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Abstract In this paper, we review previous results obtained by the authors,
concerning the mathematical modelling of autoimmune diseases when the kinetic
theory approach is used in order to describe the microscopic interactions between
cells. Three cell populations are considered and the distribution function of each
population depends on the biological activity variable defining the functional state
relevant for that population. We revisit the wellposedness of the kinetic system and
focus our study on the numerical simulations with the kinetic system in view of
investigating the sensitivity of the solution to certain parameters of the model with
biological significance.
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1 Introduction

The main job of the immune system is to protect the organism against disease
whether caused by external factors such as bacteria and viruses, or internal aspects
such as the existence of cancerous tumour cells in the human body. In order to
provide this protection, the main players of the immune system must distinguish
between pathogens and healthy tissue.

An autoimmune disease is an illness in which the immune system wrongly
attacks healthy cells by reacting to self-antigens. In many cases it is chronic,
and patients alternate between periods of relapse, having suffering symptoms, and
periods of remittance, in which symptoms are absent.

Autoimmune diseases can affect just about any part of the body, and depending
on which part of the body is affected by the such a perverse mechanism, a different
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autoimmune disease can be identified. The consequence of this is that over one
hundred types of autoimmune diseases exist, some of the most common include type
1 diabetes, rheumatoid arthritis, multiple sclerosis, lupus, psoriasis, thyroid diseases,
and inflammatory bowel disease. Although these diseases are not, in general, deadly,
they are, in most cases, chronic. The chronic nature of autoimmunity can have
serious implications on the quality of life of patients suffering from these diseases.
Unfortunately, in spite of a significant increase in the number of patients suffering
from these conditions, particularly in the developed world, much about the process
of autoimmunity remains a mystery, although environmental changes associated
with industrialization have been long suspected as well as genetic factors. See, for
example, papers [1–4].

Motivated by the idea of developing a mathematical model in order to describe,
in a rigorous way, the complex dynamics of the variables involved in some
autoimmune disease, we have initiated a research project with this objective in
mind. We have proposed in paper [5] a rather simple, but mathematically robust,
model with the aim of describing the immune system interactions in the context of
autoimmune disease. The interacting populations are self-antigen presenting cells,
self reactive T cells and the set of immunosuppressive cells consisting of Regulatory
T (Treg) cells and Natural Killer (NK) cells. In paper [5], we have developed
a rather complete qualitative analysis of the model equations and investigated
the existence of biologically realistic solutions. Then, in paper [6], a new model
has been proposed by considering a further population of IL-2 cytokines and an
artificial inlet of external drug therapy with the aim of studying optimal policies
for the immunotherapeutic treatment of autoimmune diseases. Paper [6] focus on
the macroscopic formulation of this new model, whereas paper [7] introduces the
kinetic system approach and exploits the corresponding cellular dynamics. We
believe that the kinetic approach, where the model is developed at the cellular
scale, can give some insights concerning the biological processes involved in
autoimmunity.

In these proceedings, we revisit the model proposed in [5] and summarize
the results there obtained. Then we further develop a sensitivity analysis of the
parameters involved in the model equations in order to investigate which trends
and outcomes, that are common in autoimmune diseases, can be replicated with
our numerical simulations. On the one hand, the sensitivity analysis presented here
studies the effect of immunotolerance on the evolution of the main populations of
cells involved in autoimmunity by, for example, decreasing or increasing certain
proliferative parameters defined in the model and on the other hand it shows the
effect of immunosupression in the evolution of the same populations by changing
certain destructive parameters appearing in the model. A sensitivity analysis of
the model to certain conservative parameters is also given, showing the effect
of increasing or decreasing these parameters on the number of more active cells
participating in the process.

To the best of our knowledge, only few contributions are known on the mathe-
matical modelling of the process of autoimmunity. Some examples of these models
prior to our work can be found in [8–10]. On the other hand, several well-known
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studies on the mathematical modeling of the tumour-immune system interactions
can be found in [11–15].

