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Abstract
Displacement-based methods contained in recent standards for seismic safety
assessment require the determination of the full nonlinear pushover curve for
local failure mechanisms in historic masonry structures. This curve should
reflect both the initial elastic behavior and the rigid body behavior after the
activation of rocking. In this work, a rigid block model is proposed for the
displacement-based seismic assessment of local collapse mechanisms of these
structures. Masonry is modeled as an assemblage of two-dimensional rigid
blocks in contact through frictional interfaces. Two types of contact models
are formulated to capture, respectively, the pre and postpeak branches of the
pushover curve: a unilateral elastic contact model, capturing the initial nonlin-
ear behavior up to the force capacity of the structure, corresponding to the activa-
tion of the collapsemechanism, and a rigid contactmodel with finite friction and
compressive strength, which describes the rigid-body rocking behavior up to the
attainment of the displacement capacity of the structure. Tension-only elements
are also implemented to model strengthening interventions with tie-rods. The
contact problems associated with the elastic and rigid contact models are formu-
lated using mathematical programming. For both models, a sequential solution
procedure is implemented to capture the variation of the loadmultiplier with the
increasing deformation of the structure (P–Δ effect). The accuracy of the mod-
eling approach in reproducing the pushover curve of masonry panels subjected
to horizontal seismic loads is evaluated on selected case studies. The solution
is first tested against hand calculations, existing analytical models, and distinct
element simulations. Then, comparisons against experimental tests follow. As
a final application, the failure mechanism and pushover curve of a triumphal
masonry arch are predicted by themodel and its seismic assessment is performed
according to codified force- and displacement-basedmethods, demonstrating the
adequacy of the proposed tool for practice.
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1 INTRODUCTION

Historic masonry structures develop local failure mechanisms when subjected to earthquakes. Such mechanisms may
involve single structural elements, up to entire portions of building. No matter the “size” of the failure mechanism, the
evaluation of its impact on the damage, life safety and, more generally, the seismic performance is a key issue in the
structural assessment of historic constructions, as, in most cases, can affect the overall stability.
The seismic assessment of the local failure mechanisms in masonry structures is challenging in many ways: first, in the

prediction of the mechanism itself, which, in practice, is left to the analyst’s choice; second, in the evaluation of the mass
participating in the mechanism; third, in the implementation of correct boundary conditions, which are not necessarily
the same from the initiation to the full development of the mechanism, and, in some circumstances, may evolve with
it.1 In current codes, the seismic assessment of the local collapse mechanisms in masonry structures is addressed by
force- and displacement-basedmethods. Thesemethodsmake use of, respectively, the force and the displacement capacity
of the structure to perform the “final check” and determine its seismic performance.2 The Italian technical standard3,4
comprises both methods for the life-safety limit-state verification of masonry structures. Important differences may be
found between the methods,5 being the displacement-based method scale dependent, while the force-based method not.6
Studies performed using the previous version of the standard7 show that the displacement-based method appears to be
more robust, accurate, and safer than the force-basedmethod in predicting the acceleration capacity leading the structure
to failure.8
The displacement-based method recommended in the Italian technical standard is based on the derivation of the

pushover curve.4 According to this standard, this curve is bilinear and can be generally obtained by assuming a linear
elastic branch for the prepeak behavior, followed by a descending postpeak branch describing the rigid-body behavior
corresponding to the failure mechanism. The pushover curve is then used to evaluate the capacity curve corresponding
to an equivalent, single-degree-of-freedom (SDOF) system to predict the acceleration that leads the structure to failure by
comparison of its displacement capacity with the displacement demand, in analogy to the capacity spectrummethod.1,9,10
The use of pushover curves and capacity spectrum methods for the seismic assessment of local failure mechanism was
validated against static and dynamic tests in the case of vertically spanningwalls, arch piers systems, andU-shaped assem-
blages consisting of a façade and two transverse walls.11–13 Parametric studies and comparisons with time history analyses
showed that the accuracy of these methods is sensitive to the period of the equivalent SDOF system, corresponding to a
given displacement capacity, and can be excessively conservative unless small periods are considered.10 Moreover, the dis-
persion of the results is also affected by the choice of the intensity measure, such as peak ground velocity or peak ground
acceleration, the last one being commonly adopted in the standards.2 In this study, the methods contained in the new
version of the Italian technical standard are implemented.3,4
The portion of the structure involved in the collapse mechanism undergoes moderate deflections, that is, out-of-plane

displacements whose magnitude is of the order of the element thickness. Modeling approaches incorporating geometric
nonlinearity, that is, P–Δ effects, are thus needed. In this context, various modeling approaches have been proposed in
the literature, which can be conveniently used for the analysis of local failure mechanisms. Those generally comprise
analytical models,14–17 homogeneous and discontinuous finite element models,18–21 macroelement models,22–24 as well as
applied, distinct element and nonsmooth contact dynamicsmodels.25–33 Multistepmodels andCAD tools based onmacro-
modeling approaches have been also proposed.5,34 Among these methods, discontinuous modeling approaches appear to
be particularly suitable for the analysis of the local collapse mechanisms, mainly thanks to the discretization and formu-
lations adopted, which allow the activation and evolution of the mechanisms to be followed closely and without a-priori
assumptions, making them adapted to the assessment methods included in the standards.4
Rigid block models present attractive aspects from the computational point of view when compared to other discontin-

uous modeling approaches, such as the distinct element method.35 These features can be mainly ascribed to the form and
the solution of the variational formulation, which is used for the problems governing the response at the contact inter-
faces between the blocks. In particular, when no-tension frictional interfaces are considered, as it is the case of historic
masonry structures where the contribution of tensile and cohesive strength is often uncertain and negligible, inequalities
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and complementarity conditions can be used to express in a direct and compact form the unilateral behavior associated
with contact joints. Importantly, when an associative behavior is assumed for displacement rates at contact interfaces, it
can be shown that the systems of governing equations can be uncoupled into dual optimization problems, following the
classic approaches of limit analysis, generally corresponding to a force-based and to a displacement-based optimization
problem. The possibility to solve only one of the corresponding optimization problems (e.g., the force-based problem) and
to obtain the solution of the dual problem from Lagrange multipliers associated with the solution of the same optimiza-
tion problem––thus obtaining in a single run both the static and kinematic variables––and the availability of efficient
solution procedures for mathematical programming makes this approach particularly convenient in terms of CPU time
and simplicity of implementation in a structural analysis code.
At present, most of the rigid block models proposed in the literature are based on classical limit analysis formulations,

which allow only the force capacity of the structure to be estimated.18,36–43 This shortcoming, which is related to the fact
that the load multiplier is computed on the initial structural configuration and therefore related to the activation of the
failure mechanism but not on its evolution, prevents their use in displacement-based methods currently contained in
the standards.4 Recently, rigid block models based on sequential limit analysis and incremental solution procedures have
been proposed to consider the effects of large displacements. However, these rigid block models have been mainly used
for the analysis of settlement induced-failure mechanisms.44–46 Moreover, those models generally do not comprise the
elastic response and, as such, can only be used for the nonlinear kinematic analysis of the mechanisms, that is, for the
evaluation of the postpeak rocking behavior.
To overcome these limitations, a 2D rigid blockmodel is proposed in this paper for the pushover analysis of local failure

mechanisms in historic masonry structures. The model comprises both the elastic and the rigid-body behaviors required
by the standard.4 The masonry pattern is discretized into an assemblage of rigid blocks interacting at no-tension elas-
tic contact interfaces with finite friction and compression strength. As such, the proposed approach relies on few model
parameters, that are the stiffness, the coefficient of friction at contact interfaces, and the compressive strength, together
with the rigid block and load configuration. Two contact models are implemented: a unilateral elastic no-tension model,
which allows the initial nonlinear behavior up to the activation of the collapse mechanism to be captured, and a rigid no-
tension frictional model with finite compressive strength, which describes the rigid-body rocking behavior corresponding
to the evolution of the collapse mechanism up to the attainment of the displacement capacity of the structure. The contact
models are formulated throughmathematical programming. The resulting formulationmakes use of duality between stat-
ics and kinematics to uncouple the solution into two distinct force- and displacement-controlled optimization schemes,
thus reducing the computational cost. A sequential solution procedure is implemented to solve the optimization problems
on the deformed structural configuration, thus considering the P–Δ effects in the construction of the pushover curve.
The approach proposed is primarily suitable for ancient, monumental buildings comprising slender masonry elements,

