

João Rodrigo Lima Costa

VirtIO Infrastructure for a Static
Partition Hypervisor: VirtIO-Net

dezembro de 2022

dezembro de 2022

VirtIO Infrastructure for a Static
Partition Hypervisor: VirtIO-Net

João Rodrigo Lima Costa

Dissertação de Mestrado
Engenharia Eletrónica Industrial e
Computadores

Trabalho efetuado sob a orientação do
Professor Doutor Sandro Pinto

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Agradecimentos

Esta dissertação de mestrado finaliza 5 anos de constantes ”lutas” e não quero deixar de agradecer

às pessoas que me ajudaram a supera-las. Seria impossível enumerar todos aqueles que me apoiaram

durante todo este percurso, no entanto, queria exprimir às pessoas que mais diretamente influenciaram

este sucesso.

Ao meu orientador, Dr. Sandro Pinto, por apresentar-me o conceito de virtualização que desde o

início me cativou e por ter proposto um tema ambicioso. Ao meu coorientador, José Martins, que me

acompanhou e me esclareceu durante toda a dissertação.

Aos meus colegas do Embedded Systems Research Group (ESRG), Francisco Rocha, Gonçalo Freitas

e Nuno Capela, que trabalharam comigo no Bao, com quem partilhei o laboratório e com quem ”discuti”

diversas vezes.

Aos meus amigos, os Mirins, André Pereira, David Correia, Francisco Rocha, João Peixoto, Marcelo

Amaral, Rafael Cachetas e Rui Esteves, que me acompanharam durante este 5 anos incríveis tanto nos

melhores momentos como nos piores. Por estarem sempre lá, muito obrigado rapazes.

À minha família em especial, às mulheres da minha vida, a minha irmã, Matilde e a minha mãe,

Lisete, Mãe, obrigado por todo o teu sacrifício para que eu pudesse atingir os meus objetivos. Obrigado

por todos os conselhos e palavras amigas que me fizeram superar todos os desafios. Matilde, obrigado

por apesar de irmã seres uma grande amiga.

Finalmente, um agradecimento especial a dois nomes já enumerados: Francisco Rocha e Matilde.

Obrigado por ajudarem-me com o proof-read deste documento e obrigado por se mostrarem sempre

disponíveis.

i

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledged the Code of Ethical Conduct of the

University of Minho.

ii

Resumo

O uso de sistemas embebidos tem crescido exponencialmente em indústrias como a automóvel ou

aeronáutica. Isto tem levado a um aumento na complexidade dos sistemas, onde é necessário consolidar

várias camadas de software com diferentes níveis de criticidade numa única plataforma de hardware.

Para aumentar a segurança destes sistemas, a indústria tem-se focado na tecnologia de virtualização,

uma vez que a mesma permite a integração e o isolamento dos vários subsistemas. Recorrendo a um

hipervisor é possível partilhar os recursos de hardware entre múltiplas máquinas virtuais (VMs). No

entanto, os hipervisores tradicionais não foram desenhados para garantir os requisitos de tempo-real e

de segurança. Por este motivo, hipervisores de particionamento estático, como o Jailhouse, que alocam

os recursos de hardware estaticamente para as VMs em tempo de design, têm ganho cada vez mais

protagonismo. Porém, o Jailhouse depende do Linux para iniciar e gerir as VMs, criando alguns problemas

de tempo-real e segurança. Assim sendo, o nosso grupo de investigação focou-se em desenvolver o

hipervisor Bao. O Bao implementa uma camada minimalista de software e não tem qualquer dependência

de bibliotecas externas. A implementação atual do Bao dá acesso pass-through aos periféricos, não sendo

possível a partilha de dispositivos.

O trabalho desenvolvido nesta dissertação consiste no desenvolvimento de uma infraestrutura que

permite a partilha de dispositivos utilizando VirtIO. Esta infraestrutura deve ser genérica e deve ser com-

patível com as front-ends já existentes. A infraestrutura do VirtIO é implementada numa máquina virtual

dedicada (service guest), cuja função é gerir as múltiplas virtqueues que permitem transmitir e receber

dados de outras VMs que utilizam VirtIO. Ao contrário das soluções existentes, nesta dissertação, as back-

ends do VirtIO são implementadas não no hipervisor, mas numa VM, resultando numa TCB reduzida para

o sistema. A segunda parte da dissertação foca-se em implementar duas drivers back-end, i.e., uma para

o VirtIO-console e outra para o VirtIO-net. A primeira driver é uma driver simples e é utilizada essencial-

mente para garantir a validação adequada da interface implementada. A segunda é mais complexa, mas

é essencial para qualquer hipervisor moderno.

iii

Abstract

The use of embedded systems has grown exponentially in industries such as the automotive or aero-

nautics. This led to an increase in the complexity of systems where it is necessary to consolidate several

layers of software with different levels of criticality onto a single hardware platform.

To enhance the security of these systems, industry has been shifting towards virtualization, as the

technology enables the safe integration and isolation of the various sub-systems. By leveraging a hypervisor

it is possible to share hardware resources between multiple Virtual Machines (Virtual Machine (VM)s).

However, traditional hypervisors were not designed to meet real-time and security requirements. For this

reason, static partitioning hypervisors, such as Jailhouse, that statically allocate hardware resources to

VMs at design time, have gained increasing attraction. However, Jailhouse depends on Linux to boot and

manage VMs, which creates some issues for real-time, safety, and security. Under this light, our research

group has designed and implemented Bao. Bao is a very thin layer of self-contained software, not having

any external dependency. Bao’s current implementation gives pass-through access to peripherals and

device sharing is not possible.

The work developed in this dissertation is the implementation of an infrastructure that allows device

sharing using Virtual Input Output (VirtIO). This infrastructure is generic and must be compatible with the

existing front-ends. VirtIO’s infrastructure is implemented in a dedicated virtual machine (service guest),

whose aim is to manage the multiple virtqueues that allow transmitting and receiving data from the other

VMs that use VirtIO. Unlike existing solutions, in our case, the VirtIO’s back-ends are not implemented in

the hypervisor but in a VM, resulting in a reduced Trusted Computing Base (TCB) for the overall system.

The second part of the dissertation focuses on implementing two back-end drivers, i.e., one for VirtIO-

console and another for VirtIO-net. The first driver is a simple driver, so it is used essentially to guarantee

the proper validation of the implemented interface. The second one is more complex but is essential to

any modern hypervisor.

iv

Contents

List of Figures vii

List of Listings viii

Glossary ix

1 Introduction 1

1.1 Objectives . 3

1.2 Document Structure . 3

2 Background and State of the Art 4

2.1 CPU architecture . 4

2.2 Virtualization . 5

2.2.1 Full-Virtualization and Para-Virtualization 6

2.2.2 Trap-and-Emulate . 7

2.2.3 Memory Virtualization . 8

2.2.4 Peripheral Virtualization . 8

2.2.5 Hypervisors’ Architectures . 9

2.2.6 Static Partitioning Hypervisors . 11

2.2.7 Bao . 11

2.2.8 IPC . 14

2.3 VirtIO . 15

2.3.1 Device status field . 16

2.3.2 Feature bits . 16

2.3.3 Notifications . 17

2.3.4 Virtqueues . 17

2.3.5 Transport . 20

2.3.6 VirtIO-Console/VirtIO-Serial . 21

2.3.7 VirtIO-Net . 21

2.4 Related work . 22

v

Contents vi

2.4.1 VM-to-VM communication . 22

2.4.2 KVM and Xen . 22

2.4.3 ACRN . 23

2.5 Conclusions . 23

3 VirtIO Interface 25

3.1 Inter-VM communication using virtqueues . 25

3.1.1 Implementation . 27

3.1.2 Tests . 30

3.2 VirtIO . 30

3.2.1 VirtIO Transport - MMIO . 34

3.2.2 Virtqueues . 34

3.2.3 Feature Bits Negotiation . 35

3.2.4 Device Initialization . 38

3.2.5 Implementation . 39

3.2.6 Tests . 43

3.3 VirtIO Integration on Bao Hypervisor . 44

3.3.1 Implementation . 46

3.3.2 Tests . 53

4 VirtIO Devices 55

4.1 VirtIO-Console . 55

4.1.1 Implementation . 56

4.1.2 Tests . 59

4.2 VirtIO-Net . 60

4.2.1 Implementation . 62

4.2.2 Tests . 64

5 Conclusion 66

5.1 Future Work . 67

References 68

List of Figures

1.1 Pass-through vs Emulation of devices. 2

2.1 AArch64 exception levels. 4

2.2 System virtualization stack. 6

2.3 Full-virtualization vs Para-virtualization. 7

2.4 Trap and Emulate. 7

2.5 Types of Hypervisors. 10

2.6 Bao Structure. 12

2.7 VirtIO back-end and front-end drivers. 16

2.8 Packed Virtqueue. 20

3.1 First Implementation with one communication way. 26

3.2 First Implementation with two ways. 27

3.3 Interaction between guests and data structures. 29

3.4 VirtIO main mechanism - front-end view. 32

3.5 VirtIO main mechanism - back-end view. 33

3.6 Feature Bits Negotiation executed by the front-end driver. 37

3.7 Device Initialization. 38

3.8 VirtIO implementation on Bao. 44

3.9 VirtIO mechanism on Bao. 45

4.1 VirtIO-console. 56

vii

List of Listings

2.1 Bao shared memory configuration. 13

2.2 Bao device configuration. 13

2.3 Bao IPC configuration. 14

3.1 VirtIO device structure for inter-VM communication. 27

3.2 Virtqueue structure for inter-VM communication. 28

3.3 Descriptor structure. 29

3.4 VirtIO device structure. 40

3.5 Virtqueue structure. 40

3.6 VirtIO device configuration structure. 47

3.7 Bao VirtIO device configuration. 48

3.8 VirtIO device configuration for the service guest. 48

3.9 VirtIO device configuration for the driver guest. 49

3.10 Structure with the parameters of a VirtIO device in Bao. 49

3.11 Bao function that handles CPU messages. 51

4.1 VirtIO-console structure. 57

4.2 VirtIO-console configuration space struture. 57

4.3 VirtIO-console handlers. 57

4.4 VirtIO-net structure. 62

4.5 VirtIO-net control virtqueue structure. 63

4.6 VirtIO-net configuration space structure. 63

4.7 VirtIO-net header structure. 63

4.8 VirtIO-net handlers. 64

viii

Glossary

API Application Programming Interface

CPU Central Processing Unit

DMA Direct memory access

ESRG Embedded Systems Research Group

IO Input/Output

IP Internet Protocol

IPC Inter-Partition Communication

KVM Kernel-based Virtual Machine

MAC Media Access Control

MMIO Memory Mapped Input Output

OS Operating System

PMIO Port mapped Input Output

PV Para-virtualized

RAM Random Access Memory

RPC Remote Procedure Calls

RSS Receive Side Scaling

SLoC Source Lines of Code

SWaP-C Size, Weight, Power, and Cost

TCB Trusted Computing Base

ix

Glossary x

TCP Transmission Control Protocol

UDP User Datagram Protocol

VirtIO Virtual Input Output

VM Virtual Machine

VMM Virtual Machine Monitor

1. Introduction

The use of embedded systems has grown exponentially in various industries such as the automobile

and aeronautics. This has led to an increase in the complexity of systems, as multiple layers of software

with different levels of criticality are required. On the other hand, there is an ongoing trend on the market

to consolidate multiple subsystems in a single hardware platform, as it represents a reduction in Size,

Weight, Power, and Cost (SWaP-C) [1].

By using multicore processors, it is possible to run multitask applications with different criticality levels

at the same time in the same hardware platform. However, this can be dangerous as they can interfere

with each other. Thus, one of the techniques used to give more security to these mixed-criticality systems,

guaranteeing isolation of the subsystems, is virtualization [2].

Virtualization is a technique already established in cloud computing and it is getting increasingly used

in embedded systems. It is a straightforward way to consolidate multiple software stacks and multiple op-

erating systems onto the same hardware platform. Furthermore, it provides spatial and temporal isolation

between operating systems [3, 4].

By using a hypervisor, it is possible to support several virtual machine guests sharing hardware re-

sources. Nonetheless, traditional hypervisors, such as Kernel-based Virtual Machine (KVM) and Xen, are

not prepared to guarantee some real-time or security system requirements. These hypervisors have a wide

TCB because they depend on privileged running guests such as Linux. Furthermore, they have a penalty

in performance, especially in the Input/Output (IO) access. Consequently, embedded hypervisors, such

as XVisor or ACRN emerged. These hypervisors present reasonable TCBs and provide some sort of soft

real-time guarantees [2, 5].

Since this wasn’t a perfect fix, new disruptive solutions appeared: microkernel-based hypervisors and

static partitioning hypervisors. These hypervisors guarantee real-time requirements and offer a smaller

TCB which is praiseworthy since it leads to a more reliable hypervisor.

Jailhouse is an example of a static partitioning hypervisor. In these hypervisors, hardware resources

are statically partitioned and allocated at the time of instantiating the virtual machines. However, Jailhouse

relies on Linux to boot the system as well as to manage the virtual machines, which leads to an increase

in the boot-time.

Thereby emerged Bao. Bao is an in-house implemented, open-source, lightweight hypervisor that

provides a minimalist implementation from scratch without any external dependencies, which aims to

1

Chapter 1. Introduction 2

isolate mixed-criticality systems [1, 6]. Its main goal is to consolidate multiple software stacks and multiple

Operating Systems onto the same hardware platform with strong isolation between VMs guarantying real-

time requirements preserving a minimal TCB.

When it comes to peripherals, the current implementation of Bao gives pass-through access to existing

devices on the platform, with no means to share peripherals between guests. In other words, if two guests

need to use the same type of peripheral, there must be two devices, one for each guest. Emulation of

devices and para-virtualization are two alternatives to pass-through. However, sharing devices leads to a

decrease in performance, especially when emulating devices. Figure 1.1 presents both pass-through and

emulation models: on the left the pass-through model (which Bao currently implements) and on the right,

it is shown the emulation model that allows the sharing of devices.

The objective of the dissertation is to implement an infrastructure that allows the sharing of devices,

abstracting the way that their data is accessed. For this, VirtIO will be used.

VirtIO is a popular standard based on para-virtualization techniques to virtualize peripherals because

it offers a straightforward, efficient, standard and extensible mechanism. Before VirtIO, each hypervisor

implemented its own device emulation interface. Instead of a variety of device emulation interfaces,

VirtIO offers a common front-end driver (VirtIO driver implemented in the guest operating system as a

device driver) framework that standardizes device infrastructures and increases code reuse across different

virtualization platforms.

Os and Apps

VM0

Device Drivers

Os and Apps

VMn

Device Drivers

Hypervisor

Assigned Devices

VM

Device Drivers

Hypervisor

Assigned Devices

Os and Apps

VM0
VMn

Device Mocel

Service Guest

Pass-Through Model Emulation Model

Figure 1.1: Pass-through vs Emulation of devices.

VirtIO’s standard implementation was designed so that the back-end drivers are in the hypervisor.

However, for static partition hypervisors such as Bao, this approach is not ideal since it is essential to keep

Chapter 1. Introduction 3

the kernel simple and minimalist. This way VirtIO’s back-ends (drivers that are responsible for handling

IO requests from the front-end driver and execute the requested operations in the physical devices) will be

implemented in an unprivileged guest also called Service Guest as presented in the emulation model in

Figure 1.1. The Service Guest is the only guest that can access to the physical devices by pass-through.

Nevertheless, there are some challenges to this implementation. For example, VirtIO has to be im-

plemented in such a way that is compatible with existing front-ends. Moreover, the guest service will not

have access to the memory of other guests because of the isolation between guests, unlike the standard

implementation of the VirtIO whose hypervisor has access to the entire memory of all guests. For this

reason, it will be necessary to use the hypervisor’s Inter-Partition Communication (IPC) mechanisms to be

possible to communicate between the VMs and the Service Guest.

1.1 Objectives

Looking at what was previously stated, a couple of objectives were formulated:

1. Implement the VirtIO infrastructure in Bao taking into account its requirements and limitations. It

is essential to implement a generic infrastructure to be simpler to add new device drivers in the

future;

2. Implement a device driver in the Service Guest to support VirtIO-console/VirtIO-serial to test the

VirtIO infrastructure and guarantee its proper functioning;

3. Implement a driver for a network card mostly known as VirtIO-network so that it will be possible to

communicate with an Ethernet card using VirtIO.

1.2 Document Structure

The remainder of this dissertation is divided into 4 chapters. Chapter 2 presents some basic concepts

of virtualization, as well as some hypervisors types and architectures. Then, it continues with some back-

ground essential for the upcoming work of this dissertation, starting with virtualization and how VirtIO is

included in it as well as VirtIO’s structure. The chapter ends with some related work which implements

similar infrastructure in well-known hypervisors. Chapter 3 presents the analysis, design, implementa-

tion and tests of the various stages to implement the communication between the VirtIO’s back-end and

front-end drivers as well as the mechanism on Bao to allow it. The Chapter 4 exhibits the analysis, de-

sign, implementation and tests of both VirtIO-console and VirtIO-net back-end drivers. Finally, Chapter 5

provides a summary of the dissertation as well as the conclusions regarding its implementation. It also

presents future work to improve the interface.

2. Background and State of the Art

This chapter presents the fundamentals of this dissertation’s development, as well as some existing

related work. Firstly, it is given a contextualization about virtualization focusing on the virtualization for

embedded systems followed by an explanation of the VirtIO and the concepts behind it.

2.1 CPU architecture

The Central Processing Unit (CPU) architecture that will be used in this dissertation is the ARMv8.

ARMv8-A is the most recent ARM architecture. ARMv8 is usually used to describe the architecture that

include the 32-bit (AArch32) and 64-bit (AArch64) execution states.

This architecture exception model defines four exception levels that determine the level of privilege.

The levels go from EL0 to EL3, where EL0 has the lowest software execution privilege and EL0 the highest.

Figure 2.1 presents how the software that usually run in each exception level in the non-secure state. In

the EL0 run the normal user applications, in the EL1 the operating systems, in the EL2 the hypervisor and

in the EL3 the low-level firmware.

Firmware/Secure Monitor

Hypervisor

Guest OS Guest OSGuest OS Guest OS

AppsAppsAppsAppsEL0

EL1

EL2

EL3

Figure 2.1: AArch64 exception levels.

ARMv8-A can also run in secure state, but this state does not support virtualization, meaning that it is

not the interest area of this dissertation [7].

4

Chapter 2. Background and State of the Art 5

2.2 Virtualization

In computer systems, it is often needed a division into multiple abstraction layers, each of them with

well-defined interfaces. The lower labels are usually implemented in hardware, while the higher ones are

implemented in software.

Virtualization is a widely used term that can be applied to a substantial range of different technologies

with different meanings in different contexts. Even though there is a lot of variance between applications,

they have one quality in common: all of them use a set of physical hardware which acts as if there were

multiple environments by dividing the hardware available into partitions.

Virtualization is an already well-established technique in cloud computing since it makes better use of

multicore processors as it supports multiple Operating System (OS) environments on a single physical plat-

form and provides the same isolation as separate physical servers, but with improved resource utilization

[3]. This technique is game-changing because it allows multiple OSes to run on a single machine, being a

straightforward way for consolidation, leading to a significant reduction in capital costs and the increase of

energy efficiency. Additionally, it provides isolation and encapsulation from one virtual machine to another,

improving security which is essential to highly secured applications as it increases system flexibility and

brings a better fault tolerance [2, 8, 9].