The content of these proceedings is organized as follows. In Sect. 2 we briefly
describe how the immune system can be represented within a mathematical
framework, introducing the cellular populations considered in our model and their
main role in the dynamics. Then, in Sects. 3 and 4, we revisit the model proposed in
[5] and summarize the results concerning the wellposedeness of the kinetic system.
Section 5 is devoted to the numerical simulations and their biological interpretation
and contains a sensitivity analysis of the parameters involved in the model equations.
Finally, in Sect. 6 we state our conclusions and present future ideas in terms of
research perspectives.

2 The Mathematical Representation of the Immune System

The immune system can be considered, at the cellular level, as a system constituted
by a large number of cells belonging to different interacting populations, and
therefore a kinetic theory approach can be used to describe the dynamics of the
populations.

In our model, we consider three interacting cell populations pi , i = 1, 2, 3,
that are involved in the development of autoimmunity, namely the population p1
of SAPCs (self-antigen presenting cells), the population p2 of SRTCs (self-reactive
T cells), and the population p3 of ISCs (immunosuppressive cells).

These populations interact at the cellular level, and the relevant effects that are
considered in our description are the following.

• SAPCs transport self-antigens to their encounter with SRTCs.
• SRTCs are activated when they encounter a SAPC that has digested a self-

antigen.
• ISCs regulate the activity of SRTCs and SAPCs.

2.1 The Functional Activity at the Cellular Level

The functional state of each population is described by a positive real variable
u ∈ [0, 1], called activation variable or activity, whose biological meaning is
characterized as follows.

• The activity u of SAPCs is the ability to stimulate and activate SRTCs. When
u = 0, SAPCs do not activate SRTCs and, therefore, any autoimmune response
is induced in the body.

• The activity u of SRTCs is the ability of promoting the secretion of cytokines
which, in turn, can induce an inflammatory process. When u = 0, SRTCs do
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not produce cytokines, meaning that SRTCs are not sensitive to the stimulus by
SAPCs and no inflammatory process is triggered.

• The activity u of ISCs is the ability to inhibit the autoimmune response by either
suppressing the activity of SAPCs and SRTCs or eliminating SAPCs or SRTCs.
When u = 0, the ISCs are neither able to inhibit the activity of SAPCs and
SRTCs nor to eliminate SAPCs or SRTCs.

2.2 The Cellular Interactions

The dynamics at the cellular level is modelled under the following assumptions.

(i) Interactions are homogeneous in space and instantaneous modify the state of
the participating cells.

(ii) Only binary interactions between cells of different populations are significant
for the evolution of the system.

(iii) Interactions among cells of populations p1 (SAPCs), p2 (SRTCs) and p3
(ISCs) can create SAPCs, SRTCs and ISCs (proliferative type), or destroy
SAPCs and SRTCs (destructive type), and they can also simply change the
activity of SAPCs and SRTCs (conservative type).

(iv) The population p3 (ISCs) is homogeneous with respect to its biological
activity, so that interactions involving ISCs can be only proliferative or
destructive type.

Assumption (i) indicates that the interactions occur without time delay. Assumption
(ii) is rather natural and common when modelling biological systems, and means
that interactions involving more than two cells are not effective in our model.
Assumption (iii) is motivated by the immunobiology associated to autoimmune
diseases. We consider that interactions among cells of populations p1 (SAPCs),
p2 (SRTCs) and p3 (ISCs) can create SAPCs, SRTCs and ISCs (proliferative
type), or destroy SAPCs and SRTCs (destructive type), and they can also simply
change the activity of SAPCs and SRTCs (conservative type). In fact, during an
immune response, a proliferation of both SRTCs and ISCs occurs and an increase
of circulating APCs also occurs. Simultaneously, the role of ISCs is to control
proliferation of both magenta SRTCs and SAPCs and, decrease their activity.
Assumption (iv) results from the fact that we do not consider internal degrees of
freedom for ISCs population. In fact, we do not consider the impact of the cellular
interactions on the activity of both Treg and NK cells and, therefore, the population
of ISCs is considered homogeneous with respect to its biological activity.

