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� A systematic comprehensive review of experimental studies is presented.
� A database compiles results from experimental studies on two-leaf stone masonry walls.
� A Bayesian-based approach allows to define ranges for selected mechancial parameters.
� Results obtained are comparable to the ranges proposed in current standards.
� Results provide a valuable reference for practice-oriented engineering activities.
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The work presents the study carried out to build a database of mechanical properties related to the most
recurring two-leaf stone masonry wall typologies. The main objectives of this study are: (1) to perform a
systematic review of experimental studies (2) to apply a data fusion technique, based on a Bayesian
framework, to update the selected mechanical parameter using the information stored in the final data-
base. The results obtained are compared to the ranges proposed in current standard and guidelines.
Therefore, the outcomes presented in this work can provide a valuable support in practice-oriented engi-
neering activities addressing the assessment of existing buildings.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional engineering models based on a deterministic
approach have been widely applied over the last decades in profes-
sional practice. These models usually consist of simplified rules
deduced accordingly to the available experimental data. Despite
their effectiveness in terms of cost reduction and overall improve-
ment of structural performance in engineering systems, these
approaches only partially account for uncertainty affecting physi-
cal quantities (e.g. materials’ mechanical properties) by means of
conservative values and/or safety factors [1].
In particular, uncertainty may play a considerable role in the
assessment of existing buildings such as masonry heritage con-
structions, due to a significantly greater variability observed in
the description of geometry, materials, and acting loads.

When dealing with historical constructions and monuments, a
specific assessment procedure is considered effective if it combines
a significant level of knowledge with minimum invasiveness of
interventions, thus aiming at the conservation of the cultural asset
[2]. To tackle this issue, Italian and European guidelines (NTC 2008,
Eurocode 8 – Part 3) [3] have traditionally relied on a semi-
probabilistic framework that defines Knowledge Levels (KLs). Dif-
ferent KLs are achievable once a defined amount of geometrical,
architectonic, constructive, and mechanical data is gathered. The
achieved Knowledge Level corresponds to a Confidence Factor (CF)
that, once applied to a specific parameter provided by the code,
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results in a reduction of its value in order to compensate for a
biased knowledge of the structure [3,4].

In recent years, there has been a progressive rise of awareness
on how to consider variability and uncertainty in the material, geo-
metric and construction characteristics related to the structural
assessment procedures of existing buildings, which has led to a rel-
evant upgrade of the standard deterministic method, particularly
in the field of seismic safety assessment procedures.

A methodology for the probabilistic assessment of existing
building has been proposed by the National Research Council of
Italy (CNR) [5]. It models uncertainties based on the classification
of three types of variables, namely deterministic (characterized
by a negligible margin of uncertainty), random (related to the
intrinsic variability of the properties of the structure) and epis-
temic (related to the lack of knowledge of the structure in terms
of mechanical properties) [5].

A significant aspect concerning the application of probabilistic
approaches in the construction industry is the acquisition of suit-
able data and information for the reduction of the global uncer-
tainty characterizing the entire process.

Within this framework, non-destructive techniques and expe-
dited assessment methods based on visual inspections are highly
valuable tools for existing buildings’ material characterization.
They are complementary to minor-destructive and destructive
procedures that are not always applicable or advisable (e.g. lack
of minimum intervention criterion applied to conservation of her-
itage constructions).

Hence, recent upgrades in technical guidelines acknowledged
the relevance of collecting data from different sources (e.g. non-
destructive, minor-destructive and destructive testing procedures).
The guidelines envisage the possibility to combine this information
by means of advanced statistical techniques, in order to estimate
mechanical parameters [6].

To this end, Bayesian inference has been generally adopted due
to its effectiveness in reducing uncertainties. It allows, on one
hand, to fuse together various types of data and, on the other hand,
to further upgrade a given parameter when new information is
available [5,6].

Based on the previous considerations, this work presents the
research activity carried out to collect data from non-
destructive, minor-destructive, and destructive testing procedures
by means of literature review. The data was assembled into a
large database of mechanical properties related to different his-
torical two-leaf stone masonry types. Successively, using the col-
lected information, Bayesian inference has been applied to obtain
range of variation for different mechanical properties of two-leaf
stone masonry types. Lastly, the ranges obtained are compared
with the ranges proposed in current standards. The outcomes
herein presented can provide a valuable support for practice-
oriented engineering activities addressing the assessment of
existing buildings.
2. Bayesian inference applied to the assessment of existing
structures and to uncertainty reduction: Background and
motivation

Classic statistic methods are based on a frequentist interpreta-
tion of probability according to which frequencies are used as a
measure of uncertainties. Conversely, Bayes’ theorem is a proposi-
tion about conditional probabilities. A probability distribution
function describes an unknown parameter, hence the probability
itself to provide an estimation of uncertainty.

According to this approach, an initial distribution of data based
on a priori information can be updated, obtaining a posterior distri-
bution, when new observations are available [7]. If a value X = x is
2

observed, and h(h) is the prior distribution, the Bayes theorem is
translated as follows:
h hjxð Þ ¼ h hð Þf ðxjhÞR
h h hð Þf ðxjhÞdh ð1Þ

where h(h|x) is the posterior distribution of h after observing X = x.
The initial information is characterized by h(h) and modified with
the observed data by being updated to h(h|x); f(x) is the prior pre-
dictive distribution for X; that is for an observation of X whatever
value of h.

Bayes theorem weighs the prior information with the evidence
provided by the new data. The posterior distribution is a compro-
mise with reduced uncertainty between the prior information and
the one contained in the new data [8].

The prior distribution should include all plausible values of a
certain variable and its parameters can be estimated based on
known initial observations (e.g. literature review) and/or subjec-
tive knowledge (e.g. personal judgment). It is possible to choose
a prior distribution with small standard deviation (good prior
knowledge), large standard deviation (limited knowledge) or it is
also possible to choose a prior distribution, which reflects a range
of situations from no knowledge. Prior distribution and posterior
distribution follow the same parametric form (conjugacy prop-
erty). Therefore, if prior and likelihood functions are normally dis-
tributed, the posterior function will be normally distributed as well
[8].

The joint probability distribution of the data and the parameter
(likelihood) is given by h(h|x) according to the expression:

h hjxð Þ ¼ L hð Þ ¼
Y
i

hðxijhÞ ð2Þ

where i is the number of outcomes of the new data.
The Bayes theorem allows to estimate the density function of

the posterior distribution by multiplying the likelihood function
and the density function of the prior distribution with subsequent
normalization [9].

The posterior density expresses the fusion between prior obser-
vation and new data, and it provides a basis for posterior inference
regarding h.

Bayesian inference versatility allowed this method to address
different engineering applications, ranging from structural perfor-
mance assessment to estimation of materials’ mechanical proper-
ties. In its early stage, research activities involving Bayesian
methods mainly dealt with the definition of probabilistic frame-
works aimed at the updating of structural models based on
dynamic test data [10–12].

Further contributions, concerning the development of a
methodology combining Bayesian inference and data obtained
from dynamic identification tests, were used to update the proba-
bility density function (PDF) of the elasticity modulus in masonry
towers [13–15].

Aiming at the definition of capacity models for reinforced con-
crete components (e.g. bridge columns), Gardoni [16] estimated
fragility curves under cyclic load by means of Bayesian update.
Successively, research activities based on Bayesian frameworks
applied to reinforced concrete structures mainly addressed the
reduction of uncertainties in estimating mechanical properties.
To this end, the Bayesian method has been applied to combine
experimental data and reference values provided by standards
and guidelines (e.g. Eurocode and Italian Standards), to overcome
the limitations affecting the use of Confidence Factors in reducing
the mechanical properties depending on the achieved Knowledge
Level. This code-based approach, in fact, is unable to account for
the reliability of information gathered by means of different testing
procedures [17–19].
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Similarly, advanced statistical methodologies (Bayesian infer-
ence and Monte Carlo simulation) have been integrated in code-
based assessment procedures for existing masonry buildings to
reduce different sources of epistemic uncertainty (e.g. selection
of the Knowledge Level, selection of location, and results of in-situ
tests) [20,21].

