME
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When Cartesian coordinates are used, the position and orienta-
ion of the rigid body must be defined by a set of translational and
otational coordinates. The position of the body with respect to
lobal coordinate system XYZ is defined by the coordinate vector

i= �xyz�i
T that represents the localization of the local reference

rame �����i. The orientation of the body is described by the
otational coordinate’s vector pi= �e0e1e2e3�i

T, which includes the
uler parameters for the rigid body �10�. Therefore, the vector of
oordinates that describes completely the rigid body i is

qi = �ri
T pi

T�i
T �21�

According to this definition, a spatial multibody system with nb
odies is described by a set of coordinates q in the form

qi = �q1
T,q2

T, . . . ,qnb
T �i

T �22�

A point P on body i can be defined by position vector si
P, which

epresents the location of point P with respect to the body-fixed
eference frame �����i, and by the global position vector ri; that
s,

ri
P = ri + si

P = ri + Aisi�
P �23�

here Ai is the transformation matrix for body i that defines the
rientation of the referential �����i with respect to the referential
rame XYZ. The transformation matrix is expressed as function of
he four Euler parameters as �10�

Fig. 5 Force versus penetration
Fig. 6 Rigid body in Cartesian coordinates

ournal of Computational and Nonlinear Dynamics
Ai = �
e0

2 + e1
2 −

1

2
e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e0
2 + e2

2 −
1

2
e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e0
2 + e3

2 −
1

2

�
i

�24�

Notice that the vector si
P is expressed in global coordinates

whereas the vector si�
P is defined in the body i fixed coordinate

system. Throughout the formulation presented in this work, the
quantities with �·�� means that �·� is expressed in local system
coordinates.

The velocities and accelerations of body i use the angular ve-
locities �i� and accelerations �̇i� instead of the time derivatives of
the Euler parameters, which simplifies the mathematical formula-
tion and do not have critical singular cases �12�. When Euler
parameters are employed as rotational coordinates, the relation
between their time derivatives ṗi and the angular velocities is
expressed by �10�

ṗi =
1

2
LT�i� �25�

where the auxiliary matrix L is function of Euler parameters

Li = �− e1 e0 e3 − e2

− e2 − e3 e0 e1

− e3 e2 − e1 e0
�

i

�26�

The velocities and accelerations of body i are given by vectors

q̇i
* = �ṙi

T �i�
T�i

T �27�

q̈i
* = �r̈i

T �̇i�
T�i

T �28�

Multibody Systems’ Equations of Motion
In terms of the Cartesian coordinates, the equations of motion

of an unconstrained multibody mechanical system are written as

Mq̈ = g �29�

where M is the global mass matrix, containing the mass and mo-
ment of inertia of all bodies and g is a force vector that contains
the external and Coriolis forces acting on the bodies of the system.
For a constrained multibody system, the kinematical joints are
described by a set of holonomic algebraic constraints denoted as

��q,t� = 0 �30�
Using the Lagrange multipliers technique the constraints are

added to the equations of motion. These are written together with
the second time derivative of the constraint equations. Thus, the
set of equations that describe the motion of the multibody system
is

	M �q
T

�q 0

�q̈*

�
� = �g

�
� �31�

where � is the vector of Lagrange multipliers and � is the vector
that groups all the terms of the acceleration constraint equations
that depend on the velocities only; that is

� = − ��qq̇�qq̇ − �tt − 2�qtq̇ �32�
Equation �31� is a differential algebraic equation that has to be

solved, being the resulting accelerations integrated in time. How-
ever, because Eq. �31� does not use explicitly the position and
velocity constraint equations, there is no insurance that the system
constraints are not violated during the forward dynamic solution
process. To avoid constraints violation during numerical integra-
tion, the Baumgarte stabilization technique is used; i.e., Eq. �31� is

modified to

JULY 2006, Vol. 1 / 243
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	M �q
T

�q 0

� q̈

�
� = � g

� − 2	�̇ − 
2�
� �33�

here 	 and 
 are positive constants that represent the feedback
ontrol parameters for the velocity and position constraint viola-
ions �10,13�.

According to the formulation outlined, the dynamic response of
ultibody systems involves the evaluation of the Jacobian matrix
q and of the vectors g and �, for each time step. The following

tep is to solve Eq. �33� to obtain the system accelerations q̈.
hese accelerations, together with the velocities q̇*, are integrated

n order to obtain the new velocities q̇ and positions q* for the
ext time step. This process is repeated until the complete descrip-
ion of system’s motion is obtained for the selected time interval.
n this description it should be noted that, in vector q̇*, the angular
elocities are substituted by the time derivatives of the Euler pa-
ameters, using Eq. �25�.