The admissible interactions in our model are described as follows.

• Interactions between SAPCs and SRTCs can be of conservative type, increasing
the activity of both SAPCs and SRTCs, of proliferative type, enlarging the
number of SRTCs and also that of SAPCs.
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Fig. 1 Illustration of the
immune system interactions
among SAPCs, SRTCs and
ISCs. Proliferative
interactions are represented
by blue starred arrows
whereas destructive
interactions are represented
by purple crossed arrows

• Interactions between SAPCs and ISCs can be of conservative type, decreasing
the activity of SAPCs, of proliferative type, enlarging the number of ISCs, as
well as of destructive type, decreasing the number SAPCs.

• Interactions between SRTCs and ISCs can be of conservative type, decreasing
the activity of SRTCs, and of destructive type, decreasing the number SRTCs.

The populations considered in our biological system and the non-conservative
interactions among them are illustrated in Fig. 1. The proliferation of SRTCs by
stimulation by SAPCs (blue starred arrow) induces an inflammatory response, in
which the immune system mistakenly attacks the body. A cytokine storm produced
by SRTCs increases the number of SAPCs (blue starred arrow) which, in turn, will
activate more SRTCs. Additionally, ISCs, on the one hand, downgrade the function
of both SAPCs (purple crossed arrow) and SRTCs (purple crossed arrow) and, on
the other hand, eliminate both SAPCs and SRTCs.

3 The Kinetic Model for Autoimmune Diseases

The overall state of the biological system is described by the distribution functions
associated to the populations p1, p2, p3, namely fi : [0,∞] × [0, 1] → R

+, i =
1, 2, 3, such that fi(t, u) gives the expected number of cells of population pi with
activity u at time t . Integration of each function fi over the activity variable leads to
the number density of pi population,

ni(t) =
∫ 1

0
fi(t, u)du, i = 1, 2, 3, (1)

which defines the expected number of cells of population pi at time t .
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Note that, as a consequence of Assumption D introduced in Sect. 2.2, the
distribution function of the population p3 is independent of its functional state, that
is f3 = f3(t).

The time evolution of the distribution functions fi is described by the kinetic
equations, that require a detailed description of the interaction balance operators,
regarding the encounter rates and transition probability densities of cells in con-
servative interactions, as well as the proliferation rates and destructive rates of cell
of different populations. See paper [5], where the complete structure of the kinetic
system is explained in detail.

The kinetic system consists of the following coupled integro-differential equa-
tions

∂f1

∂t
(t, u)= 2c12

∫ u

0
(u− v)f1(t, v)dv

∫ 1

0
f2(t,w)dw − c12(u− 1)2f1(t, u)

∫ 1

0
f2(t,w)dw

+ 2c13f3(t)

∫ 1

u

(v − u)f1(t, v)dv − c13u
2f1(t, u)f3(t)

+p12 f1(t, u)

∫ 1

0
f2(t,w)dw − d13 f1(t, u)f3(t), (2)

∂f2

∂t
(t, u) = 2c21

∫ u

0
(u− v)f2(t, v)dv

∫ 1

w


f1(t,w)dw − c21(u− 1)2f2(t, u)

∫ 1

w∗
f1(t,w)dw

+ 2c23f3(t)

∫ 1

u

(v − u)f2(t, v)dv − c23u
2f2(t, u)f3(t)

+p21f2(t, u)

∫ 1

0
f1(t,w)dw − d23f2(t, u)f3(t), (3)

df3

dt
(t) = p31f3(t)

∫ 1

0
f1(t,w)dw, (4)

where parameters pij , dij and cij indicate constant rates of proliferative, destructive
and conservative interactions, respectively, and parameter w
∈ ]0, 1[ describes the
tolerance of SRTCs towards self-antigens, in the sense that the greater the value of
w∗ the less efficient are SAPCs in increasing the activity of SRTCs after encounter.
We have considered that during proliferative encounters, cloned cells inherit the
same aggressive state as their mother cell, at a constant proliferation rate, and,
additionally, that the destructive encounters occur at a constant destruction rate. See
paper [5] for more details about the derivation of Eqs. (2)–(4).