Additional contributions addressing the application of Bayesian
methods for masonry structures were reported in Campostrini
[22]. In this study, the authors developed a probabilistic methodol-
ogy for the seismic vulnerability assessment at urban scale. More-
over, Beconcini [23] and Conde [24] proposed two different
methodologies based on a Bayesian framework for the assessment
of ancient constructions, applying their findings to a historical
aqueduct and to a masonry arch bridge respectively.

A data fusion procedure, based on the Bayesian framework pre-
sented in Miranda [25] for the update of geomechanical parame-
ters, was applied by Ramos [26] to a real case study (St. Torcato
Church in Guimarães, Portugal). The goal of the study was to
reduce the uncertainties in the estimation of the Young’s modulus
of the granite stone that compose the masonry walls of the church.
The proposed methodology aims to overcome difficulties in select-
ing the right value for a certain parameter, which is crucial to per-
form subsequent structural assessment. In the present work, this
data fusion technique has been taken as a reference approach to
obtain updated values of historical masonry mechanical properties
using a large set of experimental data.

3. Database definition: Adopted criteria

The work herein presented consists of a systematic review of
experimental campaigns addressing the assessment of two-leaf
stone masonry walls’ mechanical properties. This wall morphol-
ogy, highly widespread in Portugal, Italy, and other European coun-
tries, has been selected since it represents a construction
technology typically applied in a considerable number of historical
buildings [27].

It is noted that the work presented intends to be an exemplary
application of the methodology proposed and it can be carried out
Masonry Type 1 Masonry T

Masonry Type 4 Masonry T

Fig. 1. Selected m
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for other masonry typologies typically observed in historical con-
structions, such as one-leaf and three-leaf stone masonry walls.

Based on the guidelines provided by Eurocode 8 – part 3 [3] and
Italian Code (Table C8.5.1, Circolare n. 7–21/01/2019) [28], six dif-
ferent stone masonry types have been considered to build the final
database (Fig. 1), namely:

� Masonry Type 1 (Irregular stone masonry) – Neither artificial
nor handmade techniques have been applied to modify the
stone units in terms of shape and/or geometric characteristics.
The masonry bond is irregular and significantly chaotic;

� Masonry Type 2 (Roughly cut stones with wythes of irregular
thickness) – Masonry wall constructed using slightly cut stone
units having roughly defined shapes. Despite stone units may
vary from each other both in terms of shape and size, the
masonry bond often presents a regular texture and a good over-
all arrangement;

� Masonry Type 3 (Uncut stonework with good texture) –
Masonry wall constructed using regular-shaped stone units.
Stone units may vary from each other both in terms of shape
and size. Additionally, they do not have experienced any kind
of handmade or artificial working process. The masonry bond
is considerably regular. Moreover, it can be detected the pres-
ence of horizontal bed joints;

� Masonry Type 4 (Masonry of irregular soft stone blocks) – This
category proposes a classification mostly based on a specific
material. Masonry units related to this wall typology can be
made of roughly cut volcanic rocks (tuff) or sedimentary rocks
(tufa) [29]. Throughout history, tuff has been often used in her-
itage constructions because it is a light and easily workable
material;

� Masonry Type 5 (Regular masonry of soft stone blocks) – Simi-
larly to the previously listed typology (Masonry Type 4), this
category refers to masonry walls built with volcanic and sedi-
mentary rocks and with masonry units that can be defined as
‘‘dressed stones”, meaning that they have been worked and
assembled together resulting in a masonry bond embodying
the main criteria of the ‘‘rules of the art”;
ype 2 Masonry Type 3

ype 5 Masonry Type 6

asonry types.
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� Masonry Type 6 (Squared stone masonry) – Masonry wall con-
structed using stone units that can be found in quarries. Stone
units may differ in terms of size, but they have been shaped
to be as much regular as possible. The masonry bond is charac-
terized by vertical and horizontal bed joints uniformly dis-
tributed throughout the entire masonry wall.

Experimental data collected for the construction of the database
refers to the following mechanical parameters: Young’s Modulus
(E), Shear Modulus (G), Compressive Strength (fm) and Shear
Strength (s0). The testing procedures considered are: Sonic Testing
(ST), Flat-Jacks Tests (FJ), Compression Tests (CT), Diagonal-
Compression (DC) and Shear-Compression Tests (SC).

The comprehensive literature search was carried out on 5 elec-
tronic indexing databases: Scopus, Science Direct (SCD), Web of
Knowledge (WOK), Civil Engineering Database (ASCE), and MADA
RELUIS Database [30].

In addition to the collected papers, other relevant documents
were considered, such as Ph.D. thesis and technical reports of Inte-
grated Projects (SA7) carried out within the framework of the
Advanced Masters in Structural Analysis of Monuments and His-
torical Constructions (SAHC). These additional documents pro-
vided highly valuable information in order to fill the gap
regarding the availability of experimental data from Sonic Testing
procedures applied to historical masonry.

Papers whose titles were not about two-leaf stone-masonry
walls tested by means of the non-destructive, minor-destructive,
and destructive procedures selected for this study were excluded.
On the other hand, those papers complying with the established
criteria were included in the final set of data, and they were care-
fully screened to avoid any possible repetition. A detailed list with
the final set of papers and reports, collected to extract experimen-
tal data for the present work, is provided in https://doi.org/10.
17632/mprjsnr6mp.1.

Lastly, once completed the screening process, every masonry
panel described in the final set of documents was evaluated by
means of the Masonry Quality Index (MQI) method [31,32] in order
to obtain an empirical initial estimation of the reference mechan-
ical parameters (E, G, fm, s0). The following sections present a brief
overview of the assessment methods and techniques considered to
gather the information later adopted to build the database.
3.1. Masonry Quality Index (MQI)

Masonry Quality Index (MQI) correlates mechanical properties
and masonry bond characteristics. MQI has been developed to
assess masonry walls, taking into account the traditional technical
guidelines applied to build workmanlike constructions. This
method is mainly based on a qualitative criterion, which consists
in evaluating the presence (Fulfilled – F), the partial presence (Par-
tially Fulfilled – PF) or the absence (Not Fulfilled – NF) of certain
parameters which contribute to define the ‘‘rules of the art” for
an ideal masonry wall, namely (1) conservation state of the stone
units – SM, (2) stones’ dimension – SD, (3) stones’ shape (SS), (4)
characteristics of the wall section – WC, (5) characteristics of hor-
izontal joints – HJ, (6) characteristics of vertical joints – VJ, (7)
quality of the mortar – MM. Moreover, stone units’ interlock
(WC) can be quantitatively determined using the concept of the
minimum trace length (MTL), which is defined as the minimum
length of an ideal line passing through mortar joints and connect-
ing two vertically aligned points mutually spaced 1 m [31,32].

MQI application results in the definition of three indexes related
to the vertical loads (MQIV), to the in-plane load (MQII) and to the
out-of-plane load (MQIO). Once a MQI value for a loading condition
is known, using specific correlation curves, it is possible to calcu-
late the main mechanical parameters, namely compressive
4

strength, shear strength, Young’s Modulus and Shear Modulus.
According to the studies present in the literature, the correlation
curves related to the vertical load index are the most effective in
predicting Young’s modulus and compressive strength, whereas
the empirical equations based on the in-plane load index proved
to be more reliable in estimating shear strength and shear Modulus
[33].

