

A MULTI-LEVEL DESIGN PATTERN FOR
EMBEDDED SOFTWARE*

Ricardo J. Machado and João M. Fernandes
Dept. Sistemas de Informação & Dept. Informática, Universidade do Minho, Portugal

Abstract: It is a common practice amongst programmers to construct parts of software
programs by imitating parts of programs constructed by more experienced
professionals. This “learn by example” approach can be applied at the design
level by using patterns as sets of rules and recommendations to solve
well-defined tasks within the development of computer-based systems. This
paper describes the multi-level ICIS pattern, to be used at various design levels
of industrial control-based information systems, where embedded devices are
networked to interact with the industrial processes and equipment. The
proposed pattern is described using several UML diagrams.

1. INTRODUCTION

The research work of Edsger Dijkstra has demonstrated that it is
advantageous to “waste time to think” in the organization, structure and
internal partition of a system, instead of going directly to the implementation
just after the requirements’ modelling [1]. This methodological position,
nowadays perfectly accepted by any professional system designer, has
originated, at that time, several research lines that culminated in the
emergence of a new sub-discipline called systems architecture [2], or
software architecture in the particular situation of software intensive
systems [3].

Architectural design involves the manipulation of general abstract models
that can be applied to distinct systems, as long as these systems share a set of

* Research funded by FCT and FEDER under project METHODES (POSI/37334/CHS/2001).

(c) 2004 IFIP

248 Ricardo J. Machado and João M. Fernandes

common requirements. These general abstract models of systems’
organization are called design patterns [4].

It is a common practice amongst programmers to construct parts of
software programs by imitating parts of programs constructed by more
experienced professionals. This current practice, at the implementation level,
demands the search for a pattern within a third-party software code and the
adaptation to the specific problem at hand. This “learn by example”
approach can be applied at the design level by using patterns as sets of rules
and recommendations to solve well-defined tasks within the development of
computer-based systems [5].

2. DESIGN PATTERNS

One of the traditional problems of design patterns is the inexistence of a
standard notation for its description, which allows different interpretations
for each existing pattern [7]. A pattern can be characterized by using:
(1) a pictorial diagram to describe the general context of the pattern;
(2) a class/object diagram in a well-known notation (UML, for instance), to
model the static relations amongst the pattern entities; (3) a sequence
diagram to model the dynamic relations within the pattern; (4) any other
semantic diagram, as long as the syntax is well-defined, to characterize a
particular view of the pattern. Recently, Fontoura [8] has proposed the
UML-F profile to describe framework architectures and to support
framework modeling and annotation by using UML-compliant extensions.

Nowadays, design patterns have reached such a very mature state that
they are organized in a catalogue fashion just like the old databooks of
digital integrated circuits [9-13]. There are also some pattern catalogues for
the analysis phase [14].

The idea of documenting the best practices in software development as
patterns for building embedded and real-time systems is a recent research
topic. The first important work on this topic was the “Recursive Control”
pattern for real-time control systems [15]. Another major landmark is the
collection of patterns proposed by Douglass to design object-oriented
real-time systems [5]. Other work in defining patterns for embedded and
real-time systems were also proposed in the last years [16-22].

3. THE MULTI-LEVEL ICIS PATTERN

A new design pattern, named multi-level ICIS, was defined as a result of
the development of several industrial information systems [23, 28]. Within

(c) 2004 IFIP

A Multi-level Design Pattern for Embedded Software 249

these developments, embedded systems, web-services, and control
applications had to work together to accomplish the easy interconnection
between the lower (0, 1 and 2) and the upper (3 and 4) CIM (computer
integrated manufacturing) levels [24]. These ICIS (industrial control-based
information system) solutions are complementary, within the industrial
organizations, to the well-known management information systems (MISs)
[25]. Industrial information systems (IIS), which result from the integration
of a MIS with an ICIS, are the answer to accomplish the definition of an
applicational platform, based on ERP (enterprise resource planning)
approaches, in order to integrate and unify the management and control of
all organizational information.