The initial conditions for the system (2)–(4) are given by

f1(0, u) = f 0
1 (u), f2(0, u) = f 0

2 (u), f3(0) = f 0
3 . (5)

The kinetic system (2)–(4) describes the microscopic dynamics at the cellular
level starting from the initial data (5). The system reflects how the cellular
interactions affect the activity of the various populations and how they contribute
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to the evolution of the distribution functions fi , i = 1, 2, 3. This system is used in
the numerical simulations presented in Sect. 5.

4 The Mathematical Analysis of the Model

The mathematical analysis of the kinetic system (2)–(4) is in general a complex
problem. Conversely, the mathematical analysis of the macroscopic system derived
from kinetic equations is obviously an easier task, with the particularity that, under
certain assumptions, relevant information on the solution to the kinetic system can
be extracted from the mathematical analysis of the macroscopic equations. This
is the case of our model. These observations motivate the content of the present
section.

4.1 On the Initial Value Problem for the Kinetic System

The existence of a unique local solution to the initial value problem (2)–(4) and (5)
can be stated, as follows.

Theorem 1 (Local Existence) Assume initial data f 0
i (u) in L1[0, 1]. Then, there

exists T0>0 such that a unique positive solution to the Cauchy problem (2)–(4) and
(5) exists in L1[0, 1], for t ∈[0, T0].

A general local result has been proven in paper [12] for a rather vast class of
kinetic systems with conservative, proliferative and destructive interactions. The
solution does not exist globally in time, since a blow-up can occur due to the
proliferative interactions. However, a local result is enough when the system is
solved numerically and an approximate solution is obtained in the considered
biological context.

As it will become clear in the following, Theorem 1, together with the assumption
of constant proliferation and destruction rates, assure that the basic information on
the kinetic model is contained in the corresponding macroscopic system. Therefore,
we introduce now the macroscopic model and present the main results concerning
its qualitative analysis.

4.2 The Macroscopic Equations

From the kinetic equations (2)–(4), we formally derive the corresponding macro-
scopic balance equations describing the time evolution of the number of cells of each
population, namely ni(t), i = 1, 2, 3, defined as in (1). These balance equations
are obtained by integration of the kinetic equations (2)–(4) over the biological
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activity variable u ∈ [0, 1]. As expected, conservative interactions do not give any
contribution to the equations for ni(t), since they do not modify the number of
cells of each population and are lost through the integration process. Therefore, the
system of ordinary differential equations (ODEs) obtained in this way is

dn1

dt
(t) = p12n1(t)n2(t)− d13n1(t)n3(t), (6)

dn2

dt
(t) = p21n2(t)n1(t)− d23n2(t)n3(t), (7)

dn3

dt
(t) = p31n3(t)n1(t). (8)

For this system, we consider the following initial data

n1(0) = n0
1, n2(0) = n0

2, n3(0) = n0
3, with n0

i > 0 for i = 1, 2, 3.
(9)

The description obtained with the balance equations (6)–(8) gives information at
a macroscopic scale and only reflects information concerning the changes on the
number of cells of each population. All aspects related to the cellular activity are
embedded in the macroscopic dynamics but are not directly recognizable in the
balance equations.

4.3 The Qualitative Analysis of the Macroscopic Model
Equations

The starting point of this analysis is the local existence result stated in Theorem 1.
In fact, Theorem 1, together with the assumption of constant proliferation and
destruction rates, assure that the boundedness of the solution to the macroscopic
system (6)–(8) implies the boundedness of the L1-norm ||fi(t, ·)||1. See also paper
[13]. This is an immediate consequence of the positivity of the local L1-solution
stated in Theorem 1. The estimates on the solution to the macroscopic system (6)–
(8) provide a priori estimates on the solution to the kinetic system (2)–(4), due to
the relationship kinetic-macro given by Eq. (1) of the population densities ni(t) in
terms of the distribution functions fi(t, u).

