
Spatial revolute joints with clearances for
dynamic analysis of multi-body systems
P Flores1�, J Ambrósio2, J C P Claro1, and H M Lankarani3

1Departamento de Engenharia Mecânica, Universidade do Minho, Guimarães, Portugal
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Abstract: This paper presents a new technique for assessing the influence that clearance of
spatial joints has on the kinematics and dynamics of multi-body systems. The technique is
developed for the revolute joint in which the basic elements are the journal and bearing.
Under certain working conditions, these two mechanical elements collide with each other
being the contact treated as coupled forces. The forces between each pair of contacting
bodies are equal and opposite, and the magnitude and direction are calculated based on the
positions and velocities of the bodies, as well as on the geometry of the joint. A continuous
contact force model is used to evaluate the contact–impact force. The proposed methodology
is developed in the framework of the multi-body systems formulation; therefore, the forces
developed during the contact between the joint elements are introduced into the systems’
equations of motion as external forces. A double pendulum is used as a numerical example
to show the application of the proposed methodology, being the efficiency of the developed
methodologies discussed in the process of the results obtained.
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1 INTRODUCTION

A mechanical joint, in any industrial machine, is
designed to allow relative motion between the con-
nected components. Owing to the manufacturing
tolerances, wear, or material deformation, these
joints are imperfect and have clearances. These
clearances modify the dynamic response of the
system, justify the deviations between the numerical
predictions and the experimental measurements,
and eventually lead to important deviations between
the projected behaviour of the mechanisms and their
real outcome. The attenuation of the impact
response and of the vibration characteristics in
industrial machines is obtained by including, in
their design, a selection of joint clearances.

The problem of the dynamic behaviour of planar
multi-body systems with joint clearances has been

studied in the past [1–6]. The utility of the method-
ologies developed is somewhat restricted because
they are not valid for spatial multi-body systems,
such as vehicle models, car suspensions, and robotic
manipulators, where the system motion is not
limited to be planar. In fact, even planar systems
may exhibit out-of-plane motion due to misalign-
ments, thus justifying the development of math-
ematical models to assess the influence of the joint
clearances in spatial multi-body systems.

The typical configuration of a spatial revolute joint
with clearance is schematically illustrated in Fig. 1.
The pair of elements in a spatial revolute joint clear-
ance is a cylindrical hole, the bearing, and a cylindri-
cal pin, the journal. The clearance in a realistic
connection is much smaller than the length of the
two cylinders and of the nominal radius of the
elements connected by the joint.

In the model presented here, the mechanical
bodies connected by the joint are modelled as collid-
ing rigid bodies, and, consequently, contact–impact
forces control the dynamics of the joint. In this
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methodology, the contact force model with hysteric
damping is used to evaluate the time evolution of
the normal contact forces resulting from the interpe-
netration between the journal and the bearing. For
this purpose, the mechanical elements are con-
sidered as two rigid bodies in contact that penetrate
into each other, without deforming. The normal con-
tact force depends on this pseudo-penetration,
according to the continuous force model proposed
by Lankarani and Nikravesh [7]. Thus, it is clear
that the spatial revolute joint with clearance does
not impose kinematic constraints to the system,
but imposes some force restrictions, limiting the
journal movement within the bearing limits. This
force model, which is function of the bodies’ relative
motion and of the internal geometry of the joint,
leads to the contact forces that are introduced in
the system’s equations of motion.

The model for the spatial revolute joint clearances
requires a large amount of mathematical manipula-
tions, as there are different possible paths of
motion for the journal when the clearance is present.
Four different types of journal motions inside the
bearing are considered in the present work, namely:

(a) free flight motion where there is no contact
between the two elements;

(b) the journal contacts with the bearing wall at a
point;

(c) the journal and the bearing contact with each
other at a line;

(d) two contact points between the journal and bear-
ing wall, but in opposite sides.

These four possibilities are illustrated in Fig. 2. The
joint’s behaviour is the function of these four scen-
arios which depend on the dynamic system’s
configuration.