The numerical integration method used is a predictor-corrector
lgorithm with both variable order and step size �14�, which con-
erts the second-order differential equations into first-order equa-
ions by defining auxiliary vectors.

xample Application
In this section the application to the four bar mechanism that

escribes a spatial motion is employed, as an illustrative example
o demonstrate how a spherical clearance joint can affect the be-
avior of the mechanism. The spatial four bar mechanism consists
f four rigid bodies that represent the ground, crank, coupler and
ocker. The body numbers and their corresponding local coordi-
ate systems are shown in Fig. 7.

The kinematic joints of this multibody system include two ideal
evolute joints, connecting the ground to the crank and the ground
o the rocker, and one perfect spherical joint that connects the
rank and coupler. A spherical joint, with a given clearance, inter-
onnects the coupler and rocker. This four-bar mechanism is mod-
led with 28 coordinates, which result from the four rigid bodies,

able 1 Geometric and inertia properties of the spatial four-
ar mechanism.

Body
No.

Length
�m�

Mass
�kg�

Moment of inertia �Kg m2�

I�� I�� I��

2 0.020 0.0196 0.0000392 0.0000197 0.0000197
3 0.122 0.1416 0.0017743 0.0000351 0.0017743
4 0.074 0.0316 0.0001456 0.0000029 0.0001456

ig. 7 Spatial four bar mechanism which includes a spherical
learance joint between the coupler and rocker
44 / Vol. 1, JULY 2006
four Euler parameter normalization constraints, and nineteen ki-
nematic constraints. Consequently, this system has five degrees of
freedom.

The initial configuration of the spatial four bar mechanism is
illustrated in Fig. 7. The system is released from the initial posi-
tion with null velocities and under the action of gravity force,
which is taken to act in the negative Z-direction. Thus, the heights
of centers of mass of all bodies dominate the total potential sys-
tem energy and control the dynamic system’s behavior.

The dimensions and inertia properties of each body are in Table
1. The dynamic parameters, used for the simulation and for the
numerical methods required to solve the system dynamics, are
listed in Table 2.

In order to study the influence of the spherical clearance model
in the global behavior of the spatial four bar mechanism, some
kinematic and dynamic characteristics, corresponding to the first
two seconds of the simulation, are presented and discussed in
what follows. The results are compared to those obtained with a
simulation in which all kinematic joints are considered to be ideal
or perfect.

The normal contact force and the joint reaction force, for the
first impact at the spherical clearance joint, are shown in Fig. 8.
The plotted reaction force is the magnitude of the force in the
revolute joint that connects the ground to the rocker. The simula-
tion is performed by using the Lankarani and Nikravesh contact
force model given by Eq. �20�.

By observing Fig. 8, it is clear how the impacts inherent to
dynamics of the clearance joint influence the reaction force. The
two force curves plotted show a very similar shape. The maximum
reaction force is about 60% of the contact force.

Figure 9 shows the hysteresis curves for the first three impacts
at the spherical clearance joint. The contact force decreases for
each impact suggesting that some system energy is dissipated
from impact to impact. This dissipated energy is measured as the
area enclosed by the hysteresis plot. The energy dissipation is
logical since the gravitational force is the only external action,

Table 2 Simulation parameters for the four-bar mechanism.

Joint socket radius 10.0 mm
Joint ball radius 9.5 mm

Restitution coefficient 0.9
Young’s modulus 207 GPa

Poisson’s ratio 0.3
Baumgarte coefficient 	 5
Baumgarte coefficient 
 5

Integration time step 0.00001 s
Integration tolerance 0.000001 s

Fig. 8 Normal contact force at the clearance joint and corre-
sponding reaction force in the ground-rocker revolute joint for

the first impact

Transactions of the ASME
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hat is, in this simulation no other external forces or drivers were
pplied to the system, meaning that no energy was feed to the
ystem.

Figures 10–13 depict the Z-component for the position, velocity
nd acceleration of the center of mass of rocker, as well as the
-component of the reaction moment that acts at the revolute joint

hat connects the ground to the rocker, for both ideal and spherical
learance joint simulations. The results plotted in Fig. 10 show
hat the position accuracy of the four-bar mechanism is clearly
nfluenced by the effect joint clearance. Furthermore, the maxi-
um Z-position is not reached in every cycle since the impacts
ithin the joint with clearance dissipate some of the system’s

ig. 9 Hysteresis loop of the first three impacts at the clear-
nce joint. The contact force decreases from impact to impact
ecause no energy is feed to the system.