Virtualization uses a single software layer that operates in hypervisor mode and is at least two orders of

magnitude smaller than the usual OSes, thus it is likely to have fewer vulnerabilities [8]. The hypervisor or

Virtual Machine Monitor (VMM), which is situated between the hardware layer and the OS, is the software

layer that provides a software environment where programs or OSes can run just as if they were running

on the hardware [8]. To provide this illusion of running in the hardware, the VMM has to provide an

environment to the software that is identical to the original machine. It has complete control over the

system’s resources if it is a type-1 hypervisor (which will be explained in 2.2.5), but the programs running

in this environment show a decrease in speed [8]. The basic software stack for system virtualization is

represented in 2.2.

Although it has been studied since the 1960s [10], it was never necessary to use virtualization in

embedded systems, because they used to be quite simple, single-purpose devices. Their main purpose

was to achieve their goals with few resources. They usually had big constraints in what concerns the

memory availability, the processing power or the battery charge. As a result, they regularly showed low

to moderate software complexity. Beyond that, they had to guarantee real-time requirements, which is

unusual in general-purpose devices [11].

Modern embedded systems, are embracing characteristics of general-purpose systems due to the

needs of industries such as automotive or aeronautic. Their functionality is increasing and so is the

software complexity. In the process, they have been trusted with sensitive data whose disclosure could

cause serious damage to the system [12].

Since there is an ongoing trend to consolidate multiple subsystems into a single hardware platform

Chapter 2. Background and State of the Art 6

Figure 2.2: System virtualization stack.

in the referred industries, there is an urgent need to isolate both spatially and temporally the various

subsystems because most of the systems have mixed-criticality. This means that different subsystems

have different criticality levels and should not be capable of interfering with each other [12].

2.2.1 Full-Virtualization and Para-Virtualization

Virtualization can take different paths. Full-virtualization, also known as native virtualization, is a

technique that does not require modifications to the guest OSes. It relies on the hypervisor to emulate

the hardware. Full-virtualization allows well-known operating systems such as Linux or Windows to run

inside the virtual machines without changes being needed. When the virtual board attempts to execute a

privileged instruction, for instance IO request or to write in memory, it is caused a trap into the hypervisor,

which emulates the hardware’s behavior to the instruction and returns the results [8, 9].

As another option, para-virtualization can be used in order to replace the sensitive instruction with

hypervisor calls (hypercalls) as present in Figure 2.3. These hypercalls trigger a trap in the hypervisor,

which will process its parameters and provide the service desired by the guest. For this to happen,

the hypervisor needs to define an interface composed of different system calls that can be used by the

OS guests. It is also possible to remove all the sensitive instruction from the guest and force it to only

use hypercalls [2, 8, 9]. Moreover, hypercalls provide more abstraction than emulation at the machine

instruction level, thus, the use of para-virtualization brings a performance boost in comparison to full-

virtualization [4].

It is proved that para-virtualization is advantageous in embedded systems as it provides the guests the

knowledge that they are running in a VM. The access to device drivers or peripherals can be accomplished

through hypercalls.

Chapter 2. Background and State of the Art 7

Figure 2.3: Full-virtualization vs Para-virtualization.

2.2.2 Trap-and-Emulate

Emulation provides VM portability and a wide range of hardware compatibility, which means the possi-

bility of executing any virtual machine on any hardware, as the guest operating system interacts only with

the emulated hardware. Emulation is the method by which the virtualization software duplicates the hard-

ware component that is available to a virtual machine. The underlying physical hardware has no bearing

on the emulated hardware.

User Processes (user mode)

Hypervisor (kernel mode)

Privileged Instruction

Instruction Decoding Emulation

Trap Return

Next Instruction

Figure 2.4: Trap and Emulate.

An approach known as trap and emulate uses the fundamentals of emulation while improving per-

formance by employing interpretation selectively. The user programs and guest operating system of the

virtual machines operate in a less privileged mode than the hypervisor, while the hypervisor runs in priv-

ileged mode. The software utilizes the hardware natively to execute the instructions. A trap to the kernel

mode occurs when a privileged instruction is intended to be executed in virtual user mode, for instance.

Chapter 2. Background and State of the Art 8

If the platform being used provides virtualization extensions, the hypervisor can configure the action that

leads to traps. This leads to a trap in the hypervisor and the execution is taken over by the hypervisor.

Figure 2.4, presents an example of how to trigger a trap. The hypervisor will interpret the instruction

and emulate it. After the emulation, it returns to the user mode and proceeds to the following instruction.

2.2.3 Memory Virtualization

In a system that uses virtualization, each guest has its individual virtual memory tables. It is necessary

to use address translation in each VM to translate the addresses of its virtual address space into addresses

of the real memory. In a VM this real memory would correspond to the physical one, however, in system

VM environment, the addresses of the VM’s physical memory does not correspond to the real one. In fact,

it is necessary an additional mapping to discover the address in the host hardware’s physical memory.

The memory virtualization allows the combined total size of the real memory to be bigger than the

physical memory of the system. This can only happen because the hypervisor maintains a swap space

and it manages the physical memory by constantly swapping the guest’s real pages into and out of its own

swap space [13].

2.2.4 Peripheral Virtualization

When examining peripheral virtualization, firstly, it is necessary to settle if IO is Memory Mapped Input

Output (MMIO) or Port mapped Input Output (PMIO). MMIO and PMIO are two methods used to perform

IO between the CPU and the devices.

MMIO uses the same address space to address both memory and IO devices. Both memory and

registers of the IO devices are mapped to address values, which means that when a CPU access an

address, it can refer to a partition of the Random Access Memory (RAM) or an IO device. Therefore, the

instructions used to access the memory can also be used to access devices. The addresses used by the

CPU to access the devices must be reserved only for IO and must not be available for ordinary memory,

otherwise, the data could be corrupted1.

PMIO uses dedicated IO instructions designed specifically for performing IO. These must be privileged

in order to achieve the resource control property of virtual machines. Using PMIO, IO devices have a

different address space from memory, this is why sometimes PMIO is also refereed as isolated IO.

Peripheral virtualization can be assigned to one specific VM or shared amongst multiple VMs. The

best solution as far as simplicity and efficiency are concerned is to assign them to one specific VM. This

solution allows the VM pass-through to the peripheral register without any trap to the hypervisor, which

means that the hypervisor does not have to handle IO requests.

1“Memory-Mapped I/O [MMIO].” https://embeddedartistry.com/fieldmanual-terms/memory-mapped-i-o/. Accessed:
2021–11-20.

Chapter 2. Background and State of the Art 9

The second solution permits the sharing of peripherals among multiple guests by emulating the pe-

ripheral in software. Virtual IO leads to a high overhead as all the accesses to the device must be trapped

and its behavior emulated by software and it is also necessary to create virtual devices that will interact

with the VMs.

To emulate a device, the MMIO area cannot be mapped by the hypervisor. When the guest tries to

access this area, it is generated a trap. Then, the hypervisor identifies the address that was accessed as

a virtual device and proceeds to emulate the device.

2.2.5 Hypervisors’ Architectures

Going deeper on hypervisors, they can be divided into three topologies:

• Type-1 hypervisors are also called native hypervisors or hardware-level virtualization because they

run on a bare-metal or directly on the host’s hardware. They have total control over the hardware

and are able to access all the hardware resources of all guests OSes. Since all accesses to the

hardware are managed by the hypervisor, the performance will depend only on the hypervisor

itself. This conveys that type-1 hypervisors are the most suitable for systems that need to meet

time constraints, such as embedded systems;

• Type-2 hypervisors, also known as operating system-level virtualization, are hosted hypervisors

which means that they are software applications running in a conventional OS, so they cannot

control the hardware directly. That results in worse performance when set side by side with type-1

hypervisors as it is the OS’s responsibility to access the hardware or execute any operation;

• Type-1.5 hypervisors, are a compromise between both of the types presented. A part of the

hypervisor runs directly on the hardware, while a privileged VM runs hosted extensions.

Type-2 hypervisors cannot be more secure than the general-purpose host OS where they are running.

Ergo, they are not the best fit for critical applications in embedded systems.

Figure 2.5 presents all the topologies mentioned. On the left side, it is shown the type-1 hypervisor with

direct access to the hardware, while on the right it is exhibited the type-2 hypervisor where the hypervisor

is running in a host OS that has direct access to the hardware resources. Finally, below, it is presented

the type-1.5 which is the mid-point between the other two types.

From here onward, the term “hypervisor” is used to refer to a type-1 hypervisor, since it is the topology

used by the Bao hypervisor.

In security terms, the part of a system that can circumvent security policies and must be fully trusted

is called the trusted computing base (TCB). In a system without memory protection, TCB is the complete

system of potentially millions of lines of code. Such a large TCB might not be reliable. Traditional hyper-

visors have a vast TCB because they depend on privileged virtual machines such as Linux. They were

designed without real-time constraints and have a big penalty in performance, especially in the IO access.

Chapter 2. Background and State of the Art 10

Figure 2.5: Types of Hypervisors.

A well-known example of this type of hypervisor is KVM. Microkernel based hypervisors surged to reduce

the TCB.

Microkernel and Monolithic

Every hypervisor has to perform the same basic tasks: start and maintain the VMs, abstract system

resources and share hardware resources. Even though they have the same purpose, their designs can

diverge to meet specific requirements. Their distinctions can be summarized in two common hypervisor

designs: microkernel and monolithic architectures.

Microkernel architectures were designed to respond to some problems due to the size of the kernel.

A small kernel does not necessarily mean that the system is secure. However, security can be provided

by isolating the services of the system. Microkernel architectures’ hypervisor contains a few components

using a separate partition to take care of functions such as storage, hypercalls, etc. Part of the TCB is

inside the kernel space, as usual and the other part is outside the kernel space, which means it is located

in the user space.

Monolithic architectures are the classical architectures used to supervise software. Unlike microkernel

designs, monolithic architectures assemble all the subsystems. In monolithic designs, the hypervisor is

entirely in the kernel space. This design does not use a separate partition and the VMs are directly above

the hypervisor. Both, microkernel and monolithic architectures support hypercalls [8, 14].

Chapter 2. Background and State of the Art 11

The idea of microkernels emerged in the late ’80s, but they were not very popular due to their poor

performance. Recently, microkernel based systems have shown much better performance, yet not as good

as the traditional (monolithic) systems [12].

Microkernel based hypervisors are usually lightweight microkernels that provide basic host hardware

access and CPU virtualization. Some of these hypervisors run the device drivers under a driver virtual

machine instead of under the common management VM. Examples of microkernel based hypervisors are

OKL4 Microvisor and INTEGRITY Multivisor [2, 15].

2.2.6 Static Partitioning Hypervisors

Due to the need for hypervisors in environments with time constraints, there was a rise in the use of

embedded hypervisors such as XVisor or ACRN [2, 16]. These hypervisors have a reasonable computing

base (100K-10K Source Lines of Code (SLoC)) and it is possible to run multiple VMs on a physical CPU,

but there has to be scheduling. They provide some sort of soft real-time guarantees.

The rise of industries like the automotive industry, dominated by mixed-criticality systems, where it is

essential to guarantee real-time requirements, lead to the emergence of Static Partitioning Hypervisors.

These hypervisors have a minuscule code base (5K-10K SLoC) which is ideal for critical systems. They

also provide strong isolation and guarantee real-time requirements. However, static partitioning hypervisors

have inefficient resource usage because the attribution of the hardware resources is static. Jailhouse and

Bao are examples of these hypervisors.

2.2.7 Bao

Bao is a from-scratch implementation of a static partitioning hypervisor that targets mixed-criticality

systems, so its main goal is to provide fault-containment and real-time behavior. This hypervisor does not

have any external dependency except for standard platform management firmware.

Bao implements the static partitioning architecture (Figure 2.6) where the hardware resources are

statically partitioned to the VMs. In Bao, the memory is allocated statically at initialization time, the IO

of the virtual machines are pass-through only, the virtual interrupts are directly mapped to the physical

interrupt and the virtual CPUs are assigned to the physical ones, following a 1:1 mapping. This means

that each physical CPU runs a virtual CPU, which means that this hypervisor do not need a scheduler [1].

Usually, the VMs need to communicate with each other. Bao offers a mechanism of shared memory

and asynchronous notifications triggered through hypercalls.

The three principles of Bao are:

• Minimality and Simplicity: The goal is to keep the code base as minimal and simple as possible.

That is the reason why Bao is only implemented in architectures that provide hardware-assisted

virtualization.

Chapter 2. Background and State of the Art 12

Figure 2.6: Bao Structure.

• Least Privilege: The goal is to ensure that every component in the system only has access to what

is strictly necessary. Each core can access only the information that belongs to the VM assigned to

it and the hypervisor cannot access directly the physical memory of the VMs.

• Thorough Isolation: Although the isolation provided by virtualization, the VMs still interact. For

instance, the L2 cache is shared between the different VMs, which can lead to interferences. Bao

uses a cache coloring mechanism to fight this issue. With this mechanism, the cache is divided

by colors and it is possible to configure Bao in such a way that different VMs use different parts

of the same cache, leading to better isolation but resulting in some problems, such as memory

fragmentation [1].

Shared memory and notification via hypercall

As a static partitioning hypervisor, Bao implements an architecture where all the resources are statically

partitioned and are exclusive to each VM. The memory is allocated at Bao’s initialization, the IO is only

possible to the guests by pass-through, the virtual interrupts and the virtual CPUs are assigned to physical

ones. This means that each component has access only to what is essential. Each CPU has a private

address space and only maps the physical pages it needs. This means that a CPU is not capable of

accessing information of a VM that it does not run. However, they still need to communicate and for that

reason Bao supplies simple primitives to communicate between VMs, based on a shared memory and

asynchronous notifications that work as inter-VM interrupts, which are triggered using hypercalls. Besides,

Bao is also not capable of directly accessing the physical memory of the VMs, meaning that when using

hypercalls, the arguments must be passed not by reference, but by value using the processor registers

[1, 6, 17].

Chapter 2. Background and State of the Art 13

Configuration

Bao allows the user to configure some parameters of the system. It allows to define the shared

memories and theirs size, the amount of virtual machines that will be running, the devices that each VM

has access, etc. These configurations are defined in the config.c file that will be used in Bao’s compilation

so that it can allocate everything statically.

The most fundamental parameter in what concerns this dissertation are the shared memory, the

devices and the IPCs. The shared memory is configured as the following excerpt of code:

1 . s h m em l i s t _ s i z e = 2 ,

2 . s hm em l i s t = (s t r u c t shmem []) {

3 [0] = { . s i z e = 0 x00020000 } ,

4 [1] = { . s i z e = 0 x00020000 }

5 } ,

Listing 2.1: Bao shared memory configuration.

The first parameter, shmemlist_size is the size of the shared memory list and defines the number

of shared memory regions that can be used. After that, it is initialized the shared memory list, where it

is possible to choose the shared memory’s parameters. It is possible to choose the size, the memory

coloring, the physical address, etc.

Inside each VM, it is possible to define how many devices it has access to. The following excerpt

exhibits the configuration of a physical device:

1 . dev_num = 1 ,

2 . d e v s = (s t r u c t d e v _ r e g i o n []) {

3 {

4 . pa = 0 x09000000 ,

5 . v a = 0 xFF010000 ,

6 . s i z e = 0 x10000 ,

7 . i d = 0 ,

8 . i n t e r r u p t _ n u m = 1 ,

9 . i n t e r r u p t s = (u i n t 6 4 _ t []) { 3 3 }

10 }

11 }

Listing 2.2: Bao device configuration.

Bao allows the configuration of the physical and virtual address of the device, as well as its size, the

device ID and also the interrupt of the device.

Finally, the IPC configuration. Bao allows the use of shared memory regions, however it is necessary

to define what are the virtual address that each VM must use to accessed them. To address this problem

is necessary to configure a IPC:

Chapter 2. Background and State of the Art 14

1 . i p c_num = 1 ,

2 . i p c s = (s t r u c t i p c []) {

3 {

4 . b a s e = 0 x70000000 ,

5 . s i z e = 0 x00020000 ,

6 . shmem_id = 0 ,

7 . i n t e r r u p t _ n u m = 4 ,

8 . i n t e r r u p t s = (u i n t 6 4 _ t []) { 5 2 , 54 , 55 , 5 6 }

9 }

10 }

Listing 2.3: Bao IPC configuration.

Here it is necessary to choose the virtual base address that will be used to access the shared memory,

the size of the region, the shared memory ID that is going to be used as well as the interrupts associated

to this shared memory. These interrupts will allow the communication between two isolated guests.

2.2.8 IPC

Usually, in computer science, IPC refers to inter-process communication which is a mechanism pro-

vided by the OS that allows a process to communicate with other processes and therefore the sharing of

data between different processes. IPC mechanisms can differ according to the available resources. In

microkernel-oriented OSes, the IPC is essential, since it is how the components that are outside the kernel

interact via Remote Procedure Calls (RPC).

On systems that rely on virtualization, it is also necessary a communication mechanism. However, in

this branch IPC refers to inter-partition communication or inter-VM communication instead of inter-process

communication.

In traditional hypervisors, the inter-VM communication is performed by using Transmission Control Pro-

tocol (TCP)/Internet Protocol (IP) communication. Nevertheless, this method is not suitable for embedded

systems hypervisors as the communication in these systems must be executed as fast as possible and

emulating network controllers as well as going through multiple communication layers, induces significant

overheads.

The IPC mechanism must be capable of guaranteeing separateness between VMs while they share

data, otherwise, the system would lose one of the main goals of virtualization, isolation, which is essential

to keep the system secure. A VM should not be capable of reading or corrupt VM’s memory except for the

exact communication buffers to which it has been granted access [18].

IPC Mechanisms

The IPC mechanisms used in virtualization systems can be classified regarding the synchronism,

privilege level and overall message transfer mechanism. The IPC mechanism’s data channel can be

divided into:

Chapter 2. Background and State of the Art 15

• Shared Memory;

• Direct Transfer.

Shared Memory: This method consists of having a block of memory that can be accessed by

multiple partitions, as long as it is given access to those partitions, which is a way to share data between

them. This is an efficient method, however, it lacks security as it needs to allocate memory that can be

accessed by more than a partition, which makes the system more vulnerable to attacks. To solve this

problem, some strategies can be used, mainly by implementing an access control strategy supported

by a kind of execution privilege level. Although, most systems implement their own shared memory IPC

mechanism design, lately a great deal of academic work has emerged using the VirtIO’s structure.

Direct Transfer: This method consists of copying the data directly between the transmitter and

the receiver. This means that there is a dedicated hypervisor module responsible for message passing

between VMs leading to performance overhead.

2.3 VirtIO

It is already well-known, as mentioned in Section 2.2.4, that virtualization increases the overheads

to access IO peripherals such as network or storage devices. Thus, it is essential to reduce virtualization

overheads since they are harmful especially for embedded systems. VirtIO can reduce the IO overheads

in virtualized environments [19].