In a non-contact situation, no forces are intro-
duced into the system, because the journal moves
freely inside the bearing boundaries until it reaches
the bearing wall. When the journal and bearing are
in contact with each other, local deformations take

place at the contact area and, consequently, con-
tact–impact forces characterize the interaction
between the bodies. By evaluating the variation of
the contact forces during the contact period, the
system’s response is obtained simply by adding the
contact–impact forces to the multi-body system’s
equations of motion as external generalized forces.
This approach provides accurate results, insofar as
the equations of motion are integrated over the
period of contact. It, thus, accounts for the changes
in the configuration and velocities of the system
during that contact. In the proposed methodology,
the clearance is of crucial importance in the joint
kinematics, due to the role that the system’s con-
figuration geometric conditions play to define if the
joint elements are or not in contact.

Mechanical systems with rigid and flexible bodies
and with non-ideal joints have been treated in the
past. Studies have considered joint compliance and
friction, but without clearances [8]. Methods for mod-
elling joint connections and external impacts using
restitution coefficient and momentum have also
been proposed in the past [9, 10]. While such methods
offer the advantage of relatively low computational
effort over techniques that explicitly model the joint
impact not only they do not provide the time history
of the values of these forces, which are important
from the design point of view, but also they assume
that no change in the realistic orientation between
contacting bodies occur during impact, which is not
true for clearance joints. The measurement of the
influence that joint clearances have on the kinematic
and dynamic performance of a mechanism provides
a useful criterion for judging the suitability of the
mechanism to perform a given task.

Fig. 1 Typical spatial revolute joint with clearance

Fig. 2 Four different possible scenarios for the journal

motion relative to the bearing: (a) no contact,

(b) one point contact, (c) line contact, and

(d) two contact points in opposite sides
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Important aspects in the modelling of spatial
mechanisms such as the link’s flexibility or the joints’
lubrication are not discussed here as they fall out of
the scope of this work. A detailed discussion on the
modelling aspects of flexible multi-body systems can
be found on the work by Ambrósio [11], whereas the
modelling of clearance joints with tribological aspects
is discussed in the work by Flores et al. [5, 6].

The main purpose of this work is to develop and
demonstrate an effective methodology for spatial
multi-body systems, including revolute joints with
clearance. Owing to their relevance for this work,
some aspects of the multi-body formulation for
spatial systems, based on the Cartesian coordinates,
are reviewed here to introduce the basic aspects on
the dynamic modelling of spatial multi-body systems
with joint clearances [12, 13]. A brief description of
the ideal or perfect spatial revolute joint is presented.
The numerical effectiveness of the method is shown
in the application to a double pendulum in which a
spatial revolute with clearance exists.

2 MODELLING SPATIAL REVOLUTE JOINTS
WITH CLEARANCE

The use of spatial revolute joint clearances in
the multi-body system formulation requires that a

suitable mathematical description is developed.
Figure 3 shows a representation of a spatial revolute
joint with clearance that connects bodies i and j. The
bearing is part of body i and the journal is part of
body j. The difference in radius between the bearing
and journal, c ¼ Ri–Rj, defines the radial clearance,
in which Ri and Rj are the bearing and journal radii,
respectively. The centre of mass of bodies i and j
are Oi and Oj, respectively. A body-fixed coordinate
system jhz is attached at the centre of mass of each
body, whereas the XYZ denotes the global coordinate
system. The geometric centre of the bearing is
located at point P which, together with point Q,
defines the joint/bearing axis, whereas points V and
W on body j define the journal axis. These points
are located at the top and bottom of journal bases,
so that the distance between V and W defines the
length of the joint.

Figure 4 shows two different scenarios for the con-
tact between the journal and the bearing. For simpli-
city, in Fig. 4, only the journal and bearing are
represented. In the present methodology, only the
top and the bottom journal bases are considered
for contact detection between the journal and bear-
ing elements. Furthermore, it is assumed that the
clearance is much smaller than the dimensions of
the bodies, so that the angle between the bearing
and journal axes, represented by u in Fig. 4(a), is

Fig. 3 General configuration of a spatial revolute joint with clearance in a multi-body system
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very small and, consequently, both top and bottom
journal bases can be assumed to be parallel between
them and perpendicular to the joint axis.