Fig. 10 Z-coordinate of rocker center of mass
Fig. 11 Z-velocity of rocker center of mass

ournal of Computational and Nonlinear Dynamics
energy. Figures 12 and 13 show that the mechanism with clear-
ance joint creates significantly larger dynamic accelerations and
reaction moments on the system than those observed for an ideal
dynamic model. The level of acceleration and moment for the case
of the ideal joint is very low �not visible in the figures� since there
was no driver in the system, with the gravitational force the only
external action on the system.

The magnitude of the eccentricity vector is plotted in Fig. 14, in
which the different types of motion between the ball center and
the socket center can be observed; namely, free flight, impact,
rebound, and permanent or continuous contact. In the first instants
of the simulation, free flight motion followed by impacts and re-
bounds are well evident. After that, it can be observed that the ball

Fig. 12 Z-acceleration of rocker center of mass

Fig. 13 Y-component of the reaction moment at the ground-
rocker revolute joint
Fig. 14 Module of the eccentricity vector

JULY 2006, Vol. 1 / 245
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nd socket present periods of permanent or continuous contact,
here the socket follows the ball wall. The dashed line in Fig. 14

epresents the radial clearance size �0.5 mm�, which corresponds
o the maximum relative motion between the ball and socket with-
ut contact.

The path of the socket center relative to the ball center is also
llustrated in Figs. 15 and 16. Figure 15 shows the relative motion
etween the two bodies for the first six impacts. The inner spheri-
al surface represents the clearance limit while the small spheres
nside represent the ball center path. The free flights are illustrated
y clear spheres, whereas the impacts are represented by darker
pheres. It is clear that in the first instants of simulation the im-
acts are immediately followed by rebounds. Figure 16 shows the
ime interval simulation from 0.100 to 0.150 s. From this figure, it
s observed that the socket is always in permanent contact with the
all wall. Furthermore, the permanent contact between the ball
nd socket is accomplished by varying penetration depth along the
adial direction.

The Poincaré maps are used to illustrate the dynamic behavior
f the spatial four bar mechanism with a spherical clearance joint.

ig. 15 First simulation’s instants in which free flight motion
nd impacts followed by rebounds are visible

ig. 16 Ball center trajectory inside the socket. Permanent or

ontinuous contact, i.e., the ball follows the socket wall.

46 / Vol. 1, JULY 2006
The system’s response is nonlinear, as the relative motion between
the ball and socket can change from free flights, impact, and con-
tinuous contact, as it is illustrated in Figs. 15 and 16. This non-
linear system response is well visible by plotting the correspond-
ing Poincaré maps, which relates the rocker Z-velocity versus
rocker Z-position, shown in Figs. 17 and 18. The Poincaré map
presented in Fig. 18 has a complex aspect, densely filled by orbits
or points, which indicates chaotic behavior. Even for the ideal
joint case, the system’s response is not periodic since the closed
orbits in the Poincaré map do not repeat from cycle to cycle.

Conclusions
This work has been presented a general methodology to analyze

the kinematic and dynamic characteristics of spatial multibody
systems with spherical clearance joints.

This methodology is based on the Cartesian coordinates, the
joint elements are modeled as impacting bodies and the dynamics
of the joints is controlled by contact-impact forces. These impacts
and contacts are described by a continuous contact force model
that takes into account the geometric and mechanical characteris-
tics of the contacting surfaces. The normal force is evaluated as
function of the elastic pseudo-penetration depth between the im-
pacting bodies, coupled with a nonlinear viscous-elastic factor
representing the energy dissipation during the impact process. For
this continuous contact force model, it is assumed that the com-
pliance and damping coefficients are available.

An illustrative example and numerical results were presented,
being the efficiency of the developed methodology discussed in
the process of their presentation. In the application of the spatial
four-bar mechanism, to demonstrate the formulation proposed, a
spatial four-bar mechanism was used with a spherical clearance

Fig. 17 Poincaré map: ideal joint
Fig. 18 Poincaré map: spherical clearance joint
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oint formulation. The system was driven only by gravity, mean-
ng that the system is not conservative in the presence of damping
ffects, and as a consequence, that some energy is dissipated in
ach cycle of the motion. The energy loss is shown to be much
ore important when a clearance joint is included into the system,

ue to the dissipative effect of the contact model used. This was
learly visible by comparing the position and velocity of the me-
hanical system to those of a system with ideal joints, meaning
hat the impacts within the clearance joint significantly increase
he amount of dissipated energy.

The overall results presented in this work show that the intro-
uction of clearance joints in spatial multibody mechanical sys-
ems significantly influences the prediction of components’ posi-
ion and drastically increase the peaks in acceleration and reaction

oments at the joints. Moreover, the system’s response clearly
ends to be nonlinear when a clearance joint is included. This is a
undamental feature mainly in high speed and precision mecha-
isms where the accurate predictions are essential for the design
f the mechanical systems.
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