VirtIO is a virtualization abstraction Application Programming Interface (API). It was invented by Rusty

Russell with the goal of creating a common layer for virtual devices such as Net, Block, Console and many

others [20], for different hypervisors [21]. It emerged as an attempt to become the de-facto standard for

virtual IO devices in para-virtualized hypervisors, because a standard means compatibility across different

hypervisors and OSes [22].

Each VirtIO device uses two drivers: the front-end driver and the back-end. These two drivers are

commonly called driver and device, respectively. The front-end driver is implemented in the guest operating

system and works as a device driver. It replaces the device driver of a physical device. The back-end driver

is implemented in the hypervisor or in a service guest. It is the back-end that handles the requests that

come from the front-end driver. The back-end driver is responsible to execute all the requested operations

in the physical devices, because it is the only driver access to physical devices. Figure 2.7 presents these

two options. The left diagram presents the back-end driver in a dedicated guest whilst the right one places

the back-end driver in the hypervisor.

The VirtIO para-virtualization mechanism is centered around data buffers, organized inside of a struc-

ture named virtqueue which encapsulates not only the shared data but also controls data. VirtIO devices

can use multiple virtqueues to transmit and receive data (Tx virtqueue and Rx virtqueue for instance)

[23]. Since the ring buffer structure used by VirtIO eliminates the need for mutual exclusion primitives or

unnecessary copies, it is possible to achieve a big improvement in performance.

Chapter 2. Background and State of the Art 16

Hypervisor

System on a Chip

IO

CPU

Back-end driver

Service Guest

CPU

Front-end driver

Driver Guest

Hypervisor

Back-end driver

System on a Chip

IO

CPU CPU

Front-end driver

Driver Guest

Figure 2.7: VirtIO back-end and front-end drivers.

To use VirtIO it is necessary to follow the specification [24], maintained by OASIS, which presents

the structure as well as all the requirements of the implementation. The VirtIO interface consists of the

following required parts:

• Device status field;

• Feature bits;

• Notifications;

• One or more virtqueues.

2.3.1 Device status field

The device status field supplies a low-level indication of the completed steps of the sequence necessary

for the driver to initialize a device. The driver sets different bits to let the device know if it was recognized

and if it is compatible. At the end of the feature negotiation, which will be explained in Section 2.3.2, the

device can also set bits to let the driver know if all the features were accepted or if there was any problem

in the negotiation [24, 25].

2.3.2 Feature bits

As mentioned before, after the initialization of a device, it is necessary to negotiate the features that

will be used. This phase is vital in what concerns compatibility, since it defines the features that will be

used.

Chapter 2. Background and State of the Art 17

Each VirtIO device offers all the features that it supports. Afterward, the driver reads the features and

informs the device what is the subset that it accepts. If both sides agree, the driver will allocate and inform

about the virtqueues to the device as well as all the configurations needed. This negotiation allows more

compatibility because if the device has a new feature, the older drivers will not accept that feature. The

same way around, if the driver has a feature that the device does not support, then the device will not use

that feature since it was not offered [24, 25].

2.3.3 Notifications

The use of notifications has an essential role on VirtIO. There are three types of notifications:

• Configuration change notification;

• Available buffer notification;

• Used buffer notification.

Both configuration change notification and used buffer notification are sent by the device and received

by the driver. A configuration change notification means that some configuration parameters have changed.

A used buffer notification is utilized by the device to notify the driver that a buffer was processed and it

became used. An available buffer notification is sent by the driver and received by the device and indicates

that a buffer was made available on the virtqueue [24].

2.3.4 Virtqueues

The mechanism to transfer data on VirtIO is called virtqueue [26]. The virtqueue is one of the most

important parts of the VirtIO since it contains all the information about the data that will be transported.

As mentioned before, each device can have zero or more virtqueues, for instance, a simple network device

needs at least two virtqueues, one to transmit and another to receive data.

To make a request available to the device, the driver must add an available buffer to the virtqueue.

After that, it must send a notification informing the device that there is a new request. Afterward, the device

processes and executes the request and once this is completed, it marks the buffer as used. Subsequently,

the device sends a notification to the driver to notify it that the buffer has already been processed [24].

Each virtqueue can be compounded of up to three parts:

• Descriptor Area: used for describing the buffers;

• Driver Area: extra data supplied to the device by the driver;

• Driver Area: extra data supplied to the driver by the device.

Chapter 2. Background and State of the Art 18

Split Virtqueue

Until version 1.0 of the VirtIO’s specification, there was only a type of virtqueues, the split virtqueue.

The split virtqueue is based on a buffer descriptor table and two ring buffers, one for the device and the

other for the driver. This format divides the virtqueue into three areas, where each area is writable by

either the driver or the device, but not both:

• Descriptor Table – occupies the Descriptor Area;

• Available Ring – also called available virtqueue, occupies the Driver Area;

• Used Ring - also called used virtqueue, occupies the Device Area.

The descriptor table contains information about the data that will be transported from the device to

the driver and vice versa. Each descriptor include the physical address of where the data is, as well as,

the length. Moreover, each descriptor contains a set of flags that give more information about it. Each

descriptor describes a data buffer that can be read-only or write-only for the device.

The driver uses the available ring to place the descriptor indexes that the device is going to consume.

The parameters of the available ring can only be written by the driver. On the other hand, the device uses

the used ring to return the used buffers to the driver. Unlike the available ring, the used ring can only be

written by the device.

However, split virtqueues have some issues. Their structure lead to bad cache utilization since there

can be several cache misses per request, which leads to a bad performance. This happens because the

available and used rings use memory in a sparse way, which puts huge pressure on the cache usage

[24, 27].

Packed Virtqueue

On version 1.1 of the specification it was presented an alternative compact virtqueue layout, called

packed virtqueue, which redresses the bad cache utilization issue reducing, substantially, the overhead.

Packed virtqueue solves this problem by merging the three rings (descriptor table, available ring and used

ring) in a single location of the memory2.

The use of this layout is negotiated by the VIRTIO_F_RING_PACKED feature bit.

Each packed virtqueue consists of three parts:

• Descriptor Ring – occupies the Descriptor Area;

• Driver Event Suppression – occupies the Driver Area;

• Device Event Suppression – occupies the Device Area.

2“[dpdk-dev] [PATCH v3 00/21] implement packed virtqueues.” http://mails.dpdk.org/archives/ dev/2018-
April/095470.html. Accessed: 2021–12-20.

Chapter 2. Background and State of the Art 19

Each descriptor of the descriptor ring consists of four parts:

• Buffer ID;

• Element Address;

• Element Length;

• Flags.

When the driver wants to send a request to the device, it writes at least a descriptor, describing the

elements of the data that is going to be sent, into the descriptor ring. Then the driver sends a notification

to the device. After that, the device will process the buffer and then it will write a used descriptor into the

descriptor ring, by overwriting the descriptor sent by the driver and, afterward, it sends a notification back

to the driver.

The descriptor ring is circular. The driver writes descriptors in order and when the end of the ring is

reached it starts writing in the head of the ring. The device reads the descriptor in order, however, their

processing can be completed out of order and for that reason, the device can write used descriptors out

of order.

Besides the descriptor ring, the virtqueue is also composed of two event suppression structures, one for

the device and the other for the driver. The device event-suppression data structure contains information to

reduce the number of device events and it can only be changed by the device. The driver event-suppression

data structure, contrariwise, contains information to reduce the number of driver events and can only be

altered by the driver.

To replace the available and used rings used by the split virtqueue approach in packed virtqueue

two wrap counters are used (one for the device and the other for the driver) as well as two flags inside

each descriptor (VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED). A descriptor is available if the bits

VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED are different and used if they are equal [24, 28].

Figure 2.8 presents the structure of a descriptor ring from a packed virtqueue. Note that the avail and

used bits are not the only flags, there are also flags such as:

• next, that allows some sort of pointer to the next descriptor that should be processed, allowing the

driver to supply a list of descriptors to the device;

• write, which allows the receiver to write data in the descriptor;

• indirect, which allows storing descriptors anywhere in memory, which is beneficial for large requests.

From now on, the term “virtqueue” is used to refer to a packed virtqueue, since it was the layout

chosen for this dissertation’s implementation, taking into account that is the one that is more recent and

that presents less issues.

Chapter 2. Background and State of the Art 20

Figure 2.8: Packed Virtqueue.

2.3.5 Transport

Instead of creating a new bus from scratch, VirtIO devices are built on existing buses, which gives a

straightforward way of communication between the front-end and the back-end drivers.

VirtIO can use various buses:

• PCI Bus;

• MMIO;

• Channel IO.

MMIO VirtIO devices provide 28 control registers followed by a configuration space. These control

registers can be read or write-only by the front-end driver except the register Status that can be both

written or read. This register is used in the initialization and returns the current device status flags and the

register QueueReady, which is charge of notifying the device that it can execute requests from this virtual

queue. The configuration space can also be written or read by the front-end.

There are 5 registers that are used to manipulate parameters related to the shared memory. These

register will not be explained as they will not be used in this dissertation. The registers can be divided into

seven groups:

• Registers used in the initialization of the device (MagicValue, Version, DeviceId, VendorID and Sta-

tus);

• Registers used in the feature negotiation (DeviceFeatures, DeviceFeaturesSel, DriverFeatures and

DriverFeaturesSel);

Chapter 2. Background and State of the Art 21

• Registers used to initialize and manipulate the virtqueues (QueueSel, QueueNumMax, QueueNum,

QueueReady and QueueNotify);

• Registers that give the addresses of the virtqueues as well as the address of the device and driver

areas (QueueDescLow, QueueDescHigh, QueueDriverLow, QueueDriverHigh, QueueDeviceLow and

QueueDeviceHigh);

• Registers to manipulate the interrupts (InterruptStatus and InterruptACK);

• A register to guarantee the atomicity of the configuration (ConfigGeneration).

2.3.6 VirtIO-Console/VirtIO-Serial

The VirtIO console or serial device is a simple device for data transmission. A device can have one or

more ports and each port have two virtqueues: one for input and the other for output.

Beyond the data virtqueues, for each device, there are also a pair of control virtqueues. These con-

trol virtqueues are used to transmit information between the device and the driver. They are capable

of changing the negotiation between the driver and the device for establishing and terminating the data

transmission. These two kinds of virtqueues have different implementations and different requirements.

For instance, the data plane (data virtqueues) is required to move the packets quickly, while the control

plane (control virtqueues) is required to be flexible in order to support different devices.

To transmit the data, one or more empty buffers are placed in the input virtqueue to receive the

incoming data and the outgoing characters are placed in the output virtqueue to transmit data to the

device [24].

2.3.7 VirtIO-Net

The VirtIO-net is a virtual ethernet card. As in VirtIO-serial, there are two layers: the control plane

(control virtqueues) which is optional and the data plane (data virtqueues). Hence, the device uses at

least two virtqueues for data transferring (one for transmission and one for receiving) [26, 29].

In the beginning, empty buffers are placed in the input virtqueue and the packets that are supposed to

be transmitted to the device are placed in the output virtqueue in order. The third queue (control virtqueue)

is used to control advanced filtering features [24].

The data is transferred in packets, which are made up of a header with a defined size and a data

payload with a variable size. Nevertheless, because the receiver pre-allocated buffers for incoming traffic,

the size of the pre-allocated buffers can be considerably smaller than the data payload buffer. The payload

must be divided and copied into several receiver buffers in the communication infrastructure to account

for this. Packets with huge payloads can be divided into many data transfers to make things simpler.

Chapter 2. Background and State of the Art 22

2.4 Related work

Most hypervisors use interfaces, such as VirtIO, to share devices or to communicate between VMs.

This section presents some implementations related to this dissertation’s work.

2.4.1 VM-to-VM communication

VirtIO was initially created in order to be possible to share devices on virtualized systems. However,

there is some academic work that uses it as an interface to communicate between two different guests

(inter-VM communication) since it is an efficient way of communicating. Several works [21, 23, 30] present

implementations of this interface on different hypervisors.

The approach used in [23] is similar to Xen’s Para-virtualized (PV) drivers, which will be explained

further ahead, where a device is assigned by the hypervisor to a VM that acts as a multiplexer or broker

for the other VMs that want to access the device.

2.4.2 KVM and Xen

KVM is an open-source hypervisor built into Linux. KVM uses QEMU, which is a hosted virtual machine

emulator, to create virtual machines with virtual CPUs that the processor is aware of. When a special

instruction, such as access to a device, is performed, the hypervisor informs QEMU of the cause of the

pause so that the QEMU can perform the device emulation [31]. However, the device emulation leads to

poor performance.

Xen is a Type-1.5 hypervisor, which provides full-virtualization to partition the host machine into different

VMs, but it can also use para-virtualization [32]. Para-virtualization is used in Xen to reduce the cost and

complexity of IO virtualization regarding device emulation. Xen uses a guest OS that runs a para-virtualized

(PV) driver that works over an abstract device model that was exported to the guest. The real device can

be either on the hypervisor or in a separate device driver domain that has privileged access to the device

hardware [33]. This model is known as PV split driver model.

PV drivers are different, but still architecturally similar to VirtIO [32]. Just like VirtIO, they use IO

descriptor circular rings. A ring is a queue of descriptors that are allocated inside a VM but can also

be accessed by the hypervisor. These descriptors do not contain data, they only contain a reference to

the memory place where the data is stored. The access to each ring is based on two pairs of producer-

consumer pointers where a VM places the requests on a ring, increments a request producer counter,

then Xen removes the requests to process them and increments the associated request consumer pointer.

The responses are written on the ring, but this time the producer is Xen and the consumer is the VM [5].

When KVM emerged in the Linux scene, it did not have a paravirtual device model. The performance

limitations of emulating devices were evident and adopting Xen’s (PV drivers) approach was not appeal-

ing because it was implemented focusing on Xen and was not compatible with other hypervisors [26].

Chapter 2. Background and State of the Art 23

That is why KVM opted to use VirtIO. KVM supports IO para-virtualization using VirtIO [32]. KVM’s VirtIO

infrastructure is implemented in the hypervisor.

2.4.3 ACRN

ACRN is a type-1 hypervisor that was designed especially for embedded systems. This hypervisor uses

the VirtIO specification to virtualize devices.

It uses a service OS that contains the back-end drivers as well as some other key components. The

front-end drivers are located in the user OS that needs access to the devices. The communication between

the back-end and the front-end drivers is done using the virtqueues that are placed in shared memory so

that both drivers are able to access them. The virtqueue layout used in this hypervisor’s is the split

virtqueue [16].

One of the peculiarities of this hypervisor’s VirtIO implementation is that it disposes of two framework

implementations:

• Back-end service in user-land (suitable for devices that do not have performance requirements);

• Back-end service in kernel-land (suitable for performance-critical devices).

The back-end drivers are different in these two frameworks, but the front-end drivers are the same for

both of them.

2.5 Conclusions

Besides the fact that the hypervisor under which the work of this dissertation is going to be imple-

mented (Bao) does not have an interface to share devices, the implementation is going to follow different

paths from the implementations presented.

Section 2.4 presented some academic work using VirtIO not to virtualize devices but to run as a VM-

to-VM communication interface. This is an interesting feature for hypervisors that do not possess a way

to communicate between OS guests. Even though there are some differences due to Bao’s infrastructure,

this approach will be used in the initial phase of the implementation since it is a simple way to understand

if the data transmitted using VirtIO is correct and if all the interface is working as it is supposed to.

KVM’s initial approach does not fit the real-time requirements since the device emulation increases

substantially the time needed to transfer data between the device and the driver. For this reason, this

approach is not worth considering.

Xen’s PV drivers are an interesting implementation. However, it was implemented for Xen and it has

a considerable amount of problems as far as compatibility in other hypervisors is concerned. In fact, this

is one of the reasons for the emergence of VirtIO.

Chapter 2. Background and State of the Art 24

The ACRN implementation of VirtIO has a lot in common with the implementation aimed at, in this

dissertation. Besides the fact that the virtqueues are stored in a shared memory region, it uses a service

guest that contains most of VirtIO’s infrastructure. However, the big problem of this implementation is the

use of split virtqueues. As mentioned in Section 2.3.4, this layout has some issues which lead to a bad

performance. So, this dissertation aims to implement the virtqueues using the newest layout alternative

(packed virtqueue).

Furthermore, no implementation of VirtIO in a static partitioning hypervisor was found where the

interface is entirely in a service guest and where the descriptor rings are in a shared memory region.

3. VirtIO Interface

This chapter explains all the steps taken to implement the most essential part of this dissertation: the

VirtIO interface. It is divided into three groups.

The first group presents the first step of the implementation, the creation of an interface similar to

VirtIO but using hypercalls to send notifications between VMs. The main goal of this step is to prove that

it is possible to communicate effectively between two guests by using virtqueues with descriptors that

describe buffers of data.

The second section shows the VirtIO interface itself, where it is explained its functioning by presenting

the design of the interface as well as the implementation.

The third section explains the mechanism created in Bao to make it compatible with VirtIO. It explains

every step in which the hypervisor needs to take action and how it reacts to the access of MMIO registers

that belong to VirtIO devices.

3.1 Inter-VM communication using virtqueues

The implementation phase of this dissertation was initiated with the creation of an infrastructure sim-

ilar to VirtIO which main goal is to test the communication between two isolated VMs using virtqueues.

However, this infrastructure uses shared memory to store the descriptors so that is possible to share this

information between two virtual machines and uses the Bao’s inter-process communication through hyper-

calls to notify the service guest. In this way, there is no need to modify Bao’s source code, which means

that it could be done in every hypervisor that allows communication between two virtual machines.

This implementation’s goal is to enable sending messages from one virtual machine to another. There-

fore, two virtual machines are used: the driver guest and the service guest. The driver guest is the driver

that sends the first message. The service guest is the virtual machine that receives the message.

An essential part of this implementation is the usage of descriptors similar to the ones used in VirtIO.

Despite using the same format, the flags of the descriptors that are mandatory in VirtIO are not used in

this initial implementation. Each descriptor is 16 bytes where: the address occupies 8 bytes, the length

of the data 4 bytes, the ID of the descriptor 2 bytes and finally the following 2 bytes are empty because

they are used to store the flags of the descriptor.

25

Chapter 3. VirtIO Interface 26

This first approach starts with only one way of communication (from the driver guest to the service

guest), as it is possible to notice in the Figure 3.1. Initially, a simple message is created. The driver guest

puts it in a shared memory address and creates a descriptor with the information of the message (1). This

descriptor is also stored in a shared memory address. This address is also known by the service guest.

After that, the driver guest uses a hypercall to notify the service guest that there is a new message (2). This

hypercall is used in such a way that triggers the interrupt that is associated with the shared memory that

is storing the message. Then, the service guest receives the interrupt, reads the descriptor and accesses

the message by using the descriptor’s information (3). In the end, the service guest prints the data so that

it is possible to know if the data was correctly sent from the driver guest to the service guest.

Service Guest Driver Guest

1

2

Shared
Memory

3

Bao Hypervisor

Hypercall

Write Data

Read Data

Figure 3.1: First Implementation with one communication way.

After this first approach, the mechanism was created so it would be possible to communicate both

ways. This means that it is possible to send messages from the driver guest to the service guest and vice

versa. Figure 3.2 presents the steps that this mechanism follows.

Every time there is a new message which needs to be sent, the driver guest creates a descriptor with

the data’s information and puts the descriptor as well as the message in the shared memory as in the

first implementation (1). Thereon, it is used a hypercall to notify the service guest (2). The service guest

receives an interrupt as a result of the hypercall and, in its callback, the descriptor is read (3). Following,

the service guest prints the data sent by the driver guest by reading the descriptor’s information and

accessing the memory address where the message is. Then, the procedure is done in the opposite way.

