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Abstract. Forecasting in time series is one of the main purposes for
applying time series models. The choice of the forecasting model depends
on data structure and the objectives of the study. This study presents
a comparison of Box Jenkins SARIMA and Holt-Winters exponential
smoothing approaches to time series forecasting to increase the likeli-
hood of capturing different patterns in the data (in this specific case,
home insurance data) and thus improve forecasting performance. These
methods are chosen due to their ability to model seasonal fluctuations
present in insurance data. The forecasting performance is demonstrated
by a case study of home insurance monthly time series: total and fre-
quency rate time series. In order to assess the predictive and forecasting
performance of the two methodologies adopted, several evaluation mea-
sures are used, namely MSE, RMSE, MAPE, and Theil’s U-statistics.
A comparison is made and discussed, and the results obtained demon-
strate the superiority of the SARIMA model over the other forecasting
approach. Holt-Winters also produces accurate forecasts, so it is consid-
ered a viable alternative to SARIMA.

Keywords: Home insurance - Time series - Forecasting - SARIMA -
Holt-winters

1 Introduction

A time series is a set of observations usually ordered in equally spaced inter-
vals. Time series forecasting is an important area in which past observations of
the same variable are collected and analyzed to develop a model describing the
underlying relationship. The model is then used to extrapolate the time series
into the future. Forecasting methods are a key tool in decision-making processes
in many areas, such as economics, insurance, management or environment. There
are several approaches to modeling time series, but we decided to study and com-
pare the accuracy of the Box Jenkins SARIMA and Holt-Winters exponential
smoothing models for forecasting home insurance time series, because both mod-
els can increase the chance of capturing the proprieties and the dynamics of the
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data and thus improve forecast accuracy. Both methods have the ability to deal
with time series seasonality. The time series analysis of both processes was car-
ried out using the statistical software R programming language and specialized
packages for modeling and forecasting.

The problem proposed by the International Insurance Group, Portugal, was
to find the models that best fit and forecast (the focus will be on forecasting) the
monthly time series of total home insurance, including storm damage and claims,
contents damage, leaking or escape of water in the home, accidental damage,
damage to fridge/freezer food in the home, building damage, theft or robbery,
fire and others, in order to use them to forecast future values. For example,
see the importance of this type of insurance in economic terms: at least 85% of
homeowners in the U.S. have homeowners insurance, and policies cost on average
$1,445 per year. While it’s not a required form of coverage by the government,
home insurance is typically required as a condition for applying for a mortgage
and it is very valuable because of the protection it provides homeowners. Home
insurance policies generally provide coverage for damage to a home’s structure,
damage to personal property and liability coverage in case the policy holder is
considered at fault for property damage or bodily injury to another party. There
is a growing number of accidents taking place, either caused by humans actions
or by nature. Population growth at a national level certainly entails increasing
numbers of accidents (recorded by insurance companies). Another major factor
with tremendous weight in these records is climate change. Contrary to what
one might assume at first glance, this phenomenon not only contributes to hotter
summers, but also to colder winters, i.e., climate change increases the volatility
of Earth’ s temperature. This results in more intense and more frequent storms,
which are ultimately reflected in insurance markets. In these markets, a claim is
defined as an event that results in material loss to an insured individual.

In this study the claims data regard home insurance (total home insurance
as defined above). Our data source are the records of the claims registered in the
period from January 2015 to June 2021 on a monthly basis (data from Portugal).
The main goal is to forecast these claims in monthly time series. Two time series
are considered: the total home insurance (number of claims registered in the
month) and a monthly frequency rate. This monthly frequency rate is defined
as follows

number of claims registered in the month

(1)

which varies between 0 and 1, where the number of people exposed to risk in
a given month is equal to the number of portfolios open. It should be stressed
that the main focus of this study is to establish accurate forecasting models
to support managerial performance the decision-making process to improve the
services provided to policyholders.

number of people exposed to risk in the month
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2 Methodologies