Starting from Theorem 1, we prove in paper [5] the following results on the
existence of a global, positive solution of the Cauchy problem for the macroscopic
system (6)–(8) and (9).

Theorem 2 (Positivity) Let n(t)=(n1(t), n2(t), n3(t)) be a solution of the Cauchy
problem (6)–(8) and (9) defined on [0, T ], 0<T <+∞. Then n1(t) > 0, n2(t) >

0, n3(t) > 0, for t ∈ [0, T ].
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Theorem 3 (Global Solution and Asymptotic Behaviour) Assume that p21 <

p31. Then the Cauchy problem (6)–(8) and (9) has a unique solution n(t) =(
n1(t), n2(t), n3(t)

)
defined on R+, satisfying the conditions

lim
t→+∞n1(t) = 0, lim

t→+∞n2(t) = 0, lim
t→+∞n3(t) = σ <+∞,

whatever are the corresponding initial data.

From the biological point of view, condition p21<p31, considered in Theorem 3,
corresponds to assume that the proliferation of SRTCs resulting from the encounters
with SAPCs is dominated by the proliferation of ISCs resulting from the encounters
with SAPCs. In this case, the solution of the system does not possess blowups.

Theorems 2 and 3 are crucial to assure the consistency of the model and therefore
to validate the numerical simulations to be performed with the kinetic system (2)–
(4). These properties are important, not only from the mathematical point of view,
but also from the biological point of view, to obtain solutions that are biologically
significant. In particular, the positivity and the boundedness of the solution are
essential features in the present context.

5 Numerical Simulations for the Biological System

In this section, we perform some numerical simulations with the kinetic system (2)–
(4) in order to investigate the sensitivity of the solution to certain parameters of the
model. Different scenarios are considered with the aim of analyzing if the solution is
capable of describing the behavior of autoimmune diseases. The simulations show
the evolution of the number density of the SRTCs, this being biologically the main
indicator of an autoimmune reaction.

5.1 The Numerical Scheme

System (2)–(4) is solved numerically by discretizing the integro-differential equa-
tions in the activation variable u and using a trapezoidal quadrature rule to perform
the numerical integration of the interaction terms.

More specifically, we choose a uniform discrete grid for the activation state
variable u ∈ [0, 1] and introduce the set U of m + 1 (m ∈ N) equidistant grid
points uk ∈ [0, 1], k = 0, . . . ,m, defined by

uk = kΔu,
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where Δu = 1/m is the step size. We assume that parameter w
, describing the
tolerance of SRTCs towards self-antigens and appearing in Eq. (3), coincides with
the grid-point on the 1-position in U , that is w
 = u1.

Grid points uk are used to approximate both the distribution function fi(t, u) and
the integral collision terms in Eqs. (2)–(4). Therefore, we introduce the notation

f ki (t) = fi(t, uk), (10)

where i stands for the populationpi and k indicates the localization of the activation
state variable u ∈ [0, 1], with i = 1, 2 and k = 0, 1, . . . ,m. Moreover, we consider
the integral approximations

∫ uβ

uα

g(t, v)dv ≈ Qβ
α [g(t, v)], 0 ≤ α < β ≤ m, (11)

with

Qβ
α[g(t, v)] =

g(t, vα)+ g(t, vβ)

2
Δv +

β−1∑

s=α+1

g(t, vs)Δv, 0 ≤ α < β ≤ m,

(12)

to obtain the quadrature approximations

∫ 1

0
fj (t, v)dv ≈ Qm

0 [fj (t, v)],
∫ 1

0
vfj (t, v)dv ≈ Qm

0 [vfj (t, v)], j = 1, 2,

∫ 1

uk

fj (t, v)dv ≈ Qm
k [fj (t, v)],

∫ 1

uk

vfj (t, v)dv ≈ Qm
k [vfj (t, v)], j = 1, 2,

∫ uk

0
fj (t, v)dv ≈ Qk

0[fj (t, v)],
∫ uk

0
vfj (t, v)dv ≈ Qk

0[vfj (t, v)], j = 1, 2,

∫ 1

w∗
f1(t, v)dv ≈ Qm

1 [f1(t, v)].
(13)