Assuming a local coordinate system (jhz)r associ-
ated with the revolute joint axis located at point P,

the unit coordinate vectors defined along the local
axes are u0

jr
, u0

hr
, and u0

zr
, as illustrated in Fig. 5. The

unit vector along the zr-axis, u0
zr

, is evaluated as

u0
zr
¼

s0Qi � s0Pi

s0Qi � s0Pi

��� ��� (1)

where both vectors s0Pi and s0Qi are described in the
local coordinate system of body i. The remaining
two unit vectors are evaluated according to

u0
jr
¼ u0

ji

u0
hr

¼ u0
hi

�
if u0

zr
¼ u0

zi
(2)

or

u0
jr
¼ ũ0

zr
u0
zi

u0
hr

¼ ũ
0
zr

u0
jr

(
if u0

zr
= u0

zi
(3)

The transformation matrix Ari that transforms the
local components (jhz)r into the local coordinate
system (jhz)i is expressed as [12]

Ari ¼ ½u0
jr

u0
hr

u0
zr
�
T (4)

Note that the transformation matrix defined by
equation (4) is constant. Furthermore, if u0

zr
¼ u0

zi

the transformation matrix Ari is equal to the identity

Fig. 4 Two different scenarios for contact between the

journal and bearing wall: (a) only one journal

base (top) contacts with the bearing wall, and

(b) both bases (top and bottom) contact with

the bearing wall

Fig. 5 Local coordinate system associated with the revolute joint clearance and the respective unit vectors
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matrix I. Thus, the matrix that transforms the local
vectors (jhz)r into the global reference system XYZ
is given by

Ar ¼ AiAri (5)

The global position of the origin of the local co-
ordinate system (jhz)r is

rP
i ¼ ri þ Ais

0P
i (6)

In order to define the relative position between the
journal and bearing, it is first necessary to express the
vectors sV

j and sW
j in the local coordinate system

associated with the joint (jhz)r. From Fig. 5, the
global coordinates of points V and W with respect
to the inertial reference frame are expressed as

rV
j ¼ r j þ A js

0
jV

rW
j ¼ rj þ Ajs

0
jW

(7)

Thus, vectors sV
j and sW

j expressed in the global coor-
dinate system are

sV
r ¼ rV

j � rP
i

sW
r ¼ rW

j � rP
i

(8)

When expressed in the local coordinate system of the
joint, these vectors are given by

s0
V
r ¼ AT

r sV
r

s0
W
r ¼ AT

r sW
r

(9)

The vectors given by equations (9) define the coordi-
nates of points V and W of the journal, expressed in
terms of the local coordinate system associated
with the joint, that is (jhz)r.

Figure 6 depicts a system’s configuration in which
both top and bottom journal bases contact with the
bearing wall. The eccentricity vectors at the top and
bottom journal bases, eV

r and eW
r , are given by the

projection of the vectors sV
r and sW

r onto the local
axes jr and hr

eV
r ¼ { (s0Vr )jr

(s0Vr )hr
0 }T

eW
r ¼ { (s0Wr )jr

(s0Wr )hr
0 }T

(10)

The magnitudes of the eccentricity vectors are

evaluated as

eV
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eV

r )TeV
r

q
eW

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eW

r )TeW
r

q
(11)

The unit vectors, nV
r and nW

r , normal to the planes of
contact where the top and bottom journal bases
touch the bearing wall, are evaluated as (Fig. 6)

nV
r ¼

eV
r

eV
r

�� ��
nW

r ¼
eW

r

eW
r

�� ��
(12)

Referring to Fig. 6, the penetrations due to the
contact between the journal bases and bearing wall

Fig. 6 Front and top views of the top and bottom

journal bases at the point of contact with the

bearing wall
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are calculated as

dV
r ¼ eV

r � c

dW
r ¼ eW

r � c

(13)

where eV
r and eW

r are, respectively, the modules of the
eccentricity vectors at the top and bottom journal
bases, and c is the radial clearance.