2.1 SARIMA Model

The Box Jenkins SARIMA(p,d, q)(P, D, Q)s is a short memory model and a
very flexible model, given that it accounts for stochastic seasonality, and is one
of the most versatile models for forecasting seasonal time series. Such season-
ality is present when the seasonal pattern of a time series changes over time.
The theory of SARIMA models has been developed by many researchers and its
wide application results from the work by Box et al. [1], who developed a sys-
tematic and practical model-building method. Through an iterative three-step
model-building process, model identification, parameter estimation and model
diagnosis, the Box-Jenkins methodology has proven to be an effective practical

time series modeling approach.
The SARIMA model has the following form

8,(B)Np(B*)(1 - B)'(1 — B")PY; = 6,(B)Ho(B")e. (2)
where Y; is the time series, with

Pp(B) = 1= 1B~ — ¢, B,
Np(BS) =1- VlBs — s — I/pPS,
OyB)=1+6,B+---+0,B9,
Hqo(B*) =1+mB* + - +n1qQs,

where s is the seasonal length, B is the backshift operator defined by B*Y; =
Yi_k,P,(B) and O4(B) are the regular autoregressive and moving average poly-
nomials of orders p and ¢, respectively, Np(B®) and Hqg(B?®) are the seasonal
autoregressive and moving average polynomials of orders P and @), respectively,
and ¢, is a sequence of white noises with zero mean and constant variance o2.
(1—B)% and (1 — B*)P are the nonseasonal and seasonal differencing operators,
respectively.

The model with the minimum AIC (Akaike’s Information Criterion) value
and the minimum BIC (Bayesian’s Information Criterion) value is often the
best model for forecasting [2]. We investigated the required transformations for
variance stabilization and decided to apply logarithms to the time series under
study.

Once the model has been specified, its autoregressive, moving average, and
seasonal parameters (SARIMA model) need to be estimated. The parameters
of SARIMA models are usually estimated by maximizing the likelihood of the
model.

2.2 Holt-Winters Model

The Holt-Winters method is an extension of the Holt method, and is applied
whenever the data behavior is trendy and is seasonal. The seasonal type can
be additive or multiplicative, depending on the oscillatory movement over the
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time period. In both versions, the forecasts will depend on the following three
components of a seasonal time series: level, trend and seasonal coefficient. In
addition, both are implemented in the Holt-Winters function of the forecast
package in R. The additive version ought to be considered whenever the seasonal
pattern of a series has constant amplitude over time [3]. In such case, the series
can be written by Y; = T} + Sy + &4, where T; represents the trend (the sum of
the level and the slope of the series at time t), S; is the seasonal component, and
g; are error terms with mean 0 and constant variance. When a series displays
a seasonal pattern characterized by amplitude that varies with the series level,
the multiplicative version is a better choice. In such case, the series can be
represented by Y; = T; x Sy + ;. The multiplicative and additive Holt-Winters
methods have the recursive equations presented in the Table 1. The exploratory
analysis of all eight time series indicated the presence of a seasonal pattern.

Table 1. The recursive equations of the Holt-Winters methods.

Multiplicative H-W | Fy = a5 + (1 — @) (Fy—1 + b—1), 0 < a < 1
bt = B(F¢ — Ft—1) + (1 = B)bt—1, 0 < < 1
fe=7g+ (0 —fims, 0<y <1

Yitr = (Ft + kbt) frak—ms, m=1,1 <k <s,m=2,s <k < 2s, etc.
Additive H-W Fr=aYt — fi—s) + (1 —a@)(Fe—1 + bt—1),0<a <1

b = B(Fy — Ft—1) + (1 = B)bt—1, 0 < < 1
fr=7Ye—F)+ (1 -7ft-s, 0<y <1
ﬁ+k:Ft+kbt+ft+k_ms,m:1,1Skgs,m:2,8<k:§2s, etc.

The Bootstrap method introduced in [4] provides a way to estimate param-
eters, approximate a sampling distribution or derive confidence intervals when
we have data but do not know the underlying distribution. If the population
represented through a probability distribution and its parameters are unknown,
the Bootstrap idea is to take (re-)samples (y3,v5,...,¥,), drawn with replace-
ment from the original sample (y1,¥2,...,¥yn). Computing prediction intervals
are an important part of the forecasting process and aim to indicate the likely
uncertainty in point forecasts. The prediction intervals are usually based on the
Mean Square Error (MSE), which denotes the variance of the one-step-ahead
forecast errors [5]. Prediction intervals (whenever a normality assumption is ver-
ified) for both at one-step-ahead and at m-steps-ahead are given by the following
expression:

[ff]ﬁ_m — Zl—oe/ZV MSEm, }A/].H_m + Zl—a/2\/ MSEm}

where z is the quantile of probabilty 1 — «/2 of the standard Normal distri-
bution and MSE,, = —— Zf:mﬂ(eim))z denote the variance of the m-steps-
ahead errors. The idea is to look at the bootstrap percentiles rather than the
sampling distribution percentiles, and the confidence interval is based on the
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Bootstrap distribution (i.e., on the percentiles). Different methods are available
for the construction of Bootstrap confidence intervals: the percentile method,
the percentile-¢ method, the bias-corrected method [4] and the accelerated bias-
corrected method [4]. The Bootstrap percentile confidence interval is based on
the quantiles of the Bootstrap estimates distribution and is obtained as follows:
suppose F} is the empirical cumulative distribution functlon {yn b =
1,..., B}, then the prediction interval is given by [ (a/2),F N1 - a/2) ]

where for an interval with 95% confidence and B rephcates the hmlts of the
intervals are the percentiles F}, '(0.025) and F} ' (0.975).

2.3 Forecasting Models Evaluation

Let’s denote the actual observation for time period t by Y; and the estimated
or forecasted value for the same period by V; and n is the total number of
observations. The most commonly used forecast error measures are the mean
squared error (MSE), the root mean squared error (RMSE), the mean absolute
percentage error (MAPE), and Theil’s U-statistics [2]. MSE, RMSE, and MAPE
are defined by the following formulas, respectively:

1 1 — .
MSE = = 2_ = —Y,)? —
S 6= E (Y; — Y;)", RMSE (3)
t=1 t=1
1 .Y, -V,
MAPE:—E 1 . 4
- x 100 (%) (4)

Theil’s U-statistics allows a relative comparison of forecasting methods with
naive approaches and also squares the errors involved so that large errors are
given much more weight than small errors. It is defined as

. 2
n—1(Yi1—-Yia
t:]. Yt

n—1 (Yi1—Y: |2
tzl Yt

Since there is no universally agreed-upon performance measure that can be
applied to every forecasting situation, multiple criteria are often required to
enable a comprehensive assessment of forecasting models [2]. When comparing
forecasting methods, the method with the lowest MSE, RMSE, MAPE or Theil’s
U-statistics is the preferred one. Often, different accuracy measures will lead to
different results as to the best forecast method.

U-Theil = (5)

3 Dataset

The study started with exhaustive comprehensive description of the data to
understand their behavior over time but also globally. The first step in the anal-
ysis of any time series is the description of the historic series. It includes the
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graphical representation of the data. When a time series is plotted, common
patterns are frequently found. These patterns might be explained by many pos-
sible cause-and-effect relationships. Common components are the trend, seasonal
effect, cyclic changes and randomness. A more interesting and ambitious task is
to forecast future values of a series based on its recorded past, and more specifi-
cally to calculate forecasting intervals. Therefore, identifying these components
is important when selecting a forecasting model.

Table 2 presents descriptive statistics for the total monthly time series. As
expected, standard deviation is higher and indicates a larger variability during
the observed period. The mean and median are around 1466 and 1400 claims by
month, respectively.

Table 2. Descriptive statistics of the total monthly time series.

Beginning 01/2015
End 06,2021
Dimension 78
Range 1013-2707
Qo.25 1250
Median 1400
Qo.75 1623
Mean 1466.13
Standard deviation |340.97
Variance 116258.6
Variation coefficient | 0.23
Number of outliers |4

The years 2020 and 2021, in particular 2021, show a different behaviour from
the previous years: 2021 presents a huge variability and higher values. This is
due to COVID-19 pandemic context (Fig. 1). There are four outlier observations:
January 2015 (1669 claims), March 2018 (2707 claims), January 2020 (2138
claims), and December 2020 (2131 claims).

Before implementing the modeling processes, it was decided to transform the
data regarding the total home insurance (number of claims registered in the
month) with values greater than 2000 claims per month (a threshold of 2000
claims). Thus, if the value observed (y,) in a given month was greater than 2000
claims the following transformation is applied vy, = W with regard to
the annual seasonality (s = 12 months) inherent in the data (an increase at the
end of each year, followed by a decrease at the beginning of the following year),
which the graphic representations of the FAC and FACP indicate (see Fig.2).
Therefore, six values were transformed (Fig. 3).