Proceeding in this way, we obtain the following system of 2(m+ 1)+ 1 ODEs,

df k1
dt

(t)=2c13f3(t)
(
Qm
k [vf1(t, v)] − ukQ

m
k [f1(t, v)]

)
− c13u

2
kf

k
1 (t)f3(t) (14)

+c12

[
2

(
ukQ

k
0[f1(t, v)] −Qk

0[vf1(t, v)]
)
− (uk − 1)2f k1 (t)

]
Qm

0 [f2(t, v)]

+p12f
k
1 (t)Q

m
0 [f2(t, v)] − d13f

k
1 (t)f3(t), k = 0, . . . , m,
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df k2
dt

(t)=2c23f3(t)
(
Qm
k [vf2(t, v)] − ukQ

m
k [f2(t, v)]

)
− c23u

2
kf

k
2 (t)f3(t) (15)

+c21

[
2
(
ukQ

k
0[f2(t, v)] −Qk

0[vf2(t, v)]
)
Qm
1 [f1(t, v)]

−(uk − 1)2f k2 (t)Q
m
1 [f1(t, v)]

]

+p21f
k
2 (t)Q

m
0 [f1(t, v)] − d23f

k
2 (t)f3(t), k = 0, . . . , m,

df3

dt
(t)=p31f3(t)Q

m
0 [f1(t, v)]. (16)

The ODE system (14)–(16) constitutes the numerical scheme to approximate the
solution to the full kinetic system (2)–(4).

5.2 The Numerical Solution

We solve system (14)–(16) using the standard Maple dsolve command with the
numeric option. A considerable number of simulations have been performed and
we have selected a representative sample of figures to show the common features
of the evolution of autoimmune diseases. These figures show the evolution of the
number density of the SRTCs when different scenarios are considered.

In all simulations, the initial data are taken to be

f 0
i = 10−2, for i = 1, 2, 3. (17)

The parameters that are not investigated in the present simulations are fixed as

c12 = 2 and c13 = 0.01. (18)

They are associated to the SAPCs conservative interactions with SRTCs (c12) and
with ISCs (c13).

All other parameters are varied in order to appreciate their influence on the
solution to the kinetic system. In particular, parameters

w
, p21, d23, c21 and c23 (19)

have a direct influence on the number density of SRTCs, since they represent the
tolerance parameter of the SRTCs with respect to SAPCs or, equivalently, the
capacity of SAPCs to activate SRTCs (w
), the proliferative rate of SRTCs after
interaction with SAPCs (p21), the destructive rate of SRTCs after interaction with
ISCs (d23), the conservative rate of SRTCs after interaction with SAPCs (c21) and
the conservative rate of SRTCs after interaction with ISCs (c23). On the other hand,
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parameters

p12, p31 and d13 (20)

have an indirect influence on the number density of SRTCs, because they represent
the proliferative rate of SAPCs after interaction with SRTCs (p12), the proliferative
rate of ISCs after interaction with SAPCs (p31) and the destructive rate of SAPCs
after interaction with ISCs (d13).

We underline that the influence of the conservation rates c21 and c23 on the
number density of the SRTCs is quite recognizable, because we are dealing with a
kinetic system which retains the conservative cellular interactions in the dynamics.
On the other hand, the simulations show that the effect of the other conservation
parameters, c12 and c13, is not as recognizable in the evolution of the number density
of the SRTCs because the related conservative interactions have an indirect impact
on the evolution of SRTCs.

We consider different scenarios in view of illustrating the sensitivity of the
solution when varying the parameters (19) and (20) that have biological significance
in the present modelling of autoimmunity. More specifically, we have a first scenario
describing the trend to illness and three other scenarios in which the autoimmune
reaction is controlled to a certain extent.

