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A B S T R A C T   

Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal in-
flammatory disorders. However, their systemic administration provokes some off-site secondary effects, 
decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based 
on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1, 2, and 3 mg mL− 1) was 
loaded into eFMs, which not affect the morphology and the mechanical properties of this drug delivery system 
(DDS). The ETX showed a burst release within the first 12 h, followed by a faster release until 36 h, gradually 
decreasing over time. Importantly, the ETX studied concentrations were not toxic to human colonic cells (i.e. 
epithelial and fibroblast). Moreover, the DDS loading the highest concentration of ETX, when tested with 
stimulated human macrophages, promoted a reduction of PGE2, IL-8 and TNF-α secretion. Therefore, the pro-
posed DDS may constitute a safe and efficient treatment of colorectal diseases promoted by inflammatory dis-
orders associated with COX-2.   

1. Introduction 

Intestinal diseases (e.g. inflammatory bowel diseases - IBD) pro-
moted by inflammatory disorders are of major concern among the 
medical community. This inflammation promotes the progression of 
such diseases into more serious conditions [1], with devastating con-
sequences for patients' quality of life. IBD, such as ulcerative colitis and 
Crohn's disease, have a well-established association with inflammation 
and have also been reported to be a risk factor for the appearance of 
polyps and the development of colorectal cancer [1]. The involvement of 
the intestinal region can be at such an advanced stage that it requires 
surgical resection to remove the compromised tissue, followed by an 
intestinal anastomosis, where an uncontrolled inflammatory process 
could lead to anastomotic failure [2,3]. Therefore, it becomes increas-
ingly imperative to find strategies able to control inflammation and 
avoid its pathogenicity in the colorectal environment. 

The inflammatory processes are mediated by a key enzyme, the 
cyclooxygenase (COX). COX is responsible for converting arachidonic 

acid into prostaglandins (PGs) being present in two isoforms, COX-1 and 
COX-2. COX-1 is expressed constitutively in most tissues maintaining 
tissue homeostasis and platelet function, whereas COX-2 is character-
ized by its immediate early response being upregulated by inflammatory 
cytokines. Specifically, COX-2 catalyzes the production of PGs associ-
ated with pathological situations such as inflammation, pain, and fever 
[4–7]. For that reason, COX-2 is commonly overexpressed in several 
premalignant and malignant conditions [7], as well as in IBD conditions 
[8]. 

Selective COX-2 inhibitors or Coxibs are a class of drugs indicated to 
overcome selectively the pathological COX-2 action while maintaining 
the COX-1 activity. They potentially avoid the problems of gastric ul-
ceration and bleeding disorders related to the use of non-selective non- 
steroidal anti-inflammatory drugs (NSAIDs) that act on both COX iso-
forms [6]. Moreover, the treatment with some selective COX-2 inhibitors 
has been associated with the suppression of polyps formation and the 
prevention of colorectal cancer [7], in addition to being associated with 
a lower risk of IBD worsening [9]. From the range of existing Coxibs (i.e. 
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celecoxib, etoricoxib, rofecoxib, valdecoxib, lumiracoxib), some were 
withdrawn from the market due to the high risk of secondary events, 
leaving only celecoxib and etoricoxib (ETX) for medical use [9]. ETX (5- 
Chloro-6′-methyl-3-[4-(methylsulfonyl) phenyl]-2,3′-bipyridine) is a 
second generation of COX-2 inhibitors, used for analgesic and anti- 
inflammatory purposes. However, its oral or systemic administration 
is still associated with cardiovascular toxicity [10–12]. Therefore, it is 
increasingly urgent to find strategies to overcome these off-site effects. 

Colon drug delivery systems (DDS) are an interesting strategy to 
reduce undesirable side effects. They are characterized by the ability to 
release drugs in the colonic environment, avoiding their degradation by 
the gastric pH [13]. Among the DDS, electrospun fibrous meshes (eFMs) 
are polymeric substrates with the potential to be loaded with different 
drugs and to be locally implanted. DDS based on eFMs [14–18] also offer 
the possibility to control the drugs' release profile and to improve the 
bioavailability of poorly water-soluble drugs. These substrates, in 
addition to the high specific surface area, exhibit high porosity [19] 
enabling the diffusion of the released drugs, as well as the ingrowth of 
cells. Some NSAIDs-based colon DDS, not selective for COX-2, such as 
aspirin or indomethacin, loaded into eFMs have been proposed, but its 
effectiveness in inflammation environments has not yet been demon-
strated [17,19]. 