Table 3 presents the values above the 2000 threshold and the transformed
values.
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Table 3. Values before and after transformation.

Date Before | After
03/2018 | 2707 | 1428
12/2019 | 2051 | 1410
01/2020 2138 |1694
12/2020| 2131 | 1406
01/2021 2700 | 1716
02/2021 | 2396 | 1604

It should be noted that this transformation was not applied to the monthly
frequency rate time series (a ratio ranging between 0 and 1). In the same context,
the frequency rate time series also presents 12-month seasonality (Fig.4).
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Fig. 4. ACF and PACF of the total monthly frequency rate time series.

Also, the graphical representation of the two time series clearly shows that
time series exhibit seasonal behavior (Fig.5 and Fig. 6), as expected due to the
nature of the data. The monthly data exhibits a strong monthly seasonality (a
period of 12 months).

4 Results

The results obtained from the application of the SARIMA and Holt-Winters
methods are reported in this section. The methods considered in this study
are applied to two data sets: training data (in-sample data) and testing data
(out-of-sample data) in order to test the accuracy of the proposed forecasting
models. This process is implemented regarding both time series: the total home
insurance (number of claims registered in the month) and the monthly frequency
rate. The selected training period was from January 2015 to December 2020 (first
72 observations/months) and was used to fit the models to the data, and the test
period included the last 6 months, i.e., the period from January 2021 to June
2021 was used to forecast. This approach allows comparing the effectiveness of
different methods of prediction.
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Note that the final results that will be presented always refer to the number of
claims registered per month, i.e., the rates time series are modeled and forecasted
but the final results presented in this paper are transformed back to the initial
values: the total home insurance (number of claims registered in the month).

4.1 SARIMA Model

The ADF (Augmented Dickey-Fuller) and KPSS (Kwiatkowski, Phillips,
Schmidt, and Shin) tests (with a 5% significance level) were applied to the total
home insurance time series to test series’s stationarity and nonstationarity. A
Box-Cox transformation was applied to the data, deciding on a A\ = —0.184.
Therefore, the SARIMA model will be fitted to this time series for the obser-
vations with Box-Cox transformation. The main task in SARIMA forecasting
is to select an appropriate model order, i.e., the p, d, ¢, P, D, (Q and s values
(s =12).

Tables4 and 5 show the five models with lower AIC and BIC fitted to the
training time series for both cases: the total home insurance (number of claims
registered in the month) and a monthly frequency rate. All combinations of
parameters p, d, q, P, D, and () were tested.

Table 4. Adjustment of SARIMA models for the total monthly time series.

Model AIC | Model BIC

SARIMA(1,0,2)(0,1,1)12 | 862.62 | SARIMA(1,0,0)(0,1,1)12 | 870.01
SARIMA(2,0,1)(0,1,1)12 | 863.26 | SARIMA(0,0,1)(0, 1, 1)12 | 870.04
SARIMA(1,0,0)(0,1,1)12 | 863.73 | SARIMA(0,0,0)(0,1,1)12 | 871.92
( ( )
( ( )

SARIMA(0,0,1)(0,1,1)12 | 863.76 | SARIMA(1,0,0)(0,1,2)12 | 872.54
SARIMA(1,0,2)(0,1,2)12 | 863.82 | SARIMA(1,0,0)(1,1,1)12 | 872.85

Table 5. Adjustment of SARIMA models for the total frequency rate time series.

Model AIC Model BIC

SARIMA(2,0,2)(1,0,2)12 | —487.91 | SARIMA(1,0,0)(0,0,0)12 | —478.95
SARIMA(2,0,1)(0,0,0)12 | —487.51 | SARIMA(0,0,1)(0,0,0)12 | —478.45
SARIMA(2,0,1)(0,0,1)12 | —486.79 | SARIMA(1,0,0)(0,0,1)12 | —477.05
SARIMA(2,0,2)(0,0,2)12 | —486.27 | SARIMA(0,0,1)(0,0,1)12 | —476.61
SARIMA(1,0,0)(0,0,1)12 | —486.16 | SARIMA(1,0,0)(1,0,0)12 | —476.54

On the bases of the AICs e BICs criteria, it is preferred the
SARIMA(1,0,0)(0,1,1);2 model for total monthly time series, and the
SARIMA(1,0,0)(0,0,1);2 model for total frequency rate time series.
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The estimation results of these two models can be consulted in more detail
in Table6.