(A) The scenario where there is development of an autoimmune disease corre-
sponds to the situation in which the ISCs are unable to regulate the autoimmune
reaction, resulting in a full autoimmune cascade and trending to illness. In this
scenario, we consider

w
 = 1/30, p21 = 19, d23 = 0.025, c21 = 10, c23 = 0.01,

p12 = 1, p31 = 20, d13 = 0.35,
(21)

and the corresponding solution is depicted in Fig. 2. We can observe a
considerable mass proliferation of very active SRTCs, of the order 104 of the

Fig. 2 Scenario (A)—trend
to illness. The evolution of
SRTCs is determined by the
approximating solution to the
kinetic system (2)–(4), when
the parameters are given by
(21). The figure shows a
considerable mass
proliferation of very active
SRTCs
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Fig. 3 Scenario
(B)—Immunotolerance.
Effect of increasing the
parameter w
, as described
in. The evolution of SRTCs is
determined by the
approximating solution to the
kinetic system (2)–(4), when
the parameters are given by
(22), and in particular
w
 = 29/30

initial data, due to insufficient regulation by ISCs and low tolerance of SRTCs
to SAPCs.

(B) The scenario where SRTCs become more tolerant to SAPCs corresponds to the
situation in which SAPCs are less efficient in increasing the activity of SRTCs.
In this scenario, we consider

w
 = 29/30, p21 = 19, d23 = 0.025, c21 = 10, c23 = 0.01,

p12 = 1, p31 = 20, d13 = 0.35,
(22)

and the corresponding solution is illustrated in Fig. 3. We can observe that, in
comparison with Fig. 2, a moderate decrease in the mass proliferation of very
active SRTCs is observed, whereas a slight decrease in the mass proliferation
of low active SRTCs is recognizable.

(C) The scenario where there is immunosuppression of the autoimmune reaction
corresponds to the situation in which the biological system is able to abort
the autoimmune reaction in an efficient manner, by controlling different
proliferative or destructive rates.

In this scenario, we maintain all parameters of scenario (A) with exception
of one that is varying once per time. In particular, we consider a lower value of
p21 or p12, or a greater value of p31, d13 or d23. The corresponding solutions
are shown in diagrams (a)–(e) of Fig. 4. From the qualitative point of view, the
behaviour represented in these diagrams is the same and all pictures exhibit a
very low proliferation of active SRTCs.
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(a) (b)

(c) (d)

(e)

Fig. 4 Scenario (C)—Immunosupression. The evolution of SRTCs is determined by the approx-
imating solution to the kinetic system (2)–(4), when the parameters are given by (21), with
exception of one parameter. (a) Decreasing the proliferative rate p21 to p21 = 17 . (b) Decreasing
the proliferative rate p12 to p12 = 0.5 . (c) Increasing the proliferative rate p31 to p31 = 23 . (d)
Increasing the destructive rate d13 to d13 = 0.7 . (e) Increasing the destructive rate d23 to d23 = 0.1 .
Each diagram shows that, by varying one parameter with respect to the value considered in (21), the
biological system is able to reduce considerably the mass proliferation of the SRTCs and therefore
to abort the autoimmune reaction in an efficient manner
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• In Fig. 4a, the reduction of SRTCs proliferative encounters with SAPCs
(lower value of p21) obviously implies a significant impact on the mass
production of SRTCs capable of avoiding the trend to illness. The figure
shows the effect of p21 on the suppression of the autoimmune reaction.

• In Fig. 4b, the reduction of SAPCs proliferative encounters with SRTCs
(lower value of p12) has an indirect impact on the mass production of SRTCs
since the concentration of SAPCs decreases and the activation of SRTCs
by SAPCs is weakened, so that the trend to illness is avoided. The figure
illustrates the effect of p12 on the suppression of the autoimmune reaction.

• In Fig. 4c, the number of ISCs produced by the biological system is
increased by proliferative interactions with SAPCs (greater value of p31),
the result being that the trend to illness is avoided in an efficient manner.
The figure shows the effect of p31 on the suppression of the autoimmune
reaction.