At the end of the interrupt callback, the service guest creates a new message to alert the driver guest that

Chapter 3. VirtIO Interface 27

the message was received. It places the message in the shared memory and not only creates but also

stores a descriptor with the information of this message (4). Finally, the service guest uses a hypercall

to notify the driver guest (5). The driver guest receives the interrupt, reads the descriptor created by the

service guest and accesses the message (6). In the end, it prints the message to guarantee that everything

has gone as planned.

Service Guest Driver Guest

1

2

Shared
Memory

634

5

Bao Hypervisor

Hypercall

Write Data

Read Data

Figure 3.2: First Implementation with two ways.

Although being used only a single shared memory buffer for vm-to-vm communication using

virtqueues, as this is a 1-to-1 interaction, in order to guarantee that more than one device can be served by

the service guest, using a shared memory for each device is essential and consequently different callbacks

for the devices in the service guest must be used. In this way, the service guest is able to understand

which front-end driver generated the interrupt and act accordingly.

3.1.1 Implementation

Moving on to how the interface was implemented. Firstly, it was necessary to create a structure that

contains the general information of each device:

1 s t r u c t v i r t i o _ d e v i c e {

2 c h a r * shmem_desc_base ;

3 c h a r * shmem_da t a_base ;

Chapter 3. VirtIO Interface 28

4 s i z e _ t s hmem_de s c_ s i z e ;

5 s i z e _ t s hmem_d a t a _ s i z e ;

6 l o n g i p c _ i d ;

7 i n t v q_numbe r ;

8 i n t * v q _ i n t e r r u p t _ n u m b e r s ;

9 c h a r d a t a [5 0] ;

10 } ;

Listing 3.1: VirtIO device structure for inter-VM communication.

This structure contains the information of where the base address of the descriptors and of the data

sections is, as well as their sizes, the ID of the shared memory that was used, the number of virtqueues

that the device has and their IDs. This struct also contains an array that will store the data that it received.

This interface is similar to VirtIO’s interface. Therefore, there is at least one virtqueue associated with

each device. It is crucial to create a new struct that incorporates all the information of each virtqueue:

1 s t r u c t v i r t q {

2 l o n g u s e d _w r a p _ c o u n t ;

3 l o n g n e x t _ u s e d ;

4 l o n g a v a i l _ w r a p _ c o u n t ;

5 l o n g n e x t _ a v a i l ;

6 l o n g s i z e ;

7 c h a r * shmem_queue_base ;

8 c h a r * shmem_da t a_base ;

9 s h o r t i d ;

10 /* D e s c r i p t o r s */
11 s t r u c t p v i r t q _ d e s c * d e s c ;
12 } ;

Listing 3.2: Virtqueue structure for inter-VM communication.

This struct contains two counters (used_wrap_count and avail_wrap_count) explained in Section

2.3.4, as well as two variables to identify the ID of the next available and next used descriptors. Each

virtqueue can have multiple descriptors, so there is also the size of the virtqueue, which is given by the

number of descriptors. Since each device can have more than one virtqueue it is necessary to add vari-

ables to be possible to identify where the base address of the virtqueue, the base address of the data

section are, as well as the ID of the virtqueue.

Chapter 3. VirtIO Interface 29

Driver GuestService Guest

0x1000 0x100 0 0

Address FlagsLength ID

0x
12

00

0x
11

00

0x
10

00

0x
13

00
0x

14
00

0x
15

00

0x
16

00

0x
17

00

Buffers

Virtqueues

Driver Guest Memory Space

Figure 3.3: Interaction between guests and data structures.

As presented in Figure 3.3 each virtqueue contains an array of descriptors describing the buffers:

1 s t r u c t p v i r t q _ d e s c {

2 u i n t 6 4 _ t a d d r ;

3 u i n t 3 2 _ t l e n ;

4 u i n t 1 6 _ t i d ;

5 u i n t 1 6 _ t f l a g s ;

6 } ;

Listing 3.3: Descriptor structure.

Chapter 3. VirtIO Interface 30

3.1.2 Tests

This initial implementation is the starting point when it comes to communication between two isolated

VMs. It is essential to ensure its correct functioning in order to move to the VirtIO implementation itself.

With this in mind, the following tests were performed using the QEMU. QEMU is an open-source software

that emulates one or more processors, allowing the virtualization of a system. This hypervisor is prominent

in the embedded world due to its ability to handle several architectures. An advantage of the QEMU’s usage

is its support of the aarch64 architecture, which is the CPU architecture in which this dissertation work is

implemented.

The first test consisted in guaranteeing that a message can travel from the driver guest to the service

guest. So it was created a simple message in the driver guest. The front-end driver stores it in the memory

and uses the implemented mechanism to transfer the data to the service guest. To guarantee the correct

functioning, the service guest prints the descriptor as well as data that it describes. It is crucial to print all

the descriptors values because a single corrupted parameter of a descriptor can lead to malfunctions even

if the data is correct. This happened in multiple tests because the size of the descriptor was wrong since

the memory addresses that are in the positions right after where the message is stored are not always

empty. This means that if the size is wrong, it can print rubbish after the message, which is a massive

problem when the goal is to send requests to a device. In some messages, it would not be possible to

notice the bug, but by printing the descriptor size it would be obvious. This allowed to correct a bug in the

mechanism.

To test the second implementation of this mechanism (the capacity to send data not only from the

driver guest to the service guest but also in the opposite direction) a new test was necessary. Its first part

is similar to the other test, but it is also crucial to test the transmission of data from the service guest to

the driver guest. Thus, it was executed the test explained before and on top of that every time the service

guest receives a new interrupt originated by a hypercall and it processes a descriptor, the service guest

puts a new message (”Successful operation”) in a different memory address. Afterward, the service guest

creates a descriptor containing this message’s information and stores the new descriptor in the memory.

Thereafter, the back-end notifies the driver guest by calling a hypercall. The driver guest receives the

interrupt that was generated by the hypercall, reads the new descriptor and reads the data. In the end,

the driver guest prints the message as well as the descriptor so that it is possible to check if the message

was received without errors and if the descriptor presents the correct values.

3.2 VirtIO

After establishing that it is possible to communicate between two virtual machines by using an interface

that is similar to VirtIO it is initialized the VirtIO’s interface implementation. As in the initial implementation

with shared memory and hypercalls, this implementation uses at least a service guest. It is possible that

there is more than one dedicated guest, this means that there can be more than one service guest where

Chapter 3. VirtIO Interface 31

each one contains the back-end driver for different devices. This implementation also allows a VM to have

front-end and back-end drivers at the same time. To simplify, the design and implementation that will be

presented only uses two VMs: the driver guest (front-end) and the service guest (back-end).

The following figures (Figure 3.4 and Figure 3.5) present the steps that are necessary to exchange

data between the two guests. The former, explains the view of the front-end and the latter presents the

view of the back-end.

With VirtIO it is possible to both transmit and receive data from a device by using different virtqueues.

The mechanism is similar for both virtqueues. However, when the goal is to send data from the driver

guest to the device, the driver guest creates a descriptor containing the information of the data (the address

where it is stored, length and flags). When the goal is to receive data from the device, the driver guest

creates a descriptor, which will describe a buffer with the maximum size possible for the device, since the

driver does not have the knowledge of how big the data is. Thence, the service guest is responsible for

reading the descriptor that was created by the driver guest and changing its values to describe the data

that the device sends to the driver guest.

The action starts in the driver guest by creating a zeroed descriptor (the only variable that is set is the

ID of the descriptor) and then storing the data in the memory. If the virtqueue’s goal is to receive data,

this last step is not taken. After that, the descriptor created is updated and then the flags are set. It is

necessary to make the descriptor available, so it can be read in the back-end driver. Then, the descriptor

is copied to the memory and some variables that are crucial to this mechanism are updated. The variable

next_avail is used to store the ID of the last descriptor that was made available by the driver guest and the

driver_wrap_counter is used to set the available and used flags of the descriptors. In the end, it is sent a

notification to the back-end.

The back-end will process the descriptor and if everything goes as expected, it sends an interrupt back

to the front-end. The device interrupt can be one of the following: Used Buffer Notification or Configuration

Change Notification. The first one, as the name indicates, is when the device has used a buffer in at least a

virtqueue. The second is used every time the configuration parameters of the physical device changes. To

know the goal of the interrupt it is necessary to read the register InterruptStatus. If bit zero of this register

is set, it means that it is a Used Buffer Notification. If bit one of the register is set, it is a Configuration

Change Notification.

Chapter 3. VirtIO Interface 32

Create descriptor

Put data in the memory

Init the descriptor

Set descriptor's flags

Put descriptor in the
memory

next_avail = next_avail + 1

next_avail = size of virtqueue next_avail = 0
driver_wrap_counter ^=1

Yes

Notify back-end
driver

No

Get descriptor from the
memory

Check descriptor's
flags

Read data from the
memory

next_used = size of virtqueue next_used = 0
driver_wrap_counter ^=1

Yes

No

next_used = next_used+ 1

End

InterruptStatus & 1 = 1
No

Yes

InterruptACK = InterruptACK | 1

Start

Notification from
the back-end

Figure 3.4: VirtIO main mechanism - front-end view.

In this case, the driver guest is waiting for a Used Buffer Notification. So, it is necessary to check if

the bit zero is set and then the driver guest gets the descriptor from the memory. Afterward, it reads the

flags of the descriptor to verify if the descriptor is used. If the goal is to receive data, the driver reads it

from the memory using the descriptor information. Then, the driver guest updates internal variables and

sets the bit of the event in the InterruptACK register, to notify the back-end, that the event that caused the

interrupt has been handled.

Chapter 3. VirtIO Interface 33

Get descriptor from the
memory

Check descriptor's
flags

Read data from the
memory

Put descriptor as used

next_avail = size of virtqueue next_avail = 0
device_wrap_counter ^=1

Yes

No

Notify back-end
driver

Device execution of the
request

next_avail = next_avail + 1

Notification from
the front-end

Figure 3.5: VirtIO main mechanism - back-end view.

As for the back-end view (Figure 3.5), when the front-end notifies the back-end, the first step is to get

the descriptor. Then, the service guest needs to check if the descriptor is actually available and if this

turns out to be true, it reads the data that the descriptor describes and marks the descriptor as used by

changing its flags. In the end, the service guest executes the request and finally, it notifies the front-end

driver. Note that the back-end driver only notifies the front-end when the device finishes its execution.

In the case of receive virtqueues, instead of reading data from the memory, the service guest stores

the data sent by the device in the memory, then updates the values of the descriptor with the information

of the data, puts it as used and notifies the front-end driver.

Chapter 3. VirtIO Interface 34

3.2.1 VirtIO Transport - MMIO

The hypervisor under which this dissertation is going to be implemented only supports MMIO, there-

fore, the transport will be implemented over MMIO. VirtIO devices that use MMIO provide a set of memory

mapped registers (previouly presented in Section 2.3.5). These registers are all 32 bits wide. The device-

specific configuration space can be accessed after the address offset 0x100. Here, it is possible to read

or write to the registers using 8 bit wide accesses for 8 bit wide fields, 16 bit wide accesses for 16 bit wide

fields and 32 bit wide accesses for 32 and 64 bit wide fields.

Each virtual machine that contains VirtIO devices can interact with their registers by accessing the

memory addresses after the virtual address (base address) defined in the configuration. When one of

these registers is accessed, it starts a mechanism of trap and emulation. There is a trap to the hypervisor,

which will stop the virtual machine and emulate the device and then, the hypervisor is in charge of updating

the value of the register according to the result of the operation. Section 3.2.5 explains this procedure in

depth.

3.2.2 Virtqueues

As explained in Section 2.3.4 there are two types of virtqueue layouts: Split and Packed. However, as

mentioned before in Section 2.3.4, the packed virtqueue layout was chosen due to the problems that the

split virtqueue has.

In the packed virtqueue both front-end and back-end drivers have a single-bit wrap counter initialized

to 1. The wrap counter maintained by the front-end driver is called Driver Wrap Counter and the wrap

counter maintained by the back-end driver is named Device Wrap Counter. The Driver Wrap Counter

changes its value every time the front-end driver makes the last descriptor available. The Device Wrap

Counter changes its value each time the back-end driver uses the last descriptor. The Driver Ring Wrap

Counter is equal to the Device Ring Wrap Counter when both front-end and back-end drivers are processing

the same descriptor, or when all the available descriptors have already been used.

To mark a descriptor as available or used the following flags may be used:

1 # d e f i n e V I RTQ_DESC_F_AVA I L (1 << 7)

2 # d e f i n e V IRTQ_DESC_F_USED (1 << 15)

To mark a descriptor as available, the front-end driver needs to set the bit VIRTQ_DESC_F_AVAIL in

the descriptor’s flags to match the Driver Ring Wrap Counter and set the bit VIRTQ_DESC_F_USED bit to

match the inverse value. This means that initially when the counter is 1, to make the descriptor available

the front-end driver needs to set the bit VIRTQ_DESC_F_AVAIL to 1 and the bit VIRTQ_DESC_F_USED to

0. When the Driver Ring Wrap Counter is 0, the procedure is the inverse, the bit VIRTQ_DESC_F_AVAIL

is set to 0 and the bit VIRTQ_DESC_F_USED to 1.

To mark a descriptor as used, the back-end driver needs to set the bit VIRTQ_DESC_F_USED in the

descriptor’s flags to match the internal Device Ring Wrap Counter and the bit VIRTQ_DESC_F_AVAIL gets

Chapter 3. VirtIO Interface 35

the same value. This means that initially when the counter is 1, to make the descriptor used, the back-end

driver needs to set both bits VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED to 1 and when the Device

Ring Wrap Counter is 0, the bits VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED are set to 0.

Therefore, if the bits VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED are different, it means that

the descriptor is available. If they are equal, it means that the descriptor is used.

To configure the virtqueues, the driver needs to carry out the following steps during initialization:

1. Initially, it is necessary to select the virtqueue by writing its index into the register QueueSel;

2. Then, it is essential to check if the virtqueue is not in use. To do that, the register QueueReady is

read and the value zero is expected;

3. After that, it is read the register QueueNumMax to get the maximum number of elements that the

queue can support. If the value is zero, it means that the queue is not available;

4. Now that it is known that the virtqueue is available it is crucial to allocate memory for the virtqueue

and zero it;

5. Afterward, the front-end writes the size of the virtqueue in the register QueueNum, so that the

back-end driver can know the size of the queue;

6. It is necessary to write the guest physical addresses of the virtqueue, the driver and device areas

into the pairs of registers QueueDescLow/QueueDescHigh, QueueDriverLow/QueueDriverHigh and

QueueDeviceLow/QueueDeviceHigh;

7. The final step is to put the register QueueReady to 1, to notify the back-end that it can execute the

request from this virtqueue.

3.2.3 Feature Bits Negotiation

The feature bits are essential to assuring compatibility between different versions of devices and

drivers. These features are negotiated using MMIO registers, where each bit represents a feature. For

instance, if the back-end driver has a new feature, the bit correspondent to this feature is set. If the front-

end driver is not recent and does not support this new feature, it will not write that bit back to the device

because it does not support the feature. The same happens in the opposite direction. If the front-end

driver has a new feature that the back-end does not support, the back-end will not offer this feature.

The feature bits are divided into three sections:

• 0 to 23: Feature bits for the specific device type. This means that the same bit has different

meanings according to the device type. For instance, the first bit in a console device is the bit

VIRTIO_CONSOLE_F_SIZE which means that a specific configuration (columns and rows) is valid,

while in a network device the same bit is VIRTIO_NET_F_CSUM which means that the device

Chapter 3. VirtIO Interface 36

supports packets with a partial checksum. These bits are usually used to indicate if some fields of

the device configuration space are going to be used;

• 24 to 37: Feature bits reserved for extensions to the queue and feature negotiation mechanisms.

These feature bits are device-independent feature bits, which means that they are equal for all types

of devices;

• 38 and above: Feature bits reserved for future extensions [24].

In this dissertation’s implementation, there are two mandatory feature bits. The VIR-

TIO_F_RING_PACKED and VIRTIO_F_VERSION_1. The first indicates that there is support for the packed

virtqueue layout and the second identifies if there is compliance with version one of the VirtIO’s specifica-

tion.

Every back-end of a VirtIO device offers the features that it supports to the front-end. During the

device initialization (Section 3.2.4), the front-end reads these features, compares with the ones that it is

compatible and sends back to the back-end the subset that it accepts. The only way to renegotiate is to

reset the device, so if there is a problem in this negotiation, it is not possible to use the device.

The front-end driver must not accept any feature that the device did not offer. Moreover, if the back-

end driver does not offer a feature that the front-end understands, then the front-end driver should go into

backwards compatibility mode. If not, it must stop the initialization and set the FAILED (128) device status

bit.

In what concerns the back-end driver, it should accept any subset of features that the driver accepts.

If this does not happen, it will fail to set the FEATURES_OK device status bit when the driver writes it and

when the driver re-reads it to confirm its value the bit is going to be zero and the driver concludes that the

negotiation failed.

Figure 3.6 presents the sequence of events that the front-end driver must follow to negotiate the feature

bits. To negotiate, the features needed are four 32-bit MMIO registers:

• DeviceFeatures - Flags that represent the feature bits that the back-end driver supports. By reading

this register, the front-end driver gets 32 consecutive features bits supported by the back-end. If

the last value written to the register DeviceFeaturesSel is 0, it gets the bits 0 to 31. If the register

DeviceFeaturesSel is 1, then it gets the feature bits 32 to 63;

• DeviceFeaturesSel - Register used to select which set of 32 bits of the feature bits will be returned

when reading the register DeviceFeatures;

• DriverFeatures - Flags that represent the feature bits that the front-end driver supports and accepts.

This register follows a mechanism similar to the register DeviceFeatures. If the last value written

to the register DriverFeaturesSel is 0, it gets the bits 0 to 31. If the register DriverFeaturesSel is 1,

then it gets the feature bits 32 to 63;

Chapter 3. VirtIO Interface 37

• DriverFeaturesSel - Register used to select which set of 32 bits of feature bits will be accessible by

writing to the register DriverFeatures.

Feature Negotiation

DeviceFeaturesSel = 0

Read the value of
DeviceFeatures, compare it
with the first 32 bits of the

feature bits supported by the
back-end driver, and save the

ones that are supported by
both drivers in a variable

DriverFeaturesSel = 0

Write the value of the
variable in the register

DriverFeatures

DeviceFeaturesSel = 1

Read the value of
DeviceFeatures, compare it
with the last 32 bits of the

feature bits supported by the
back-end driver, and save the

ones that are supported by
both drivers in a variable

DriverFeaturesSel = 1

Write the value of the
variable in the register

DriverFeatures

END

Figure 3.6: Feature Bits Negotiation executed by the front-end driver.

The first step of the negotiation is to put the register DeviceFeaturesSel as 0 and read the value of

the register DeviceFeatures that will return the 32 least significant bits of the feature bits the back-end

driver supports. Then, the front-end driver compares these bits with the 32 least significant bits of the

feature bits that the front-end supports and stores the intersection in a variable that will be written into the

register DriverFeatures right after putting the register DriverFeaturesSel as 0. After that, the same process

is executed, for the most significant 32 bits of the feature bits. For this, it is only necessary to put the

registers DeviceFeaturesSel and DriverFeaturesSel as 1 instead of 0.