Considering CV
i , CV

j , CW
i , and CW

j to be the potential
contact points on bodies i and j, the global position
of such points is evaluated as

r
CV

k

k ¼ rP
k þ Aks0

CV
k

k

r
CW

k

k ¼ rP
k þ Aks0kC

W
k

(k ¼ i, j)

(14)

where vectors s0
CV

k

k and s0
CW

k

k (k ¼ i, j), are the local

coordinates of vectors s
CV

k

k and s
CW

k

k on bodies i and

j, expressed in terms of the local coordinate system
of each body. These vectors are only defined in the
local coordinate system of the joint (jhz)r, and are
expressed as

s0
CV

i
r ¼ { 0 0 (s0Vr )zr

}T þ Rin
V
r

s0
CV

j

r ¼ s0
V
r þ Rjn

V
r

(15)

s0C
W
i

r ¼ { 0 0 (s0Wr )zr
}T þ Rin

W
r

s0rC
W
j ¼ s0

W
r þ Rjn

W
r

(16)

These vectors are written in terms of the local
coordinate systems associated with bodies i and j as

s0
CV

i

i ¼ Aris
0C

V
i

r

s0
CV

j

j ¼ AT
j Ars0

CV
j

r

(17)

s0
CW

i

i ¼ Aris
0C

W
i

r

s0
CW

j

j ¼ AT
j Ars0

CW
j

r

(18)

The contact force model used in this work, to
represent the interactions between the journal and
bearing, requires that the impact velocity is known.
These impact velocities are obtained by differentiat-
ing equations (14) with respect to time, yielding

ṙ
CV

k

k ¼ ṙ
P
k þ Ak ~v

0
ks0kC

V
k

ṙ
CW

k

k ¼ _rP
k þ Ak ~v

0
ks0kC

W
k

(k ¼ i, j)

(19)

The relative impact velocities at the contact points
are

Dṙ
V
¼ ṙ

CV
j

j � ṙ
CV

i

i

Dṙ
W

¼ ṙ
CW

j

j � ṙ
CW

i

i

(20)

The relative velocities of the contact points are
projected onto the direction of the penetration,

yielding to the relative normal velocities, ḋ
V

r and ḋ
W

r ,
as shown in Fig. 7. These velocities are evaluated by

ḋ
V

r ¼ (Dṙ
V

)TnV
r

ḋ
W

r ¼ (Dṙ
W

)TnW
r

(21)

When contact between the journal and bearing
takes place, impact forces act at the contact points.
The normal contact forces are denoted by fN, while,
assuming that the contact is not frictionless, the
tangential forces are fT. Since these forces do not act
through the centre of mass of the bodies i and j, the
moment components for each body need to be
evaluated. For convenience and simplicity, the
bodies are presented separately in Fig. 8 and only
the force components that act at the top journal
base are illustrated. According to Fig. 8, the forces
and moments working on the centre of mass of
body i are given by

f i ¼ f N þ f T

m0
i ¼ AT

i (~s CV

i f i)

(22)

The forces and moments corresponding to the body
j are written as

f j ¼ �f i

m0
j ¼ AT

j (~s
CV

j f j)

(23)

Note that the moments acting on the rigid bodies
are expressed in body fixed coordinates. This is due
to the multi-body formulation used in this work,
which follows closely that proposed by Nikravesh [12].

3 COMPUTATIONAL IMPLEMENTATION

Since the formulation of the spatial revolute joint
involves a good deal of mathematical manipulation,
it is convenient to summarize the main steps in an
appropriate algorithm. This algorithm, presented in
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the flowchart of Fig. 9, is developed in the framework
of the multi-body methodology and can be
synthesized condensed in the following steps.

1. Start at instant of time t 0, with given initial
conditions for positions q0 and velocities q̇

0
.

2. Define the location of point Pi, Pj, Qi, Vj, and Wj,
necessary to describe the revolute joint clear-
ance. Define joint and material properties (RB,
EB, nB, RJ, EJ, and nJ).

3. Compute the local coordinate system associated
with the joint, (jhz)r and evaluate the unit

Fig. 7 Location of the contact points and representation of impact velocities

Fig. 8 Contact forces defined at the points of contact between the journal top base and bearing wall
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coordinates vectors along each axis, that is u0
jr

,
u0
hr

, and u0
zr

using equations (1) to (3).
4. Evaluate the local coordinates of the geometrical

centres of the top and bottom bases in the (jhz)r

coordinate system using equations (9).
5. Compute the eccentricity vectors eV

r and eW
r as well

as the unit vectors that define the direction of
impact nV

r and nW
r through equations (10) to (12).

6. Evaluate the penetrations dV
r and dW

r with
equations (13).

7. Check for contact: if there is contact, determine
the contact points using equations (14), evaluate
the impact velocities with equations (21), compute
the impact forces by Equations (22) to (23), and
add the impact forces to the equations of motion.