• In Fig. 4d, the results show that for the number of SAPCs destroyed as
a consequence of their interaction with ISCs (greater value of d13) will
ultimately control the proliferation of SRTCs and therefore avoid illness.
The figure shows the consequences of d13 on the suppression of the
autoimmune reaction.

• In Fig. 4e, the results show that the number of SRTCs destroyed as a
consequence of their interaction with ISCs (greater value of d23) can
definitively avoid a full blown autoimmune reaction. The figure shows the
impact of d23 on the suppression of the autoimmune reaction.

(D) The scenario where there is control of the disease also corresponds to the
situation in which the biological system is able to abort the autoimmune
reaction in an efficient manner, due to a reduction of the activity of the SRTCs
after conservative interactions with SAPCs or ISCs.

In this scenario, we maintain all parameters of scenario (A) with exception
of one that is varying once per time. In particular, we consider lower values of
c21 or greater values of c23. The corresponding solutions are shown in diagrams
(a)–(d) of Fig. 5.

The comparison between this scenario and scenario (A) shows that the
total number of SRTCs for u ∈ [0, 1] is exactly the same, because we only
modify the rates of certain conservative encounters. As a consequence, the
mass proliferation of SRTCs shows a moderate reduction and the aggressive
nature of the autoimmnune reaction is only slightly weakened.

• Diagrams (a) and (b) of Fig. 5 show that the mass proliferation of very active
SRTCs is slightly reduced when the conservative rate c21 is decreased. This
is a consequence of a lower production of cytokines by SRTC since these
encounters reduce the activity of SRTCs and, therefore, control the trig-
gering of an inflammatory process and the development of an autoimmune
disease to a certain extent.
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Fig. 5 Immunosupression. The disease is controlled by decreasing the conservative rate c21,
diagrams (a) and (b), or by increasing the conservative rate c23, diagrams (c) and (d), as described
in scenario (D). (a) c21 = 2 . (b) c21 = 0.5 . (c) c23 = 0.03 . (d) c23 = 0.05 . The evolution
of SRTCs is determined by the approximating solution to the kinetic system (2)–(4), when the
parameters are given by (21) with exception of c21 and c23

• Diagrams (c) and (d) of Fig. 5 also show that the mass proliferation of very
active SRTCs is slightly reduced when the conservative rate c23 is increased.
This is a consequence of a lower production of cytokines by SRTC due
to a greater inhibiting effect of ISCs on the SRTC function and, therefore
moderating the autoimmune disease.
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6 Conclusion and Perspectives

The mathematical model that has been proposed in [5], based on a kinetic theory
approach, is here revisited. The mathematical analysis of the model, showing
existence, uniqueness, positivity and boundedness of the solution, is also reviewed
here.

Starting from the model proposed in [5], we develop here some numerical
simulations in order to investigate the sensitivity of the model to certain parameters
that are involved in the biological description. We consider different scenarios with
the aim of describing different behaviors occurring in autoimmunity. In particular,
we study the influence of certain parameters related to immunotolerance and
immunosupression on the evolution of the variables characterizing this model for
autoimmunity. The conclusion of this study is that increasing the parameters related
to immunotolerance and immnunosupression is effective in reducing the production
of highly active SRTCs and thefore controlling the progression of an autoimmune
episode.

Therefore the numerical simulations developed here and the corresponding
biological interpretation of the results constitute a valuable complement of the
mathematical model proposed in [5].

Other extensions of the model proposed in [5] have been already considered and
others are still open to further developments. We have extended our research work
in view of introducing drug therapies on the dynamics and investigating optimal
treatment strategies. The results have been submitted for publication, see [6, 7].

Another extension has been considered in order to introduce recurrence in the
macroscopic model presented in [5] by considering a constant input by the host
environment of self-antigen presenting cells (SAPCs) and the natural death of all
cell populations involved. Such a model is able to study the chronic character of the
autoimmune diseases. The results are presented in [16].

Other interesting problems that we plan to study is the introduction of delay terms
in the equations in order to describe the delay in the reaction to cellular impulses.
Memory terms may also be introduced with the aim of describing the ability of cells
to retain information related to past experienced cell interactions.
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