3.2. Sonic testing (ST)

The sonic test method is one of the most widely used non-
destructive procedures. This technique is based on the generation
of sonic or ultrasonic impulses by means of a transmitter (e.g. per-
cussion or electrodynamics/pneumatic devices). The resulting elas-
tic wave propagates through the material and is collected by a
receiver. Data post processing measures the time that an impulse
takes to cover the distance between the transmitter and the recei-
ver, which can be placed in various positions throughout the struc-
ture. As a result, the sonic tests allow estimating the primary
waves velocity (VP) and the surface or Rayleigh waves (VR), which
are related to the mechanical properties of materials according to
the following equations [34,35]:

VP

VR
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1� mð Þ � 1� mð Þ2

ð1� 2mÞ � ð0:87þ 1:12mÞ2

s
ð3Þ

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
q
� ð1� mÞ
ð1þ mÞ � ð1� 2mÞ

s
ð4Þ

where E is the deformation modulus, m is the Poisson’s ratio and q is
the material density.

Since their early application for the inspection of historical con-
structions, sonic testing procedures proved to be a reliable tool in
providing qualitative information regarding the internal structure
of masonry elements (e.g. the identification of voids and construc-
tive flaws) [36,37], as well as the monitoring of the effectiveness of
repairing solutions for damaged masonry (e.g. grout injections)
[38].

3.3. Flat-jack tests (FJ)

The flat-jack tests provide information about the compressive
stress level and the deformability properties of the masonry. The
test consists of performing two parallel plane cuts perpendicular
to the masonry surface. The flat-jacks can then be introduced in
the slots and loaded progressively, applying uniaxial compressive
stress to the portion of the wall delimited by the cuts, which allows
estimating the Young’s modulus and compressive strength. This
technique is classified as minor-destructive because the damage
caused to the structure can be repaired once the test is concluded
[39]. The flat-jack testing protocol is defined by the American Soci-
ety for Testing Materials [40,41] and by the Reunion International
des Laboratoires et des Materiaux, Systemes de Construction et
Ouvrages (RILEM) [42].

This method is based on the following assumptions, namely (1)
masonry surrounding the slot is homogenous, (2) the stress
applied to the masonry by the flat-jacks is uniform, (3) the state
of stress in the tested portion of the wall is uniaxial and, therefore,
lateral constraining effects of adjacent masonry can be neglected
[37]. Initially, this technique was applied in the field of rock
mechanics. Early stage applications of flat-jacks test to stone
masonry constructions can be found in Binda [43] and Lourenço
[44]. The results obtained in a considerable number of experimen-
tal campaigns showed a significant scattering rate, proving that the
procedure must be adjusted according to a case-by-case approach

http://dx.doi.org/10.17632/mprjsnr6mp.1
http://dx.doi.org/10.17632/mprjsnr6mp.1


Fig. 2. Testing procedure results distribution.
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based on preliminary evaluations of test location, materials, and
local construction techniques.

3.4. Compression test (CT)

Compression tests are usually carried out to estimate the mod-
ulus of elasticity E and the compressive strength of masonry fm,
which are key parameters for the assessment of structural perfor-
mances in existing buildings.

In-situ compression tests are carried out based on the guideli-
nes provided in [40–42] and following the procedure related to
the double flat jack test. The maximum pressure of the test is used
to estimate the compressive strength of the masonry, while the
normal elastic modulus E and the Poisson ratio (m), derived from
the measured displacement, allow to estimate the shear modulus
G through Eq. (5):

G ¼ E
2ð1þ mÞ ð5Þ

If the magnitude of horizontal displacements is too small, it can
be difficult obtaining reliable measurements of the Poisson ratio
and, consequently, an accurate estimation of the shear modulus
[45].

Laboratory compression tests are carried out using specific
equipment, often consisting of supporting metallic frames
equipped with actuators [46]. Once the specimen is in position,
metallic rigid plates can be applied in order to uniformly distribut-
ing the load on its upper surface. Vertical displacements are mea-
sured using Linear Variable Displacements Transducers (LVDTs)
that can be placed on the sides of the masonry prism to be tested.

Both monotonic and cyclic compressive tests can be performed
on the same specimen. The monotonic test enables the determina-
tion of the value of the maximum compressive strength, which can
be later used to define the procedure for the cyclic tests [46,47].
Loading and unloading cycles can be performed reaching a maxi-
mum compressive strength level corresponding to a share (e.g.
25%, 50%) of the value detected during the monotonic test. The
mechanical properties are then calculated based on the stress–
strain curves resulted from the testing procedure.

3.5. Diagonal compression test (DC)

Diagonal-compression test is carried out to evaluate the shear
behaviour of masonry panels. It can be performed both in-situ
and in laboratory. During the in-situ test, 4 cuts are realized in
the masonry wall to isolate the tested panel. The lower part of
the masonry remains attached to the wall wing. A jack, placed on
one of the two corners of the masonry panel, exerts the compres-
sive diagonal force. In the regular test procedure, loading/unload-
ing cycles, with a constant increment after each step, are applied
until failure. The shear strength skdiag is evaluated using the follow-
ing equation:

sdiagk ¼
ffiffiffi
2

p

2
Pmax

An
ð6Þ

where Pmax is the maximum load applied by the jack during the test
and An is the net area of the panel as defined in ASTM guidelines,
which also provide the specifications to perform the laboratory test
procedure [48].

3.6. Shear compression test (SC)

Shear-compression in-situ testing procedure is based on the
work carried out by Sheppard [49]. It consists of separating the
tested masonry panel from the wall by means of vertical lateral
5

cuts and a top horizontal cut. The ‘‘isolated” specimen (recom-
mended dimensions 0.90 � 180 m2) is then subjected to a vertical
compressive stress, which is kept constant by means of a suitable
system of steel plates, steel rods and jacks. During the test, a
hydraulic jack exerts an increasing horizontal force to the centre
of the panel. Thus, shear stresses are distributed over the whole
thickness of the panel.

Panel’s bottom and top are fixed to a steel structure by means of
a suitable device. Hence, the specimen is ideally divided into two
square specimens, subject to different shear forces [45]. The shear
strength of the masonry is estimated using Eq. (7) [50]:

smax ¼ ssck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

1:5ssck

s
ð7Þ

where r0 is the vertical compression stress (recommended value
0.30 MPa), sksc the shear strength of the masonry, whereas smax is
the maximum shear stress defined as:

smax ¼ Tmax

A
ð8Þ

being Tmax the maximum shear load in the lower half of the panel
and A the horizontal cross-section of the panel. If the test is per-
formed in laboratory, the masonry panels must be fixed at both
upper and lower extremities and subjected to constant vertical load,
applying increasing lateral forces on one of the two ends.

3.7. Final database

The online research on electronic indexing databases resulted in
the identification of 4239 documents. The most considerable con-
tributions are represented by the results obtained from SCOPUS
andWeb of Knowledge databases, with 1840 and 1738 documents,
respectively.

In each database consulted, the distribution of results clearly
shows the prevalence of compression tests data, which account
for more than 50% of the total, followed by diagonal-compression
tests. Non-destructive testing data could be obtained from all the
consulted databases except for ASCE and MADA Reluis database
[30].

After the removal of duplicates, 124 documents were accurately
examined, leading to a final number of suitable results equal to
678. The final complete database with detailed information on
the documents analysed has been published in https://doi.org/10.

http://dx.doi.org/10.17632/mprjsnr6mp.1


Fig. 4. Testing procedure results classified by country of origin.

Fig. 5. Data distribution (in-situ/laboratory experimental campaigns).
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17632/mprjsnr6mp.1. The highest number of observations refers
to diagonal-compression tests (195), followed by compression
tests (169). The lowest number of observations registered is 97
(shear-compression tests), whereas almost the same amount of
data is available for sonic test and flat-jacks test, with 110 and
107 observations respectively (Fig. 2).

Looking at the distribution of experimental outcomes for each
masonry type (Fig. 3), it is possible to observe that Masonry Types
1, 2 and 3 have been widely investigated through all the testing
procedures considered in this study. On the other hand, only com-
pression test, diagonal-compression test and shear-compression
test results are available for Masonry Type 4 and 5. Overall, exper-
imental results related to the first three masonry types are the
majority for all the testing procedures considered.

