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Abstract: It is a common practice amongst programmers to construct parts of software 
programs by imitating parts of programs constructed by more experienced 
professionals. This “learn by example” approach can be applied at the design 
level by using patterns as sets of rules and recommendations to solve 
well-defined tasks within the development of computer-based systems. This 
paper describes the multi-level ICIS pattern, to be used at various design levels 
of industrial control-based information systems, where embedded devices are 
networked to interact with the industrial processes and equipment. The 
proposed pattern is described using several UML diagrams. 

1. INTRODUCTION 

The research work of Edsger Dijkstra has demonstrated that it is 
advantageous to “waste time to think” in the organization, structure and 
internal partition of a system, instead of going directly to the implementation 
just after the requirements’ modelling [1]. This methodological position, 
nowadays perfectly accepted by any professional system designer, has 
originated, at that time, several research lines that culminated in the 
emergence of a new sub-discipline called systems architecture [2], or 
software architecture in the particular situation of software intensive 
systems [3]. 

Architectural design involves the manipulation of general abstract models 
that can be applied to distinct systems, as long as these systems share a set of 
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common requirements. These general abstract models of systems’ 
organization are called design patterns [4]. 

It is a common practice amongst programmers to construct parts of 
software programs by imitating parts of programs constructed by more 
experienced professionals. This current practice, at the implementation level, 
demands the search for a pattern within a third-party software code and the 
adaptation to the specific problem at hand. This “learn by example” 
approach can be applied at the design level by using patterns as sets of rules 
and recommendations to solve well-defined tasks within the development of 
computer-based systems [5]. 

2. DESIGN PATTERNS 

One of the traditional problems of design patterns is the inexistence of a 
standard notation for its description, which allows different interpretations 
for each existing pattern [7]. A pattern can be characterized by using: 
(1) a pictorial diagram to describe the general context of the pattern; 
(2) a class/object diagram in a well-known notation (UML, for instance), to 
model the static relations amongst the pattern entities; (3) a sequence 
diagram to model the dynamic relations within the pattern; (4) any other 
semantic diagram, as long as the syntax is well-defined, to characterize a 
particular view of the pattern. Recently, Fontoura [8] has proposed the 
UML-F profile to describe framework architectures and to support 
framework modeling and annotation by using UML-compliant extensions. 

Nowadays, design patterns have reached such a very mature state that 
they are organized in a catalogue fashion just like the old databooks of 
digital integrated circuits [9-13]. There are also some pattern catalogues for 
the analysis phase [14]. 

The idea of documenting the best practices in software development as 
patterns for building embedded and real-time systems is a recent research 
topic. The first important work on this topic was the “Recursive Control” 
pattern for real-time control systems [15]. Another major landmark is the 
collection of patterns proposed by Douglass to design object-oriented 
real-time systems [5]. Other work in defining patterns for embedded and 
real-time systems were also proposed in the last years [16-22]. 

3. THE MULTI-LEVEL ICIS PATTERN 

A new design pattern, named multi-level ICIS, was defined as a result of 
the development of several industrial information systems [23, 28]. Within 
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these developments, embedded systems, web-services, and control 
applications had to work together to accomplish the easy interconnection 
between the lower (0, 1 and 2) and the upper (3 and 4) CIM (computer 
integrated manufacturing) levels [24]. These ICIS (industrial control-based 
information system) solutions are complementary, within the industrial 
organizations, to the well-known management information systems (MISs) 
[25]. Industrial information systems (IIS), which result from the integration 
of a MIS with an ICIS, are the answer to accomplish the definition of an 
applicational platform, based on ERP (enterprise resource planning) 
approaches, in order to integrate and unify the management and control of 
all organizational information. 

The proposed pattern, based on the MVC pattern [6], was defined to 
support both the levels 2 and 3 of co-design [26]: (1) at level 2, the 
embedded software engineer must decide which functionalities will run 
directly on the processor and which ones will be synthesized for the 
reconfigurable devices; (2) at level 3, the information systems engineer 
integrates the previously designed components with the existing MIS. With 
this pattern we avoid the designer to follow a strict class-driven approach, 
where class diagrams are built before the object diagram [27]. The defined 
pattern provides a set of recommendations to support the architectural design 
of ICIS solutions. 

Fig. 1 depicts a pictorial diagram of the multi-level ICIS pattern. This 
pattern is composed of four architectural blocks: (1) the access interface 
block, is responsible for the interface implementation with the MIS 
subsystem; (2) the supervision interface block is responsible for the interface 
implementation with the industrial processes and equipments (shop-floor); 
(3) the operator interface block is responsible for the interface 
implementation with the human operators that interact directly with the ICIS 
subsystem; (4) the production, quality and management (pre-)processing 
block is responsible for the data processing (stubbing and transformation) to 
support the interconnection of the three previous interfaces. Each 
architectural block can be implemented by adopting a reuse approach, based 
on the specialization or refinement of previously existing classes. This is the 
reason why, in fig. 1, there are one inheritance relation between each block 
and one class library. Additionally, each block can be developed within a 
CBD (component-based design) approach by using aggregation and 
composition of sub-objects as instances of specialized or refined classes 
from libraries. 