like columns, arches, arch-piers systems and,more generally, out-of-plane loadedwalls made of natural stone blocks, with
dry or low bond strength mortar joints, which involve collapse modes that are mainly governed by bending and overturn-
ing failures.1 For these cases, in the proposed approach, failures are assumed to occur at the dry joints or at the brick to
mortar interface or mortar itself. The failure of masonry units and related failure mechanisms are not comprised in the
present formulation. The assumption of no-tensionmaterial is accurate only in the case of dry joint masonry. Applications
of the proposed approach to masonry with low bond strength mortar joints are conservative and involve a lower level of
accuracy, which in general depends on the value of tensile strength and cohesion, on the geometry of the structural ele-
ment, and on the failure mode considered. For example, in the case of brickwork wall panels with openings47 and in the
case of slender unreinforced masonry walls under lateral loads,48 it was noted that the tensile strength mainly affects
early cracking and the force capacity in the prepeak response. In the case of Ref. 48, a slight influence was observed on
the ultimate displacements.
The study is framed with the aim of developing efficient tools based on mathematical programming for the limit equi-

librium, large displacement, and time-history analysis of historic masonry structures subjected to seismic actions and
settlements.35,45,49 The key features of the model presented in this study with respect to those contained in the authors’
previous works are the ability to consider, within a unified modeling approach: the elastic prepeak behavior of the inter-
faces, including not only the normal behavior, as done in Ref. 50 for the study of the effects induced by settlements, but
also the tangential behavior; a finite compression strength for the nonlinear kinematic analysis of the postpeak behavior,
formulated, as for the prepeak behavior, in the large displacement regime; the addition of tie elements, to model seismic
strengthening interventions.
The formulation is implemented in the software package MATLAB R©. As detailed in the following sections, this allows

the rigid block model to be imported from CAD models, while input parameters are assigned by separate functions. The
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F IGURE 1 (A) Illustration of the rigid block model for a masonry arch strengthened by a tie element, with dead and live loads,
considering a factor α as live load multiplier and the displacement d at a control point; (B) rigid block i, surface j, and contact point k;
(C) parameters of the pushover curve obtained from the rigid block models with no-tension elastic contacts and no-tension rigid contacts

model is validated extensively against hand calculations, existing analytical solutions, ad-hoc distinct element simulations
obtained through the use of a commercial software,51 and experimental tests from the literature52,53 and also specifically
developed for the present study, which all illustrate the accuracy of the implemented procedure. An application demon-
strates its use for the seismic assessment of a masonry structure with curved geometry. It is also worth noticing that, in the
proposed approach, multiple contact points can be used to discretize the block edges, while blocks can be appropriately
shaped to consider the effect of geometric imperfections. These are two notable features of discontinuous modeling that
were show to have an impact on the pushover curves of collapse mechanisms.54
Different sections delineate the paper content. Section 2 presents the system of equations governing the rigid block

model. In Section 3, the equations are reformulated as mathematical programming problems. The incremental solution
procedure used to solve the nonlinear limit analysis problem is presented in Section 4. The validation of themodel through
numerical benchmarks and experimental tests is illustrated in Sections 5 and 6. In Section 7, the model is used to assess
the seismic capacity of a triumphal arch according to codified force- and displacement-based methods.

2 THE RIGID BLOCKMODELING APPROACH FOR STATIC PUSHOVER ANALYSIS

The proposed model is composed of polygonal rigid blocks which interact at no tension frictional contact interfaces.
The model relies on the so-called point contact formulation (also referred to as concave contact formulation in Ref. 55),
according to which contact forces are located at the vertices k of the contact surfaces j between the blocks (Figure 1A, B).
Notice that, according to the configuration depicted in Figure 1B, four contact points and two contact surfaces are defined
for each interface. It is also worth noting that, in the proposed approach, multiple surfaces can be used to discretize block
edges and that block corners can be appropriately shaped to consider the effect of geometric imperfections (i.e., rounded
corners, see Figure 1B).
In recent studies, bilinear or multilinear models are used in pushover curves to take into account an initial pseudo

elastic behavior and a rigid behavior after the activation of the rocking mechanism.1,9,56,57 In the present study, two kinds
of behavior are considered at contact points to evaluate the pre and post peak regimes. These comprise an elastic no-
tension behavior and a rigid no-tension behavior with finite friction and compressive strength. The pushover curve is
obtained by combining the rising branch corresponding to the former behavior and the descending branch corresponding
to the latter behavior (Figure 1C). As such, not only α0, the live load multiplier at the onset of the mechanism calculated
by assuming no-tension rigid contacts, is obtained, but also αy, the load multiplier corresponding to the force capacity



3336 PORTIOLI et al.

(A) (B) (C)

F IGURE 2 (A) External and contact forces; (B) kinematic variables at block centroid i and at contact point k, contact gaps g0k, and
contact stiffnesses kn, kt; (C) elastic interpenetrations at contact points

of the structure, dy, the displacement of the control point at the elastic limit, that is, prior to the activation of rocking,
and d0, the displacement capacity of the structure. In both cases, the proposed model considers the effects of geometric
nonlinearities by use of an incremental solution procedure, as described in the following sections.
Following the approaches presented in Refs. 35, 38, 58–62, the contact problems corresponding to the two considered

behaviors are posed in terms of linear complementarity problems (LCPs).63 The solution of the contact problems relies,
therefore, on the solution of the optimization problems, which are equivalent to these complementarity problems. The
optimization problems are solved sequentially in order to compute the variation of the collapse load multiplier with
the increasing deformation of the structure. The LCPs stem directly from the system of equilibrium, compatibility, and
failure conditions, which govern the behavior of the rigid block assemblage, as briefly illustrated in the following.
The rigid blocks are subjected to external loads with components 𝑓𝑥𝑖 , 𝑓𝑧𝑖 , 𝑓𝜔𝑖 (Figure 2). Those are applied to the

centroid of rigid block i and are collected, for the whole assemblage, in a (3b× 1) vector 𝒇, being b the number of blocks.
The other static variables are the tangential and normal forces 𝑡𝑘 and 𝑛𝑘 acting at the contact points k, which are collected
in the (2c× 1) vector 𝒄, being c the number of contact points.
The equilibrium equations of the rigid block assemblage at a given configuration 𝒙𝟎 can be posed in matrix form as

follows, being 𝒙𝟎 the (3b× 1) vector of block centroid coordinates associated with the known initial configuration:

𝑨𝟎𝒄 = 𝒇, (1)

where𝑨𝟎 is the (3b× 2c) equilibriummatrix, with entries determined on the basis of components of tangential and normal
vectors to contact surfaces and on the basis of related moments against blocks centroid for translational and rotational
equilibrium conditions, respectively.35
The kinematic variables are the unknown relative displacements of the block centroid. They are collected in the vector

𝚫𝒙 = 𝒙 − 𝒙𝟎. Geometric compatibility between the relative displacements at the block centroids and the displacement
rates at contact points can be expressed using the transpose of the equilibrium matrix under the assumption of small
displacements, according to the so-called contragradience principle38:

𝚫𝒖 = 𝑨𝐓
𝟎
𝚫𝒙, (2)

where 𝚫𝒖 is the vector of relative contact displacements collecting components Δ𝑢𝑡𝑘 and Δ𝑢𝑛𝑘 for each contact point
(Figure 2B).
Failure conditions 𝑦𝑘 at the contact point k comprise sliding failure (no-tension) and, in the case of rigid contacts,

crushing as well (Figure 3). For the sliding failure, a Coulomb slip criterion is considered:

±𝑡𝑘 − 𝜇𝑛𝑘 ≤ 0, (3)

where μ is the friction coefficient and normal forces are assumed to be positive in compression. In matrix form, sliding
and opening failure conditions can be posed as follows:

⎡⎢⎢⎣
𝑦𝑠𝑘+
𝑦𝑠𝑘−
𝑦0𝑘

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1 −𝜇

−1 −𝜇

0 −1

⎤⎥⎥⎦
[
𝑡𝑘
𝑛𝑘

]
≤

⎡⎢⎢⎣
0

0

0

⎤⎥⎥⎦ ,
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(A) (B)

F IGURE 3 (A) Failure surface for pure shear and (B) crushing

or:

𝒚𝒌 = 𝒀𝒌
𝐓 𝒄𝒌 ≤ 𝟎𝒌. (4)

In the case of the rigid contact formulation, in addition to the simple opening failure conditions associated with no
tension and infinite compressive strength (𝑛𝑘 ≥ 0, i.e., rocking failure), crushing failure conditions are included. In this
case, a piecewise linearization of the quadratic domain corresponding to the classic stress block assumption is considered
in the space of the contact force resultants𝑀𝑗 ,𝑁𝑗 (Figure 3B), following the approaches presented in Refs. 64 and 65. For
the whole structure, the failure conditions can be written in matrix form as:

𝒚 = 𝒀𝐓 𝒄 − 𝒓 ≤ 𝟎, (5)

where 𝒀𝐓 is the matrix of failure conditions and 𝒓 is the vector of constant terms associated with crushing failure con-
ditions which correspond, in the 𝑀𝑗 , 𝑁𝑗 space, to the distance of the limit planes from the origin. The validity of this
approach is investigated in the next sections against analytical solutions.
Similar conditions are formulated for the end nodes of the tie element. In this case, a tension-only behavior is consid-

ered for the element, imposing finite values of plastic strength to the normal force component at nodes. Although the
element resists to axial force only, finite values are also considered for tangential force components. This is because, in
the assembling procedure that was implemented for matrices, two force components are considered by default at each
contact node, that is, the normal and the tangential force. As such, the matrix of failure conditions at an end point k of
the tie element is formulated as follows:

⎡⎢⎢⎢⎢⎣

𝑦𝑠𝑘+
𝑦𝑠𝑘−
𝑦0𝑘+
𝑦0𝑘−

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

1 0

−1 0

0 1

0 −1

⎤⎥⎥⎥⎥⎦
[
𝑡𝑘
𝑛𝑘

]
≤

⎡⎢⎢⎢⎢⎣

𝑇𝑦
𝑇𝑦
0

𝑁𝑦

⎤⎥⎥⎥⎥⎦
, (6)

where𝑇𝑦 and𝑁𝑦 are the tangential strength and the normal strength in tension (while the normal strength in compression
is set equal to zero, i.e., −𝑁𝑦 ≤ 𝑛𝑘 ≤ 0).
Following classic approaches in plasticity, the contact displacement rates at a no-tension, frictional elastic contact point

k are expressed as follows60:

Δ𝑢𝑡𝑘 = 𝜆𝑠𝑘+ − 𝜆𝑠𝑘− + 𝐶𝑘𝑡Δ𝑡𝑘 (7)

Δ𝑢𝑛𝑘 = −𝜇𝜆𝑠𝑘+ − 𝜇𝜆𝑠𝑘− − 𝜆𝑜𝑘 + 𝐶𝑘𝑛𝑛𝑘 + 𝑔0𝑘,
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where λsk+, λsk–, and λok are the non-negative flowmultipliers (i.e., resultant displacement rates) corresponding to positive
and negative sliding, respectively, and contact opening; 𝐶𝑘𝑡 = 1∕𝑘𝑡,𝐶𝑘𝑛 = 1∕𝑘𝑛, where 𝑘𝑡 and 𝑘𝑛 are the tangent and
normal stiffness at contact points;Δ𝑡𝑘 = 𝑡𝑘 − 𝑡0𝑘, being 𝑡0𝑘 the known contact shear force. It is worth noting that Equation
(7) is related to an associative flow rule of contact displacement rates, being expressed as a function of the transpose of
matrix failure conditions𝒀𝐓

𝒌
reported in Equation (4). As such, displacement rates at contact pointsmay involve dilatancy,

which is related to the components−𝜇𝜆𝑠𝑘+ and−𝜇𝜆𝑠𝑘− inΔ𝑢𝑛𝑘. Inmatrix form, for thewhole assemblage, it can be posed:

𝚫𝒖 = 𝒀𝝀 + 𝑪𝒄 + 𝒈𝟎, (8)

where 𝚫𝒖 is the (2c× 1) vector of contact displacement rates; 𝝀 ≥ 𝟎 is the (3c× 1) vector of flow multipliers; 𝑪 is the (2c ×
2c) diagonal matrix of contact compliances collecting submatrices 𝑪𝒌 = diag(𝐶kt 𝐶kn); 𝒈𝟎 is the vector collecting initial
known tangential displacement rates and gaps [−𝐶𝑘𝑡𝑡0𝑘; 𝑔0𝑘] at each contact point. Similar conditions hold in the case
of the rigid contact formulation if the elastic components of contact displacement rates are omitted. Finally, activation
of positive values of flow rates associated with contact failure modes is taken into account considering the following
complementarity condition38:

𝒚𝐓𝝀 = 0. (9)

3 FORMULATION OF THE CONTACT PROBLEMS IN TERMS OF OPTIMIZATION
PROBLEMS

The systems of equation governing the elastic no-tension and rigid no-tension contact models correspond to two LCPs, a
class of mathematical programming problem, which has been extensively investigated in the past decades.66,67
On the basis of the governing Equations (1), (4), (8), and (9), the LCP associated with no-tension elastic contact model

can be posed as follows:

⎡⎢⎢⎣
. . 𝑨𝟎

. . −𝒀𝐓

−𝑨𝐓
𝟎
𝒀 𝑪

⎤⎥⎥⎦
𝑛×𝑛

⎡⎢⎢⎣
𝚫𝒙

𝝀

𝒄

⎤⎥⎥⎦
𝑛×1

+
⎡⎢⎢⎣
.

𝒚

.

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝒇

.

−𝒈𝟎

⎤⎥⎥⎦
s.t. 𝒚 ≤ 𝟎 𝝀 ≥ 𝟎 𝒚𝐓𝝀 = 0, (10)

being n = 3b+3c+2c the number of variables of the LCP problem. The problem in Equation (10) can be uncoupled into
two dual quadratic programming problems, corresponding to a force-based and displacement-based optimization scheme.
This is a noticeably simplification, which allows very efficient solution algorithms to be used, with low computational
costs. The equivalent force–based problem can be written as60,61:

max −
1

2
𝒄𝐓 𝑪𝒄 − 𝒈𝐓

𝟎
𝒄

s.t.𝑨𝟎𝒄 = 𝒇

𝒚 ≤ 𝟎, 𝒚 = 𝒀𝐓 𝒄, (11)

with the number of variables n= 2c (i.e., the contact forces) and number of constraintsm= 3b+3c. The dual displacement-
based optimization problem is:

min
1

2
𝐞𝐓 𝑲𝐞 − 𝒇𝐓𝚫𝒙

s.t.𝚫𝒖 = 𝑨𝐓
𝟎

𝚫𝒙

𝚫𝒖 = 𝒀𝝀 + 𝒆 + 𝒈𝟎, 𝝀 ≥ 𝟎, (12)
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where𝑲 = 𝑪−𝟏 and 𝒆 = 𝑪𝒄 is the vector of contact tangential deformations and normal elastic interpenetrations (Fig-
ure 2C). The number of unknowns is n = 3b+2c+3c and consists of block centroid displacements, elastic contact defor-
mations, and flow multipliers measured at contact points.
For the no-tension rigid contact model with limited compressive strength, an additional unknown is introduced to the

contact problem in Equation (10), that is, the collapse load factor 𝛼. External forces (including vertical and horizontal
components) are expressed as the sum of dead (i.e., vertical) and live (i.e., lateral) loads multiplied by the load factor α, as
follows:

𝒇 = 𝒇𝑫 + 𝛼𝒇𝑳. (13)

Under the assumption𝒇𝐓
𝑳
𝚫𝒙 = 1 to ensure that positive energy has to be dissipated by live loads,68 the LCP in Equation

(10) reduces to:

⎡⎢⎢⎢⎢⎣

. . −𝒇𝑳 𝑨𝟎

. . . −𝒀𝐓

𝒇𝐓
𝑳

. . .