Further data analyses have been carried out to classify the col-
lected information depending on the country where the experi-
mental campaign was carried out (Fig. 4). Overall, the highest
number of observations refers to Mediterranean countries, where
stone is a locally available material that has been commonly used
throughout history in the building practice.

Portugal and Italy account for more than 50% of the total num-
ber of results in both non-destructive and destructive testing pro-
cedures. It is also worth pointing out that most of the data obtained
from diagonal-compression and shear-compression testing proce-
dures belongs to Italian experimental campaigns.

The total number of observations is almost equally distributed
between in-situ testing campaigns and laboratory testing cam-
paigns, with 336 and 342 results respectively (see Fig. 5). A
detailed survey of the collected information clearly highlights that
no data is available related to flat-jacks tests carried out in labora-
tory. Additionally, the final database includes a low number of
sonic tests data related to laboratory campaigns. This trend is
clearly due to the characteristics of these testing procedures, which
are mainly used in on-site campaigns.

On the other hand, destructive testing procedures have been
widely applied in laboratory experimental campaigns. They
require, in fact, highly complex setups and instrumentations,
which are often difficult to install in non-controlled environments
(in-situ conditions). Moreover, the invasiveness of these proce-
dures (compression, diagonal-compression, and shear compression
tests) must not be overlooked. In order to test a masonry wall on-
site, it must be isolated from the rest of the building, leading to an
irreversible change in terms of the overall structural behaviour.
Fig. 3. Testing procedure results classified by masonry typologies.
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Therefore, this aspect makes the aforementioned procedure not
suitable for the assessment of existing constructions especially if
they have a cultural value.
4. Data fusion for the update of masonry mechanical properties

Data collected to build the database have been further exam-
ined to filter any possible outliers that could affect the Bayesian
updating process. Hence, the dispersion of the whole dataset has
been assessed. The interquartile range (IQR) of data distributions
has been calculated as the difference between the 75th (Q3) and
the 25th (Q1) percentile (IQR = Q3 – Q1). All those observations
below the limit Q1� 1.5*IQR and above the limit Q3 + 1.5*IQR have
been considered as outliers, hence not statistically valid for the
purpose of this study [51].

The filtering procedure has been carried out for all the selected
masonry types, mechanical parameters, and testing procedures. As
an example, Fig. 6 depicts the boxplot related to the identification
of outliers within the Young’s Modulus data distribution.

http://dx.doi.org/10.17632/mprjsnr6mp.1


Fig. 6. Definition of outliers within the Young’s Modulus dataset obtained from
compression tests.
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The Bayesian methodology applied in this study refers to a the-
oretical framework proposed by Ramos [26]. A key aspect charac-
terizing the updating procedure is the definition of a prior
knowledge, which represents the starting point of the whole data
fusion technique based on Bayesian inference. As mentioned in
Section 3, all masonry panels considered in the final database have
been examined by means of Masonry Quality Index (MQI). This
visual assessment method allowed to estimate the reference
mechanical parameters considered in this study (E, G, fm, s0), using
the empirical equations provided in the literature [31,32]. The
evaluation of all masonry specimens belonging to each masonry
type using the MQI method resulted in a probabilistic distribution
for each parameter, defined by a mean value and a standard devi-
ation. These distributions were adopted as prior knowledge for the
Bayesian updating process.

As presented in Ramos [26] mean (l) and variance (r2) are con-
sidered random variable; their joint distribution is expressed by:

h ljhð Þ / n0

r2

� �1=2
exp � n0

2r0
�l0

� �2� �
� 1

r2

	 
m0
2 þ1

exp
S0
2r2

� �
ð9Þ

where n0 is the size of the initial sample, S0 is the initial sum of
squared differences between the values and their mean, l0 and
r0 are the initial mean and initial standard deviation.

Prior and posterior distribution belong to the same family (con-
jugate distribution). Hence, the prior for l conditional on r2 is a
normal with mean l0 and variance r2/n0:

ljr2 N l0;
r2

n0

	 

ð10Þ

The prior for the precision (1/r2) is a gamma distribution with
hyperparameters m0/2 and S0/2:

1
r2 gamma

m0
2
;
S0
2

	 

ð11Þ

The conditional posterior density of l, given r2 is given by:

ljr2; x N l1;
r2

n1

	 

ð12Þ

In the data fusion model, mean (l) and variance (r2) are
updated as new information is gathered, resulting in the definition
of a final values with reduced uncertainty. The posterior mean and
the posterior sum of squared differences, which is the sum of the
7

square of variation defined as the spread between each individual
value and the mean, are expressed by Eqs. (13) and (14)
respectively:

l1 ¼ n0

n0 þ n
� l0 þ

n
n0 þ n

� x ð13Þ

S1 ¼ S0 þ n� 1ð Þ � s2 þ n0 � n
n0 þ n

� ðx� l0Þ2 ð14Þ

where l0 is the prior mean (prior knowledge), l1 is the posterior
mean, n0 is the size of the initial sample, n is the size of the new
data sample (new observations), x is the mean of the new data sam-
ple, S0 is the prior sum of squared differences (to be computed for
every single observation), and s is the standard deviation of the
new observed data. The updated standard deviation (r1) can be
computed as the square root of the ratio between S1 and the total
number of considered observations (n0 + n).

The marginal posterior density of 1/r2 is gamma:

1
r2 jx gamma

m1
2
;
S1
2

	 

ð15Þ

where

m1 ¼ m0 þ n ð16Þ
Once the posterior distribution has been defined, its character-

istics, namely update mean and updated standard deviation, can be
estimated through numerical simulations. Markov Chain Monte
Carlo (MCMC) is one of the most popular and widely used method.
A sequence of random variables Xn � 0 is a Markov chain if for any
n, given the current value, Xn, the past Xj, j � n-1 and the future
Xj:j � n + 1 is independent [26]. Moreover, the Gibbs algorithm
has been selected to carry out the sampling process related to
the posterior distribution.

The adopted data fusion technique combines two sources of
information at a time, resulting in a posterior distribution (up-
dated mean value and updated standard deviation) that can be
used as a prior distribution for the following update. The refer-
ence sequence followed in order to carry out the whole procedure
is based on the approach suggested by technical guidelines [3,6]
in order to assess the performance of existing buildings. There-
fore, the updating process simulates a scenario in which data col-
lected by means of visual inspections (MQI) experiences a
stepwise upgrade once new pieces of information, experimentally
collected through non-destructive and destructive techniques, are
available.

For all the masonry types selected, mechanical properties have
been updated depending on the output obtained from each testing
procedure. Therefore, in order to calculate the final value of the
Young’s modulus (E), data from sonic tests (ST), flat-jacks (FJ) tests
and compression tests (CT) have been used, whereas the final value
for the compression strength (fm) has been updated using flat-jacks
(FT) test and compression test (CT) results (Fig. 7). Lastly, diagonal-
compression tests (DC) and shear-compression test results (SC)
have been considered in the updating process of both shear mod-
ulus (G) and shear strength (s0), see Fig. 8.

Therefore, only values directly provided by the specific testing
procedures were considered and computed according to the stan-
dards mentioned in Section 3. Moreover, it should be noted that,
regarding the sonic tests results, based on Eqs. (3) and (4), the
dynamic elastic modulus was estimated assuming a mean value
of Poisson ratio (m) equal to 0.25 and an average density (q) esti-
mated on the basis of the ranges proposed in [3] and [6]. These
ranges of values were adopted to build normal probability distribu-
tion functions and, by means of Monte Carlo simulation method
1000 draws of each distribution were sampled and applied in



Fig. 7. Young’s Modulus (a) and Compression strength (b) updating process flowchart.

Fig. 8. Shear Modulus and shear strength updating process flowchart.
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Eqs. (2) and (3) to provide a fist estimation of the dynamic modulus
of elsticity.