8. Apply a multi-body formulation in order to
obtain the new generalized positions and vel-
ocities of the system for time step tþ Dt.

9. Update the system time variable.
10. Go to step 5 and proceed with the whole process

for the new time step, until the final time for the
analysis is reached.

4 CONTACT FORCE MODEL

In dealing with revolute joint clearances, it is essen-
tial to define how the journal and bearing surfaces
contact each other and, consequently, what is the

most adequate contact force model. The contact
force model is expected to contribute, if possible, to
the stable integration of the equations of motion of
the multi-body system.

The elastic force developed in the contact collision
between the journal and bearing surfaces can be
modelled by applying the Hertz contact law, which
is based on the elasticity theory [14]. The Hertz con-
tact model represents the contact force as a non-
linear function of the penetration [15]. Hunt and
Crossley [16] proposed a non-linear viscous-elastic
model to represent the damping force, which simu-
lates the energy transferred during the impact pro-
cess. Based on the work of Hunt and Crossley,
Lankarani and Nikravesh [7] presented a continuous
contact force model in which a hysteretic damping
factor is incorporated in order to account for the
energy dissipation. This contact force model is
expressed as

FN ¼ Kdn 1 þ
3(1 � c2

e)

4

ḋ

ḋ
(�)

" #
(24)

where K is the generalized stiffness parameter, n an
exponent equal to 1.5, ce the restitution coefficient,
ḋ the relative penetration velocity, and ḋ

(�)
the initial

impact velocity. Equation (24) is used to simulate

Fig. 9 Algorithm proposed to model spatial revolute joint with clearance in multi-body systems
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the impact because it accounts for energy dissipation
and exhibits good numerical stability at low impact
velocities. The proportionality constant K is
calculated for the case of internal contact between
two cylinders according to the model proposed by
Ravn [4].

5 FORMULATION OF SPATIAL MULTI-BODY
SYSTEMS

The formulation of the equations of motion to the
spatial dynamic analysis of multi-body systems is
reviewed to provide a framework to the application
of the method proposed. A simple and brief descrip-
tion of the standard mechanical joints of spatial
multi-body systems is presented, namely of the
ideal spherical and revolute joints, to emphasize
the differences with respect to joints with clearance.
These two types of joints fall under the category of
holonomic constraints as they can be explicitly
expressed in terms of the positions of the rigid
bodies [12]. A kinematic joint imposes certain con-
ditions on the relative motion between the adjacent
bodies that it comprises. When these conditions are
expressed in analytical form, they are called con-
straint equations. In a simple way, a constraint is
any condition that reduces the number of degrees
of freedom in a system.

A ideal spherical joint, also known as by ball
and socket joint, illustrated in Fig. 10, constrains
the relative translations between two adjacent
bodies i and j, allowing only three relative rotations.
Thus, the centre of the spherical joint, point P, has
constant coordinates with respect to any of the
local coordinates systems of the connected bodies,
i.e. a spherical joint is defined by the condition that
the point Pi on body i coincides with the point Pj

on body j. This condition is simply the spherical con-
straint, which can be written in a scalar form as [12]

F(s,3) ; ri þ Ais
0P
i � r j � A js

0P
j ¼ 0 (25)

The three scalar constraint equations implied by
equation (25) restrict only the relative position of
points Pi and Pj. There are, therefore, three relative
degrees of freedom between two bodies that are con-
nected by a perfect spherical joint.

An ideal three-dimensional revolute or rotational
joint between bodies i and j, shown in Fig. 11, is
built with a journal-bearing that allows a relative
rotation about a common axis, but precludes relative
translation along this axis. Any point located on the
revolute joint axis has constant coordinates, when
expressed in the local coordinate systems of the con-
nected bodies. Thus, equation (25) can be imposed
on an arbitrary point P on the joint axis. Two other

points Qi on body i and Qj on body j are also arbitra-
rily chosen on the joint axis. It is clear that vectors si
and sj must remain parallel. Therefore, there are five
constraint equations for a spatial revolute joint [11]

F(r,5) ;
ri þ Ais

0P
i � r j � A js

0
jP ¼ 0

~sis j ¼ 0

(
(26)

It is worth noting that the cross product in the
second line of equation (26) only has two indepen-
dent constraints, being the third equation linearly
dependent on the other two equations. The five
scalar constraint equations yield only one relative
degree of freedom for this joint, which is a rotation
about the common axis of the revolute joint.