The proposed pattern, based on the MVC pattern [6], was defined to
support both the levels 2 and 3 of co-design [26]: (1) at level 2, the
embedded software engineer must decide which functionalities will run
directly on the processor and which ones will be synthesized for the
reconfigurable devices; (2) at level 3, the information systems engineer
integrates the previously designed components with the existing MIS. With
this pattern we avoid the designer to follow a strict class-driven approach,
where class diagrams are built before the object diagram [27]. The defined
pattern provides a set of recommendations to support the architectural design
of ICIS solutions.

Fig. 1 depicts a pictorial diagram of the multi-level ICIS pattern. This
pattern is composed of four architectural blocks: (1) the access interface
block, is responsible for the interface implementation with the MIS
subsystem; (2) the supervision interface block is responsible for the interface
implementation with the industrial processes and equipments (shop-floor);
(3) the operator interface block is responsible for the interface
implementation with the human operators that interact directly with the ICIS
subsystem; (4) the production, quality and management (pre-)processing
block is responsible for the data processing (stubbing and transformation) to
support the interconnection of the three previous interfaces. Each
architectural block can be implemented by adopting a reuse approach, based
on the specialization or refinement of previously existing classes. This is the
reason why, in fig. 1, there are one inheritance relation between each block
and one class library. Additionally, each block can be developed within a
CBD (component-based design) approach by using aggregation and
composition of sub-objects as instances of specialized or refined classes
from libraries.

To thoroughly understand the proposed pattern it is important to analyse
the typical network topologies of final IIS solutions. In fig. 2, two distinct
“zones” can be identified: (1) the first one corresponds to the CAN network
supporting the ICIS implementation by using several embedded devices

(c) 2004 IFIP

250 Ricardo J. Machado and João M. Fernandes

(CANit, CANio, CAN-FPGA, CAN-RF and CAN-Server execute embedded
software to support CIM level 2) and one (or more) PC-VAP (gateway
executing LabVIEW software); (2) the second one corresponds to the
Ethernet network supporting the MIS implementation by typical ERP and
POS (plant operations system) software.

Figure 1. Pictorial diagram of the multi-level ICIS pattern.

UML deployment diagrams can be used to illustrate the three typical
application scenarios for the multi-level ICIS pattern:

(1) ICIS architecture. The deployment diagram of the ICIS architecture is
depicted in fig. 3, where the multi-level ICIS pattern is being used as
follows: (i) the PC-VAP node supports the access interface component;
(ii) the CANio node (embedded device topologically located near the
industrial processes and equipments to acquire and send supervision
information) supports the supervision interface component; (iii) the CAN-RF
node (wireless embedded device used by human operators, along their
walkthroughs the factory plant, to acquire and send supervision information)
supports the operator interface component; (iv) the CANit node (embedded
device that controls one or more groups of nodes, based on CANio and
CAN-RF architectures, to coordinate the acquisition and sending of
supervision information) supports the (pre-)processing component. Each
PC-VAP node can concentrate, in a star topology, several sets of nodes based
on CANio and CAN-RF architectures. Within this application context, the
multi-level ICIS pattern is intended to clarify the kind of topology the
information systems engineer should use to structure the existent computing
nodes in a particular ICIS final solution.

library

MIS Access
Interface

Production,
Quality and

Management
(Pre-)Processing

Supervision
Interface

Operator
Interface

sub-object sub-object

su
b-

ob
je

ct
su

b-
ob

je
ct

target architecture

shop-floor

Operator

library

library library

sub-object sub-object sub-object sub-object

(c) 2004 IFIP

A Multi-level Design Pattern for Embedded Software 251

(2) Software architecture of the PC-VAP node. The software architecture
of the PC-VAP node is depicted in fig. 4. The access interface component of
fig. 3 is being decomposed into a set of sub-components organized by the
architecture defined by the multi-level ICIS pattern. The access interface,
supervision interface, operator interface and (pre-)processing components
appear again, but now within the PC-VAP software. For instance (and only
just an example, since the graphical LabVIEW language has not been
introduced here), it is possible to identify, within a portion of LabVIEW
code depicted in fig. 5, the code blocks that correspond to those components.