As noted in several studies [52,53], an inequality exists between
static and dynamic modulus of elasticity of masonry. Therefore,
taking into consideration this aspect, the empirical equation pro-
posed by Makoond [54] has been used in order to estimate the sta-
tic modulus of elasticity (Est) starting from the dynamic one (Edy)
resulted from sonic tests. The proposed equation reads:

Est ¼ 0:87Edy ð17Þ
In order to progressively increase the accuracy of the process,

data related to the testing techniques considered to be the most
reliable is used in the last steps of the updating procedure. Addi-
tionally, following the code-based approach, a different Knowledge
Level has been attributed to each testing method.
4.1. Reference update

A reference updating procedure has been carried out using all
the experimental results stored in the final database. The data
fusion procedure followed all the stages previously described in
terms of outliers’ removal and sequence of updates (see Figs. 7
and 8). Moreover, Eqs. (13) and (14) have been applied to calculate
the final updated values of mean (l) and standard deviation (r)
respectively. If no data was available for a specific testing tech-
nique, the data fusion procedure was carried out according to the
8

reference sequence, discarding the step characterized by a lack of
information.

Tables 1–6 present mean value, standard deviation, and number
of observations, related to each testing procedure, and classified
according to a specific masonry type.

It should be noted that data estimated through the MQI method
highlights a considerable uniform distribution, resulting in low
scattering rate and low standard deviation values. Experimental
results show a different trend being their variability in terms of
mean and standard deviation much higher if compared to the qual-
itative assessment results. This was expected given the simplifica-
tions assumed in the MQI method, which considers a set of
parameters that are similar within each masonry type. This pattern
can be also related to the fact that the experimental dataset
encompasses both laboratory and in-situ testing campaigns, char-
acterized by different environmental and boundary conditions,
which leads to a significant variability in the results.

The final values of mean and standard deviation, calculated for
each reference mechanical parameter and for all the selected
masonry types, have been used to define Probability Density Func-
tions (PDF) highlighting the evolution that characterizes the appli-
cation of the proposed data fusion method after each stage of the
updating process. The lognormal distribution was selected to rep-
resent the PDFs of the mechanical parameters since it leads only to
positive values.

For the sake of brevity, only the results related to Masonry Type
1 are presented in detail (Fig. 9). Looking at the graphs, it can be
inferred that, even though the standard deviation values related
to the experimental results used as new information are signifi-
cantly higher than the standard deviation characterizing the Prior
Knowledge (see Table 1), the final standard deviation related to
the considered parameters is reduced. The standard deviation
related to the last updating stage is slightly higher than the one
resulted from MQI assessment (Prior Knowledge). Moreover, the
updated mean values appear to be closer to the Prior Knowledge
data. In fact, the higher number of observations related to MQI
account for a more significant contribution in the overall estima-
tion of the updated mean values.

For instance, Table 1 shows that the updating process related to
the Young modulus begins with a mean and a standard deviation
equal to 1015 MPa and 166 MPa, respectively (Prior Knowledge).
Similar mean values are provided by sonic and flat-jacks tests



Table 1
Prior knowledge and new information summary for Masonry Type 1 (overall data).

Prior Knowledge New Information New Information New Information

MT1 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #
Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1015.33 166.54 205 1135.12 662.80 9 1086.23 766.15 38 708.64 429.90 22
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.16 0.44 205 NA NA NA 1.34 0.74 34 0.92 0.67 30

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
350.29 52.46 205 177.97 97.43 26 141.02 121.16 57
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.04 0.008 205 0.162 0.096 20 0.05 0.03 62

Table 2
Prior knowledge and new information summary for Masonry Type 2 (overall data).

Prior Knowledge New Information New Information New Information

MT2 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1249.20 133.69 102 1270.42 525.74 6 1182.17 610.70 12 1759.69 737.92 16
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.79 0.37 102 NA NA NA 1.45 0.72 16 1.72 0.96 18

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
406.15 32.28 102 268.53 162.02 26 198.08 95.26 5
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.048 0.005 102 0.187 0.057 20 0.054 0.035 10

Table 3
Prior knowledge and new information summary for Masonry Type 3 (overall data).

Prior Knowledge New Information New Information New Information

MT3 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1798.13 258.77 83 1986.70 452.80 6 2385.15 492.02 19 2202.05 767.31 19
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
4.38 0.78 83 NA NA NA 2.02 0.85 15 4.06 2.20 21

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
558.55 79.49 83 297.20 96.44 5 444.20 268.73 10
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.073 0.013 83 0.137 0.083 16 0.114 0.086 24

Table 4
Prior knowledge and new information summary for Masonry Type 4 (overall data).

Prior Knowledge New Information New Information New Information

MT4 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1234.13 72.69 12 NA NA NA NA NA NA 913 270.97 8
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.74 0.20 12 NA NA NA NA NA NA 2.20 1.30 8

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
416.27 20.74 12 NA NA NA 394.67 102.04 3
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.05 0.003 12 NA NA NA 0.051 0.012 5
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new information (1135 MPa and 1086 MPa respectively), whereas
the standard deviation is around 660 MPa (sonic tests) and
760 MPa (flat-jacks test), hence much higher than the Prior
Knowledge standard deviation. Lastly, the contribution of com-
pressive test data consists of a mean and a standard deviation
equal to 708 MPa and 429 MPa respectively. The data fusion proce-
9

dure led to a final mean value and a final standard deviation equal
to 1004 MPa and 376 MPa respectively, determining an overall
reduction of initial standard deviation related to the experimental
data. However, the final mean value resulted to be closer to the
Prior Knowledge. This trend is similar in all the distributions
considered.



Table 5
Prior knowledge and new information summary for Masonry Type 5 (overall data).

Prior Knowledge New Information New Information New Information

MT5 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1548.98 94.33 42 NA NA NA NA NA NA 1248.54 227.78 13
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
3.63 0.27 42 NA NA NA NA NA NA 1.87 0.67 15

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
499.73 40.31 42 NA NA NA 411.60 188.31 5
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.063 0.007 42 0.067 0.048 18 0.186 0.096 10

Table 6
Prior knowledge and new information summary for Masonry Type (overall data).

Prior Knowledge New Information New Information New Information

MT6 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
2614.14 312.57 70 2512.66 935.48 21 2445.50 1738.98 4 3374.67 1735.19 15
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
6.94 1.03 70 NA NA NA 3.21 1.01 4 6.14 2.76 20

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
795.94 63.33 70 NA NA NA 842.67 138.23 6
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.114 0.012 70 NA NA NA 0.197 0.043 6
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4.2. Updating procedure A (only Italian data)

This section summarizes the outcomes related to the application
of the data fusion procedure considering only the results of Italian
two-leaf stone masonry walls. Once defined the final set of informa-
tion for each testing procedure according to a specific masonry type,
the updating procedure has been applied following the same steps
described in the previous sections. Data related to Prior Knowledge
and New Information is summarized in Tables 7–12.

Overall, the reduced number of observations resulted in a
decrease of experimental data mainly related to Masonry Type 4,
5 and 6, whereas the data filtering process based on the origin
country resulted in a data sample able to ensure information
related to all the testing procedures addressing the assessment of
masonry walls classified as type 1, 2, and 3.