−𝑨𝐓
𝟎
𝒀 . .

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝚫𝒙

𝝀

𝛼

𝒄

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

.

𝒚

.

.

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝒇𝑫

−𝒓

1

−𝒈𝟎

⎤⎥⎥⎥⎥⎦
s.t. 𝒚 ≤ 𝟎 𝝀 ≥ 𝟎 𝒚𝐓𝝀 = 0, (14)

This skew-symmetric LCP problem is equivalent to the following force-based and displacement-based optimization
schemes, corresponding to dual linear programming problems61:

max 𝛼 − 𝒈𝐓
𝟎
𝒄

s.t. 𝑨𝟎𝒄 = 𝒇𝑫 + 𝛼𝒇𝑳

𝒚 ≤ 𝟎, 𝒚 = 𝒀𝐓 𝒄 − 𝒓, (15)

with the number of static variables n = 2c+1 (i.e., contact forces and collapse load multiplier) and number of constraints
m = 3b+3c;

min 𝒓𝐓𝝀 − 𝒇𝐓
𝑫
𝚫𝒙

s.t. 𝒇𝐓
𝑳
𝚫𝒙 = 1

𝚫𝒖 = 𝑨𝐓
𝟎
𝚫𝒙

𝚫𝒖 = 𝒀𝝀 + 𝒈𝟎, 𝝀 ≥ 𝟎. (16)

4 IMPLEMENTATION

The elastic no-tension and the rigid no-tension contactmodels are solved on the basis of the solution of optimization prob-
lems given inEquations (11), (12), (15), and (16), respectively.More in detail, for a given configuration𝒙𝟎, the static variables
c associated with the prepeak response of the pushover curves corresponding to unilateral elastic contacts are obtained
from the solution of problems (11), while the kinematic variables𝚫𝒙 in (12) are directly obtained from the Lagrangemulti-
plier associated with the solution of the same force-based problem. An incremental solution procedure was implemented
to consider the effects associated with the change in geometric configuration in the large displacement regime. The pro-
cedure involves the updating of equilibriummatrix 𝑨 and contact gaps vector 𝒈 at each increment, which are determined
on the basis of the new configuration 𝒙 = 𝒙𝟎 + 𝚫𝒙. A force control loading numerical protocol is adopted, thus impos-
ing at each step an increasing value of the lateral loads 𝒇𝑳, which in this case are expressed as a known and increasing
factor of vertical loads 𝒇𝑫. A similar solution procedure was adopted for the evaluation of the rigid body behavior of the
failure mechanism, by solving Equation (15) to derive static variables (now α and c) and Lagrange multipliers associated
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with kinematic variables in (16). In this case, it should be noted that the descending branch with decreasing values of α is
obtained as direct consequence of the solution of static equilibrium conditions on the deformed structural configuration,
as in the case of the postpeak responses obtained from analytical models.
Considering that the model is formulated within a static regime, it should be pointed out that convergence problems

of the implemented procedures may occur when a block detaches completely from the rest of the structure, that is, when
all the gaps at the potential contact points are open. Equilibrium conditions of the detached blocks should be formulated
in the dynamic regime to describe the progressive collapse and this is out of the scope of the present study. In case, a
block completely detaches from the rest of the structure, the displacement capacity predicted by the proposed model is
dictated by the rocking and sliding behavior of a single block, rather than by the displacement capacity associated with
the incipient collapse of the entire failure mechanism.
AMATLAB codewas generated to implement the formulation presented for nonlinear elastic andKinematicAnalysis of

2D rigid Block assemblages (KinABlock_2D, https://doi.org/10.5281/zenodo.5018923). The codewas organized into amain
file and into different functions for: the assignment of input parameters; the generation of the rigid block configuration;
the formulation and the solution of the optimization problems corresponding to the formulated contact problems; and
the postprocessing of the results. The geometric configuration of the rigid block assemblage can be easily imported from
.DXF files, where blocks aremodeled using polylines, with vertices corresponding to contact faces. The optimization solver
Mosek (ver 9.1.10) was used to solve the corresponding optimization problems. The analyses were carried out using a PC
containing a 3.3GHz Intel Xeon E3-1245 processor with 8 GB of RAM.
The numerical parameters, which are needed for the analysis, are: the normal and tangential stiffness 𝑘𝑛 and 𝑘𝑡 at

the contact points, along with the masonry compressive strength and the friction coefficient of the joints. The normal
stiffness at each contact point is calculated on the basis of joint stiffness 𝑘𝑗𝑛, as follows: 𝑘𝑛 = (𝑘𝑗𝑛 ⋅ 𝑙𝑗 ⋅ 𝑑𝑗) ∕4, being 𝑙𝑗
and 𝑑𝑗 the length and the depth at joint j and considering that a four-point contact model was assumed at each interface.
The normal joint stiffness is derived from the elastic modulus of masonry according to the expression 𝑘𝑗𝑛 = 𝐸∕ℎ𝑏, being
ℎ𝑏 the height of the blocks, usually employed to replicate the stiffness of the corresponding continuum element.53 The
tangential stiffness is set as a function of the normal stiffness, after definition of a Poisson ratio for the joint, as detailed in
the following examples and according to Ref. 53. When tie elements are used, input parameters include the longitudinal
stiffness of the tie, plus its plastic strength and the elongation limit (when strength goes to zero). These parameters are
used to define the contact stiffness and strength properties at the end nodes of the tie element.

5 VERIFICATION BY NUMERICAL EXAMPLES

A series of numerical benchmarks were performed to evaluate the accuracy of the proposed modeling approach in the
derivation of the pushover curve for masonry panels subjected to lateral seismic actions. The benchmarks comprise
hand-calculations resulting from the application of the virtual work principle in the large displacement regime (nonlinear
kinematic analysis), closed-form solutions from the literature, and distinct element simulations.