A multi-body system is a collection of bodies that
is acted upon by forces and moments. These bodies
are interconnected to each other by different types
of kinematic joints that constrain their relative
motion in different forms. For a constrained multi-
body system, the kinematic joints can be described
by a set of algebraic equations as

F(q, t) ¼ 0 (27)

where q is the generalized coordinates vector and t is
the time variable. Each spherical joint contributes
with three equations to the system of equations
(27) while each perfect revolute joint contributes
with five equations. Differentiating equation (27)
with respect to time yields the velocity constraint
equations. After a second differentiation with respect
to time, the acceleration constraint equations are
obtained as

Fq €q ¼ g (28)

in which Fq is the Jacobian matrix of the constraint
equations, €q the acceleration vector, and g the
right-hand side of acceleration equations, which

Fig. 10 Perfect spherical joint in a multi-body system
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contains the terms that are exclusively function of
velocity, position, and time.

The translational and rotational equations of
motion for an unconstrained multi-body system of
rigid bodies are written as

M €q ¼ g (29)

where M is the global system mass matrix, containing
the mass and moments of inertia of all bodies, and g
is the generalized force vector that contains all exter-
nal forces and moments applied on the system.

Using the Lagrange multipliers technique, the con-
straint equations (27) is added to the equations of
motion (29). The equations of motion are written
together with the second time derivative of con-
straint equations (28), yielding a system of equations
written as

M FT
q

Fq 0

� �
€q
l

� �
¼

g
g

� �
(30)

where l is the vector of Lagrange multipliers, which
physically are related to the joint reaction forces.
The reaction forces, owing to the kinematic joints
are expressed as [17]

g (c) ¼ �FT
ql (31)

Equation (30) is a differential-algebraic equation
that has to be solved and the resulting accelerations

integrated in time. However, they do not use
explicitly the position and velocity constraint
equations allowing for a drift in the system con-
straints to develop. In order to keep under control
such constraint violation during the numerical inte-
gration the Baumgarte stabilization technique is
employed, and equation (30) modified as

M FT
q

Fq 0

� �
€q
l

� �
¼

g
g� 2a _F� b2F

� �
(32)

where a and b are prescribed positive constants that
represent the feedback control parameters for the
velocities and positions constraint violations [18,
19]. According to this formulation, the dynamic
response of multi-body systems involves the evalu-
ation of the vectors g and g, for each time step.
Then, equation (32) is solved for the system accelera-
tions €q. These accelerations together with the vel-
ocities _q are integrated in order to obtain the new
velocities _q and positions q for the time step. This
process is repeated until the complete description
of system motion is performed.

At this point, it is worth noticing that perfect joints
are introduced in equation (30) or (32) as kinematic
constraints. However, imperfect joints, i.e. joints
with clearances, are introduced in equation (30) or
(32) as forces in their right-hand sides, instead.

Fig. 11 Perfect spatial revolute joint in a multi-body system
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6 DEMONSTRATIVE APPLICATION TO A
DOUBLE PENDULUM

In order to examine the suitability of the formulation
developed to describe the spatial revolute joint clear-
ance, a double pendulum with the configuration
shown in Fig. 12 is presented here. The numbering
of the bodies of the system and their local coordinate
frames are shown in Fig. 12 as well. The double pen-
dulum is made up of three rigid bodies, which are the
ground body and two arms. One ideal revolute joint
connects the two pendulum arms whereas a spatial
revolute joint clearance, with a radial clearance size
of 0.5 mm, is in place between the ground and
body 2.

Initially, the double pendulum is resting in the XZ
plane position with pendulum arms perpendicular to
each other. The system is then released from this
initial configuration only subjected to gravity,
which is taken as acting in the positive Y-direction.
The geometric dimensions and inertia properties
of the double pendulum are listed in Table 1,
whereas the dynamic parameters used in simu-
lations are shown in Table 2.

In order to access the influence of the spatial
revolute clearance joint, in the dynamic perform-
ance of the double pendulum, some of the kin-
ematic and dynamic characteristics of the system
response during the first four seconds of simulation
are analysed here, being the results compared to
those obtained for a system with ideal joints. The
Hertz contact law with hysteresis damping factor,
given by equation (24), is used to evaluate the

contact forces caused by the impact in the joint
clearance.