Considering these evidences, in this work we proposed a new DDS 
based on ETX-loaded eFMs for local delivery in the colorectal environ-
ment, overcoming the limitations associated with the systemic admin-
istration of ETX. This DDS can be placed in the inflamed region of the 
colon through colonoscopy or in the staple line after colorectal resection 
surgery followed by anastomosis. For its development, a range of ETX- 
loaded eFMs were produced and characterized morphologically, chem-
ically, mechanically, and thermally. The release profile of different ETX 
concentrations loaded into eFMs was also studied. All the conditions 
were tested against epithelial and fibroblastic colon cell lines to 
demonstrate their cytocompatibility. Furthermore, the DDS loaded with 
the highest concentration of ETX was also tested against an immune cell 
model (i.e. human monocyte-derived macrophages cells) simulating an 
inflammatory environment. 

2. Materials and methods 

2.1. Materials 

Polycaprolactone (PCL; Mw = 70,000–90,000 determined by GPC), 
chloroform, N,N-dimethylformamide (DMF), etoricoxib VETRANAL™ 
analytical standard, Phorbol 12-myristate 13-acetate (PMA), and Lipo-
polysaccharide (LPS) from Escherichia coli were purchased to Sigma- 
Aldrich. CellTiter 96® AQueous One Solution was purchased to Prom-
ega Corporation. Human colon epithelial (CCD 841 CoN; CRL-1790) and 
fibroblastic (CCD-18Co; CRL-1459) cells lines and Eagle's Minimum 
Essential Medium (EMEM) were purchased to the American Type Cul-
ture Collection. Fetal bovine serum (FBS), antibiotic antimycotic solu-
tion, and TrypLE™ Express with Phenol Red were purchased from Life 
Technologies Europe BV. Roswell Park Memorial Institute (RPMI) 1640 
medium modified with GlutaMax™, Phenol Red, HEPES, Calcein AM 
dye and propidium iodide were purchased to Thermo Fisher Scientific. 
Human Monocytic Leukaemia cells (THP-1 cell line) were purchased to 
the European Collection of Authenticated Cell Cultures (ECACC). Pros-
taglandin E2 Parameter Assay Kit, Human IL-8/CXCL8 DuoSet enzyme- 
linked immunosorbent assay (ELISA), Human TNF-α DuoSet ELISA and 
DuoSet ELISA Ancillary Reagent Kit 2 were purchased to R&D Systems. 
Rhodamine phalloidin was purchased from Cytoskeleton, Inc. DAPI 
(4′,6-diamidino-2-phenylindole, dilactate) was purchased from Biotium, 
Inc. 

2.2. Production of ETX-loaded eFMs 

The production of PCL eFMs was performed as described elsewhere 

[20]. Briefly, a 20 % (w/v) PCL solution was prepared using an organic 
mixture of chloroform and DMF at an 8:2 volume ratio. After the com-
plete dissolution of PCL, 1 mL of the solution was electrospun at 15.5 kV, 
using a needle tip-to-ground collector distance of 20 cm, and a flow rate 
of 1.0 mL h− 1. Then, the eFMs were allowed to dry for 1 day. For the 
preparation of ETX-loaded eFMs, ETX was dissolved in the polymeric 
solution at three concentrations (1, 2, and 3 mg mL− 1) and electrospun 
as described above. 

2.3. Morphological characterization of ETX-loaded eFMs 

The unloaded eFM and the ETX-loaded eFMs, i.e. eFMs loaded with 
1, 2 and 3 mg mL− 1 of ETX (eFM-ETX1, eFM-ETX2, and eFM-ETX3, 
respectively) were coated with gold using a Sputter Coater (Cressing-
ton, model 108 A). Then, the morphology of the samples was charac-
terized using a scanning electron microscope (SEM) (JEOL, model JSM- 
6010 LV). At least 9 micrographs of each condition were recorded to 
determine the fiber diameter and pore size using ImageJ (version 1.52). 
The porosity was calculated using the median values of fiber diameter 
and pore size for each micrograph according to the following formula 
[21]: 

Porosity (%) = e−
fiber diameter

pore size × 100  

2.4. Mechanical characterization of ETX-loaded eFMs 

The mechanical properties (i.e., tensile modulus, maximum tensile 
strength, and strain at break) of unloaded eFM and ETX-loaded eFMs 
were determined. For that, uniaxial tensile tests using a Universal Me-
chanical Testing Equipment (INSTRON, model 5543) equipped with a 
50 N load cell at crosshead speed of 2 mm min− 1 and a 10 mm gauge 
length were used. Strips (18 mm × 5 mm) of the different eFMs condi-
tions were prepared and fixed in paper frames to keep the dimensional 
stability of the specimens. The specimens presented approximately 200 
μm of thickness and were tested under dry conditions, and at room 
temperature. Before testing, the lateral sides of the paper frames were 
cut to allow to monitor the correct deformation of the specimens. The 
mechanical tests were performed until complete fracture of the speci-
mens. At least 9 specimens from different batches of each condition were 
tested. 