Figure 2. Network topology for typical IIS solutions.

(3) Software architecture of the embedded components. The
(pre-)processing component of fig. 3 is decomposed into a set of
sub-components organized by the architecture defined by the multi-level
ICIS pattern. Again, access interface, supervision interface, operator
interface and (pre-)processing components appear, but this time within the
CANit embedded device, by using aggregates of objects in the Oblog
language, just as referred in [29], following the methodology described in
[30], with some well-known limitations [32].

Ethernet - Production Dept.

Ethernet - Informatics Dept.

CAN - ShopFloor #3

CAN - ShopFloor #2

CAN - ShopFloor #1

CANio

CANit v4

Data Base Server

File Server

CANio

CANit-FPGA v1

CANio

CANit v3 CANit-FPGA v1

CAN-Server v1
PC-VAP

(Gateway)

Router

POS

ERP

...

... ...

...

...

...

...

... ...

...

...

...

CAN-RF v1

(c) 2004 IFIP

252 Ricardo J. Machado and João M. Fernandes

A class diagram that describes, generically, the relations between the
entities involved in the components suggested by the pattern is depicted in
fig. 6. This diagram follows a class-driven approach (since it defines an
instantiation template) and identifies six distinct classes: Access,
Supervision, Controller, Sub-Controller, DataRepository and Operator.

Figure 3. UML deployment diagram of the ICIS architecture.

Figure 4. UML deployment diagram of the PC-VAP node.

Access, Supervision and Operator are «interface» classes (according to
[32], an «interface» class models behaviour and information dependent on
the system’s interface) and allow Controller e Sub-Controller classes to be
considerably independent from the particular mechanisms adopted to
implement the relation with the outside world (the system’s environment).
Both the access (border between the embedded architecture and the upper
MIS) and the supervision interfaces (border between the embedded

access
interface

«PC-VAP»

supervision
interface

«CANio»

supervision
interface

«CANio»

operator
interface

«CAN-RF»

(pre-)
processing

«CANit»

operator
interface

«CAN-RF»

access
interface

«PC-VAP»

operator
interface

supervision
interface

(pre-)
processing

(c) 2004 IFIP

A Multi-level Design Pattern for Embedded Software 253

architecture and the industrial process and equipment) deal with external
entities topologically located very far from the embedded device, thus
adopting an asynchronous flow mechanism in relation with the embedded
device’s main thread responsible for the system’s general control.

Figure 5. Multi-level ICIS pattern implemented in LabVIEW code.

Figure 6. UML class diagram for the multi-level ICIS pattern.

The embedded device should have another tread that acknowledges the

access and supervision objects (instances of Access and Supervision classes)
about: (1) the arrival of information from the environment to be stored in the
interface objects by using the putData() method; (2) the need to update all

supervision
interface

(pre-)
processing

access
interface

Access
«interface»

inputChannels
outputChannels

updateChannels()
getData()
getFreshData()
putData()
putDataNow()

GenAccess

Supervision
«interface»

inputChannels
outputChannels

updateChannels()
getData()
getFreshData()
putData()
putDataNow()

GenSupervision

Operator
«interface»

operationInputBuffer
operationOutputBuffer

update()
display()
getData()

GenOperatorController
«control»

initSubController()
killSubController()
processData()
giveData()

*

Sub-Controller
«control»

myController

initSubController()
killSubController()
processData()
giveData()

(Pre-)Processing

*

DataRepository
«data»

InternalDataBase

rightData()
readData()