Figure 13(a) shows the normal contact force devel-
oped in the revolute clearance joint, during the first
impact, and the reaction force at the ideal joint.
The plotted reaction force is the module of the joint
force in X-direction developed at the ideal revolute
joint that connects the two pendulum arms. In
Fig. 13(a), it is observed that the reaction force
shape is similar to the shape of the contact force at
the clearance joint. The maximum reaction force is
about 50 per cent of the contact force. Figure 13(b)
shows the hysteresis curves for the first three
impacts, developed at the clearance joint. The con-
tact force decreases for each impact, suggesting
that some of the system energy is dissipated from
impact to impact. This energy dissipated is measured
as the area enclosed by the hysteresis plot and is due
to the gravitational force being the only external
action, as no other external forces or drivers are
applied on the system.

The position and acceleration of the centre of mass
of body 3 in the Y-direction are plotted in Figs 14(a)
and 14(b). Since the double pendulum has an
open-loop topology, the existence of a joint clear-
ance clearly influences the global position of the
bodies of the system. Furthermore, the deviation
from the ideal case also results from the fact that
the gravitational force and the impact forces at the
joint clearance are the only external actions that act
on the system. The effect of the impacts, that occur
at the joint clearance, produces very high peaks in
the different quantities used to represent the sys-
tem’s response of the double pendulum, as it is
shown in Fig. 14(b).

The effect of the existence of a revolute joint clear-
ance in the global motion of the double pendulum is
illustrated in Fig. 15, in which the trajectory of the
centre of mass of the end arm is plotted during the
first three seconds of simulation.

Table 1 Governing properties for the double pendulum

Body Length Mass

Moment of inertia (Kgm2)

nr (m) (Kg) Ijj Ihh Izz

2 1.0 7.02 0.0010 0.5855 0.5855
3 1.0 7.02 0.5855 0.5855 0.0010

Table 2 Simulation parameters for the double pendulum

Bearing radius 10.0 mm Restitution
coefficient

0.9

Journal radius 9.5 mm Young’s modulus 207 GPa
Radial clearance 0.5 mm Poisson’s ratio 0.3

Fig. 12 Double pendulum modelled by two rigid bars

and two revolute joints. Each bar is

considered as a prismatic homogeneous rigid

body with square section of 0.03 m � 0.03 m
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Figure 16 shows the module of the eccentricity
vector for both journal bases of the revolute joint
clearance, as referred in Fig. 12. It can be observed
that, for the first impacts, the trajectories of the two
bases are coincident. However, after that, the
impacts between the journal and bearing wall take

place at different instants of time, meaning that
some misalignment occurs, and, consequently, only
one of the journal bases contacts with the bearing
at a given time. This phenomenon can be observed
in Fig. 17 where a sequence of frames from a compu-
ter animation of the journal trajectory, relative to the

Fig. 13 (a) Contact force developed at the revolute joint clearance and reaction force in the ideal

revolute joint that connects the two pendulum arms; (b) hysteresis loop of the first three

impacts at the joint clearance

Fig. 14 (a) Y-position of body-3 centre of mass; (b) Y-acceleration of body-3 centre of mass

Fig. 15 Trajectory of the centre of mass of the end arm

during the first three seconds of simulation

Fig. 16 Module of the eccentricity vector for the two

journal bases of the revolute joint clearance
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bearing boundaries, is shown. The contact situations
are represented by a dark journal, whereas the non-
contact cases are represented by a light journal. In
the animation frame sequence, the rebound effect,
during the first impacts, is clearly visible. Moreover,
the height of the rebound decreases from impact to
impact due to the energy loss.