2.5. Thermal characterization of ETX-loaded eFMs 

The thermal properties (i.e., onset temperature, peak temperature, 
variation of enthalpy and crystallinity percentage) for both melting and 
crystallization processes of unloaded eFM and ETX-loaded eFMs were 
determined using Differential Scanning Calorimetry (DSC) (T. A. IN-
STRUMENTS, model DSC Q100). For that, 3 samples from different 
batches of each condition with approximately 4.5 mg were packed into 
aluminium pans, heated at a constant rate of 10 ◦C min− 1 over a tem-
perature range of 0 to 180 ◦C, and then cooled down to 0 ◦C at the same 
temperature rate. An inert atmosphere was maintained by purging ni-
trogen gas at a flow rate of 50 mL min− 1. For the determination of 
crystallinity, the following formula [22] was used: 

Crystallinity (%) =
Melting Enthalpy of PCL

Melting Enthalpy of Fully Crystalline PCL
× 100  

The melting enthalpy of fully crystalline PCL was considered 139.5 J/ g 
[22]. When samples contained ETX, this value was multiplied by the 
weight fraction of PCL present in each condition. 

2.6. Chemical characterization of ETX-loaded eFMs 

Samples analysis was performed on a Kratos Axis-Supra instrument 
with ESCApe software and equipped with a monochromatized radiation 
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X-ray source of aluminium Kα (Al-Kα, 1486.6 eV). Samples were placed 
on a sample holder further localized perpendicularly to the radiation 
source under a vacuum atmosphere (10− 8 Pa). The chemical composi-
tion of the samples surface was assessed using a 15 mA emission current 
and a pass energy of 160 eV for survey and 20 eV for high resolution 
regions analysis. The regions spectra of C 1s and O 1s, for unloaded eFM 
and additionally N 1s and S 2p for eFMs-ETX samples were performed 
using a linear type background fitting. Charge referencing was per-
formed for the C1s hydrocarbon peak, which was set at 285.0 eV. Each 
sample was analysed at three different locations in quintuplicate, being 
the presented data a media of all the achieved results for each 
composition. 

2.7. In vitro drug release study 

The release of ETX from the different eFMs conditions was studied 
using 3 disks from different batches with 20 mm diameter. For that, the 
eFMs were immersed in 10 mL of 0.9 % (w/v) NaCl solution at pH 7.4. 
The release study was conducted at 37 ◦C and 60 rpm for 168 h using an 
orbital shaker (IKA, model KS 260 control). At defined time points (0.5, 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 24, 26, 28, 30, 32, 34, 36, 48, 52, 
56, 60, 72, 96, 120, 144, and 168 h), an aliquot of 1 mL was collected 
and replaced with fresh NaCl solution. The absorbance was measured 
using a microplate reader (BioTEK, model Synergy HT) at 234 nm. To 
determine the ETX concentration of each sample, a calibration curve of 
known ETX concentrations was used. In the calculations, the absorbance 
of unloaded eFM in the same release medium at each time point was 
subtracted from the values of all ETX-loaded eFMs conditions. 

2.8. Cytocompatibility evaluation of the ETX-loaded eFMs 

Two human colon cell lines with epithelial and fibroblastic 
morphology (i.e., CCD 841 CoN and CCD-18Co, respectively) were used 
to evaluate the cytocompatibility of unloaded eFM and ETX-loaded 
eFMs. All conditions of eFMs samples were performed with 5 mm 
squares. Tissue culture polystyrene (TCP) coverslips were used as a 
control. All conditions were performed at least in triplicate and assayed 
at least 3 times independently. The experiments were performed ac-
cording to a procedure described elsewhere [20]. 

2.8.1. Cell culture and seeding 
Both cell lines, at passages 13–16, were grown in EMEM supple-

mented with 10 % (v/v) of FBS and 1 % (v/v) of antibiotic antimycotic 
solution, at 37 ◦C in a humidified atmosphere of 5 % CO2. For the cell 
seeding, 50,000 cells resuspended in a droplet were seeded over each 
sample and allowed to adhere for 4 h. After this time, culture medium 
was added. 