As highlighted in Section 4.1 regarding the trends characteriz-
ing the final results of the data fusion process, the reduction of
standard deviation for all the selected mechanical parameters con-
sists of significantly lower values than the standard deviations
related to the single experimental results and slightly higher val-
ues than the standard deviations related to the Prior Knowledge,
whereas updated means are closer to the outcomes provided by
the MQI method (Prior Knowledge), see Fig. 10.
4.3. Updating procedure B (only Portuguese data)

Results related to Portuguese masonry walls are herein pre-
sented (Tables 13–16). The reduction of suitable information to
carry out the data fusion procedure resulted in a complete applica-
tion of the proposed methodology only for masonry types 1, 2, and
3. Note that Masonry type 4 and 5 data refer exclusively to Italian
experimental campaigns. Moreover, despite the significant number
of sonic test results related to masonry type 6, only 2 compression
test observations have been considered, whereas no information
could be gathered for flat-jacks, shear-compression, and
diagonal-compression testing procedures.
10
Probability density functions (PDFs) related to the updated
mechanical properties in masonry type 1 show the same pattern
highlighted in the previous application of the data fusion method
carried out using the whole data sample and only Italian data
respectively, namely overall reduction of standard deviation and
mean values close to the MQI estimation (Fig. 11).
4.4. Comparison between data fusion procedure results and technical
standards reference ranges

This section presents the overall outcomes of the data fusion
procedure applied to update the mechanical properties of the
selected masonry types. Moreover, the final results have been com-
pared to the range of values proposed in Eurocode 8 (Part 3 –
Annex C) [3], Italian standards (Table C8.5.I – Circolare
21/01/2019) [28] and CNR-DT 212/2013 recommendations [5].

Table 17 shows the range of values proposed by the codes and
those ones obtained through the Bayesian updating procedure.
Results calculated using all the data of the final database (Bayesian
Update_ALL) are reported together with updated values related to
Italian (Bayesian Updata_ITA) and Portuguese (Bayesian Update_-
POR) masonry walls. They are classified depending on the refer-
ence mechanical property and the specific masonry typology. The
ranges of the mechanical properties have been defined by subtract-
ing (lower bound) and adding (upper bound) the corresponding
standard deviation to the mean value (bracketed values reported
in Table 17).

Overall, the ranges obtained utilizing the Bayesian updating
procedure appear to be consistent with the values recommended
by Eurocode and Italian standards. Young’s modulus, Shear modu-
lus, and compression strength results show lower bound limits
close to those suggested in Italian standards, whereas upper bound
values are slightly higher. Eurocode’s mechanical properties mean
values shown in Table 17 are lower than the corresponding values
resulted from the different updating scenarios considered, namely
Bayesian Update_ALL, ITA, and POR. Moreover, the estimation of



Fig. 9. Probability Density Function (PDF) updated values Young modulus (a), Compression strength (b), Shear modulus (c), Shear strength (d).

Table 7
Prior knowledge and new information summary for Masonry Type 1 (Italian data).

Prior Knowledge New Information New Information New Information

MT1 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1061.76 181.75 128 1003 415.62 3 1102.88 406.28 8 832 330.20 5
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.29 0.48 128 NA NA NA 2.04 0.67 12 0.45 0.30 3

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
367.69 52.86 128 211.48 67.70 12 225.24 113.92 26
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.043 0.008 128 0.181 0.055 13 0.049 0.028 66
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shear strength is characterized by significant variability, which
yields high standard deviation values and growth of the reference
properties’ ranges mainly for Masonry Type 1 and 2. On the other
hand, Masonry Type 4 and 5 results appear to be highly consistent
with the Italian standard. To this end, it is interesting to point out
that data related to these masonry types only derives from Italian
experimental campaigns.

It is also noted that the variability expressed by the updating
process involving the whole dataset is slightly higher than the vari-
11
ability related to the updating procedure carried out only relying
on data classified based on the country of origin. Therefore, based
also on the evidence related to Masonry Type 4 and 5, it is possible
to say that the characteristics of construction materials as well as
environmental and boundary conditions in which the testing pro-
cedure is carried out significantly affect the homogeneity of the
data sample. Hence, an increase in uncertainty reflects low homo-
geneity of the data sample. Conversely, high homogeneity corre-
sponds to reduced uncertainty levels.



Table 8
Prior knowledge and new information summary for Masonry Type 2 (Italian data).

Prior Knowledge New Information New Information New Information

MT2 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1250.47 133.51 71 1611.52 416.34 3 1138.50 422.77 6 1703.33 360.40 9
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.79 0.37 71 NA NA NA 2.11 0.69 4 2.36 0.45 13

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
405.10 30.56 71 352.68 127.61 10 165.64 78.93 11
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.048 0.005 71 0.188 0.059 16 0.060 0.035 28

Table 9
Prior knowledge and new information summary for Masonry Type 3 (Italian data).

Prior Knowledge New Information New Information New Information

MT3 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1770.54 230.43 46 NA NA NA 2091.40 575.15 10 1840.08 391.11 13
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
4.29 0.69 46 NA NA NA 2.15 0.56 8 4.29 2.36 9

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
551.77 54.05 46 297.20 96.44 5 479.14 254.46 7
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.072 0.009 46 0.104 0.065 9 0.073 0.053 18

Table 10
Prior knowledge and new information summary for Masonry Type 4 (Italian data).

Prior Knowledge New Information New Information New Information

MT4 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1234.13 72.69 12 NA NA NA NA NA NA 913 270.97 8
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.74 0.20 12 NA NA NA NA NA NA 2.20 1.30 8

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
416.27 20.74 12 NA NA NA 394.67 102.04 3
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.05 0.003 12 NA NA NA 0.051 0.012 5

Table 11
Prior knowledge and new information summary for Masonry Type 5 (Italian data).

Prior Knowledge New Information New Information New Information

MT5 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1536.57 85.95 39 NA NA NA NA NA NA 1229.10 325.38 10
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
3.60 0.25 39 NA NA NA NA NA NA 1.85 0.74 12

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
491.93 29.67 39 NA NA NA 411.60 188.31 5
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.062 0.005 39 0.067 0.048 18 0.186 0.096 10
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A similar pattern is highlighted in Table 18, which compares
the values provided in CNR – DT 212/2013 [5], in terms of mean
values and standard deviation of the natural logarithm to the
updated results. In this case, an overall increase in terms of
mean and standard deviation mostly affects results related to
12
the reference Bayesian updating procedure (Bayesian Upda-
te_ALL). Furthermore, Portuguese (Bayesian Update_POR) data
presents a slight variation, whereas Italian results (Bayesian
Update_ITA) often highlight a significant consistency with the
code values.



Table 12
Prior knowledge and new information summary for Masonry Type 6 (Italian data).

Prior Knowledge New Information New Information New Information

MT6 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
2434.75 326.90 16 NA NA NA NA NA NA 2394.38 418.48 8
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
6.36 1.08 16 NA NA NA NA NA NA 3.98 1.33 8

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
811.04 50.81 16 NA NA NA 842.67 138.23 6
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.117 0.009 16 NA NA NA 0.197 0.043 6

Fig. 10. Probability Density Function (PDF) updated values Italian masonry panels Young modulus (a), Compression strength (b), Shear modulus (c), Shear strength (d).
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An additional aspect arisen from this study concerns the overes-
timation of the Bayesian results mean values. To this end, it must
not be overlooked that codes suggest mechanical properties that
refer to low-quality masonry walls built without following the
practice-oriented set of rules (rules of the art). Conversely, data
used to construct the final database involves masonry walls char-
acterized by better mechanical properties and higher workman-
ship average quality compared to a reference masonry panel
considered in technical standards.
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4.5. Confidence actors and Bayesian update

In order to progressively increase the accuracy of the process,
data related to the testing techniques considered to be the most
reliable can be used in the updating procedure. Following the
code-based approach [3], a different Knowledge Level can be
attributed to each testing method.

Based on the approach proposed in [26] concerning the applica-
tions of Trust Factors, a modified version of equation (10) has been



Table 13
Prior knowledge and new information summary for Masonry Type 1 (Portuguese data).

Prior Knowledge New Information New Information New Information

MT1 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #
Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
963.91 139.02 50 1185.98 692.39 5 880.95 383.75 16 1031.20 468.93 5
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.03 0.36 50 NA NA NA 0.93 0.41 21 1.13 0.66 10

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
336.09 43.72 50 NA NA NA 198 152.78 4
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.038 0.006 50 NA NA NA 0.140 0.09 4

Table 14
Prior knowledge and new information summary for Masonry Type 2 (Portuguese data).