It should be highlighted that the overall results
obtained in this work are in line with those of pub-
lished on this field [1, 4]. In addition, the method-
ology proposed throughout this paper was
extended by Flores et al. [20] in order to quantify
the expected wear due to contact–impact phenom-
enon in clearance joints. Moreover, under the frame-
work of multi-body systems formulation, based on
this work, it is also possible to have design guidelines
with the intent to define the maximum clearance size
that allows a desired level of tolerance on the output
variables and to define a criterion that will be helpful
in relating the clearance and manufacturing costs. It
is well known that in the most machines and mech-
anisms, the joints operate with some lubricated fluid
in order to provide protection against wear by redu-
cing friction, and to introduce some damping to the
system and dissipate undesired vibrations [6].
Another important factor that can influence the

performance of multi-body systems with impacts is
the bodies’ elasticity [9, 10]. Indeed, some research
works [21, 22] demonstrated that the level of
impact forces due to collisions within clearance
joints can be reduced by including the bodies’ elas-
ticity in the analysis.

7 CONCLUSIONS

In this paper, a general methodology for dynamic
characterization of mechanical systems with spatial
revolute joints with clearance was formulated, for
implementation on a general purpose multi-body
computer code. The joint clearance description
uses Cartesian coordinates, the joint elements are
modelled as impacting bodies, and the dynamics of
the joint is controlled by contact–impact forces.
These impacts and contacts are described by a con-
tinuous contact force model that takes into account
the geometric and mechanical characteristics of the
contacting bodies. The normal force is evaluated as
function of the elastic pseudo-penetration depth
between the impacting bodies, coupled with a non-
linear viscous-elastic factor representing the energy
dissipation during the impact process. For this

Fig. 17 Sequence of positions representing trajectory of the journal inside the bearing for first

instants of simulation. The clearance size is exaggerated for clarity
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continuous contact force model, it is assumed that
the compliance and damping coefficients are avail-
able. The model proposed is useful to predict the
peak values of the contact forces and position, vel-
ocity and acceleration variations due the presence
of the clearance.

A double pendulum was used as a numerical appli-
cation to illustrate the spatial revolute joint clearance
formulation. The overall results presented in this
paper show that the introduction of clearance
joints in spatial multi-body mechanical systems sig-
nificantly influences the prediction of components’
position and drastically increases the peaks in accel-
eration at the joints. Moreover, the system’s response
clearly tends to be non-linear when a joint clearance
is included. This is a fundamental feature mainly in
high speed and precision mechanisms where the
accurate predictions are essential for the systems’
design. The methodology can also be used to investi-
gate the effect of parameters variation and to opti-
mize the revolute joints with clearance. Note,
however, that the presence of flexibility in the
system links or lubrication in the joints can change
dramatically the mechanical system behaviour.
These other effects can be analysed with more com-
plete models that do not change the way clearances
are taken into account.
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APPENDIX

Notation

A rotational transformation matrix
c radial clearance (m)
ce coefficient of restitution
E Young’s modulus of elasticity (N/m2)
e eccentricity vector
e eccentricity magnitude (m)
_e eccentricity or radial velocity (m/s)
f force vector
FN normal contact force (N)
g generalized force vector (N, Nm)
g(c) vector of constraint reaction

equation (N, Nm)
K generalized stiffness (N/m1.5)
M system mass matrix (kg, kgm2)
n normal unit vector
q vector that contains the state of positions,

or vector of generalized coordinates
_q vector that contains the state of velocities
€q vector that contains the state of

accelerations
R radius (m)
r global position vector
s0 local position vector
t time (s)
t tangential unit vector
XYZ three-dimensional global coordinate

system

a Baumgarte stabilization coefficient
b Baumgarte stabilization coefficient
g right-hand side vector of acceleration

equations, or vector of quadratic velocity
terms

d penetration depth (m)
ḋ penetration velocity (m/s)

ḋ
(�)

initial impact velocity (m/s)
D increment
jhz three-dimensional body-fixed coordinate

system
u angular position (rad)
l vector of Lagrange multipliers associated

with constraints
n poisson’s ratio
F vector of kinematic constraints
Fq Jacobian matrix of the kinematic

constraint equations
_F constraint velocity equation
€F constraint acceleration equation

()T matrix or vector transpose
(0) components of a vector in a body-fixed

coordinate system
( _ ) first derivative with respect to time
( € ) second derivative with respect to time
(@) partial derivative
(�) Skew-symmetric matrix or vector

Subscripts

i relative to body i
j relative to body j
N normal direction
q generalized coordinate
r radial direction
T tangential direction

Superscripts

0 initial conditions
P generic point P
r revolute joint
s spherical joint
x X-direction
y Y-direction
z Z-direction
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