2.8.2. Metabolic activity 
The metabolic activity of human colonic cells seeded on all eFMs 

conditions and TCP was determined by MTS assay. After 1, 3, and 7 days 
of culture, the medium was removed and the samples were rinsed with 
Dulbecco's phosphate-buffered saline (DPBS). After that, a mixture of 
DMEM without phenol red with 1 % (v/v) of antibiotic antimycotic so-
lution and MTS reagent (5:1 volume ratio) was added to each well and 
left to incubate for 3 h at 37 ◦C in a humidified 5 % CO2 atmosphere. For 
the negative control, wells without cells or samples were used. The 
absorbance of the MTS reaction medium from each sample was read in 
triplicate at 490 nm (BioTEK, model Synergy HT). 

2.8.3. Live/dead assay 
Live/Dead assay was performed after 1, 3, and 7 days of culture. For 

that, living cells were stained with 2 μg mL− 1 calcein AM (green) and 
dead cells with 1 μg mL− 1 propidium iodide (red). After that, the stained 
cells were observed in an AiryScan 2 confocal microscope (Zeiss, model 
LSM 980). 

2.8.4. Morphological characterization 
After 1, 3, and 7 days of culture, the medium was removed, and the 

samples were washed with PBS. Then, they were fixed with 10 % buff-
ered formalin for 1 h at 4 ◦C. To observe the cell morphology, the 
cytoskeleton and the nucleus were stained with phalloidin-TRITC 
(1:200) and DAPI (1:500), respectively, and imaged in an AiryScan 2 
confocal microscope (Zeiss, model LSM 980). 

2.9. Anti-inflammatory evaluation of the ETX-loaded eFMs 

A human peripheral blood monocyte cell line (THP-1) was used to 
evaluate the anti-inflammatory capacity of unloaded eFMs and loaded 
with the highest concentration of ETX (i.e., eFM-ETX3). All condition 
samples were performed with 10 mm size squares in triplicate and 
assayed 3 times independently. The experiments were performed ac-
cording to a procedure described elsewhere [23] with some 
modifications. 

2.9.1. Cell culture and seeding 
The THP-1 cells were grown in RPMI 1640 medium with Gluta-

MAX™ and HEPES, supplemented with 10 % (v/v) of FBS and 1 % (v/v) 
of antibiotic antimycotic, and maintained at 37 ◦C in a humidified at-
mosphere of 5 % CO2. The cells were seeded in a 24-well culture plate at 
a density of 5 × 105 cells per well, and their differentiation was induced 
by adding 1 mL of RPMI medium containing 100 nM PMA per well for 
24 h. After that, the medium was removed, the adherent cells were 
washed with warm RPMI medium, and then incubated for 48 h with 1 
mL of RPMI medium (without PMA to ensure the complete differentia-
tion of monocyte to macrophage phenotype). After this time, the me-
dium was removed and the macrophages were stimulated with RPMI 
medium containing 100 ng mL− 1 of LPS for 24 h. As negative control of 
the inflammatory stimulus, cells without LPS stimulation were used. 
After the inflammatory stimulus, eFM and eFM-ETX3 samples were 
added to the LPS-stimulated macrophages and incubated for 1 and 3 
days. These time points were defined considering the release profile of 
ETX. 

2.9.2. Metabolic activity 
The metabolic activity of THP-1 cells adhered on the well or on the 

eFMs was determined by MTS assay. After 1 and 3 days, the culture 
medium was removed and the samples were rinsed with warm DPBS. 
The remain procedure was conducted as described in Section 2.8.2. 

2.9.3. Quantification of pro-inflammatory molecules 
The amount of PGE2, IL-8, and TNF-α was quantified by ELISA ac-

cording to the manufacturer's instructions. Briefly, in the case of PGE2 
quantification, samples, controls, or standards were added to each well 
followed by the addition of the primary antibody solution. After an in-
cubation of 1 h at room temperature under agitation, the secondary 
conjugated antibody solution was also added and incubated for another 
2 h on the shaker. Afterwards, the plate was washed, and the substrate 
solution was added. After 30 min, the stop solution was added and the 
optical density was read at 450, 540, and 570 nm (BioTEK, model 
Synergy HT). For IL-8 and TNF-α quantification, the capture antibody 
was added to each well and incubated overnight at room temperature. 
The block buffer was added and incubated for 1 h. Then, the samples or 
standards were added and followed by the detection antibody. In each of 
these steps, a 2 h incubation was performed. After that, the Streptavidin- 
HRP and substrate solution were added (20 min incubation each). Af-
terward the stop solution was added, and the plate read as described 
above. Except between the addition of substrate and stop solutions, 
washes were performed between each step. For PGE2, IL-8, and TNF-α, 
absorbance readings at 540 or 570 nm were subtracted from readings at 
450 nm to correct for plate imperfections. Standard curves were con-
structed with known concentrations ranging from 39 to 2500 pg mL− 1 

for PGE2, 31.3 to 2000 pg mL− 1 for IL-8, and 15.6 to 1000 pg mL− 1 for 
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TNF-α, and the concentration of each sample was calculated from these 
standard curves. 