5.1 Side wall and facade connected by a tie rod

The behavior of a system of two blocks connected by a tie rod, one representing a side wall and one representing amasonry
façade subjected to out-of-plane loading, was investigated (Figure 4A). The length of the side wall was B1 = 4.50 m, while
the dimensions of the out-of-plane loaded façade was B2 = 0.50 m and H = 3.50 m. The blocks were subjected to dead
loads P1 and P2 equal to 350 and 100 kN, respectively. The façade was loaded by a varying lateral load αP2. The friction
coefficient μ and the compressive strength fc of themasonry were set equal to 0.6 and 1.0MPa, respectively, while the joint
stiffness 𝑘𝑗𝑛 was 1.0e5 kN/m3. No contact was defined for the interface between the side wall and the façade. The tie was
positioned at a distance c of 0.25 m from the top, had a stiffness of 500.0 kN/m, and a yielding force of 5.0 kN. The ductility
of the tie rod was considered by setting an elongation threshold of 0.20 m (strain of 4%). The bases B1 and B2 were first
discretized into 8 and 1 contact interfaces, respectively.
Figure 5A shows the pushover curves obtained with the rigid body model when using the default four-point contact

discretization. Results are shown both for the free standing and strengthened façade, and when infinite and limited com-
pressive strength, that is, rocking and crushing behavior, are considered. A good agreement is observed with the hand-
calculations derived from simple equilibrium conditions on the original and varied configurations (Table 1). For the façade

https://doi.org/10.5281/zenodo.5018923
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F IGURE 4 Modeling of a side wall and façade connected by a tie rod: (A) Configuration and load distribution in the two panels. (B)
Overturning failure mechanism of the facade
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F IGURE 5 Modeling of a side wall and façade connected by a tie rod: (A) Pushover curves for the out-of-plane failure mechanism of the
facade, with rocking and crushing behavior, without and with tie rod, when its base B2 is discretized with a single contact interface. (B)
Sensitivity analysis to the number of contact interfaces at the base without tie

with the tie rod, a stiffness change can be noted in the elastic response, corresponding to the opening at one vertex of the
base contact interface. It can be also noticed that the pushover curves of the strengthened façade, both for infinite and
limited compressive strength, fall on the ones of the free-standing façade when the elongation limit is exceeded in the tie
rod. This type of discontinuities in the pushover curve are treated without convergence problems by the model. This is a
direct consequence of the solution procedure adopted here, according to which, when reaching the ductility limit of the
tie element, zero strength is set for the tie in the failure conditions of Equation (5).
Figure 5B shows the results of the sensitivity analysis carried out on the number of contact interfaces at the base of

the facade, which was varied from 1 to 8, corresponding to 4 and 32 contact points. As expected, the pushover curves are
remarkably influenced by the number of contact points for what concerns the elastic response and in particular the initial
stiffness K. Conversely, the load multiplier α0 and the displacement capacity d0 are only slightly affected when crushing

TABLE 1 Modeling of a side wall and façade connected by a tie rod: comparison between analytical and numerical results when a single
contact interface is used at the base of the overturning facade

Analytical Proposed
Elastic Rocking Crushing Elastic Rocking Crushing

Case study Model size (b × c) K(N/mm) α0 d0(mm) α0 d0(mm) K(N/mm) α0 d0(mm) α0 d0(mm)
Two wall panels
w/o tie

2×36 489 0.143 495 0.114 397a 497 0.143 493 0.107 379

Two wall panels
with tie

5×60 1344 0.236 495a 0.207 397a 1347 0.236 493a 0.200 379a

aWith tie elongation threshold.
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(A) (B) (C)

F IGURE 6 Modeling of a side wall and façade connected by a tie rod. Distribution of resultant contact forces for crushing and position
of rotation center at the base of the overturning facade in the case of: (A) one contact interface; (B) four contact interfaces, and (C)
stress-block assumption

is modeled, as a consequence of the underlying failure conditions adopted, which are expressed at the level of the entire
interface as a function of stress resultants.
For the case of rigid contacts with crushing, a comparison between the contact forces calculated for an increasing

number of interfaces and the distribution of stresses corresponding to the stress-block solution is reported in Figure 6. The
position of the center of rotations, corresponding to the line of action of the resultant of contact forces, is also reported
(Figure 6A, B). The comparison with the analytical solution (Figure 6C) shows that the positions closely match for a
number of contact interfaces equal to 4.

5.2 Dry-stacked masonry panels with openings

The accuracy of the rigid block model was further evaluated by comparing its response with numerical simulations per-
formed by the distinct elements method (DEM). The dry-stacked masonry panels originally proposed by Baggio and
Trovalusci69 and later revisited by Ferris and Tin-Loi38 and Gilbert et al.39 were used as a benchmark. The panels were
modeled by means of the software package UDEC 6.0.51 The ability of UDEC to model the out-of-plane rocking behavior
of masonry structures is demonstrated in earlier works, see, for instance, Refs. 26, 28, and 70. In this study, UDEC was
used to create a numerical mock-up of the panels with the same geometry and material properties as those used in the
rigid block model.
The panels originally consist of building blocks of nondimensional length 4.0, height 1.75, and mass density equal

to 1.0.38 For the purpose of the present study, full block dimensions were set equal to 0.4×0.175 m and a unit weigh of
10.0 kN/m3 was assumed. Differently from the original benchmarks, the block corners were rounded by a radius of
0.02 m. It can be noticed that this is a default parameter to be taken into account when using UDEC 6.0.51 The default
two-point contact discretization was used between adjacent blocks, in both the DEM and rigid block models. A Coulomb
slip contact model with integration over the contact area was adopted for the joints of the DEM model.51 More particu-
larly, in order to mimic the contact behavior of the rigid body model, contact was modeled as elastic-brittle under tensile
loading, elastic under compressive loading, and elastic-perfectly plastic under shear loading. In the original works,38,39
all joints had zero cohesion, zero tensile strength, and the same frictional behavior (associative and nonassociative) with
friction angle of 33◦. To test the applicability of the rigid block model under various configurations, in this benchmark,
the bed joints had associative behavior with friction angle of 33◦, while the head joints were assigned zero friction angle.
The normal joint stiffness was set equal to 1.0e5 kN/m3 and the shear stiffness was derived by using a Poisson’s ratio
of 0.2.
The panels were supported on a rigid foundation and the properties of the base joints were the same as those used for the

bed joints. All blocks were subjected to the self-weight 𝑓𝐷 plus a horizontal live load 𝛼𝑓𝐿 simulating the seismic loading.
A solution strategy conceptually similar to the relaxation method and making use of local damping was implemented in
UDEC to ensure quasi-static loading conditions throughout the analysis and, more specifically, the correct representation
of the postpeak behavior of the pushover curves.8 Differently from the rigid block model, the DEM model makes use
of an explicit time integration scheme. Calculations are organized into cycles, where Newton’s second law of motion is
solved for all blocks, and stress-displacement laws derive contact forces from the known displacements to be used in the
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equations of motion. With this solution scheme, mechanical damping is needed to obtain the static solution and prevent,
or reduce, oscillations.51
Figure 7 shows the pushover curves and the related collapse mechanisms obtained by the models. The load multiplier

𝛼 versus the displacement 𝑑 extracted at top right corner of each panel is plotted. Both the rigid and the elastic versions of
the rigid body model are presented. The plots of the collapse mechanisms are extracted for both the rigid block and DEM
model at 𝑑 = 200 mm.
In all examples, the pushover curves provided by the rigid block model compare fairly well with the DEM model in

the prepeak behavior. This is less evident only in Examples 1 and 2, where shear elastic deformations play an important
role as compared to the other examples. Moreover, in all examples, the descending curve obtained by the rigid block
model follows closely the slope of the postpeak behavior of the DEM model. Finally, the peak multiplier provided by
the rigid block model, found at the interception between the “elastic” and the “rigid” curves, compares well with the
peak multiplier predicted by the DEMmodel. The displacement capacity of the structure, which in the rigid block model
corresponds to the point where the algorithm fails to predict the solution, occurring when one block detaches from the
rest of the structure, compares well to the points where abrupt changes in the response are observed in the DEM solution.
Concerning the collapse mechanisms predicted by the models, the comparison is also satisfying for most examples,

in that the blocks that are mobilized in the mechanisms are similar. Differences in the failure modes can be noted for
Examples 2 and 3, which can be also ascribed to the different solution strategies adopted for the postpeak behavior. For the
proposed rigid block model, apparent nondilatant behavior occurs at joints when sliding, despite the assumed associative
flow rule (Equation 8). In particular, the equations governing the kinematic rules involve a dilatant behavior at sliding
joints only in the initial increments of the sequential solution procedure. The new gaps created by the associative sliding
behavior of the first increments tend to cancel out the dilation in the next increments, thus resulting in an apparent
nondilatant behavior. A detailed discussion on this aspect related to assumed associated sliding rule, which was also
observed in Ref. 35, is given in Ref. 59.