Chapter 3. VirtIO Interface 38

3.2.4 Device Initialization

The initial stage of the initialization of a device is the same, whatever type it is. The specification defines

a set of operations that are crucial to make sure the driver guest initializes the device as it is supposed

to prevent errors. This stage is also important for compatibility issues, since it is here where the features

that will be used are defined. Figure 3.7 presents the steps that are necessary for the initialization.

Note the variable Status. This variable is the device status, which provides an indication of the device

initialization’s steps that were already concluded. To get the steps, the bits of the register should be read.

If the bit it is set means that the step was completed.

VirtIO Device
Recognition

Status <- DRIVER

Status <- ACKNOWLEDGE

Feature Negotiation

Status <- FEATURES_OK

Check if status is
FEATURES_OK

Device Specific Setup

Status <- DRIVER_OK

End

Status <- FAILED

If there is an error anywhere

Start

Figure 3.7: Device Initialization.

Chapter 3. VirtIO Interface 39

The bits that can be set are the following:

• If the first bit is set, ACKNOWLEDGE (1), it means that the guest found the device and it recognized

the device as a valid VirtIO device;

• The second bit, DRIVER (2), indicates that the guest has a driver compatible with the VirtIO device;

• The bit DRIVER_OK (4) specifies that the driver is ready to drive the VirtIO device;

• The bit FEATURES_OK (8) indicates that the driver has accepted all the features it understands and

that the feature negotiation is complete;

• The bit DEVICE_NEEDS_RESET (64) means that there was an error from which the device cannot

recover and it is necessary to reset the device;

• The bit FAILED (128) reveals that the guest has given up on the device since something went wrong

with it. It can be an internal error, a fatal error during the device operation, etc.

To initialize the device, the front-end driver must reset the device and right after that set the bit AC-

KNOWLEDGE (1) in the device status field to indicate that the OS has already noticed the device and

recognized it as a compatible device. Thereafter, the driver must set the bit DRIVER (2), meaning that

it can drive the device. After setting these two bits, it starts the feature negotiation, which is explained

in detail in Section 2.3.2. After this negotiation, the bit FEATURES_OK (8) is set if all the features were

understood and the feature negotiation was completed. Then, the device status is re-read to make sure

that the FEATURES_OK (8) bit is still set. Otherwise, it means that the device does not support the driver’s

subset of features, meaning that the device is unusable. Afterward, the driver performs a device-specific

setup, including the discovery of the virtqueues that will be used, reading and writing the configuration

space of the VirtIO device and populating the virtqueues. Finally, it is necessary to set the DRIVER_OK (4)

bit to indicate that the driver is set up and ready to be used. If any of the previous steps go irrecoverably

wrong, the driver must set the bit FAILED (128) and it can reset the device later if desired. In this case,

the initialization will stop and the device cannot be used [24].

3.2.5 Implementation

This VirtIO implementation does not use shared memory to store the descriptors and the buffers.

The driver guest allocates a memory region and the service guest access it. However, Bao’s original

implementation does not allow a VM to access to the memory of another VM. With this in mind, it was

necessary to change Bao’s code to allow a guest to access another guest’s memory region, meaning that

the memory isolation can disappear. This way, the service guest can access all the descriptors as well as

the buffers that are place in the driver guest’s memory.

Chapter 3. VirtIO Interface 40

The implementation was done to be possible to have the functions of the back-end driver and front-end

driver in the same files. This way this files can be used as a VirtIO library. For this reason, some of the

function that will be presented have the same name, but with the words “back-end” or “front-end” in it

because they have the same purpose. However, they manipulate different variables according to the driver

where they are being used.

Some structs are similar to the ones presented in Section 3.1.1. For instance, the struct pvirtq_desc

is exactly the same. However, there was the need to change the other structs, such as the virtio_device:

1 s t r u c t v i r t i o _ d e v i c e {

2 v o l a t i l e s t r u c t v i r t i o _ mm i o _ r e g *mmio_ reg ;

3 i n t v q_numbe r ;

4 d e v i c e T y p e _ e t y p e ;

5 i n t i r q _ f l a g ;

6 i n t d e v i c e _ f l a g ;

7 l o n g i d ;

8 u i n t 6 4 _ t f e a t u r e _ b i t s ;

9 u i n t 6 4 _ t n e g o t i a t e d _ f e a t u r e _ b i t s ;

10 c h a r d a t a [5 0] ;

11 c h a r r e c e i v e d _ d a t a [5 0] ;

12 } ;

Listing 3.4: VirtIO device structure.

In this struct, it was created a new variable (mmio_reg) to store the value of the MMIO registers in the

back-end driver or to access them in the front-end driver.

This implementation uses Bao’s IPC mechanism to notify the service guest when there is a new

descriptor. For that reason the variable irq_flag that is incremented every time the back-end receives an

interrupt from Bao was created. The back-end can also receive interrupts from the physical device, which

is why it was created a variable that is incremented every time the back-end driver receives an interrupt

from the device (device_flag).

Feature negotiation is essential to ensure the compatibility between different devices and VirtIO ver-

sions and implementations. There are two variables to be possible to negotiate the features bits. The fea-

ture_bits that contains the feature bits that the driver is compatible with and the negotiated_feature_bits

that will get the feature bits that were negotiated between the front-end and the back-end. Finally, the

back-end can receive data from the physical device, so it was necessary to create an array to store this

data (received_data).

The struct of the virtqueue is almost the same as the one presented in Section 3.1.1, but the two vari-

ables that refer to the memory addresses (shmem_queue_base and shmem_data_base) were replaced

by a new struct (vq_mem). This new struct also contains variables that define the size of the descriptor

and data sections, as well as the last address where the data of the current virtqueue was stored:

1 s t r u c t v i r t q {

2 l o n g u s e d _w r a p _ c o u n t ;

Chapter 3. VirtIO Interface 41

3 l o n g n e x t _ u s e d ;

4 l o n g a v a i l _ w r a p _ c o u n t ;

5 l o n g n e x t _ a v a i l ;

6 l o n g s i z e ;

7 s t r u c t vq_mem mem ;

8 l o n g queue_num_max ;

9 c h a r q u e u e _ r e a d y ;

10 s h o r t i d ;

11 /* D e s c r i p t o r s */
12 s t r u c t p v i r t q _ d e s c * d e s c ;
13 } ;

Listing 3.5: Virtqueue structure.

Moreover, it was necessary to add two new variables (queue_num_max and queue_ready) to store

the values that can be changed by the front-end driver, using the MMIO registers.

In the VirtIO implementation, the following functions were created:

• virtio_device_init - This function is the first to be called and it is responsible for the initialization of

the all variables of the device (struct virtio_device);

• virtio_front_end_mmio_init_before_config - This function is called in the front-end driver right after

the function virtio_device_init. It is in this function where the values of the registers MagicValue,

Version and DeviceID are checked. Furthermore, it is here where the function responsible for the

feature bits negotiation is called;

• virtio_front_end_mmio_init_after_config - This function is called after the definition of the config

space parameters. It is responsible for initializing the virtqueues, one by one, communicating with

the back-end using the MMIO registers associated with the virtqueues;

• virtio_back_end_mmio_init - The function that corresponds to the last two functions presented for

the back-end driver has the same purpose, initialize the device. However, this function only has

to clear the MMIO registers, set the MagicValue, the Version and the DeviceID to the appropriate

values and then initialize the virtqueues;

• virtio_front_end_queue_init and virtio_back_end_queue_init are the functions for the front-end and

back-end, respectively, which are responsible for the initialization of a virtqueue. These functions

are called every time it is necessary to initialize a new virtqueue. They both call a more generic

function (virtio_queue_init). However, in the back-end it is essential to clear the memory addresses

of the descriptors and data sections;

• virtio_front_end_feature_bits_negotiation and virtio_back_end_feature_bits _negotiation are used

for the feature bit negotiation. In the front-end driver, the function to negotiate the features is called

Chapter 3. VirtIO Interface 42

at the initialization. On the other hand, in the back-end, it is called when the register DriverFeatures

is accessed by the driver guest;

• virtio_front_end_mem_data_write and virtio_back_end_mem_data_write are the general func-

tions used to put a descriptor in the memory. The front-end is responsible for the creation of

new descriptors, so the front-end function is also responsible for the creation of a descriptor before

storing it in the memory. This is done using the function virtio_desc_init. The back-end driver will

only overwrite the descriptor that was created by the front-end and that is why it does not have to

create any descriptor;

• virtio_front_end_queue_desc_write and virtio_back_end_queue_desc_write are the functions

that set the flags of a descriptor and put it in the memory by calling the functions (vir-

tio_front_end_mem_desc_write and virtio_back_end_mem_desc_write). These functions are sim-

ilar except for the wrap count that is used (avail wrap count in the front-end and used wrap count

in the back-end), as well as the virtqueue counter (next_avail in the front-end and next_used in the

back-end).

In the end of the function it is necessary to notify the other guest that the process is concluded.

The front-end only needs to write the ID of the virtqueue that is being used in the QueueNotify

MMIO register and the back-end uses a VirtIO hypercall (will be explained later in Section 3.3.1) to

generate an interrupt to the driver guest:

1 # d e f i n e V IRT IO_NOT IFY_FRONT_END (d e v _ i d) v i r t i o _ h y p e r c a l l (d e v _ i d ,

0 , INTERRUPT_OP , 0)

2 # d e f i n e V IRT IO_NOT IFY_BACK_END (v q _ i d) d e v i c e −>mmio_reg −>

Q u e u e N o t i f y = v q _ i d

3

• virtio_front_end_queue_desc_read and virtio_back_end_queue_desc_read are equivalent to the

last two functions, but their goal is to read the descriptor instead of writing it. Both functions need

to verify the flags to guarantee that the descriptor was not corrupted or contains any error and then,

both of them read the data of the memory address that was received in the descriptor;

• virtio_front_end_mem_data_read and virtio_back_end_mem_data_read are in charge of copying

the data of the memory address that is in the descriptor to an internal space. After these functions,

the back-end can send this data to the physical device and the process is concluded.

Chapter 3. VirtIO Interface 43

3.2.6 Tests

After implementing the VirtIO interface, it was tested if the virtqueues were working as expected and

if the data was being transferred between two guest without suffering any problem in its integrity.

Therefore, two groups of tests were executed. The first group’s goal was to test the communication.

Initially, it was executed a test similar to the second test presented in Section 3.1.2. However, in this

test it is used not only a virtqueue but two virtqueues: the transmit virtqueue (to transfer data from the

driver guest to the service guest) and the receive virtqueue (to transfer data from the service guest to

the driver guest). The mechanism starts with the driver guest creating a message and a descriptor with

its information. Then, it puts the descriptor in the transmit virtqueue and notifies the service guest by

writing to the register QueueNotify. The service guest receives an interrupt and processes the descriptor.

Afterward, the service guest prints the message and descriptor to be possible to verify their content. After

that, it creates a new message and a new descriptor to test the other virtqueue. It puts the new descriptor

in the receive virtqueue and notifies the other guest. Finally, the driver guest prints the descriptor that is

in the receive queue as well as the message sent by the service guest.

It was essential to execute this test with multiple transmissions to make sure that the mechanism was

capable of queuing more than one descriptor in the virtqueue. An important issue in this test is the value

of the flags. It is essential to guarantee that their values are correct, especially the two flags that define if

the descriptor is available or used (VIRTQ_DESC_F_AVAI and VIRTQ_DESC_F_USED respectively).

The second group of tests was conducted after the complete success of the previous group of tests.

Their goal was to simulate a device behaviour by creating an internal array in the service guest which

receives requests from the driver guest. The driver guest can send messages to write or read a position of

the array. When the service guest receives an interrupt, it reads the descriptor from the transmit virtqueue

and processes the request. Thenceforth, it updates the array according to the operation and then sends

the value if the operation is to read or if the operation is to write a value, it sends a message declaring that

the operation was well succeeded. Finally, the service guest prints all the values of the array, to show that

the values were updated and the driver guest prints the message received from the service guest.

These two groups of tests were initially executed using QEMU to simulate the environment and then

using a Xilinx board, since the final goal is to run the VirtIO interface in this board. It was used the

Zynq UltraScale+ MPSoC. It combines feature-rich 64-bit quad-core processing system (PS) and a Xilinx

programmable logic (PL) UltraScale architecture in a single chip. Besides, it also includes an on-chip

memory, multiport external memory interfaces as well as a large set of peripheral connectivity interfaces

such as UART or ethernet (GEM).

When testing in QEMU, all the tests were well succeeded. However, when it was migrated to the board,

the system did not work. The issue was the cpu_idle that was implemented to power down the CPU. When

emulating in QEMU the CPUs are not physical and can not be powered down. When using the board, the

CPUs are powered down and their registers are lost. This means that when Bao puts a CPU in idle state,

it does not know the last executed instruction and the system fails. To solve this problem it was necessary

Chapter 3. VirtIO Interface 44

to change Bao’s code and instead of calling the function to power down the CPU it puts the CPU in the

wfi, i.e., waiting for interrupts, so that, the CPU never stops totally, only waits for a new interrupt, meaning

that the registers are intact and at the same time it does not execute any instruction until Bao sends an

interrupt.

3.3 VirtIO Integration on Bao Hypervisor

The final step is to implement VirtIO on Bao, because even though the VirtIO interface that deals with

the data is not implemented on the hypervisor, which is uncommon in many popular hypervisors, it is

needful to create compatibility. One of the aspects is the transport of the VirtIO. This hypervisor uses

MMIO as transport, so the VirtIO was implemented using MMIO.

Figure 3.8 exhibits VirtIO’s architecture. Both front-end and back-end drivers are located in VMs, not

in the hypervisor. Note that when using VirtIO, the service guest is the only VM that can directly access

physical devices. The mechanism allows the existence of back-end drivers and front-end drivers in the

same VM. However, the simplest scenario is when there is one service guest with all the back-end drivers

of all the devices that will be used.

Bao Hypervisor

System on a Chip

IO

CPU

Back-end Drivers

VirtIO's Dedicated
Guest/Service Guest

CPU CPU CPU

Front-end Drivers

RTOS/Driver Guest Linux/Driver Guest

Front-end Drivers

ApplicationsRT-Apps

Figure 3.8: VirtIO implementation on Bao.

When the front-end driver of a VirtIO device wants to access its MMIO registers, it reads or writes in

the correspondent virtual address. This generates a trap to the hypervisor that will process the action by

emulating the device.

Chapter 3. VirtIO Interface 45

The back-end driver can have one of two operation modes: polling or interrupts. The first mode,

polling, is constantly invoking VirtIO hypercalls to query the hypervisor if there was any new trap. The

second mode, interrupts, waits for an interrupt that is generated by the hypervisor.

When the hypervisor processes the action that generated the trap, it notifies the service guest and it

will read or write a register depending on the action. At the same time, the hypervisor puts the CPU that

runs the driver guest in the idle state, waiting for a response from the service guest. Then, the service

guest will use, once more, the VirtIO hypercall, this time to send the value of the register. After that, in

the case of a read, the hypervisor will put the value read, in the register of the front-end. Finally, the driver

guest can continue its execution until there is a new try to access to a MMIO register that belongs to a

VirtIO device.

Figure 3.9 presents the big picture of the mechanism used to implement VirtIO on Bao.

Bao Hypervisor

Device
Emulation

2

Hypercall cpu_idle

cpu_send_msg

4

7
5

8

System on a Chip

IO

CPU CPU

Service Guest

Driver Guest

Back-end Drivers MMIO

Front-end Drivers

1

36 9

10

Figure 3.9: VirtIO mechanism on Bao.

Chapter 3. VirtIO Interface 46

1. The front-end driver of the Driver Guest tries to access an MMIO register that belongs to a VirtIO

device;

2. After that, there is a trap to Bao that decodes the access and sends the information to the back-end

driver that emulates the device. Here, the hypervisor processes the information of the access and

updates the variables;

3. Then, the hypervisor notifies the service guest that there was an access to a VirtIO device’s MMIO

register. If the operation mode of the device is not by interrupts, the mechanism is slightly different.

Instead of a notification, the ID of the device is stored in a list of IDs and later the service guest

asks if there was any access;

4. The CPU should be put in the idle state until there is a response from the service guest. Although

it causes the system to be slower, it is essential that the guest waits while the device is being

emulated, otherwise, the system could fail;

5. Then, the service guest uses the VirtIO hypercall to request information regarding the guest access,

such as the access address, if the access was a read or write, width of the access, etc.;

6. The hypervisor receives the hypercall and returns all the information necessary to the service guest,

which will process that data and act accordingly;

7. Afterward, the service guest uses the hypercall again to send back to the hypervisor the value of

the register that was accessed by the driver guest in case of a read or just a confirmation in case

of a writing;

8. After that, it is necessary to ”wake up” the other CPU (the one that was running the driver guest

and it is currently in the idle state). For that, it is used the function cpu_send_msg;

9. The register that was accessed must now be updated so that the driver guest can continue its

execution;

10. Finally, the front-end driver reads the value of the register and continues the execution as if nothing

happened.

3.3.1 Implementation

This section goes through the steps that were taken to make Bao compatible with the VirtIO interface.

It will be explained the mechanism presented before taking into account Bao’s infrastructure.

Foremost, it was necessary to create parameters to enable configuring everything that is necessary to

use VirtIO on Bao. These parameters are divided into two groups: one for the general config and one for

the config of each virtual machine.

Chapter 3. VirtIO Interface 47

The first group is in charge of the description of the VirtIO devices that will be used in the entire system.

This means that it has to define the number of devices as well as information of the shared memory if

they use it.

If there is the need to use shared memory to store the virtqueues and the data that they describe, of

a device, the following parameters must be set:

• shmem_id: to define what is the shared memory ID that is going to be used;

• shmem_base: that defines what is the physical address where the shared memory starts;

• shmem_size: to define the size of the shard memory.

The second group is in charge of the configurations necessary for each VM, such as:

• va: to define the virtual address that is going to be used to access the MMIO registers of the device;

• size: to determine the size of the MMIO region (usually 0x200);

• interrupt: to set the interrupt that is going to be generated. It is only required for the back-ends and

only has significance when the parameter polling is not true;

• device_id: to choose which device the VM is going to use;

• is_back_end: to specify if the VM is going to contain the VirtIO back-end driver for the VirtIO device

that corresponds to the device_id;

• polling: to delineate if the execution mode is going to be polling or by interrupts. This parameter is

only required for the back-ends.

With this in mind, the following structure was created to group all the parameters necessary to configure

the VirtIO:

1 s t r u c t v i r t i o d e v i c e {

2 u i n t 6 4 _ t shmem_id ;

3 u i n t 6 4 _ t shmem_base ;

4 s i z e _ t shmem_s i z e ;

5

6 u i n t 6 4 _ t v a ;

7 s i z e _ t s i z e ;

8 i r q i d _ t i n t e r r u p t ;

9 u i n t 3 2 _ t d e v i c e _ i d ;

10 i n t f r o n t e n d _ i d ;

11 i n t b a c k e n d _ i d ;

12 b o o l i s _ b a c k _ e n d ;

13 b o o l p o l l i n g ;

Chapter 3. VirtIO Interface 48

14 } ;

Listing 3.6: VirtIO device configuration structure.