2.10. Statistical analysis 

Statistical analysis was performed using Graph Pad Prism Software. 
The data were first tested using the Shapiro-Wilk normality test. Dif-
ferences between the different conditions were analysed using 
nonparametric tests (Kruskal–Wallis or Mann-Whitney tests), and p <

0.05 was considered significant. When multiple comparisons were per-
formed, the Dunn's test was used. 

3. Results 

3.1. Morphology of the ETX-loaded eFMs 

The eFMs were loaded with different concentrations of ETX and 
characterized by SEM. The morphology of the different conditions was 

Fig. 1. Morphological characterization of eFM, eFM-ETX1, eFM-ETX2, and eFM-ETX3: (A) SEM micrographs; (B) fiber diameter; (C) pore size; (D) porosity - data are 
presented as median ± interquartile range (i. q. r.). 
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similar, even after loading of the ETX (Fig. 1A). All eFMs conditions 
presented a homogeneous morphology composed of randomly oriented 
fibers. Looking at the relative frequency of fiber diameter, it was found 
that loading the eFMs with ETX promoted an increase in fiber diameter 
(Fig. 1B). On the other hand, no significant differences were found 
regarding pore size (Fig. 1C). All eFMs conditions exhibit high porosity 
(median values between 89.54 and 90.59 %), with no significant dif-
ferences between conditions (Fig. 1D). 

3.2. Mechanical properties of the ETX-loaded eFMs 

Representative stress-strain curves for unloaded eFMs and loaded 
with different concentrations of ETX are presented in Fig. 2A. The me-
chanical properties, i.e., tensile modulus, maximum strength, and the 
strain at break, are represented in Fig. 2B. The tensile modulus and 
maximum strength of the unloaded eFM were 18.08 (15.26–21.24) MPa 
and 4.21 (2.97–4.69) MPa, being 12.33 (9.76–15.03) MPa and 3.22 
(2.73–3.94) MPa for ETX-loaded eFMs, respectively. For the strain at 
break of the produced eFMs, the median values were 1535 (1364–1631) 
% for all the tested conditions. No significant differences were found 
between conditions for all these properties. 

3.3. Thermal properties of the ETX-loaded eFMs 

Representative DSC thermograms of unloaded eFMs and loaded with 
different concentration of ETX are presented in Fig. 3. DSC data of each 
endothermic and exothermic transition for all conditions are detailed in 
Table 1. No major differences were found between conditions for the 
melting and crystallization peak temperatures, and crystallinity for both 
endothermic and exothermic transitions. Only a significant decrease on 
the enthalpy (~7 ◦C) on the endothermic transition was observed for the 
eFM loaded with the highest concentration of ETX (i.e., eFM-ETX3) 
when compared with the unloaded eFMs. 

3.4. Chemical composition of the ETX-loaded eFMs 

The ETX-loaded eFMs were analysed by X-ray photoelectron spec-
troscopy (XPS) and shown in Fig. 4A. From the XPS high resolution 
spectra, the atomic ratios (at.%) of C, O, S, and N on the surface of the 
eFMs were determined (Fig. 4B). On eFMs loaded with ETX at different 
concentrations were noticed the appearance of additional peaks related 
to nitrogen and sulphur as expected (Fig. 4C), inexistant for unloaded 
eFM. They confirmed the presence of ETX on the fibrous structure, 
although at reduced amounts (Fig. 4B). 

3.5. Drug release profile of the ETX-loaded eFMs 

The release profile of the ETX loaded into eFMs at different con-
centrations was evaluated using 0.9 % NaCl as release solution at 37 ◦C 
and 60 rpm, to mimic physiological conditions. The profile showed a 
burst release of ETX in the first 12 h, followed by a rapid release until 36 
h (Fig. 5). After that time, the release was slower up to 60 h, accom-
panied by a gradual and sustained release until the end of the study. 
These differences were more pronounced as the concentration of ETX 
loaded into eFMs increased. 