Prior Knowledge New Information New Information New Information

MT2 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1191.81 89.69 17 1243.54 461.25 4 877.01 530.38 6 NA NA NA
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
2.63 0.25 17 NA NA NA 1.09 0.22 10 NA NA NA

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
391.15 19.03 17 NA NA NA 320.50 96.87 2
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.046 0.003 17 0.175 0.007 2 0.244 0.033 2

Table 15
Prior knowledge and new information summary for Masonry Type 3 (Portuguese data).

Prior Knowledge New Information New Information New Information

MT3 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
1905.41 306.30 23 2283.57 520.46 6 2161.80 421.13 6 NA NA NA
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
4.70 0.94 23 NA NA NA 2.05 1.12 6 3.27 1.33 7

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
582.87 123.89 23 NA NA NA NA NA NA
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.077 0.021 23 NA NA NA NA NA NA

Table 16
Prior knowledge and new information summary for Masonry Type 6 (Portuguese data).

Prior Knowledge New Information New Information New Information

MT6 Masonry Quality Index Sonic Test Flat-jacks Test Compression Test
Mean St. Dev. # Mean St. Dev. # Mean St. Dev. # Mean St. Dev. #

Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa) Young Mod. – E (MPa)
2610.85 314.95 23 2602.21 665.07 13 NA NA NA NA NA NA
Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa) Compr. Str. – fm (MPa)
6.93 1.02 23 NA NA NA 4.02 0.65 2 NA NA NA

Masonry Quality Index Shear-Compr. Test Diag. Compr- Test
Shear Mod. – G (MPa) Shear Mod. – G (MPa) Shear Mod. – G (MPa)
801.50 78.02 23 NA NA NA NA NA NA
Shear Str. – s0 (MPa) Shear Str. – s0 (MPa) Shear Str. – s0 (MPa)
0.115 0.014 23 NA NA NA NA NA NA
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Fig. 11. Probability Density Function (PDF) updated values Portuguese masonry panels Young modulus (a), Compression strength (b), Shear modulus (c), Shear strength (d).
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additionally presented, which can help to further reduce uncer-
tainties affecting the estimation of material properties when a sig-
nificant amount of data is available and, consequently, a high
Knowledge Level is achieved. The modified equation reads:
S1 mod ¼ S0
CF

þ n� 1ð Þ � s2
CF

þ n0 � n
n0 þ n

� x� l0

� �2 ð18Þ

The application of Confidence Factors (CF) included in equation
(18) results in a reduction of the standard deviation obtained once
the data fusion updating procedure is concluded. According to
Eurocode and Italian standards [3,6], each Knowledge Level (KL)
corresponds to a specific Confidence Factor (CF), namely CF = 1.35,
CF = 1.20, CF = 1 for KL1, KL2, and KL3 respectively.

Inadequate knowledge of the building to be assessed causes a
reduction of the mechanical parameters provided as reference val-
ues in the code; therefore, the lower is the KL, the higher the CF
will be (e.g. values of mechanical parameters estimated in a KL1
scenario must be divided by a CF = 1.35). Conversely, in this study
based on the flowcharts proposed in Fig. 7 and Fig. 8, high KLs cor-
respond to high CFs (e.g. the standard deviation related to data
gathered through a significantly reliable testing procedure, in a
KL3 scenario, will be lower, divided by a CF = 1.35).

As an example, Table 19 reports a comparison between the
results of the Bayesian procedure, related to the Young Modulus
15
update for Masonry Type 1, carried out using equation (14) and
(18), respectively.

5. Final remarks

A systematic review of experimental (in situ and laboratory)
tests is herein presented, aiming at the definition of a database
of mechanical properties of two-leaf stone masonry panels. Five
electronic indexing databases have been accessed, namely Scopus,
Science Direct, Web of Knowledge, Civil Engineering Database
(ASCE), and MADA RELUIS Database [30], collecting data concern-
ing the estimation of the following reference mechanical proper-
ties: (1) Young’s modulus, (2) compression strength, (3) shear
modulus, and (4) shear strength.

Additionally, six different stone masonry types, recurring in tra-
ditional constructions, have been identified based on the recom-
mendation provided by Eurocode [3] and Italian standards [28].

Data from non-destructive (sonic tests), minor-destructive (flat-
jacks tests), and destructive testing procedures (compression,
shear-compression and diagonal-compression tests) have been
considered as a source of information. Once the database was com-
pleted, the information gathered has been used to carry out an
updating procedure based on Bayesian inference.

The procedure complies with the latest recommendation of
technical guidelines and it is intended to simulate a scenario in



Table 17
Bayesian update results versus Eurocode [47] and Italian standards [26].

Young Mod. – E (MPa) Comp. Str. – fm (MPa) Shear Mod. – G (MPa) Shear Str. – s0 (MPa)

MT1 Eurocode 8 [3,55] 900 1.10–1.90 300 0.03–0.055
NTC 2018 [28] 690–1050 1.00–2.00 230–350 0.018–0.032
Bayesian Update_ALL 1004 (376)

634–1386
1.92 (0.68)
1.24–2.60

293 (117)
176–410

0.051 (0.045)
0.006 – 0.096

Bayesian Update_POR 955 (289)
677–1255

1.63 (0.65)
0.98–2.28

326 (66)
260–392

0.046 (0.036)
0.004 – 0.082

Bayesian Update_ITA 1054 (213)
845–1271

2.23 (0.56)
1.67 – 2.79

334 (90)
244–424

0.053 (0.039)
0.014 – 0.092

MT2 Eurocode 8 1200 2.00–3.00 400 0.05–0.08
NTC 2018 1020–1440 2 340–480 0.035–0.051
Bayesian Update_ALL 1304 (383)

930–1694
2.49 (0.74)
1.75–3.23

371 (97)
274–468

0.066 (0.051)
0.015–0.117

Bayesian Update_POR 1105 (310)
815–1445

2.06 (0.78)
1.28 – 2.84

384 (36)
348–420

0.077 (0.066)
0.011–0.143

Bayesian Update_ITA 1300 (268)
1042–1576

2.70 (0.44)
2.26 – 3.14

371 (95)
276–466

0.070 (0.055)
0.015 – 0.125

MT3 Eurocode 8 1700 2.60–3.80 600 0.08–0.11
NTC 2018 1500–1980 2.60–3.80 500–660 0.056–0.074
Bayesian Update_ALL 1955 (480)

1490–2448
4.03 (1.38)
2.65 – 5.41

533 (128)
405–661

0.089 (0.054)
0.035–0.14

Bayesian Update_POR 1963 (392)
1631–2397

3.98 (1.43)
2.55–5.41

Not Available Not Available

Bayesian Update_ITA 1830 (342)
1448–2172

4.02 (1.26)
2.76–5.28

521 (122)
399–643

0.076 (0.036)
0.037–0.112

MT4 Eurocode 8 1100 1.40–2.20 400 0.05–0.06
NTC 2018 900–1260 1.40–2.20 300–420 0.028–0.042
Bayesian Update_ALL 1106 (231)

875–1337
2.53 (0.83)
1.70 – 3.36

412 (42)
370–454

0.05 (0.006)
0.044–0.056

Bayesian Update_POR Not Available Not Available Not Available Not Available
Bayesian Update_ITA 1106 (231)

875–1337
2.53 (0.83)
1.70 – 3.36

412 (42)
370–454

0.05 (0.006)
0.044–0.056

MT5 Eurocode 8 1400 2.00–3.20 500 0.10–0.19
NTC 2018 1200–1620 2.00–3.20 400–500 0.09–0.12
Bayesian Update_ALL 1478 (185)

1293–1663
3.17 (0.88)
2.29–4.05

490 (72)
418–562

0.088 (0.061)
0.027–0.149

Bayesian Update_POR Not Available Not Available Not Available Not Available
Bayesian Update_ITA 1474 (174)

1300–1648
3.19 (0.85)
2.34–4.04

483 (68)
415–551

0.088 (0.062)
0.026–0.15

MT6 Eurocode 8 2800 6.00–8.00 900 0.19–0.25
NTC 2018 2400–3200 5.00–8.00 800–1100 0.09–0.12
Bayesian Update_ALL 2692 (910)

1865–3663
6.61 (1.72)
4.89–8.33

799 (71)
728–870

0.121 (0.027)
0.094–0.148

Bayesian Update_POR 2485 (447)
2152–3064

6.70 (1.25)
5.45–7.95

799 (71)
728–870

0.121 (0.027)
0.094–0.148

Bayesian Update_ITA 2421 (344)
2077–2765

5.57 (1.58)
3.99–7.15

820 (79)
741–899

0.14 (0.04)
0.10–0.144
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which raw information related to the assessment of existing
masonry buildings is progressively refined when new experimen-
tal evidence is available. Three different updates have been carried
out using (1) the whole dataset, (2) only the data related to Italian
experimental campaigns, and (3) only the data related to Por-
tuguese experimental campaigns.