Note the existence of two parameters that were not explained (frontend_id and backend_id). These

two parameters can be defined in the config, although not recommended since it can be more prone to

errors. Each device must have a back-end driver and a front-end driver. These two variables contain the

ID of the virtual machine where the front-end driver and the back-driver are located. If the user defines

these parameters, their values will be checked in the initialization and then, if the VMs that were chosen

do have the front-end and back-end drivers of the same device, the initialization will continue. Otherwise,

an error will be generated.

If these parameters are not configured, they will be generated automatically in the initialization by the

function virtio_linkage_init. To do this, it is necessary to go through the config and search for all the VMs

that have VirtIO devices. Then, in each VM it is checked the config parameter is_back_end for each device

and if this variable is true then the parameter backend_id is updated to the ID of the VM. Though, if the

variable is_back_end is false or not defined in the config, the parameter frontend_id gets the value of the

VM’s ID.

Below, there is an example of the first part of the configurations needed to use the VirtIO on Bao. This

configuration uses two VirtIO devices that use shared memory to store both the virtqueues and the device

data.

1 . v i r t i o d e v i c e l i s t _ s i z e = 2 ,

2 . v i r t i o d e v i c e l i s t = (s t r u c t v i r t i o d e v i c e []) {

3 [0] = {

4 . shmem_id = 0 ,

5 . shmem_base = 0 x70000000 ,

6 . s hmem_s i z e = 0 x00020000

7 } ,

8 [1] = {

9 . shmem_id = 1 ,

10 . shmem_base = 0 x70030000 ,

11 . s hmem_s i z e = 0 x00020000

12 }

13 }

Listing 3.7: Bao VirtIO device configuration.

Inside the configuration of the service guest, it is crucial to configure the two devices. Since this is the

VM where the back-end drivers of both devices are placed, it is necessary to put the parameter is_back_end

as true. As it is noticeable in the excerpt of code below, the device zero operates with interrupts, using the

interrupt fifty-two, whilst the device one operates by polling and because of that the parameter polling is

true in this device.

1 . v i r t i o d e v i c e s _ n u m = 2 ,

Chapter 3. VirtIO Interface 49

2 . v i r t i o d e v i c e s = (s t r u c t v i r t i o d e v i c e []) {

3 {

4 . d e v i c e _ i d = 0 ,

5 . i s _ b a c k _ e n d = t r u e ,

6 . i n t e r r u p t = 52 ,

7 } ,

8 {

9 . d e v i c e _ i d = 1 ,

10 . i s _ b a c k _ e n d = t r u e ,

11 . p o l l i n g = t r u e

12 }

13 }

Listing 3.8: VirtIO device configuration for the service guest.

As for the driver guest, it is only needed to configure the size of the MMIO region of the device, choose

the device ID and, finally, define the virtual address that will be used to access the MMIO registers:

1 . v i r t i o d e v i c e s _ n u m = 2 ,

2 . v i r t i o d e v i c e s = (s t r u c t v i r t i o d e v i c e []) {

3 {

4 . s i z e = 0 x200 ,

5 . d e v i c e _ i d = 0 ,

6 . v a = 0 x1200000

7 } ,

8 {

9 . s i z e = 0 x200 ,

10 . d e v i c e _ i d = 1 ,

11 . v a = 0 x1202000

12 }

13 }

Listing 3.9: VirtIO device configuration for the driver guest.

Configuration explained, it is time to pass to the initialization. In the initialization, Bao runs several

functions that allow the proper initialization of the VirtIO’s mechanism. The first, virtio_linkage_init is in

charge of linking the VirtIO back-end drivers with front-end drivers as well as creating a list of devices

(virtiodevicelist) that is crucial to the mechanism. Each element of this list contains the following struct:

1 s t r u c t v i r t i o d e v i c e p a r a m s {

2 n o d e _ t node ;

3 u i n t 6 4 _ t i d ;

4 u n s i g n e d l o n g r e g _ o f f ;

5 u n s i g n e d l o n g a c c e s s _ w i d t h ;

6 u n s i g n e d l o n g op ;

7 u n s i g n e d l o n g v a l u e ;

8 u n s i g n e d i n t c p u _ i d ;

Chapter 3. VirtIO Interface 50

9 u n s i g n e d i n t s g _ c p u _ i d ;

10 u n s i g n e d l o n g r e g ;

11 } ;

Listing 3.10: Structure with the parameters of a VirtIO device in Bao.

This struct incorporates all the parameters that will be used in the mechanism. The device ID, the

reg_off that gives the offset of the MMIO register that was accessed, the access_width that indicates what

was the width of the access to the MMIO register. This parameter is essential to detect errors because

VirtIO MMIO only allow 4-byte wide and aligned accesses. Furthermore, the struct contains the operation,

this is, if the access is a write or a read. The value is used to store the value that was written in the case

of a write and to receive the value of the register that the service guest sends in case of a read. This

struct also stores the ID of the CPU that accessed the MMIO register, as well as the service guest CPU ID

(sg_cpu_id). This parameter is used to identify the CPU where the service guest is running in order to be

possible send messages to it. Finally, the ref is used to store the CPU register that was used to store the

value of the MMIO register.

It is in the function virtio_linkage_init where the pollingdevicelist, a list that contains the IDs of the

devices that operate by polling that got a MMIO register accessed, is created. Meaning that every time a

front-end of a device that does not use interrupts access to a MMIO register, Bao will not inject an interrupt

to the service guest. Instead, it will store the device ID in this list and the service guest will ask if there

was an access to the MMIO registers.

While the function virtio_linkage_init runs only in the CPU master, which means that is executed in

just a CPU, every function of the initialization from now on is executed in all the CPUs.

Afterward, it is executed the function vm_init that runs the initialization of a VM. Here is called the

function vm_init_virtio that verifies if the VM contains any VirtIO device. If that is true, it will copy some

information from the config, such as the number of VirtIO devices that are in the VM and the devices’ configs

themselves, to a struct that stores information of the VM. Then, it will go through the devices of the VM and

create an emulation object for each of them. This is what makes it possible to emulate the device every time

a driver guest tries to access an MMIO register. Finally, it is called the function virtio_serviceguest_cpu_init

that is responsible for updating the parameter sg_cpu_id of the virtiodevicelist with the value of the CPU’s

ID that is running the function. This is the end of the initialization of the VirtIO’s mechanism on Bao.

Now that the mechanism is set to go, the virtual machines will start their execution and when a driver

guest tries to access an MMIO register that belongs to a VirtIO device a trap is generated to Bao. That is

when the execution goes from the VM to the hypervisor that will process the access and then it will run

the function virtio_mmio_emul_handler which is the handler for every access to the MMIO register that

belongs to VirtIO devices. This handler receives a struct containing information about the access, such as

if it was writing or reading the value of the register, the width of the access, the register offset, etc.

At the beginning of the function, it walks through the list of VirtIO devices of the virtual machine defined

in the configuration and checks if the address that was accessed actually belongs to a VirtIO device that

Chapter 3. VirtIO Interface 51

was correctly initialized. If it does not turn out to be true, it means that something went wrong and the

function returns. If the device was found, it is necessary to copy the data of the access received in the

function (CPU ID, register offset, CPU register that was used, operation and value) to the correspondent

device in the virtiodevicelist. If the driver guest tried to write the register then it is necessary to read the

value. If not, the parameter value is 0. In the end, is created a CPU message (cpu_msg) to inform the

CPU that is running the service guest, that something happened. The message created needs an ID to

identify the message as a VirtIO CPU message (VIRTIO_CPUMSG_ID). It is important to check the mode

of operation of the device (interrupts or polling). This will change the type of event that is going to be

generated (VIRTIO_NOTIFY_SG in the case of using interrupts and VIRTIO_NOTIFY_SG_POLLING in the

case of not using interrupts). In the end, it is sent the CPU message and then the CPU enters in idle

state. This is imperative, the CPU that runs the driver guest must enter an idle state and wait for a CPU

message.

Now, in the CPU that runs the service guest, it is received a CPU message with the VIR-

TIO_CPUMSG_ID. This ID is connected to a function, virtio_handler, that will handle all the CPU messages

associated with VirtIO. This function receives two parameters: the event that is defined in the creation of

the CPU message and will be used to choose the function that will be called and the data that is the ID of

the VirtIO device.

1 s t a t i c v o i d v i r t i o _ h a n d l e r (u i n t 3 2 _ t e v e n t , u i n t 6 4 _ t d a t a)

2 {

3 s w i t c h (e v e n t) {

4 c a s e V I R T I O_NOT I F Y _SG :

5 v i r t i o _ n o t i f y _ s e r v i c e g u e s t _ h a n d l e r (d a t a) ;

6 b r e a k ;

7 c a s e V I R T IO_NOT I F Y_SG_POLL ING :

8 v i r t i o _ i n s e r t _ t o _ p o l l i n g _ q u e u e (d a t a) ;

9 b r e a k ;

10 c a s e V I R T IO_READ_NOT I F Y :

11 c a s e V I R T I O_WR I T E_NOT I F Y :

12 v i r t i o _ c p u _ m s g _ h a n d l e r (e v e n t , d a t a) ;

13 b r e a k ;

14 }

15 }

Listing 3.11: Bao function that handles CPU messages.

In this case, the event can be VIRTIO_NOTIFY_SG or VIRTIO_NOTIFY_SG_POLLING. The first calls a

function that using the ID of the devices gets the ID of its interrupts and then, if it was defined in the config,

it is injected into the service guest. The second event, calls a function that pushes the ID of the device

into the list pollingdevicelist.

At this moment, the execution goes back to the service guest. If the VirtIO uses interrupts, when the

interrupt associated with the device is injected, it is incremented a flag and it will be called a function

Chapter 3. VirtIO Interface 52

named *type of device*_mmio_callback_handler. If the device does not use interrupts, from time to time

it will call a function that uses a hypercall with the operation POLLING_OP (3) to check if there was any

access to a MMIO register.

To simplify the use of the hypercall, it was created the virtio_hypercall, which has as parameters the

ID of the device, the offset of the register, the operation and the value. It returns all these values plus the

width of the access. This way, it can support every hypercall use that is required.

In what concerns polling, the use of the virtio_hypercall is simple. The ID of the device is unknown,

so the only parameter that is not zero is the operation.

1 v i r t i o _ h y p e r c a l l (0 , 0 , POLLING_OP , 0) ;

If there is a new access that must be processed, the hypercall will return the ID of the device as well

as the offset of the register that was accessed, the operation (write or read) and the value in the case of a

writing. After that, it is called the function *type of device*_mmio_callback_handler. Otherwise, it will get

out of the function and repeat the procedure.

If the device uses interrupts, the first step is to use a hypercall to query Bao what has happened. This

operation will give the necessary information to the service guest to process the access. This is done by

using the operation ASK_OP (2).

The use of the hypercall is presented below. It is necessary to send as a parameter the ID of the device

in question and the operation ASK_OP. The other parameters must be zero.

1 v i r t i o _ h y p e r c a l l (d e v i c e . i d , 0 , ASK_OP , 0) ;

The return is the same as when is used the operation POLLING_OP (3).

At this point, using interrupts or not, the procedure becomes the same. The service guest processes

the values that were returned by the hypercall, executes the actions that are required and then, the service

guest uses the hypercall, again, to send back the value of the register in case of a reading and to notify

the driver guest in case of a writing. This time, the operation that is sent to the hypercall is WRITE_OP (0)

or READ_OP (1).

The use of the hypercall for these operations is demonstrated below.

1 v i r t i o _ h y p e r c a l l (d e v i c e . i d , d e v i c e . r e g _ o f f , d e v i c e . op , d e v i c e . v a l u e) ;

Now, moving on to the explanation of what can be the most crucial part of the mechanism, the VirtIO’s

hypercall. Every time the hypercall is called in the service guest, the execution changes to the hypervisor

and it calls the function hvc64_handler that will read the type of hypercall and as this hypercall is a VirtIO

hypercall, it redirects the execution to the function virtio_hypercall that is the handler to VirtIO hypercalls

on Bao.

At the beginning of the function, Bao gets all the variables sent by parameter using the CPU’s registers:

1 u n s i g n e d l o n g r e t = −HC_E_SUCCESS ;

2 u n s i g n e d l o n g d e v _ i d = cpu . vcpu −> r e g s −> x [1] ; // D e v i c e I d

3 u n s i g n e d l o n g r e g _ o f f = cpu . v cpu −> r e g s −> x [2] ; // MMIO r e g i s t e r o f f s e t

4 u n s i g n e d l o n g op = cpu . v cpu −> r e g s −> x [3] ; // O p e r a t i o n

Chapter 3. VirtIO Interface 53

5 u n s i g n e d l o n g v a l u e = cpu . v cpu −> r e g s −> x [4] ; // R e g i s t e r v a l u e

After that, there is a switch case that sets the code that is executed according to the operation

(WRITE_OP, READ_OP, ASK_OP, POLLING_OP or INTERRUPT_OP). If the operation that was sent as

a parameter was POLLING_OP, it is checked if the ID of the device is zero and if that is true and there is

at least one element in the list pollingdevicelist, it is removed an item from the list and it is updated the

variable dev_id with the ID that was in the removed item. Thereafter, the execution continues to the section

of the operation ASK_OP. Thus, when it is used the operation POLLING_OP, it is also used the operation

ASK_OP consequently. In the section that belongs to the operation ASK_OP, it is confirmed both reg_off

and value are zero. If this turns out to be false, then is returned a failure value. Otherwise, it looks for the

device in the virtiodevicelist and then updates the values of the CPU registers that are used to send data

from the hypervisor to the service guest, with the values of the list’s element (dev_id, reg_off, op, value

and access_width). In the case of the operation being both WRITE_OP or READ_OP, the procedure is the

same. Firstly, it is called the function virtio_hypercall_w_r_operation. This function is responsible for the

update of the device’s parameter value of the list of devices (virtiodevicelist). If it returns false, it means

that there was an error and the hypercall returns a failure value. If it returns true, it means that everything

went as expected and then it is sent a CPU message to the CPU that originated the trap.

This CPU message is received in the function virtio_handler that redirects to the function vir-

tio_cpu_msg_handler. This function is the final step. In the case of a writing, it will only wake the CPU, so

that it can proceed. If the operation is a reading, it will write the value that was sent by the service guest

to the register, so the driver guest can read the register’s value and proceed with its execution.

3.3.2 Tests

After the integration of the VirtIO on the Bao hypervisor, the interface is almost ready to support

any type of VirtIO device. For this reason, this section presents not only the tests of the mechanism

implemented in the hypervisor, but also the final tests of the interface. These tests were conducted both

in QEMU and in the Xilinx board.

Initially, Bao’s VirtIO mechanism was tested. The different parts of the mechanism were tested in-

dividually and posteriorly, a test with all the components together was executed. Thereby, the first test

purpose was simply to check the added configuration parameters. It consists of creating a configuration

file, defining the parameters associated with the VirtIO and then printing their values on Bao’s initialization

to ensure they are correct.

Thereafter, it was tested the emulation of a VirtIO device. A simple code was created in the handler of

the emulation for VirtIO devices that prints information of the access, including the value that was written

in the case of a writing, the CPU register that was used and the length of the access that are essential

for the mechanism. Every time the driver guest tries to access an MMIO register that belongs to a VirtIO

device, there is a trap to Bao and it calls this function that allows the tracking of the access values. After

this simple test it was executed a new test but this time, the goal was not to verify if the access was done

Chapter 3. VirtIO Interface 54

in the right way, but to check if Bao can update the register that the driver guest tried to access. Thus, at

the end of the handler, it is called a function that writes a value to the CPU register that was used by the

driver guest. Then, the driver guest prints the value of the register to make sure that the register’s value

was updated.

The final test in what concerns the emulation stage was to put the CPU in idle state. The most

important part of this test is to guarantee that the values of all CPU registers are the same the moment

before and after the idle. If this turns out to be false, it can produce massive chaos in the driver guest.

The next step was to test the communication between CPUs using the cpu_msg and the communi-

cation between the service guest and Bao through the VirtIO hypercall. The test of the cpu_msg was to

create a CPU message, call the function cpu_msg and print a message in the handler of the other CPU

to verify that the communication was well succeeded. The hypercall test consisted of multiple calls using

different arguments and confirming that its return was correct.

The final test was the verification of the entire mechanism. With this in mind, it was created a test that

could verify all the stages from the virtqueues, to the handle of accesses to MMIO registers, or hypercalls.

Hence, in this test, the driver guest starts by initializing two virtqueues (transmit virtqueue and receive

virtqueue) using the correspondent MMIO registers. This stage allows the handle of MMIO registers’

verification as well as the verification of the service guest’s mechanism to deal with these accesses.

Afterward, the driver guest creates a message and a descriptor to contain information about it. After

updating the descriptor’s data with the information and flags that describe the message, it stores the

descriptor in the transmit virtqueue. Then, it notifies the service guest by writing the ID of the virtqueue in

the register QueueNotify. The service guest receives an interrupt derived from the access to the register

and starts processing the last descriptor. After the processing, the service guest puts the descriptor as

used and uses a hypercall to notify the driver guest, which will receive a device event where it can process

the descriptor. At this stage, both communication using virtqueues and the emulation of the device were

tested. After verifying that the entire mechanism is working as expected, it is time to apply it to a specific

device.

4. VirtIO Devices

In this chapter, it is explained the VirtIO devices and its implementation. The implementation of these

devices needs to be used in cooperation with the VirtIO interface presented before and these drivers are

the connectors between the VirtIO interface with the physical devices’ device drivers.

The first section of this chapter is focused on the VirtIO-console that was implemented as a way to test if

the VirtIO interface was actually working as supposed, since it is a device with a simple and straightforward

implementation. Furthermore, there was already an implemented driver for the physical console device.

The second section presents the VirtIO-net which is the main goal of this dissertation. It has a lot of

similarities with the VirtIO-console specially in the way that the accesses to MMIO registers that belong

to VirtIO devices are handled. However, its implementation is more challenging and besides that, it was

necessary to implement a new driver for the physical device which added some difficulty when comparing

with the VirtIO-console implementation.

4.1 VirtIO-Console

VirtIO-Console is a straightforward device for data input and output. This device may have one or more

ports and each port has a pair of virtqueues, one for input and the other for output, used to exchange

information between the front-end and back-end drivers. The first port (port 0) is mandatory and it is only

possible to use more ports if the VIRTIO_CONSOLE_F_MULTIPORT bit is set. Furthermore, it has a pair

of control virtqueues that are responsible to exchange information about configuration changes.

Figure 4.1 presents the VirtIO-console architecture. To send data, the front-end driver enqueues outgo-

ing characters into the transmitting virtqueue (1) which will be read by the back-end driver (2). To receive

data, it stores empty descriptors into the receiving virtqueue (3). Then, the back-end driver uses these

empty descriptors to store information about the information received (4). By accessing the receiving

virtqueue, the front-end can read the data received (5).

55

Chapter 4. VirtIO Devices 56

Service Guest Driver Guest

Front-end DriversBack-end Drivers

Guest Memory

Receiveq

Transmitq

Descriptors

Empty
Descriptors

1
2

3
4

5

Figure 4.1: VirtIO-console.