3.6. Cytocompatibility of the ETX-loaded eFMs in the presence of colonic 
cells 

The metabolic activity of human colon epithelial (CCD 841 CoN cell 
line) and fibroblastic (CCD-18Co cell line) cells seeded on TCP, unloaded 
eFMs and loaded with different concentration of ETX was determined 
along 7 days. The results showed that, an increase in the concentration 
of ETX did not significantly affect the metabolic activity of both colonic 
cell types when compared to unloaded eFMs (Fig. 6A and B). To confirm 
visually the cells viability, a Live/Dead assay was conducted, whose 
results are presented in Supplementary Fig. 1A and B. The 

Fig. 2. Mechanical characterization of eFM, eFM-ETX1, eFM-ETX2, and eFM-ETX3: (A) representative stress-strain curves; (B) tensile modulus; (C) maximum 
strength; (D) strain at break. Data are presented as median ± i. q. r. Results were considered statistically significant at p < 0.05. 
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morphological characterization showed that adherent epithelial and 
fibroblastic cells (Fig. 7A and B, respectively), in the 1st day, tend to 
aggregate when cultured in the eFMs-based conditions, as compared to 
the spread phenotype in TCP. Along time, both colonic cells tend to 
acquire a spread morphology. Based on all previous results, the eFM 
condition loaded with the highest concentration of ETX (i.e., eFM-ETX3) 
was used in subsequent tests. 

3.7. Cytocompatibility and anti-inflammatory activity of ETX-loaded 
eFMs in the presence of immune cells 

The anti-inflammatory activity of unloaded eFMs and loaded with 
the highest concentration of ETX (i.e., eFM-ETX3) was evaluated at 
different time points (1 and 3 days) using human peripheral blood 
monocytes (THP-1 cell line) differentiated into macrophages and further 
stimulated with LPS. When the macrophages were not stimulated with 
LPS, their metabolic activity was significantly reduced (Fig. 8). The 
metabolic activity of stimulated macrophages significantly increased 
when eFMs was added to the culture medium, being this increase higher 
in ETX-loaded eFMs. 

The secretion of PGE2, IL-8, and TNF-α was quantified to ascertain 
about the anti-inflammatory properties of unloaded eFMs and loaded 
with the highest concentration of ETX (i.e., eFM-ETX3). The results 
demonstrated that the ETX released from eFM promotes a statistically 
significant reduction in the percentage of both PGE2 and IL-8 (p =
0.0476, when comparing the positive control with LPS stimulation +
eFM-ETX3 condition) (Fig. 9). Concerning TNF-α, both LPS stimulation 
+ eFM and LPS stimulation + eFM-ETX3 conditions significantly 
reduced the percentage of TNF-α comparing with the positive control (p 
= 0.0022), despite a tendency towards lower values with the LPS 
stimulation + eFM-ETX3 condition. 

4. Discussion 

Selective COX-2 inhibitors are potentially indicated for many of the 
inflammatory disorders that can affect the intestinal region. Although 
ETX has been used for analgesic and anti-inflammatory purposes 

[10–12], major concerns still arise (i.e. cardiovascular toxicity) 
regarding its non-specific action. Therefore, the development of DDS 
targeting the colon is still a medical need. Some authors [24] proposed 
eFMs containing pectin and time-dependent polymers aimed for colonic 
drug delivery of another selective COX-2 inhibitor, i.e. celecoxib, but the 
results were limited to the preparation and characterization of the sys-
tem, and dissolution studies. So far, ETX-based DDS have been proposed 
for pain management and osteoarthritis [25–27], being colon-targeted 
DDS not reported yet. In contrast to the reported DDS, eFMs become 
promising and versatile because, in addition to presenting encapsulation 
efficiency rates near to 100 %, they are easily adaptable to the colonic 
tissue. Therefore, they allow the release of the loaded drug directly at 
the implantation site, avoiding migration and off-site action, also 
benefiting from its high surface area and porosity. The drug release 
profile can be further controlled by varying the drug and polymer ratio, 
fiber diameter and morphology through a simple and cost-effective 
process [28,29]. 

Accordingly, this study proposes a new DDS based on eFMs loaded 
with ETX for intestinal disorders. Increasing the concentration of ETX 
promotes an increase in the eFMs fiber diameter, as expected, although 
no changes were observed regarding pore size and porosity, important 
features to allow cells ingrowth. The mechanical characterization under 
tensile load of the eFM showed higher stiffness and tensile strength 
when compared with the ETX-loaded eFMs, however no significant 
differences were found between conditions. The mechanical properties 
of the ETX-loaded eFMs also demonstrated that the drug amount did not 
promote significant changes in the tensile modulus, maximum strength, 
and strain at break. These results are in agreement with the similar 
morphology of the eFMs observed by SEM analysis. In addition, all the 
produced eFMs presented a ductile behaviour showing a maximum 
strain higher than 1000 %. Other authors [30], reporting PCL/PEG 
nanofibers, demonstrated that the addition of ibuprofen (another 
NSAID) caused a decrease in maximum stress and an increase in the 
percentage of maximum strain. Regarding the thermal stability of eFMs, 
it has been reported that neat PCL showed an endothermic peak around 
67 ◦C [26,31]. By other side, pure ETX displays a sharp and endothermic 
peak at 139.2 ◦C [26,32]. In the thermograms of the different ETX- 