Table 6. Characteristics of the SARIMA models.

Monthly time series AIC =863.73 BIC=870.01 |o =~ 0.0216
SARIMA(1,0,0)(0,1,1)12 | Parameter 1 m
Estimate 0.3788 —0.6851
Standard deviation | 0.1238 0.2027
Frequency rate AIC =—486.16 BIC =—-477.05 | o ~ 0.008
SARIMA(1,0,0)(0,0,1)12 | Parameter D1 m
Estimate 0.3601 0.2101
Standard deviation | 0.1124 0.1300

Figures. 5 and 6 present the original values of the two time series, as well as
the estimates in the modeling period (training period).
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Fig. 6. Adjustment of the SARIMA model for the total frequency rate time series.

Once the forecasts’ accuracy (punctual) is evaluated, it is essential to under-
stand the effectiveness of the forecast intervals.
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Theoretically, the forecast intervals are calculated at 95% confidence level,
which means that 95% of the intervals must include the real observation. That is,
it is considered that the most effective interval forecasts are those whose effective
coverage rate is closer to 95%. Note that the forecast intervals are obtained
based on the testing series for each distinct series where (in this study) they
contain only 6 observations (6 months) and, therefore, the analysis of coverage
rates must be taken to consideration. Also the testing period is from January
2021 to June 2021, corresponding to half a year of COVID-19 pandemic, which
had a tremendous impact on society as a whole, including on human behavior
and consequently on the number of claims on home insurance which clearly
behaved differently from previous periods. In the two time series under study,
total monthly time series and total frequency rate, with coverage rates of 100%
and 67%, respectively, are calculated. It should be noted that the 100% coverage
rate is due to a greater amplitude of the forecasting interval. It is noteworthy
that the model formulated for the time series corresponding to the total claims
monthly presents better results (Figs.7 and 8).
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Fig. 7. Forecasts and forecast confidence intervals (95%) of the SARIMA model for
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The models validation was assessed by means of the residuals analysis. The
independency assumptions were assessed by estimating the autocorrelation and
the partial autocorrelation functions of residuals and the assumption that the
residuals are identically normally distributed were also verified (by performing
the Kolmogorov-Smirnov test).

4.2 Holt-Winters Model

We applied the additive and multiplicative Holt-Winters to the first k obser-
vations (we considered the period from January 2015 to June 2015, the first
semester), and we obtained the initial values for the smoothing parameters. We
obtained the residuals and we calculated the MSE to compare the forecasting
accuracy. The additive Holt-Winters models proved to have the best predictive
performance. So, for all times series, we considered the models obtained by the
additive Holt-Winters method. Tables 7 and 8 show the smoothing constants esti-
mates of the two additive models for the training time series for both cases: the
total home insurance (number of claims registered in the month) and a monthly
frequency rate.

Table 7. Holt-Winters additive model parameters estimates for the monthly counts.

& ~ 0.1603 B~ 0.0212 5 ~ 0.5974 1, ~ 1644.5000 |b; ~ 8.4710
51~ 154.2854 |5y~ —112.3845 |33 ~ —175.0366 | 54 ~ —87.0292 |35 ~ —1.2906
S6 ~ —110.3108 | 57 ~ —15.5516 | s ~ —200.5818 | 59 ~ —177.1819 | 510 &~ —35.7976
511 ~ 54.6681 | 812 &~ —206.0083

Table 8. Estimates for the frequency rate Holt-Winters additive model’s parameters.