This device can support three device-specific feature bits (VIRTIO_CONSOLE_F_SIZE, VIR-

TIO_CONSOLE_F_MULTIPORT and VIRTIO_CONSOLE_F_EMERG_WRITE). This back-end driver will not

support any of these features, as its only purpose is to verify if the VirtIO interface can deal with a simple

device.

The console device has the following variables that can be configured by using the config space:

• Number of columns;

• Number of rows;

• Number of the maximum number of ports;

• Emergency write.

However, they are only valid if the correspondent feature bits are set. The size of the console (number

of columns and rows) is only supplied if the bit VIRTIO_CONSOLE_F_SIZE is set, the maximum number

of ports can only be defined if the bit VIRTIO_CONSOLE_F_MULTIPORT is set. Otherwise, it is used only

one port. Furthermore, if the feature bit VIRTIO_CONSOLE_F_EMERG_WRITE is set, the front-end driver

can use the emergency write to send a single character without requiring the initialization of virtqueues.

4.1.1 Implementation

Initially, it was created the back-end driver to support the VirtIO-console device to allow testing the

interface created with a real device. At first, only the front-end driver was created. By emulating the

Chapter 4. VirtIO Devices 57

interface with QEMU, it is possible to use its VirtIO-console back-end driver, which is ideal since it has a

great level of compatibility. In the initial stage, the hypervisor was not used. It was only used a single

bare-metal: the driver guest. This way, it was possible to create the first functional front-driver of the

VirtIO-console.

The second step was to use the front-end (already tested with the back-end driver provided by QEMU)

and implement a back-end driver for the VirtIO-console in the service guest. This stage required the

integration of VirtIO with Bao, explained previously in Section 3.3.

The final step was to use the service guest with the VirtIO-console back-end driver with a Linux guest.

This is the most important stage because Linux is truly popular in the embedded world and it is essential

that the VirtIO interface is compatible with it.

For the implementation of the VirtIO-console back-end driver, it was created a structure to group all

the information the VirtIO-console device needs. The virtio_console groups the virtqueues (two for data

transmission and two for control purposes) and the virtio_device that contains all the data of the VirtIO

device. This structure also incorporates the struct config_space that includes the values of the config

space parameters:

1 s t r u c t v i r t i o _ c o n s o l e

2 {

3 s t r u c t v i r t q r e c e i v e q ;

4 s t r u c t v i r t q t r a n s m i t q ;

5 s t r u c t v i r t q c o n t r o l _ r e c e i v e q ;

6 s t r u c t v i r t q c o n t r o l _ t r a n s m i t q ;

7 s t r u c t v i r t i o _ d e v i c e d e v i c e ;

8 s t r u c t v i r t i o _ c o n s o l e _ c o n f i g c o n f i g _ s p a c e ;

9 } ;

Listing 4.1: VirtIO-console structure.

Despite not being used, as the feature bits that enable these parameters are not supported by this

driver, the struct virtio_console_config was created to store the parameters of the config space. This struct

is an essential part for the future work of this driver:

1 s t r u c t v i r t i o _ c o n s o l e _ c o n f i g

2 {

3 u i n t 1 6 _ t c o l s ;

4 u i n t 1 6 _ t r ow s ;

5 u i n t 3 2 _ t m a x _ n r _ p o r t s ;

6 u i n t 3 2 _ t eme r g_w r ;

7 } ;

Listing 4.2: VirtIO-console configuration space struture.

Several functions were implemented to handle the interrupts, one for each virtqueue:

1 s t a t i c v o i d v i r t i o _ c o n s o l e _ r e c e i v e q _ h a n d l e r (v o i d) ;

2 s t a t i c v o i d v i r t i o _ c o n s o l e _ t r a n s m i t q _ h a n d l e r (v o i d) ;

Chapter 4. VirtIO Devices 58

3 s t a t i c v o i d v i r t i o _ c o n s o l e _ c o n t r o l _ r e c e i v e q _ h a n d l e r (v o i d) ;

4 s t a t i c v o i d v i r t i o _ c o n s o l e _ c o n t r o l _ t r a n s m i t q _ h a n d l e r (v o i d) ;

Listing 4.3: VirtIO-console handlers.

Besides the functions that were already presented, it was implemented the function vir-

tio_console_mmio_callback_handler. This is one of the most crucial functions of the VirtIO-console im-

plementation, since it is in charge of reacting to the accesses of the MMIO registers that belong to this

VirtIO device.

Every time there is a new access to a MMIO register, there is a trap to the hypervisor that will notify the

service guest. Then, the service guest calls this function that starts by communicating with the hypervisor

to get information about the access. After that, it needs to check if the access actually means something

and if it was done in the correct way. For that, it checks if the width of the access is superior to four or

equal to one or three, which indicates there was an invalid access. It checks if the width of the access is

less than four and at the same time if the offset is less than 0x100 (for offsets lower than 0x100 all the

accesses must be of four bytes and if this does not happen, the access is invalid). Finally, it checks if

the offset of the register is greater than 0x200, which means that the access does not have any meaning

because the MMIO registers are under the offset 0x100 and the config space ends before the offset 0x200.

If any of these tests detect an error, the service guest stops the execution and sends a notification to the

driver guest, so that the error can be perceived. Afterward, the execution is divided in two parts. The

first, is where the config space accesses are handled. Here it is possible to receive two type of accesses:

16 and 32 bits, with register offsets higher than 0x100. The second part is where the rest of the MMIO

registers, with an offset that is lower than 0x100, are handled. This second part is the most laborious due

to the large amount of different operations that are necessary to be executed according to the register that

was accessed.

The second part of the function virtio_console_mmio_callback_handler can also be divided into two.

The first one is when the driver guest tries to read a register. Here, the only procedure that is done is reading

the value of the register and then use a VirtIO hypercall to send the value to the hypervisor. However, there

is one exception, the register DeviceFeatures. When the register DeviceFeatures is accessed, it is required

to check the value of the register DeviceFeaturesSel to understand if the driver guest wants to read the 32

most significant bits or the 32 less significant bits. After that, it is sent the value of the 32 bits that the

driver guest choose.

The second part of the function’s second stage occurs when the driver guest tries to write to a register.

When this happens, the service guest gets the value that the driver guest wants to write and updates the

value of the register, unless it is part of the registers that require a special operation when accessed. The

first register that has a special operation is the DriverFeatures. When the driver tries to write to this register,

the service guest needs to compare the bits with the feature bits that it supports. If the subset sent by the

front-end is contained in the feature bits the service guest contains, a variable named verification gets the

value true, if not it is false. This variable is used when the driver guest wants to write to the register Status

Chapter 4. VirtIO Devices 59

the bit FEATURES_OK. This happens in the end of the feature negotiation. If the service guest did not

support the subset of feature bits the driver sent, the negotiation was not well succeeded and the device

initialization cannot proceed. So, if the variable verification is false and the driver guest tries to set the bit

FEATURES_OK of the register Status the service guest does not allow it.

If the register QueueNotify was accessed, it is called the function to handle a new available descriptor.

Then, there are the registers that associated to the virtqueues (QueueSel, QueueNum, QueueDescLow

and QueueDescHigh). When a queue is selected by writing an ID into the register QueueSel, it is crutial

to update instantly the registers QueueReady and QueueNumMax. When the register accessed is the

QueueNum, it is necessary to change the value of the virtqueue’s size according to the one that was

chosen. In what concerns the access of the registers QueueDescLow and QueueDescHigh, it is obligatory

to change not only the registers but also the value of the descriptor base of the virtqueue that was selected,

taking into account that each of these registers represent only 32 bits off the physical address that is used

in the service guest.

When it comes to the interacting with the physical device, it is called a uart function to put a character.

Every time the register QueueNotify is accessed, meaning that there is a new available descriptor to handle,

it is called the function uart_putc that takes a character and sends it to USART physical device, repeatedly

until the end of the data. It is possible to know the end of the data by accessing to the descriptor’s

parameter length. To receive data from the physical device, it is used the device interrupt handler. When

there is a uart interrupt, it means that the physical device receive a character. So, the interrupt handler

gets the character by using the function uart_irq_getchar and stores it in an array. When the character is

a ’\0’ which is a string terminator, it is activated a flag to send the string to the front-end. Afterward, the
first available descriptor in the virtqueue is updated and the string is copied to address that is defined by

the descriptor. Finally, the front-end is notified so that it can process the received data.

4.1.2 Tests

Initially, it was created the front-end driver. To test it, it was used the VirtIO-console back-end driver

provided by QEMU. This test does not use Bao, it is simulated only a bare-metal. When the driver guest

access a MMIO register that belongs to the VirtIO-console device, the QEMU’s back-end takes control of the

execution and handles the access. Two virtqueues were created and all the stages of the device initialization

were tested. To verify if the device was working as expected, the driver guest created a message, stored

it in the memory and created a descriptor to describe it. After putting it in the transmit virtqueue it wrote

the virtqueue’s ID into the register QueueNotify to notify the QEMU’s back-end driver that there is a new

buffer to be processed in the virtqueue. The back-driver processed the access, read the descriptor and

then printed the message in the physical console device that is associated with the VirtIO-console device.

Therefore, it was possible to check if the VirtIO-console front-end driver was well implemented by comparing

the message printed with the message that was created in the driver guest.

Chapter 4. VirtIO Devices 60

After the first test, with the front-end driver already tested, the VirtIO-console back-end driver’s im-

plementation started. Before testing the back-end driver, it was indispensable to test the driver of the

physical device, since the back-end driver calls its functions. This test and the following ones use the Bao

hypervisor and they were executed in the Xilinx board as they do not have any QEMU’s dependencies.

After testing the functions responsible for sending and receiving data, it was tested the back-end driver

implementation. To test the back-end driver, two bare-metal guests (service guest and driver guest) were

run with the Bao hypervisor. The service guest incorporates the VirtIO-console back-end driver and the

driver guest integrates the VirtIO-console front-end driver, previously implemented and tested. The test

was similar with the one executed with the QEMU’s back-end. However, it was printed more information

such as the values of the descriptors and the values of all the MMIO registers accesses. It was essential

to make sure that the device initialization and the feature negotiation did not present any error since it is a

fundamental part that if it has a defect, it can lead to serious issues and a simple wrong bit on a register

can make the device not operable.

After testing meticulously the back-end driver, the driver guest was replaced by a Linux guest, in order

to perform the final test. The test with the Linux guest was a bit different. It was called the command

echo in the Linux guest, to send a message to the VirtIO-console device. The Linux guest is responsible

for dealing with this request and use the VirtIO mechanism to transmit the message to the service guest.

Eventually, the service guest receives a notification and process the virtqueue. In the end, the service

guest uses the physical console device to print the message.

The main obstacle faced on this final test was the initialization, because sometimes the linux guest

received interrupts not related to VirtIO while the service guest was still processing the access to a MMIO

register. This means that if the back-end is slow processing the access, the linux guest continues with is

execution and the negotiation fails because it cannot get the correct register values. The mechanism used

a flag to signalize that there was a new access and this flag was tested in a loop. This issue was solved

simply by moving the back-end driver’s code that was not directly in the handler of the interrupt that is

generated by Bao when there is a new access to a MMIO register.

4.2 VirtIO-Net

VirtIO network device, also known as VirtIO-net, is a virtual ethernet card. This device is the most

complex supported by VirtIO, but it is also one of the most useful, as it allows transmitting and receiving

data from the equipment that is being used, to the network.

Similarly to the VirtIO-console device, it uses a virtqueue to transmit data and other to receive. Besides

these two virtqueues, there is also a control queue, which only exists if the bit VIRTIO_NET_F_CTRL_VQ is

set, used to control advanced filtering features. To transmit data, the outgoing packets are enqueued into

the transmit queue. To receive data, it is necessary to place empty descriptors on the reception virtqueue.

It is advisable to keep the reception queue as fully populated with empty descriptors as possible since if

Chapter 4. VirtIO Devices 61

the empty descriptors run out, the back-end driver cannot send new packets to the front-end driver which

will lead to a drop in the performance.

Each network transmit buffer consists of a header followed by the network packet. The header incor-

porates ten parameters, but the last three (hash_value, hash_report and padding_reserved) only exist if

the bit VIRTIO_NET_F_HASH_REPORT is negotiated. The back-end driver will not support these features,

so they will not be explained. The other seven parameters are the following:

• flags: it can have one of four values: VIRTIO_NET_HDR_F_NEEDS_CSUM (1), VALID (2), INFO (4)

or zero;

• gso_type: if the bit VIRTIO_NET_F_HOST_TSO4, TSO6 or UFO was negotiated and the packet

expects TCP segmentation or User Datagram Protocol (UDP) fragmentation this parameter is set to

VIRTIO_NET_HDR_GSO_TCPV4, TCPV6 or UDP respectively. Otherwise, this parameter is set to

VIRTIO_NET_HDR_GSO_NONE. If this happens it is possible to transmit packets larger than 1514

bytes;

• hdr_len: it contains the size of the header;

• gso_size: it carries the size of the packet removing the header;

• csum_start: it controls the offset of the packet where the checksumming will begin;

• csum_offset: it indicates how many bytes after the csum_start, the new checksum will be;

• num_buffers: it indicates how many descriptors are used to describe the packet. This allows the

packet to be spread over multiple descriptors. If the value of num_buffers is one or the feature bit

VIRTIO_NET_F_MRG_RXBUF was not negotiated, it means that the packet will not be divided and

it is contained in a single buffer that follows the header.

This device can support twenty-eight device-specific feature bits, which won’t be explained due to the

large number of features and because the VirtIO-net back-end driver won’t be compatible with any of them.

The device configuration field incorporates the following nine parameters that can be changed by

accessing the config space:

• Media Access Control (MAC) address: always exists, but only is valid if the feature bit VIR-

TIO_NET_F_MAC is set;

• Status: can have the value VIRTIO_NET_S_LINK_UP or VIRTIO_NET_S_ANNOUNCE and only exits

if the feature bit VIRTIO_NET_F_STATUS is set.

• Maximum number of virtqueue pairs: specifies the maximum number of virtqueue pairs (transmit

and receive virtqueues) that can be configured. This parameter only exists if VIRTIO_NET_F_MQ

or VIRTIO_NET_F_RSS is set. Otherwise, the maximum number of virtqueue pairs is one;

Chapter 4. VirtIO Devices 62

• Mtu: stipulates the maximum MTU (Maximum transmission unit) for the front-end driver to use and

only exists if the bit VIRTIO_NET_F_MTU is set;

• Speed: controls the device speed (MBit/s) and only exists if VIRTIO_NET_F_SPEED_DUPLEX is

set;

• Duplex: only exist if VIRTIO_NET_F_SPEED_DUPLEX is set and it is used to choose between full

duplex, half duplex or unknown duplex state;

• Receive Side Scaling (RSS) maximum key size: specifies the maximum supported length of the RSS

key (bytes). It only exists if the feature bit VIRTIO_NET_F_RSS or VIRTIO_NET_F_HASH_REPORT

is set;

• RSS maximum indirection table length: stipulates the maximum number of 16-bit entries in RSS

indirection table and it is used only if the bit VIRTIO_NET_F_RSS is set;

• Supported Hash Types: only exists if the bit VIRTIO_NET_F_RSS or VIR-

TIO_NET_F_HASH_REPORT which means that the device supports hash calculation. This

parameter allows specifying the hash type to be applied [24].

Besides the VirtIO-net back-end driver, it was also necessary to create a device driver for the physical

device. To do so, it was used a Xilinx’s driver, the XEmacPs. This device driver manages configuration

and control, as well as the sending and receiving of ethernet frames. Even though the settings of many

devices are greatly different, a single device driver can handle them all. A single XEmacPs device driver

can handle multiple devices even if they present significant differences in their configuration.

It uses buffer descriptors to describe ethernet frames and Direct memory access (DMA) to store them.

Each buffer descriptor describes the memory region that contains a full or a partial ethernet packet. These

buffer descriptors are usually in a list, which the hardware follows when sending or receiving packet buffers.

4.2.1 Implementation

Unlike the VirtIO-console’s implementation, it was not used the same procedure to create the back-

end, because it is harder to create a functional front-end for this device. Thus, it was created the back-end

driver right from the beginning using the front-end driver from a Linux guest. With this in mind, it was

created a struct to the VirtIO-net device that contains the virtqueues to the transmission and reception as

well as the control virtqueue. It also incorporates the struct that contains the information about the device:

1 s t r u c t v i r t i o _ n e t {

2 s t r u c t v i r t q r e c e i v e q ;

3 s t r u c t v i r t q t r a n s m i t q ;

4 s t r u c t v i r t i o _ n e t _ c t r l c o n t r o l q ;

5 s t r u c t v i r t i o _ d e v i c e d e v i c e ;

Chapter 4. VirtIO Devices 63

6 } ;

Listing 4.4: VirtIO-net structure.

The control virtqueue functioning was not implemented because the back-end driver does not support

the feature bits that enable the utilization of its parameters. Nevertheless, its struct was created, so it can

be used in a future implementation, as it is an essential component of a VirtIO-net device back-end driver

with full compatibility. This virtqueue is a bit different from the other virtqueues, so it was necessary the

creation of a new struct (virtio_net_ctrl) to incorporate its parameters. The first three parameters of this

structure (class, command and command_specific_data) are set by the front-end driver whilst the last

parameter (ack) is set by the back-end driver.

1 s t r u c t v i r t i o _ n e t _ c t r l {

2 u i n t 8 _ t c l a s s ;

3 u i n t 8 _ t command ;

4 u i n t 8 _ t c omm a n d _ s p e c i f i c _ d a t a [1 6] ;

5 u i n t 8 _ t a c k ;

6 } ;

Listing 4.5: VirtIO-net control virtqueue structure.

As explained in Section 4.2, the configuration space is composed of nine parameters that can be

accessed by the front-end driver by using the MMIO registers with offsets after 0x100. To group all the

parameters of the config space, it was used the struct virtio_net_config. To set these parameters, the

front-end must access the address with an offset of 0x100 to change the first value of the MAC address.

The following five bytes define the other five values of the MAC address. Then the address with an offset

of 0x106 is used to access the status. To access the following parameters, it is only necessary to add its

size (in bytes) to the offset for each.

1 s t r u c t v i r t i o _ n e t _ c o n f i g {

2 u i n t 8 _ t mac [6] ;

3 u i n t 1 6 _ t s t a t u s ;

4 u i n t 1 6 _ t m a x _ v i r t q u e u e _ p a i r s ;

5 u i n t 1 6 _ t mtu ;

6 u i n t 3 2 _ t s p e e d ;

7 u i n t 8 _ t d u p l e x ;

8 u i n t 8 _ t r s s _m a x _ k e y _ s i z e ;

9 u i n t 1 6 _ t r s s _ m a x _ i n d i r e c t i o n _ t a b l e _ l e n g t h ;

10 u i n t 3 2 _ t s u p p o r t e d _ h a s h _ t y p e s ;

11 } ;

Listing 4.6: VirtIO-net configuration space structure.

An essential part of the VirtIO-net packet communication is the header. The struct virtio_net_hdr was

created to contain all the parameters that are essential to accommodate the information of each packet.