The comparison between updated results (Bayesian data fusion
outcomes) and values provided in the codes (Eurocode and Italian
standards) showed good consistency in all the reference mechani-
cal parameters selected for each masonry type.

Overall, the standard deviation characterizing the experimental
results experienced a reduction once the data fusion process was
concluded but, at the same time, updated mean values have been
found slightly higher than the mean values suggested by the codes.

This can be explained, on one hand, taking into account the
homogeneity of the data sample, which affects the estimation of
standard deviation and, on the other considering that the overall
quality of the tested masonry panels can yield to an overestimation
of their mechanical properties, especially if these results are com-
pared to the values suggested in [3] and [28], which refer to low-
quality masonry panels.
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The outcomes of the applied data fusion procedure represent a
valuable contribution in complementing the existing literature
with an updated range of values potentially applicable in
practice-oriented engineering activities, both in a general Euro-
pean context and in more specific geographical areas (Portugal
and Italy).

Moreover, it must not be overlooked that the proposed values
can be used, on one hand, as a reference mechanical parameter
and on the other, they can be considered as a starting point of
an ongoing process consisting in further updating a specific
mechanical parameter if new experimental observations are
available.

In conclusion, this study presents a methodology to update a set
of selected mechanical properties of two-leaf stone masonry walls,
by means of Bayesian inference. The proposed methodology is con-
sistent with the guidelines provided by the Eurocode and Italian
standards concerning the assessment of existing buildings.
Although this work exclusively addresses two-leaf stone masonry
walls, nevertheless the proposed methodology is highly versatile
and applicable to others masonry types and to any kind of building
regardless of its construction system.



Table 18
Bayesian update results versus Italian Research Council recommendations [5].

Young Mod. – E (MPa) Comp. Str. – fm (MPa) Shear Mod. – G (MPa) Shear Str. – s0 (MPa)

MT1 CNR-DT 212/2013 [5] 870 (rln = 0.21) 1.40 (rln = 0.29) 290 (rln = 0.21) 0.026 (rln = 0.24)
Bayesian Update_ALL 1004 (376) (rln = 0.36) 1.92 (0.68) (rln = 0.34) 293 (117) (rln = 0.38) 0.051 (0.045) (rln = 0.72)
Bayesian Update_POR 955 (289) (rln = 0.30) 1.63 (0.65) (rln = 0.39) 326 (66) (rln = 0.20) 0.046 (0.036) (rln = 0.69)
Bayesian Update_ITA 1054 (213) (rln = 0.20) 2.23 (0.56) (rln = 0.25) 334 (90) (rln = 0.27) 0.053 (0.039) (rln = 0.66)

MT2 CNR-DT 2012/2013 1230 (rln = 0.17) 2.50 (rln = 0.20) 410 (rln = 0.17) 0.043 (rln = 0.19)
Bayesian Update_ALL 1304 (383) (rln = 0.29) 2.49 (0.74) (rln = 0.26) 371 (97) (rln = 0.26) 0.066 (0.051) (rln = 0.68)
Bayesian Update_POR 1105 (310) (rln = 0.28) 2.06 (0.78) (rln = 0.37) 384 (36) (rln = 0.09) 0.077 (0.066) (rln = 0.55)
Bayesian Update_ITA 1300 (268) (rln = 0.20) 2.70 (0.44) (rln = 0.16) 371 (95) (rln = 0.25) 0.070 (0.055) (rln = 0.69)

MT3 CNR-DT 2012/2013 1740 (rln = 0.14) 3.20 (rln = 0.19) 580 (rln = 0.14) 0.065 (rln = 0.14)
Bayesian Update_ALL 1955 (480) (rln = 0.24) 4.03 (1.38) (rln = 0.33) 533 (128) (rln = 0.24) 0.089 (0.054) (rln = 0.56)
Bayesian Update_POR 1963 (392) (rln = 0.20) 3.98 (1.43) (rln = 0.35) Not Available Not Available
Bayesian Update_ITA 1830 (342) (rln = 0.19) 4.02 (1.26) (rln = 0.31) 521 (122) (rln = 0.23) 0.076 (0.036) (rln = 0.45)

MT4 CNR-DT 2012/2013 1080 (rln = 0.17) 1.90 (rln = 0.27) 360 (rln = 0.17) 0.035 (rln = 0.20)
Bayesian Update_ALL 1106 (231) (rln = 0.21) 2.53 (0.83) (rln = 0.32) 412 (42) (rln = 0.10) 0.05 (0.006) (rln = 0.12)
Bayesian Update_POR Not Available Not Available Not Available Not Available
Bayesian Update_ITA 1106 (231) (rln = 0.21) 2.53 (0.83) (rln = 0.32) 412 (42) (rln = 0.10) 0.05 (0.006) (rln = 0.12)

MT5 CNR-DT 2012/2013 1080 (rln = 0.17) 1.90 (rln = 0.27) 360 (rln = 0.17) 0.035 (rln = 0.20)
Bayesian Update_ALL 1478 (185) (rln = 0.12) 3.17 (0.88) (rln = 0.27) 490 (72) (rln = 0.15) 0.088 (0.061) (rln = 0.39)
Bayesian Update_POR Not Available Not Available Not Available Not Available
Bayesian Update_ITA 1474 (174) (rln = 0.12) 3.19 (0.85) (rln = 0.26) 483 (68) (rln = 0.14) 0.088 (0.062) (rln = 0.40)

MT6 CNR-DT 2012/2013 2800 (rln = 0.14) 7.00 (rln = 0.14) 860 (rln = 0.09) 0.105 (rln = 0.14)
Bayesian Update_ALL 2692 (910) (rln = 0.33) 6.61 (1.72) (rln = 0.26) 799 (71) (rln = 0.09) 0.121 (0.027) (rln = 0.22)
Bayesian Update_POR 2485 (447) (rln = 0.18) 6.70 (1.25) (rln = 0.18) Not Available 0.121 (0.027) (rln = 0.22)
Bayesian Update_ITA 2421 (344) (rln = 0.14) 5.57 (1.58) (rln = 0.28) 820 (79) (rln = 0.10) 0.14 (0.04) (rln = 0.29)

Table 19
Bayesian update Young Modulus Masonry Type 1 excluding Confidence Factors (Eq. (14)) and including Confidence Factor (q. 18).

Young Modulus – E (MPa) – Masonry Type 1

Update 1 – KL1 Update 2 – KL2 Update 3 – KL3

Mean St. Dev. Mean St. Dev. Mean St. Dev.

Eq. (14) 1020 208 1030 361 1004 376
Eq. (18) 1020 208 1030 329 1004 327
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The methodology presented in this work can represent a valu-
able tool for professionals involved in practice-oriented engineer-
ing activities addressing the estimation of mechanical parameters
using different types of experimental data.
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