GenController GenSub-Controller

GenDataRep

(c) 2004 IFIP

254 Ricardo J. Machado and João M. Fernandes

the values stored in the interface objects by using the updateChannels()
method. Each access and supervision objects must implement, as attributes,
two distinct data structures, one to store the interface input values
(inputChannels) and another to store the interface output values
(outputChannels), before they are disseminated throughout the other system
components. In the main thread, the methods getData() and putData()
should be used to have access to the inputChannels and outputChannels data
structures in an asynchronous way. To assure a synchronous execution of the
reading and writing operations the methods getFreshData() and
putDataNow() should be used. These methods are blocking within the main
thread, since access and supervision objects force an effective hardware
refreshment of the data structures.

Controller and Sub-Controller are «control» classes (according to [32], a
«control» class models behaviour that can not be naturally associated to any
other kind of object, i.e., «interface» or «data») and allow the instantiation
of aggregations of state-machines. These state-machine aggregations have
access to a small data base, internal to the embedded device, to store
temporarily information about the industrial processes and equipment. This
set of objects constitutes the (pre-)processing architectural block to be
executed within the main thread. Fig. 7 presents an UML sequence diagram
for the multi-level ICIS pattern.

Figure 7. UML sequence diagram for the multi-level ICIS pattern.

4. CONCLUSIONS

The implementation of a pattern with the characteristics of the one
presented here must be carefully thought for real-time applications, since it
is very easy to adopt technological solutions that will introduce an enormous

access supervision controller

processData ()

getData ()

operator data
repository

update ()

display ()
giveData ()

state A

rightData ()

putData ()

(c) 2004 IFIP

A Multi-level Design Pattern for Embedded Software 255

temporal and space inefficiency. This additional implementation difficulty
must be explicitly assumed as being the price to pay to benefit from the
usage of patterns. The multi-level ICIS pattern should be faced as a semantic
guideline for conducting the design of networked solutions for the
supervision of industrial processes and equipment.

In practice, it is common to implement a simplified version of the
architecture in which the three kinds of interfaces (access, supervision and
operator) and the data repository are melted into a unique entity, named
interface controller. This solution is more efficient than the one presented in
fig. 7, since it is only necessary to maintain a unique set of data structures,
which implies that the memory requirements can be significantly reduced
and, consequently, the data processing operations can be speedup.

REFERENCES

1. E. Dijkstra, The Structure of the ‘T.H.E.’ Multiprogramming System,
Communications of the ACM, vol. 18, no. 8, pp. 453-457, 1968.

2. E. Rechtin, M. Maier, The Art of Systems Architecting, Systems Engineering
Series, CRC Press LLC, 1997.

3. P. C. Clements, From Subroutines to Subsystems: Component-Based Software
Development, in A. W. Brown, Component-Based Software Engineering,
Selected Papers from the Software Engineering Institute, IEEE CS Press, 1996.

4. W. Pree, Design Patterns for Object-Oriented Software Development,
Addison-Wesley, ACM Press, 1995.

5. B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Addison-Wesley, 1999.

6. G. E. Krasner, S. T. Pope, A Cookbook for Using the Model-View-Controller
User Interface Paradigm in Smalltalk-80, Journal of Object-Oriented
Programming, vol. 1, no. 3, pp. 27-49, ACM Press, 1988.

7. A. Lauder, S. Kent, Precise Visual Specification of Design Patterns, 12th
European Conference on Object-Oriented Programming, LNCS 1445,
pp. 114-134, Springer Verlag, 1998.

8. M. Fontoura, W. Pree, B. Rumpe, The UML Profile for Framework
Architectures, Addison-Wesley, 2001.

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

10. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, John Wiley &
Sons, 1996.