6 COMPARISONSWITH EXPERIMENTAL TESTS

In this section, applications to experimental case studies, both developed for the present study and from the literature,
are considered to evaluate the accuracy and computational efficiency of the developed formulations when multiblock
assemblages are considered. Experimental tests, including also the effects of strengthening with ties, are considered.

6.1 Dry joint stone shear walls

The dry stone masonry shear walls SW.30 tested by Lourenço et al.53 were considered for comparison (Figure 8). The
dimensions of the stone walls were 1000×1000×200 mm and the size of the units was 100×200×200 mm. The walls were
subjected to a precompression vertical load of 30.0 kN and to a varying horizontal load at the top. The mechanical proper-
ties of the rigid blockmodel were set in accordance to the values reported in Lourenço et al.53 and Orduña and Lourenço.71
A unit weight of 25.0 kN/m3 was considered for the rigid blocks. The values considered by these authors were adopted
for the friction coefficient, 0.66, and the normal joint stiffness 𝑘𝑗𝑛, 5.66e6 kN/m3. The tangential stiffness was set equal to
𝑘𝑗𝑡 = 𝑘𝑗𝑛 ∕(2(1 + 0.2)), being 0.2 the value assumed for the Poisson’s ratio, according to Ref. 53.
The predicted failuremechanism is shown in Figure 8A and corresponds to simple overturning, with a diagonal stepped

crack propagating from the left end corner at the base. The comparison with experimental outcomes shows a good agree-
ment with numerical response in terms of pushover curves (Figure 8B). The failure modes observed from experimental
tests were also very similar to that predicted with the proposed model. Experimental failure occurred by a simple rotation
of the upper part of the wall with a stepped diagonal crack propagating along the bed and head joints from the half block
at the bottom left end side of the wall panel. Sliding along the bed joints was also observed.53

6.2 Dry joint stone portal frame

The capability of the developed formulation in predicting the failure modes and the lateral force for the onset of the
collapse mechanism with tie elements is tested by comparing it with the results of tilting tests carried out on a dry jointed
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F IGURE 7 Modeling of dry-staked masonry panels with openings: comparison of the results of the proposed model with DEM
simulations
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F IGURE 8 Analysis of the SW.30 wall panels53: (A) deformed configuration and (B) comparison of with the experimental curves
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F IGURE 9 Dry joint wall panels: comparison of experimental and numerical failure mechanisms for free (A and C) and reinforced
configurations (B and D)

masonry panel with an opening. The blocks were made of tuff stones with size 100×100×50 mm. A lintel 600×100×100
mmmade of reinforced cementmortar was used to span the opening. The unit weights of the tuff stones and the reinforced
cement beam were 12.1 and 14.0 kN/m3, respectively.
The test set up was similar to the one used by Portioli et al.72 The tilting table was made of a timber beam hinged at one

end and was lifted up by a chain puller, so to induce the collapse by progressively increasing lateral forces as a function of
blocks self-weight and tilting angle. The average value of the friction coefficient measured from sliding tests on the tilting
table on two blocks stacks was 0.51. The tie was a steel wire cable with diameter of 1.0 mm, which was connected to two
steel plates with dimensions 100.0×100.0×3.0 mm. The tie plastic strength used for numerical simulations was set equal
to 100.0 N.
The failure mechanisms and the values of lateral load multipliers obtained from experimental tests and the rigid block

model for the onset ofmotion are shown in Figure 9 and Table 2. A good agreement in terms of failuremodes can be noted,
whereas the load factors for the onset of motion are slightly overestimated in this case, with differences up to about 12.8%
for the free-standing configuration. These differences are likely due to the geometrical irregularities of the tuff blocks.
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TABLE 2 Numerical and experimental wall panels with tie: collapse load multiplier and CPU times

Case study
Model size
(b × c)

Block model with rigid contacts Experimental
α0 CPU timea(s) αexp

Exp. wall panel w/o tie 149×1612 0.44 0.56 0.39
Exp. wall panel with tie 152×1636 0.50 0.58 0.49

aCPU time per displacement increment, referred to 3.3GHz CPU.
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F IGURE 10 Modeling of a buttressed arch with tie: (A) geometry; (B) failure mechanism of the free block model with rigid contacts,
and (D) with tie; (C) deformed configuration of the block model with elastic contacts and tie

6.3 Dry-stacked buttressed arches

The buttressed arches experimentally investigated in Calderini and Lagomarsino52 were considered for comparison. The
specimens were made of dry-jointed plastic blocks with polyvinyl alcohol tissues at interfaces to increase the friction
coefficient and prevent sliding. The buttressed arches were tested on a tilting table and block displacements were recorded
using a 3D motion capture system. Two different configurations were considered, namely, the free-standing buttressed
arch and the buttressed arch reinforced with a tie rod.
The dimensions of the buttressed arches and the configuration of the rigid block model are shown in Figure 10A. The

value of the unit weight of the blocks was set equal to 11.5 kN/m3 and the friction coefficient was taken to be 0.6, in
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F IGURE 11 Buttressed arches: comparison of experimental, analytical, and numerical pushover curves without (A) and with tie
element (B)

accordance with Calderini et al.11 and Calderini and Lagomarsino.52 The normal joint stiffness at block interfaces was set
equal to 1.2e5 kN/m3, considering the elastic modulus, which was measured for the blocks and tissues at the interfaces
(which were equal to 1800 and 0.06 MPa, respectively), and corresponding dimensions. The longitudinal stiffness of the
tie rod made of a guitar string made of harmonic steel was set equal to 4.9 kN/m, corresponding to a circular tie rod with
length 430mm, an elastic modulus of 67,000MPa, and a nominal diameter of 0.2 mm. The tie strength and the elongation
threshold were set equal to 88.0 N and 20.0 mm (strain of 4.6%), respectively, according to Ref. 52. The failure mechanism
corresponding to the rigid contact formulation without and with tie element is reported in Figure 10B, D. In Figure 10C,
the deformed configuration obtained in the case of elastic contacts with tie is also shown.
The comparisons of numerical pushover curves with analytical and experimental curves presented in Ref. 52 are

reported in Figure 11. In the case of the specimen without tie rod, Figure 11A shows the elastic pushover curves corre-
sponding to the total lateral displacement at the control point, that is, the lateral displacement which includes the effects
of self-weight and horizontal loads, and the lateral displacement corresponding to horizontal loads only (i.e., the lateral
displacement for vertical and lateral loadsminus the lateral displacement for vertical loads). According to the experimental
results, the analysis on the free-standing blockmodel shows that the deformation of the joints (and the large displacement
formulation) reduces the force capacity of the system considerably. A good agreement with experimental test in terms of
failure load is observed. Conversely, remarkable differences in the prepeak, elastic response can be noted. Those could be
ascribed to geometric imperfections, that is, global misalignments and local imperfections, such as rounded corners of the
blocks observed during the tests52 and to the simple point contact model adopted. Similar differences can be noted in the
case of the buttressed arch with tie, although in this case a slight difference in the predicted collapse load is also observed.