Fig. 3. Representative DSC thermograms of eFM, eFM-ETX1, eFM-ETX2, and eFM-ETX3: (A) heating cycle or endothermic transition; (B) cooling cycle or 
exothermic transition. 

Table 1 
DSC data of eFM, eFM-ETX1, eFM-ETX2, and eFM-ETX3 for endothermic and exothermic transitions. Data are presented as median ± i. q. r. Results were considered 
statistically significant at p < 0.05 (*).  

Sample 1st Heating Cooling Crystallinity (%) 

Melting peak temperature (◦C) Variation of enthalpy (J/g) Crystallization peak temperature (◦C) Variation of enthalpy (J/g) 

eFM 60.24 (59.51–60.47) 74.48 (73.08–77.47) 28.64 (24.45–29.66) 60.63 (59.80–61.05) 43.46 (42.87–43.76) 
eFM-ETX1 60.22 (56.72–60.76) 69.87 (69.83–70.27) 27.61 (26.05–28.66) 55.76 (55.33–60.74) 40.17 (39.86–43.76) 
eFM-ETX2 56.54 (56.36–59.93) 70.95 (68.19–72.45) 27.94 (26.62–28.47) 60.26 (60.24–61.21) 43.63 (43.62–44.32) 
eFM-ETX3 56.68 (56.31–59.92) 67.18 (66.86–69.61)* 28.12 (25.55–28.61) 58.06 (55.25–58.10) 42.25 (40.21–42.28)  
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Fig. 4. XPS analysis of eFM, eFM-ETX1, eFM-ETX2, and eFM-ETX3: (A) wide scan; (B) elemental composition (% C, N, O and S) derived from high resolution spectra - 
data are presented as average ± SD; (C) C 1s, O 1s, S 2p and N 1s region scans. 
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loaded eFMs, the peak related to the melting point of ETX was absent, 
being only observed the peak assigned to PCL. This finding suggests that 
the drug ETX was dissolved or molecularly dispersed into the PCL matrix 
in its amorphous form [26], seeming to corroborate the results obtained 
in the system mechanical characterization since no significant differ-
ences were observed in the crystallinity. 

The incorporation of ETX presented no significant changes in the 
high-resolution XPS regions of C1s and O1s spectra, suggesting the 
absence of significant chemical bounds between the drug and the 
polymer (i.e. PCL). According to these findings, a drug entrapment into 
the fibers may be supported through physical (not chemical) in-
teractions between the ETX and the PCL matrix. The ETX functional 
groups were detected through S 2p and N 1s regions spectra. Their 
relative content in the fibers is proportional to the amount of incorpo-
rated drug, increasing from ETX1 to ETX3. 

Since the proposed DDS is intended to be applied locally at the 
inflamed colonic environment, it will not be subjected to gastric envi-
ronment. Therefore, the in vitro drug release study was conducted in a 
0.9 % NaCl solution at 37 ◦C and at pH 7.4 to simulate the mild alkaline 
conditions of the colon [33]. The results obtained demonstrate that 
almost all the drug was released within the first 60 h, with a release rate 

consistent with the concentration of ETX loaded into the eFMs. The 
proposed DDS demonstrated to have a faster release profile than other 
ETX-based [25,26]. The short release time address the local, non- 
systemic action of this DDS, requiring more efficient action in the first 
days. Furthermore, this allows ETX to act in the acute phase of the 
inflammation after intestinal surgeries, being maintained until at least 
the onset of collagen synthesis (168 h) [34]. Indeed, in the treatment of 
IBD, it is important to have an initial inhibition of the inflammatory state 
and then a maintenance phase where the drug will control the disease 
[35]. 

Being this DDS intended for a local application at the colon, under-
standing the cellular response to the ETX-loaded eFMs is essential to 
ensure its safety. The cytocompatibility evaluation demonstrate that all 
the ETX concentrations did not promote changes in cell viability. In 
addition, no changes were also observed in the morphology of both 
endothelial and fibroblastic colonic cells. This result is specially prom-
ising since the local delivery of ETX will not affect the colorectal cellular 
environment, allowing to overcome the problems related with its sys-
temic administration and also reducing the quantity of drug adminis-
tered to the patients for having the intended therapeutic effect. 