& =~ 0.0839 B~00128 |3~0.3795 |l ~0.0526 |b; ~ 0.0002
51 ~0.0081 |33 ~0.0002 |83~ —0.0012|354 ~0.0027 |35~ —0.0034
56 ~ —0.006 |37 ~ —0.0052 | 58 ~ —0.0091 | 59 ~ —0.0074 | 510 ~ 0.0043
$11 &~ —0.0005 | 312 ~ 0.0037

ZZ

In Fig.9 and Fig. 10 are represented the original values of the claims time
series, the total home insurance (number of claims registered in the month) and
a monthly frequency rate, respectively, and the estimates in the modeling period
(training period).
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The Holt-Winters procedure associated to the Bootstrap resampling method
was programmed in the R software by taking B = 2000 replicates in the residuals
resampling process. Thus, the Bootstrap percentile confidence interval obtained
is based on the quantiles of the Bootstrap estimates distribution. The forecasts
from January 2021 to June 2021 for both time series processes were computed
to assess the performance of the methodologies, namely by the forecast 95%
confidence intervals range.
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Fig. 11. Forecasts and forecast Bootstrap percentile confidence interval (95%) of the
Holt-Winters model for the total monthly time series.
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Fig. 12. Forecasts and forecast Bootstrap percentile confidence interval (95%) of the
Holt-Winters model for the total frequency rate time series.

Figure 11 and Fig. 12 present the original values, the forecasts in the fore-
casting period (testing period) and the Bootstrap forecast confidence intervals
for a 95% confidence level for the two Holt-Winters models. The coverage rate
of empirical confidence of corrected forecasts is 83% and 100% (this happens
because the amplitude of the forecast interval is larger), for the total monthly
time series and total frequency rate time series, respectively, of the confidence
intervals with a 95% confidence level (5 and 6 observations of the testing series
belong to the confidence interval).

4.3 Models Performance

Tables9 and 10 show the results of the accuracy measures calculated for the
entire observation period (a total period of observation of 78 months), training
and testing periods for the two methods applied to the time series under study.
The performance comparisons of the competing models (SARIMA and Holt-
Winters) were evaluated using MSE, RMSE, MAPE, and Theil’s U- statistics.
The results obtained showed that the SARIMA , which requires fewer parameters
to be estimated, is (predominantly) more accurate than Holt-Winters and per-
forms better for all period times (total, training and test periods). From the two
models performed, we selected the most adequate model which has the lowest
forecast error when comparing predicted data using a suitable test set: SARIMA.
Therefore, the SARIMA models can more efficiently capture the dynamic behav-
ior of the total monthly time series and total frequency rate time series compared
to Holt-Winters.
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Table 9. Evaluation metrics of the SARIMA models of both time series.

Time series MSE RMSE | MAPE | U-Theil
Total Monthly counts | 189950.30 | 435.83 | 9.90 |0.78
Frequency rate | 39239.89 |198.09 |12.11 |0.83
Training set | Monthly counts | 33028.16 | 181.74 | 9.69 |0.80
Frequency rate | 37320.45|193.19 | 11.78 |0.81
Testing set | Monthly counts | 62092.11 | 249.18 |12.40 |1.18
Frequency rate | 62273.19 |249.55 |16.00 |1.23

Table 10. Evaluation metrics of the Holt-Winter models of both time series.

Time series MSE RMSE | MAPE | U-Theil
Total Monthly counts | 48410.05 | 220.02 | 12.68 |0.98

| Frequency rate | 331902.60 | 576.11 |36.70 | 2.52
Training set ‘ Monthly counts | 46119.56 | 214.75 | 12.36 | 0.97

’ Frequency rate |350710.00 | 592.21 | 38.41 |2.60
Testing set ‘ Monthly counts | 71315.00 | 267.05 | 15.81 |1.36
’ Frequency rate |143828.40|379.25 |19.53 |1.71

5 Conclusions

The main objective of this study was to establish accurate forecasting mod-
els to enable the Insurance Company level to (monthly) forecast the number of
housing claims with good accuracy to optimize costs at the managerial level. The
SARIMA models provided superior point forecasts over the remaining methodol-
ogy, with the Holt-Winters model proving to be a viable alternative. The lowest
observed value was 249 claims (root mean squared error) per month for the
forecasting with the total monthly time series modeling process (see Table9).
Contrary to expectations, claims modeling via monthly rate did not result in
better estimates or better forecasts for the process of obtaining accurate claims
numbers. Thus, future research should only consider the forecasting process of
the time series via the original data (number of claims by month). In fact, for the
total home insurance, both model processes in terms of accuracy forecasting and
coverage rates have performed well regarding the number of claims registered by
month.
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