7 SEISMIC ASSESSMENT OF A TRIUMPHAL ARCH

The prototype of a triumphal arch was considered to test the suitability of the proposedmodeling approach for the seismic
assessment procedures contained in the Italian technical standard for local collapsemechanisms ofmasonry structures.3,4
The dimensions of the triumphal arch are reported in Figure 12A. The depth of the circular arch was set equal to 0.60 m

and that of the nave walls was 5.50 m, the latter corresponding to the distance between two consecutive triumphal arches.
The size of the masonry units in the piers was 0.40 × 0.30 m. The unit weight of masonry was 16.0 kN/m3 and the friction
coefficient was set equal to 0.65. The normal joint stiffness was 5.3e6 kN/m3, so to replicate the elastic behavior of the
continuum corresponding to a Young modulus E of 1600 N/mm2 for a block height of 300 mm. The compressive strength
was 1.00 MPa. Additional vertical loads equal to 100.0 kN were considered at the top of the nave walls to simulate the
action induced by the roof. Two different values for the tie strength, 10.0 and 50.0 kN, were considered to investigate the
influence of strengthening interventions on the failure mechanisms and seismic capacity of the arch. The longitudinal
stiffness of the tie was set equal to 1850 kN/m, corresponding to a wire rod with an equivalent elastic modulus and cross-
section of 110,000MPa and 123.5mm2, respectively. The elongation threshold in the tiewas 74mm, corresponding to a limit
plastic strain of 1%. Concerning the contact discretization, bed joints between full blocks in the piers were divided into two
contact interfaces, whereas a single contact interface was used for the head joints. The joints between the arch voussoirs
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F IGURE 1 2 Seismic assessment of a triumphal arch: failure mechanisms and mobilized blocks (in blue color) obtained from the rigid
contact formulation without tie (A), with tie strength equal to 10.0 kN (B) and equal to 50.0 kN (C). Pushover curves (D)

were divided into four contact interfaces. As observed in Section 5.1, a configurationwith four contact interfaces allows for
the correct representation of the stress block distribution and the position of the pivot point between two adjacent blocks.
The collapse mechanisms obtained from the analyses are shown in Figures 12A–C. The mechanisms predicted for the

unstrengthened arch and arch strengthened with tie of strength equal to 10.0 kN are similar, with the overturning of
a single wall and the formation of three hinges in the circular arch. The analysis also shows that the tie strength of
10.0 kN is attained and a visible plastic elongation occurs. Conversely, for the tie with strength equal to 50.0 kN, the
failure mechanism involves the overturning of both walls, while the tie does not fail and acts as a rigid link between them.
The pushover curves predicted by the model are shown in Figure 12D. The control point C was selected at the top of

the right end pier. For the buttressed arch with the tie strength equal to 10.0 kN, a remarkable increase is observed with
respect to the unstrengthened arch in the force capacity αy, while low is the difference in terms of elastic displacement,
dy. After reaching the force capacity, the failure load multiplier is still high, up to the attainment of the plastic threshold
in the tie, occurring at about 120 mm, after which the pushover curve falls on the one of the unstrengthened arch. Finally,
the displacement capacity d0 of the unstrengthened arch and the arch strengthened with tie of strength equal to 10.0 kN
is the same. For the arch strengthened with tie of strength equal to 50.0 kN, a larger value is observed for both the force
and displacement capacities. This can be ascribed to the different positions and movement of the hinges in the circular
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F IGURE 13 Seismic assessment of a triumphal arch: implementation of the force- and displacement-based seismic assessment methods
contained in the Italian Technical Standard3,4 by means of the proposed rigid body model

TABLE 3 Seismic assessment of a triumphal arch: parameters obtained from numerical simulations for pushover and capacity curves

Triumphal
arch w/o tie

Triumphal arch with
tie strength 10.0 kN

Triumphal arch with
tie strength 50.0 kN

Model size (b × c) 253 × 2720 256 × 2744 256 × 2744
α0 0.088 0.104 0.113
αy 0.080 0.100 0.105
dy (mm) 19 20 26
d0 (mm) 471 471 698
e* 0.790 0.791 0.792
Γ* 0.670 0.671 0.680
𝑎∗0 ( 𝑑

∗= 0) (g) 0.082 0.098 0.106
𝑑∗0 (mm) 316 316 475
T0 (s) 0.83 0.76 0.86
TLSLS (s) 2.52 2.52 2.77
𝜁𝐸,𝐷𝐿𝑆 Force-based 0.66 0.78 0.85

Displ.-based 0.54 0.60 0.73
𝜁𝐸,𝐿𝑆𝐿𝑆 Force-based 0.52 0.62 0.67

Displ.-based 0.66 0.66 0.94

arch, which govern in all cases the capacity of the structure. From a practical point of view, it confirms the use of a tie rod
of 50.0 kN as a possible seismic retrofitting solution.
The capacity curves of the equivalent SDOF system were derived from the pushover curves obtained with the rigid

block model, by using appropriate transformation factors (Figure 13). According to Ref. 3, the spectral acceleration is

defined as 𝑎∗ = 𝛼(𝑑𝐶)

𝑒∗𝐶𝐹
𝑔, where 𝑒∗ = (

∑
𝑃𝑖𝛿𝑥,𝑖 )

2∑
𝑃𝑖

∑
(𝑃𝑖𝛿

2
𝑥,𝑖
)
, while the spectral displacement is 𝑑∗ = 𝑑𝐶 Γ∗, where Γ∗ =

∑
𝑃𝑖𝛿

2
𝑥,𝑖

𝛿𝑥,𝐶
∑

𝑃𝑖𝛿𝑥,𝑖
.

In the equations, 𝑒∗is the ratio of participating mass, 𝐶𝐹 is the confidence factor, 𝑑𝐶 is the displacement of the control
point, Γ∗is the spectral transformation factor for displacements, and 𝛿𝑥,𝑖 are the horizontal displacements. A routine was
implemented for the automatic calculation of the factors 𝑒∗ andΓ∗ by the rigid blockmodel. The parameters characterizing

the pushover and capacity curves are reported in Table 3. The displacement 𝑑𝑦 and the initial period 𝑇0 = 2𝜋

√
𝑑∗𝑦

𝑎∗𝑦
are

referred to the intersection point between the initial branch and the descending curve of the rigid body model. In the
calculations, a confidence factor CF of 1.35 was used.
The seismic safety assessment was carried out according to the force-based and displacement-based methods for the

damage and life-safety limit states, indicated, respectively, asDLS and LSLS. The following parameterswere considered for
the seismic demand at LSLS, corresponding to the site of L’Aquila, Italy:𝑎𝑔= 0.261g;𝐹0 = 2.364;𝑇∗

𝐶
= 0.347s, being𝑎𝑔 the

design peak ground acceleration on stiff soil, 𝐹0 the amplification factor, and 𝑇∗
𝐶
the reference value for the determination

of the natural period corresponding to the constant velocity spectrum region. At DLS, the considered spectrumparameters
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were: 𝑎𝑔 = 0.104𝑔; 𝐹0 = 2.332; 𝑇∗
𝐶
= 0.281s. A soil factor 𝑆 = 1.2 was assumed for both DLS and LSLS, corresponding

to a soil of type B. The viscous damping ratio ξ used in for the calculation of the spectra was set equal to 5% and 8% for
DLS and LSLS, respectively.3,4
Applying the force-based method, a rigid behavior was assumed up to the activation of the failure mechanism. In this

case, the peak ground acceleration that corresponds to the activation of the failure mechanism at DLS was evaluated as
follows3: 𝑎𝑔,DLS ≅

𝑎∗
0

𝑆
, being 𝑎∗

0
= 𝑎∗ (0). The peak ground acceleration corresponding to LSLS was calculated by applying

a behavior factor q = 2.0 to the expression above.3
For the application of the displacement-based method, the spectral displacement capacities corresponding to DLS and

LSLS were 𝑑∗𝑦 and 𝑑∗
𝐿𝑆𝐿𝑆

, with 𝑑∗
𝐿𝑆𝐿𝑆

= 0.4𝑑∗
0
. The equivalent period corresponding to 𝑑∗

𝐷𝐿𝑆
was 𝑇0, while the one cor-

responding to 𝑑∗
𝐿𝑆𝐿𝑆

was 𝑇𝐿𝑆𝐿𝑆 = 1.68𝜋

√
𝑑∗
𝐿𝑆𝐿𝑆

𝑎∗
𝐿𝑆𝐿𝑆

.3 The peak ground acceleration capacity 𝑎𝑔,𝐿𝑆 at a given limit state LS

was evaluated from the corresponding spectral acceleration capacity 𝑆𝑒,𝐿𝑆 , through the relationship: 𝑑∗𝐿𝑆 = 𝑆𝑒,𝐿𝑆 (𝑇𝐿𝑆)
𝑇2
𝐿𝑆