11. J. Coplien, D. Schmidt, Pattern Languages of Program Design,
Addison-Wesley, 1995

12. J. Vlissides, J. Coplien, N. Kerth, Pattern Languages of Program Design 2,
Addison-Wesley, 1996.

13. R. Martin, D. Riehle, F. Buschmann, Pattern Languages of Program Design 3,
Addison-Wesley, 1998.

(c) 2004 IFIP

256 Ricardo J. Machado and João M. Fernandes

14. M. Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
15. B. Selic, An Architectural Pattern for Real-Time Control Software, Third Annual

Pattern Languages of Programming Conference, pp. 4-6, 1996.
16. M. Bottomley, A Pattern Language for Simple Embedded Systems, 6th Annual

Pattern Languages of Programming Conference, pp. 15-18, 1999.
17. R. Mckegney, T. Shepard, Design Patterns and Real-Time Object-Oriented

Modeling, Conference on Object-Oriented Programming, Systems, Languages,
and Applications , pp. 55-56, 2000.

18. R. Mckegney, Small Memory Software: Patterns for Systems with Limited
Memory, Addison-Wesley, 2000.

19. M. Pont, Patterns for Time-Triggered Embedded Systems: Building Reliable
Applications with the 8051 Family of Microcontrollers, Addison-Wesley, 2001.

20. J. Zalewski, Patterns Real-Time Software Design Patterns, 9th Conf. on
Real-Time Systems, 2002.

21.B. P. Douglas, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems, Addison-Wesley, 2002.

22. S. Sauer, G. Engels, MVC-Based Modeling Support for Embedded Real-Time
Systems: Position Statement, Workshop on Object-Oriented Modeling of
Embedded Realtime Systems, pp. 11-14, 1999.

23. J. M. Fernandes, R. J. Machado, H. D. Santos, Modeling Industrial Embedded
Systems with UML, 8th Int. Workshop on Hardware/Software Codesign
(CODES 2000), pp. 18-22, ACM Press, 2000.

24. P. G. Ranky, Computer Networks for World Class CIM Systems, CIMware
Limited, 1990.

25. B. Scholz-Reiter, CIM Interfaces: Concepts, Standards and Problems of
Interfaces in Computer Integrated Manufacturing, Chapman & Hall, 1992.

26. R. J. Machado, J. M. Fernandes, Heterogeneous Information Systems
Integration: Organizations and Methodologies, Product Focused Software
Process Improvement, pp. 629-643, M. Oivo e S. Komi-Sirviö (editors), Lecture
Notes in Computer Science, LNCS vol. 2559, Springer-Verlag, 2002.

27. J. M. Fernandes, R. J. Machado, From Use Cases to Objects: An Industrial
Information Systems Case Study Analysis, Object-Oriented Information Systems,
pp. 319-328, Y. Wang, S. Patel e R. Johnston (editors), Springer-Verlag, 2001.

28. J. M. Fernandes, R. J. Machado, System-Level Object-Orientation in the
Specification and Validation of Embedded Systems, 14th Symp. on Integrated
Circuits and System Design (SBCCI'01), IEEE CS Press, 2001.

29. R. J. Machado, J. M. Fernandes, A Petri Net Meta-Model to Develop Software
Components for Embedded Systems, 2nd Int. Conf. on Application of
Concurrency to System Design (ACSD'01), pp. 113-22, IEEE CS Press, 2001.

30. R. J. Machado, J. M. Fernandes, H. D. Santos, A Methodology for Complex
Embedded Systems Design: Petri Nets within a UML Approach, Architecture
and Design of Distributed Embedded Systems, B. Kleinjohann (editor), chapter
1, pp. 1-10, Kluwer A.P., 2001.

31. J. M. Fernandes, R. J. Machado, Can UML be a System-Level Language for
Embedded Software? Design and Analysis of Distributed Embedded Systems,
B. Kleinjohann, K. Kim, L. Kleinjohann e A. Rettberg (editors), chapter. 1,
pp. 1-10, Kluwer A.P.2002.

32. I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

(c) 2004 IFIP

	Select a link below
	Return to Main Menu
	Return to Previous View