To thoroughly understand the proposed pattern it is important to analyse 
the typical network topologies of final IIS solutions. In fig. 2, two distinct 
“zones” can be identified: (1) the first one corresponds to the CAN network 
supporting the ICIS implementation by using several embedded devices 
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(CANit, CANio, CAN-FPGA, CAN-RF and CAN-Server execute embedded 
software to support CIM level 2) and one (or more) PC-VAP (gateway 
executing LabVIEW software); (2) the second one corresponds to the 
Ethernet network supporting the MIS implementation by typical ERP and 
POS (plant operations system) software. 

Figure 1. Pictorial diagram of the multi-level ICIS pattern. 
 

UML deployment diagrams can be used to illustrate the three typical 
application scenarios for the multi-level ICIS pattern: 

(1) ICIS architecture. The deployment diagram of the ICIS architecture is 
depicted in fig. 3, where the multi-level ICIS pattern is being used as 
follows: (i) the PC-VAP node supports the access interface component; 
(ii) the CANio node (embedded device topologically located near the 
industrial processes and equipments to acquire and send supervision 
information) supports the supervision interface component; (iii) the CAN-RF 
node (wireless embedded device used by human operators, along their 
walkthroughs the factory plant, to acquire and send supervision information) 
supports the operator interface component; (iv) the CANit node (embedded 
device that controls one or more groups of nodes, based on CANio and 
CAN-RF architectures, to coordinate the acquisition and sending of 
supervision information) supports the (pre-)processing component. Each 
PC-VAP node can concentrate, in a star topology, several sets of nodes based 
on CANio and CAN-RF architectures. Within this application context, the 
multi-level ICIS pattern is intended to clarify the kind of topology the 
information systems engineer should use to structure the existent computing 
nodes in a particular ICIS final solution. 
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(2) Software architecture of the PC-VAP node. The software architecture 
of the PC-VAP node is depicted in fig. 4. The access interface component of 
fig. 3 is being decomposed into a set of sub-components organized by the 
architecture defined by the multi-level ICIS pattern. The access interface, 
supervision interface, operator interface and (pre-)processing components 
appear again, but now within the PC-VAP software. For instance (and only 
just an example, since the graphical LabVIEW language has not been 
introduced here), it is possible to identify, within a portion of LabVIEW 
code depicted in fig. 5, the code blocks that correspond to those components. 

Figure 2. Network topology for typical IIS solutions. 
 

(3) Software architecture of the embedded components. The 
(pre-)processing component of fig. 3 is decomposed into a set of 
sub-components organized by the architecture defined by the multi-level 
ICIS pattern. Again, access interface, supervision interface, operator 
interface and (pre-)processing components appear, but this time within the 
CANit embedded device, by using aggregates of objects in the Oblog 
language, just as referred in [29], following the methodology described in 
[30], with some well-known limitations [32].  
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A class diagram that describes, generically, the relations between the 
entities involved in the components suggested by the pattern is depicted in 
fig. 6. This diagram follows a class-driven approach (since it defines an 
instantiation template) and identifies six distinct classes: Access, 
Supervision, Controller, Sub-Controller, DataRepository and Operator. 

Figure 3. UML deployment diagram of the ICIS architecture. 
 

Figure 4. UML deployment diagram of the PC-VAP node. 
 

Access, Supervision and Operator are «interface» classes (according to 
[32], an «interface» class models behaviour and information dependent on 
the system’s interface) and allow Controller e Sub-Controller classes to be 
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architecture and the industrial process and equipment) deal with external 
entities topologically located very far from the embedded device, thus 
adopting an asynchronous flow mechanism in relation with the embedded 
device’s main thread responsible for the system’s general control. 

Figure 5. Multi-level ICIS pattern implemented in LabVIEW code. 

 

Figure 6. UML class diagram for the multi-level ICIS pattern. 
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the values stored in the interface objects by using the updateChannels() 
method. Each access and supervision objects must implement, as attributes, 
two distinct data structures, one to store the interface input values 
(inputChannels) and another to store the interface output values 
(outputChannels), before they are disseminated throughout the other system 
components. In the main thread, the methods getData() and putData() 
should be used to have access to the inputChannels and outputChannels data 
structures in an asynchronous way. To assure a synchronous execution of the 
reading and writing operations the methods getFreshData() and 
putDataNow() should be used. These methods are blocking within the main 
thread, since access and supervision objects force an effective hardware 
refreshment of the data structures. 

Controller and Sub-Controller are «control» classes (according to [32], a 
«control» class models behaviour that can not be naturally associated to any 
other kind of object, i.e., «interface» or «data») and allow the instantiation 
of aggregations of state-machines. These state-machine aggregations have 
access to a small data base, internal to the embedded device, to store 
temporarily information about the industrial processes and equipment. This 
set of objects constitutes the (pre-)processing architectural block to be 
executed within the main thread. Fig. 7 presents an UML sequence diagram 
for the multi-level ICIS pattern. 

Figure 7. UML sequence diagram for the multi-level ICIS pattern. 

4. CONCLUSIONS 
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temporal and space inefficiency. This additional implementation difficulty 
must be explicitly assumed as being the price to pay to benefit from the 
usage of patterns. The multi-level ICIS pattern should be faced as a semantic 
guideline for conducting the design of networked solutions for the 
supervision of industrial processes and equipment. 

In practice, it is common to implement a simplified version of the 
architecture in which the three kinds of interfaces (access, supervision and 
operator) and the data repository are melted into a unique entity, named 
interface controller. This solution is more efficient than the one presented in 
fig. 7, since it is only necessary to maintain a unique set of data structures, 
which implies that the memory requirements can be significantly reduced 
and, consequently, the data processing operations can be speedup. 
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