4𝜋2
,

where 𝑑∗
𝐿𝑆
is the spectral displacement capacity corresponding to DLS or LSLS, that is, 𝑑∗𝑦 or 𝑑∗𝐿𝑆𝐿𝑆 , and 𝑇𝐿𝑆 is the corre-

sponding period, that is, 𝑇0 or 𝑇𝐿𝑆𝐿𝑆 .
In Table 3, the safety indexes 𝜁𝐸 , which express the ratio between the capacity and demand peak ground accelerations

𝑎𝑔,𝐿𝑆 and 𝑎𝑔, are reported both for the force- and displacement-based methods. In general, for all studied configurations,
at DLS the displacement-based method provides lower indexes with respect to the force-based method, with differences
up to about 20%. Several authors have reported a similar difference between the force capacity obtained from experimental
tests on unreinforced masonry walls and the one obtained by rigid body kinematic analysis, see Ref. 57.
Conversely, larger indexes are obtained by application of the displacement-basedmethod at LSLS,which can be ascribed

to the large displacement capacities observed for the arch. Comparing the three structural configurations considered, the
difference between the obtained safety indexes is remarkable and up to about 40% for the tie of strength 50 kN.

8 CONCLUSIONS

A rigid block model with no-tension, frictional, and crushing contact interfaces was presented in this study for the non-
linear pushover analysis of historic masonry structures. The model relies on two kinds of behavior at contact interfaces
to capture the pre and postpeak responses corresponding to the initial elastic behavior and to the mechanism activation
and rocking behavior under lateral loads.
The potential for using the proposed model to assess and design masonry structures when subjected to earthquakes

according to the methods contained in the technical standards has been shown in this paper by a series of analytical and
numerical benchmarks, along with comparisons against experimental tests and an application to the seismic assessment
and strengthening of a triumphal arch.
The comparisons showed that the numerical results closely match those of the corresponding solutions. This outcome

confirms the suitability of the modeling strategy adopted here, which strictly complies with the analytical models recom-
mended in standards, where the failure mechanism is schematized into a system of rigid bodies separated by no-tension
interfaces, whose behavior is governed by the equilibrium conditions, which can be derived from the application of the vir-
tual work principle. Sensitivity analysis showed that the elastic response and force capacity are remarkably affected by the
number of contact points used on the block interface. This may have a large influence when a macromodeling approach
is attempted, that is, when a single block is adopted to represent an entire structural element. Conversely, the number of
contact points only slightly influences the postpeak response and displacement capacity of the structure obtained from the
rigid contact formulation. This is due to the formulation of the failure conditions adopted for crushing, which is defined
on the basis of force resultants at contact points and on the basis of the failure domain corresponding to the classic stress-
block assumption.
Comparisonswith distinct element solutions on classic benchmarks inspired by limit analysis also showed a good agree-

ment for the proposedmodel, both in terms of failure mechanisms and pushover curves. In few cases, it was observed that
the displacement capacity computed by the rigid blockmodel is lower than that obtained from distinct element modeling.
This is due to slight differences in the obtained failuremechanisms, which in the case of rigid blockmodel also involve the
sliding of single blocks upon the contact surfaces of the bottom block. As such, the displacement capacity in the failure
mechanism obtained from the rigid blockmodel corresponds in these cases to the loss of contact between adjacent blocks,
rather than to the loss of equilibrium stability of the entire failure mechanism.
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Applications to experimental tests also showed that the element which was developed for ties provides reasonably
accurate and reliable assessment of the structural behavior when strengthening interventions are considered.
Finally, the seismic assessment of a triumphal arch performed according to codified procedures showed that the param-

eters of the capacity curve, which are related to the failure modes and the participating mass of the blocks involved in the
mechanism, can be easily obtained with the implemented model, thus encouraging its use in practical applications. The
differences estimated in this case between safety indexes for the force- and displacement-based method were up to about
20% and 40%, respectively. However, the comparisons between force- and displacement-based methods contained in the
new version of the Italian technical standard3,4 and, more importantly, the evaluation of their consistency with time-
history analyses of multiblock assemblages deserve further investigation and should be addressed in future studies. The
failure of the masonry units, which was not comprised in the proposed modeling approach, could also be included by
formulating internal cohesive interfaces for the blocks, after proper modifications of corresponding failure conditions.

NOMENCLATURE
𝛼 live load multiplier
𝛼0 load multiplier at the onset of the mechanism with rigid contacts
𝛼𝑦 load multiplier at the force capacity with elastic contacts
Γ∗ transformation factor for spectral displacements

𝜆sk+, 𝜆sk−, 𝜆ok flow multipliers for positive, negative sliding and opening at contact point k
𝝀 vector of flow multipliers
𝜇 friction coefficient

𝜁𝐸,𝐷𝐿𝑆, 𝜁𝐸,𝐿𝑆𝐿𝑆 safety indexes in terms of peak ground accelerations at damage and life-safety limit states
𝑎∗
0

spectral acceleration at the onset of failure mechanisms
𝑨𝟎 equilibrium matrix
𝑏 number of blocks
𝑐 number of contact points

𝒄𝒌, 𝒄 vectors of contact forces at point k and at all contact points
𝐶kn, 𝐶kt, 𝑪 normal, tangential contact compliance, and matrix of contact compliances
𝑑, 𝑑𝑦, 𝑑0 displacement of a control point, displacement at the elastic limit, and displacement capacity

𝑑∗, 𝑑∗
𝐷𝐿𝑆

, 𝑑∗
𝐿𝑆𝐿𝑆

spectral displacement, spectral displacements at damage and life-safety limit states
𝑑𝑗 depth of contact joint j
𝑒𝑘 normal elastic interpenetrations at contact point k
𝒆 vector of tangential elastic deformations and normal elastic interpenetrations at contact points
𝑒∗ ratio of participating mass

𝑓𝑥𝑖, 𝑓𝑧𝑖, 𝑓𝜔𝑖 external load components at centroid of block i
𝒇, 𝒇𝑫, 𝒇𝑳 vectors of external loads, dead (vertical) and live (lateral) loads

𝑔0𝑘 initial known contact gap at contact point k
𝒈𝟎 vector collecting initial known tangential displacement rates and gaps
𝑲 matrix of contact stiffnesses

𝑘𝑛,𝑘𝑡 normal and tangential stiffness at contact points
𝑘𝑗𝑛, 𝑘𝑗𝑡 normal and tangential stiffness at joints

𝑙𝑗 length of contact joint j
𝑀𝑗, 𝑁𝑗 bending and normal force resultants at contact joint j

𝑛𝑘, 𝑡𝑘, 𝑡0𝑘 normal, tangential contact forces and initial known tangential force at contact point k
𝒓 vector of constant terms associated with failure conditions

𝑇0, 𝑇𝐿𝑆𝐿𝑆 equivalent periods corresponding to 𝑑∗
𝐷𝐿𝑆

and 𝑑∗
𝐿𝑆𝐿𝑆

𝒙𝟎, 𝒙 vectors of initial (known) and new (unknown) positions at block centroids
𝑦𝑠𝑘+, 𝑦𝑠𝑘−, 𝑦0𝑘 failure conditions for positive, negative sliding and opening at contact point k

𝒚𝒌, 𝒚 vectors of failure conditions at contact point k and at all contact points
𝒀𝒌, 𝒀 flow rule matrices at contact point k and at all contact points

Δ𝑢𝑛𝑘, Δ𝑢𝑡𝑘 normal and tangential relative displacements at contact point k
𝚫𝒖 vector of local relative displacements at contact points

Δ𝑥𝑖, Δ𝑧𝑖, Δ𝜔𝑖 displacements at centroid of block i
𝚫𝒙 vector of displacements at block centroids
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