1 s t r u c t v i r t i o _ n e t _ h d r {

Chapter 4. VirtIO Devices 64

2 u i n t 8 _ t f l a g s ;

3 u i n t 8 _ t g s o _ t y p e ;

4 u i n t 1 6 _ t h d r _ l e n ;

5 u i n t 1 6 _ t g s o _ s i z e ;

6 u i n t 1 6 _ t c s um _ s t a r t ;

7 u i n t 1 6 _ t c s u m _ o f f s e t ;

8 u i n t 1 6 _ t n um_ b u f f e r s ;

9 } ;

Listing 4.7: VirtIO-net header structure.

Besides these structs, it was also necessary to create functions to handle the interrupts. Each virtqueue

has its own handle because each one of them has a different reaction to an interrupt.

1 v o i d v i r t i o _ n e t _ r e c e i v e q _ c a l l b a c k _ h a n d l e r (s t r u c t v i r t i o _ n e t *) ;
2 v o i d v i r t i o _ n e t _ t r a n s m i t q _ c a l l b a c k _ h a n d l e r (s t r u c t v i r t i o _ n e t *) ;
3 v o i d v i r t i o _ n e t _ c o n t r o l q _ c a l l b a c k _ h a n d l e r (s t r u c t v i r t i o _ n e t *) ;

Listing 4.8: VirtIO-net handlers.

Finally, the most essential function of the VirtIO-net implementation: the vir-

tio_net_mmio_callback_handler, which is in charge of handling all the accesses to MMIO registers that

belong to the VirtIO-net device.

This function is similar to the function virtio_console_mmio_callback_handler explained in Section

4.1.1 that has the same role but for the VirtIO-console device. The main difference is in the section where

is handled the access to the config space. This is the MMIO region that belongs to the device after the

offset 0x100. The config space from the offset 0x0 to 0x100 is exactly the same, as they are not device-

specific. That is why both VirtIO-console and VirtIO-net seem a lot like each other. However, the config

space is device specific, which means that the data that will be in the offset 0x100 of a VirtIO-console is

completely different from the data that will be in the same region of a VirtIO-net device or another VirtIO

device. For instance, the VirtIO-console uses four variables to configure the device, two with 16 bits (2

bytes) and the other two with 32 bits (4 bytes), which means that the config space ends in the offset

0x10B. The VirtIO-net device uses nine parameters that can be of 8, 16 or 32 bits and its config space

ends in the offset 0x117. With this in mind and since the console only supports parameters of two or four

bytes, it was indispensable to allow and handle accesses of a single byte in the config space.

4.2.2 Tests

The front-end driver of a VirtIO-net device is a lot more complex than the front-end driver of a VirtIO-

console device. For that reason, it was not implemented the front-end of the VirtIO-net device in a bare-

metal VM. Instead, it was used a Linux guest which contains a VirtIO-net front-end already implemented.

Initially, it was essential to test the Xilinx device driver. Xilinx provides a simple example that transmits

data and waits for its echo using physical loopback. In the end, it compares the message received to the

Chapter 4. VirtIO Devices 65

one that was transmitted to verify if they are the same. Afterward, it was necessary to create an adaptation

of this code to be possible to use with the VirtIO mechanism previously created. This adaptation was tested

using a single bare-metal running over the Bao hypervisor. As it uses physical loopback the only test that

is logical is verifying if the data that was transmitted is the same as the one that was received. With the

implemented device driver is not possible to send data to the exterior. Consequently, it is not possible

to use a network protocol analyzer such as Wireshark to capture the packets that were sent and analyze

its content. This device driver was very problematic and it was necessary to disable the cache in the

baremetal, since it required a lot of cache operations. Moreover, the buffer descriptors used by the device

driver need to be allocated in uncached memory. After this fix it was possible to move to the next test.

After guaranteeing that the device driver was working as expected, it was tested the VirtIO-net itself.

Initially, the device driver was not used and it was only tested the initialization of the device. It was crucial

to make sure that the Linux guest could find the VirtIO-net device. After making sure Linux could discover

the device, it was tested if it could initialize it, without any error. A crucial test was the feature negotiation

because if the feature negotiation fails it is impossible to use the device to communicate. Then, it was

verified if the VirtIO-net front-end could receive the packets that the Linux guest sent. It was crucial to verify

not only the data, but also the values of all header’s parameters.

Afterward, it was time to test the final implementation with requests from the Linux guest being handled

by the service guest that calls the device driver functions to send and receive data from the device. This

test was well succeeded. However, the device driver was not capable of sending the packets to the exterior

because it uses physical loopback. This means that the responses to the Linux guest requests are the

requests themselves, because the input of the physical is equal to the output. This is not appropriate.

Despite the main objective of this dissertation (create a VirtIO interface for Bao and a back-end for the

VirtIO-net) working, the device driver does not follow the same path as it was not possible to implement

it without using physical loopback, which means that it cannot communicate with the exterior world. This

issue in the device driver does not allow a complete test of the VirtIO-net back-end.

All the VirtIO-net device tests were performed on the zcu-104 board.

5. Conclusion

The use of embedded systems has increased in the last years and so has their complexity. The use

of multicore system has become a must since it allows running applications with different criticality levels

on the same hardware platform. This can be risky as they can interfere with each other. The virtualization

arrived to fix this issue. By using a hypervisor, it is possible to isolate the operating systems both spatially

and temporally. However, most hypervisors are not prepared for the embedded world and that is why the

Bao hypervisor emerged. In what concerns peripherals, this hypervisor only gives pass-through access,

not being possible to share devices between different guests. This dissertation solves this issue by using

VirtIO.

In the first stage of this dissertation, it is designed and the implemented the interface that allows two or

more guest to communicate with each other. It all started by creating a mechanism with simple virtqueues

that were stored in shared memories. To notify the opposite guest that there is a new message, Bao’s

hypercalls that are associated with the shared memories were used. After that, it was implemented the

VirtIO interface using the packed virtqueue layout, the most recent and less problematic virtqueue layout.

Then, it was designed and implemented the integration with Bao hypervisor, one of the most crucial parts

of this work. It was necessary to change Bao’s code to allow handling accesses to MMIO registers that

belong to VirtIO devices.

The second stage was focused on the design and implementation of two VirtIO devices back-end

drivers: VirtIO-console and VirtIO-net. It was created a simple and functional back-end driver for each of

these devices by only implementing the support for the crucial features. Initially, the back-end driver for

the VirtIO-console device was created and it was integrated with the already existent device driver of the

console physical device. This stage’s goal was to verify that the VirtIO interface was truly functional and

it was possible to share a physical device using it. The implementation of the VirtIO-console back-end

served as a basis to the VirtIO-net back-end implementation, which was the main purpose of the second

stage of this dissertation. After the implementation of the VirtIO-console back-end it was implemented

the VirtIO-net back-end as well as a device driver for the physical device as it was non-existent. The only

purpose of this device driver was to execute a complete test of the device’s virtualization, which turned out

to be not feasible.

The Bao hypervisor does not allow a VM to access to the memory of another VM guaranteeing full

isolation of the memory. The only way to share memory between two guests is by creating a shared

66

Chapter 5. Conclusion 67

memory region. Using Linux’s front-end drivers of VirtIO devices, it was impossible to guarantee that the

descriptors will be placed in the shared memory. Thereby, it was necessary to change the Bao’s code to

allow the service guest to access to the driver guest’s memory. This way, it could access all the descriptors

as well as the data that they describe without any issues. This is not ideal, since it is lost one of the Bao’s

main goals: isolation between guests.

5.1 Future Work

Despite the fact that the VirtIO interface is functional, which was the main goal of this dissertation,

there are a lot of improvements that would be interesting.

It was impossible to execute a complete test of the virtualization of the net device, due to problems in

the device driver. Bearing that in mind, the device driver should be changed in such a way that allows the

communication with the exterior world by not using physical loopback.

The implementation of the split virtqueue layout. Although the packet virtqueue layout is less sus-

ceptible to issues such as bad cache utilization or bad performance and is the most recent layout, which

means that the recent systems already support it, there are still a lot of systems that are not compatible

with this virtqueue layout. Thereby, it would be interesting to add the split virtqueue to this dissertation’s

VirtIO interface to make it compatible with older systems that only support the split virtqueue.

In this dissertation, it was implemented two VirtIO devices: VirtIO-console and VirtIO-net. However,

version 1.1 of the VirtIO’s specification already specifies nineteen devices. Even though most of them are

not really useful for Bao, it would be interesting to implement more drivers for VirtIO devices to amplify the

number of supported devices.

Another essential improvement concerning the compatibility of the interface is the support of feature

bits. Both VirtIO-console and VirtIO-net were created with the goal of being simple and functional. For

this reason, it was focused on the functioning and not on the full compatibility of the system. Thus, to

improve the compatibility of both VirtIO-console and VirtIO-net it would be essential to add support to the

device-specific feature bits.

The service guest was implemented in a bare-metal guest. With the increase of VirtIO devices being

used it would be better to opt for a multi-thread/multi-task guest such as FreeRTOS, a Real-time operating

system for microcontrollers. With this implementation, it would be possible to deal with multiple accesses

of different devices at the same time, since they would be divided into multiple tasks, which could lead to

better performance.

Another important future work is the evaluation of the performance. It is well known that the use of

VirtIO leads to worse performance than the use of pass-through devices. This is the price to pay for sharing

devices. It would be interesting to test the execution times of both, so it would be easier to do trade-offs

between the use of pass-through or VirtIO.

Chapter 5. Conclusion 68

Moreover, it would be essential to change the VirtIO’s mechanism in order to be possible to use shared

memories both for the storage of descriptors and the data storage. Thus, it would be possible to use the

original Bao’s code with full memory isolation.

In what concerns the VirtIO-net back-end driver, it would be interesting to create features such as the

possibility of multiplexing the physical device. In other words, create a mechanism that can use different

IP addresses for different guests but uses the same physical device. By creating a sort of network bridge,

it would be possible to use a single ethernet card by two guests completely isolated.

References

[1] J. Martins and S. Pinto, “Bao: a modern lightweight embedded hypervisor,” Embedded World 2020

Exibition and Conference, 02 2020.

[2] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded Hypervisor Xvisor: A Com-

parative Analysis,” in 2015 23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pp. 682–691, 2015.

[3] G. Heiser, “Virtualizing embedded systems - why bother?,” in 2011 48th ACM/EDAC/IEEE Design

Automation Conference (DAC), pp. 901–905, 2011.

[4] R. Kaiser, “Complex embedded systems - A case for virtualization,” in 2009 Seventh Workshop on

Intelligent solutions in Embedded Systems, pp. 135–140, 2009.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield,

“Xen and the Art of Virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, p. 164–177, oct 2003.

[6] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao: A Lightweight Static Partitioning

Hypervisor for Modern Multi-Core Embedded Systems,” Workshop on Next Generation Real-Time

Embedded Systems, 01 2020.

[7] “ARM Cortex-A Series Programmer’s Guide for ARMv8-A.” https://developer.arm.com/
documentation/den0024/a/Fundamentals-of-ARMv8. Accessed: 2022–10-21.

[8] A. Iqbal, N. Sadeque, and R. I. Mutia, “An Overview of Microkernel, Hypervisor and Microvisor Vir-

tualization Approaches for Embedded Systems,” Report, Department of Electrical and Information

Technology, Lund University, Sweden, 2022.

[9] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The next challenge?,” in Proceedings of

2010 21st IEEE International Symposium on Rapid System Protyping, pp. 1–7, 2010.

[10] M. Rosenblum, “The Reincarnation of Virtual Machines: Virtualization Makes a Comeback.,” Queue,

vol. 2, p. 34–40, jul 2004.

[11] G. Heiser, “The Role of Virtualization in Embedded Systems,” in Proceedings of the 1st Workshop on

Isolation and Integration in Embedded Systems, IIES ’08, (New York, NY, USA), p. 11–16, Association

for Computing Machinery, 2008.

[12] G. Heiser, “Secure embedded systems need microkernels,” USENIX, vol. 30, 01 2006.

69

https://developer.arm.com/documentation/den0024/a/Fundamentals-of-ARMv8
https://developer.arm.com/documentation/den0024/a/Fundamentals-of-ARMv8

REFERENCES 70

[13] J. E. Smith and R. Nair, “Chapter Eight - System Virtual Machines,” in Virtual Machines (J. E. Smith

and R. Nair, eds.), The Morgan Kaufmann Series in Computer Architecture and Design, pp. 369–443,

Burlington: Morgan Kaufmann, 2005.

[14] J. Shropshire, “Analysis of Monolithic and Microkernel Architectures: Towards Secure Hypervisor

Design,” in 2014 47th Hawaii International Conference on System Sciences, pp. 5008–5017, 2014.

[15] G. Heiser and B. Leslie, “The OKL4 Microvisor: Convergence Point of Microkernels and Hypervisors,”

in Proceedings of the First ACM Asia-Pacific Workshop on Workshop on Systems, APSys ’10, (New

York, NY, USA), p. 19–24, Association for Computing Machinery, 2010.

[16] “Virtio devices high-level design.” https://projectacrn.github.io/2.1/
developer-guides/hld/hld-virtio-devices.html?fbclid=IwAR3H5Ra50_
yrLOqtKW9X7s5QNOvJ9VwHOSf28LHr1APsS0IubbqlTj1GVq0, 2020. Accessed: 2021–12-
29.

[17] B. Sá, J. Martins, and S. Pinto, “A First Look at RISC-V Virtualization from an Embedded Systems

Perspective,” IEEE Transactions on Computers, 03 2021.

[18] F. Diakhaté, M. Pérache, R. Namyst, and H. Jourdren, “Efficient shared memory message passing

for inter-VM communications,” hal-00368622�, 2008.

[19] J.-H. Kim and H.-W. Jin, “Virtio Front-End Network Driver for RTEMS Operating System,” IEEE Em-

bedded Systems Letters, vol. 12, no. 3, pp. 91–94, 2020.

[20] J. Durand Wesolowsk, A. Boudguiga, A. Patel, J. Viard De Galbert, M. Donain, W. Klaudel, and

G. Scigala, “Xvisor VirtIO-CAN: Fast Virtualized CAN,” in 8th European Congress on Embedded Real

Time Software and Systems (ERTS 2016), (TOULOUSE, France), Jan. 2016.

[21] S. Patni, J. George, P. Lahoti, and J. Abraham, “A zero-copy fast channel for inter-guest and guest-

host communication using VirtIO-serial,” in 2015 1st International Conference on Next Generation

Computing Technologies (NGCT), pp. 6–9, 2015.

[22] D. Milea, “Hypervisor-less virtio,” Assembling Multi-OS systems using standards-based protocols for

intra-SoC connectivity and device sharing.

[23] G. Schwäricke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni, A. Zuepke, and M. Caccamo, “A

Real-Time virtio-based Framework for Predictable Inter-VM Communication,” in 2021 IEEE Real-Time

Systems Symposium (RTSS), pp. 27–40, 2021.

[24] M. S. Tsirkin and C. Huck, “Virtual I/O Device (VIRTIO) Version 1.1, OASIS Committee Specifica-

tion.” https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.
1-csprd01.html, 2018.

[25] E. P. Martín, “Virtio devices and drivers overview: The head-

jack and the phone.” https://www.redhat.com/en/blog/
virtio-devices-and-drivers-overview-headjack-and-phone, 2020. Accessed:

https://projectacrn.github.io/2.1/developer-guides/hld/hld-virtio-devices.html?fbclid=IwAR3H5Ra50_yrLOqtKW9X7s5QNOvJ9VwHOSf28LHr1APsS0IubbqlTj1GVq0
https://projectacrn.github.io/2.1/developer-guides/hld/hld-virtio-devices.html?fbclid=IwAR3H5Ra50_yrLOqtKW9X7s5QNOvJ9VwHOSf28LHr1APsS0IubbqlTj1GVq0
https://projectacrn.github.io/2.1/developer-guides/hld/hld-virtio-devices.html?fbclid=IwAR3H5Ra50_yrLOqtKW9X7s5QNOvJ9VwHOSf28LHr1APsS0IubbqlTj1GVq0
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone

REFERENCES 71

2021–10-20.

[26] R. Russell, “Virtio: towards a de-facto standard for virtual I/O devices,” ACM SIGOPS Oper. Syst.

Rev., vol. 42, pp. 95–103, 2008.

[27] E. P. Martín, “Virtqueues and virtio ring: How the data travels.” https://www.redhat.com/
en/blog/virtqueues-and-virtio-ring-how-data-travels, 2020. Accessed: 2021–
10-20.

[28] E. P. Martín, “Packed virtqueue: How to reduce overhead with virtio.” https://www.redhat.
com/en/blog/packed-virtqueue-how-reduce-overhead-virtio, 2020. Accessed:

2021–10-20.

[29] A. Adam, A. Ilan, and T. Nadeau, “Packed virtqueue: How to reduce overhead with virtio.” https:
//www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net,
2019. Accessed: 2021–10-20.

[30] A. Oliveira, J. Martins, J. Cabral, A. Tavares, and S. Pinto, “TZ- VirtIO: Enabling Standardized Inter-

Partition Communication in a Trustzone-Assisted Hypervisor,” IEEE 27th International Symposium

on Industrial Electronics (ISIE), Cairns, QLD, Australia, 06 2018.

[31] E. P. Martín, “Deep dive into Virtio-networking and vhost-net.” https://www.redhat.com/en/
blog/deep-dive-virtio-networking-and-vhost-net, 2019. Accessed: 2021–10-20.

[32] J. D. Pagare, N. A. Koli, and G. Baba, “A technical review on comparison of Xen and KVM hypervisors:

An analysis of virtualization technologies,” International Journal of Advanced Research in Computer

and Communication Engineering, pp. 8828–8832, 2014.

[33] Santos, Jose Renato and Turner, Yoshio and Janakiraman, G. and Pratt, Ian, “Bridging the gap

between software and hardware techniques for i/o virtualization,” in USENIX 2008 Annual Technical

Conference, ATC’08, (USA), p. 29–42, USENIX Association, 2008.

https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels
https://www.redhat.com/en/blog/virtqueues-and-virtio-ring-how-data-travels
https://www.redhat.com/en/blog/packed-virtqueue-how-reduce-overhead-virtio
https://www.redhat.com/en/blog/packed-virtqueue-how-reduce-overhead-virtio
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/deep-dive-virtio-networking-and-vhost-net

	List of Figures
	List of Listings
	Glossary
	Introduction
	Objectives
	Document Structure

	Background and State of the Art
	CPU architecture
	Virtualization
	Full-Virtualization and Para-Virtualization
	Trap-and-Emulate
	Memory Virtualization
	Peripheral Virtualization
	Hypervisors' Architectures
	Static Partitioning Hypervisors
	Bao
	IPC

	VirtIO
	Device status field
	Feature bits
	Notifications
	Virtqueues
	Transport
	VirtIO-Console/VirtIO-Serial
	VirtIO-Net

	Related work
	VM-to-VM communication
	KVM and Xen
	ACRN

	Conclusions

	VirtIO Interface
	Inter-VM communication using virtqueues
	Implementation
	Tests

	VirtIO
	VirtIO Transport - MMIO
	Virtqueues
	Feature Bits Negotiation
	Device Initialization
	Implementation
	Tests

	VirtIO Integration on Bao Hypervisor
	Implementation
	Tests

	VirtIO Devices
	VirtIO-Console
	Implementation
	Tests

	VirtIO-Net
	Implementation
	Tests

	Conclusion
	Future Work

	References