Besides the colonic cells, macrophages are also key players at the 
colorectal environment, performing different roles in various intestinal 
diseases. They are associated with the development of a response to 
intestinal inflammation by the secretion of cytokines and bioactive 
substances [36–38]. Furthermore, it is also known that elevated quan-
tities of LPS have been linked to intestinal inflammation in IBD condi-
tions, promoting a cascade of inflammatory pathways [39]. Taking this 
into consideration, the inflammatory scenario of the colon was simu-
lated by an in vitro activation of human macrophages with LPS. The 
metabolic activity of stimulated macrophages increased in the presence 
of an external stimulus, namely when eFMs were added to the culture. 
When the highest concentration of ETX was loaded into eFMs (i.e., eFM- 
ETX3), the released drug has an effect over the macrophages, increasing 
their metabolic activity. Therefore, the proposed DDS at the highest 
concentration, in addition to demonstrated cytocompatibility with 
human epithelial and fibroblastic colonic cells, also did not compromise 
the viability of immune cells. 

COX-2 is upregulated by inflammatory cytokines, catalyzing the 
production of PGs associated with pathological situations, including IBD 

Fig. 5. Cumulative release of the different ETX concentrations from eFMs. Data 
are presented as median ± i. q. r. 

Fig. 6. Metabolic activity of human colonic cells cultured on TCP, unloaded eFMs and loaded with different concentration of ETX along 7 days: (A) epithelial CCD 
841 CoN; (B) and fibroblastic CCD-18Co cell lines. Data are presented as median ± i. q. r. Results were considered statistically significant at p < 0.05 (*); ** p < 0.01; 
*** p < 0.001; and **** p < 0.0001. 
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and colorectal cancer [4–7]. It is, therefore, important to understand if 
the proposed DDS interferes with PGE2 levels, a PG that mediates the 
proinflammatory and tumour-promoting effects of COX-2 in such dis-
orders [40]. The results obtained demonstrated that the eFM loaded 
with ETX at the highest concentration (i.e., eFM-ETX3) promotes a 

statistically significant reduction in the percentage of PGE2. Comple-
mentarily, the potential of DDS was also confirmed by a reduction in the 
percentage of IL-8, another cytokine involved in the inflammatory 
processes promoted by COX-2 [41]. The results obtained for TNF-α also 
demonstrated that ETX-loaded eFM also present a considerable anti- 

Fig. 7. Representative fluorescence microscopy images showing the morphology of human colonic cells cultured on TCP, unloaded eFMs and loaded with different 
concentration of ETX along 7 days, with the cytoskeleton in red and nucleus in blue: (A) epithelial CCD 841 CoN; (B) and fibroblastic CCD-18Co cell lines. 

Fig. 8. Metabolic activity of THP-1 monocytes differentiated into macrophages, stimulated or not with LPS, and cultured in the presence of unloaded eFM or eFM- 
ETX3 along time points (1 and 3 days). Data are presented as median ± i. q. r. Results were considered statistically significant at p < 0.05 (*); *** p < 0.001; and **** 
p < 0.0001. 
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inflammatory activity. This reduction in the TNF-α percentage is a 
promising finding given that TNF-α signalling has been reported to play 
a critical role, not only in the pathogenesis of IBD, but also in infectious 
diseases, in the healing of intestinal wounds and in the formation of 
tumors [42]. All together, these results demonstrate and support the 
potential use of the proposed DDS in the treatment of intestinal in-
flammatory diseases. 

5. Conclusions 

eFMs with different concentrations of a selective COX-2 inhibitor, i.e. 
ETX, were successfully produced, for the first time with a random 
morphology and dimensional stability, aiming intestinal inflammatory 
disorders. The presence of ETX into the eFMs was confirmed through the 
identification of the nitrogen and sulphur elements by XPS, although not 
compromising the morphology and mechanical stability of the eFMs. 
The ETX present a burst release in the first 12 h followed by a fast release 
until the 36 h, and a gradual decreased until the end of the study. 
Importantly, the different concentrations of ETX loaded into the eFMs 
were not toxic to human colonic cells. When the highest concentration of 
ETX loaded into the eFMs was tested for the anti-inflammatory activity, 
the immune cells viability was not compromised, while promoting a 
significant reduction in the percentage of secreted PGE2, IL-8 and TNF-α. 
Therefore, the proposed DDS may be a promising approach to control 
inflammatory disorders associated with COX-2 in colorectal diseases. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bioadv.2023.213712. 
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