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Abstract

The word problems for ω-terms over the pseudovariety of aperiodic semigroups with
commuting idempotents and over the pseudovariety generated by finite aperiodic inverse
semigroups are studied. The two problems have different solutions, thus showing that the
two pseudovarieties are distinct, a result proven by Higgins and Margolis.

1 Introduction

A pseudovariety of semigroups is a class of finite semigroups closed under taking homomor-
phic images of subsemigroups and finitary direct products. In this paper, we will be interested
in two subpseudovarieties of A, the pseudovariety of all finite aperiodic semigroups. One of
them is A ∩ ECom, the pseudovariety of all finite aperiodic semigroups in which idempo-
tents commute. Recall that, by Ash’s Theorem [3], the pseudovariety ECom of idempotent
commuting semigroups is generated by the class of finite inverse semigroups. The other pseu-
dovariety we will study is denoted AInv and is the pseudovariety generated by finite aperiodic
inverse semigroups. This is a proper subpseudovariety of A∩ECom, as shown by Higgins and
Margolis [6].

The objective of this paper is to investigate ω-identities over the pseudovarieties A∩ECom
and AInv. That is, given two terms obtained from the letters of an alphabet A using the
operations of multiplication and ω-power, we want to examine whether these terms coincide
over allA-generated elements of A∩ECom (resp. AInv). Similar study was already performed
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for the pseudovariety A [7, 8] as well as for some of its most important subpseudovarieties such
as J ofJ -trivial semigroups [1], R ofR-trivial semigroups [2] and LSl of local semilattices [5].

If V is one of A ∩ ECom or AInv, then we describe a procedure that decides weather a
given ω-identity is valid over V. These problems reduce to consider only rank 1 ω-terms. We
associate to each of these ω-terms α a reversible aperiodic automaton A(α) and an inverse
aperiodic automaton B(α). The automata A(α) and B(α) characterize completely the ω-term
α over A ∩ ECom and AInv respectively, thus providing a tool to test rank 1 ω-identities and
completing the solution of the ω-word problems over these pseudovarieties.

This article is intended to be an extended summary, without proofs, of a future paper with
all the details. We leave the technical details of the results to the full paper [4] and focus on a
clear description of the algorithms.

2 ω-identities

An ω-term is a formal expression obtained from the letters of an alphabet A using two oper-
ations: the binary, associative, concatenation and the unary ω-power. Any ω-term α can be
given a natural interpretation on a finite semigroup S as a mapping αS : SA → S, as follows:
each letter a of A is interpreted as the mapping sending each element of SA to its image on a,
the concatenation is viewed as the semigroup multiplication, while the ω-power is interpreted
as the unary operation which sends each element s of S to its unique idempotent power sω.

An ω-identity is a formal equality α = β between ω-terms α and β. The ω-word problem
for a pseudovariety V consists in deciding, for any given ω-identity α = β, whether V |= α =

β, that is, whether α and β have the same interpretation over every semigroup of V. Let Σ be
the following set of ω-identities

(an)ω = (aω)ω = aωaω = aω, (n ∈ N)

(ab)ωa = a(ba)ω,

aaω = aω = aωa,

aωbω = bωaω.

It is easy to verify that A ∩ ECom satisfies these ω-identities. The following lemma identifies
some ω-identities that will be important to simplify the word problems under study.

Lemma 2.1. The pseudovariety A ∩ ECom verifies the ω-identities (aωb)ω = aωbω = (abω)ω.

The rank of an ω-term α is the maximum number rank(α) of nested ω-powers in it. For
instance, the expression ab

(
a(ba)ωb

)ω
b4
(
(aω)ω(a3)ω

)ω represents an ω-term α on the alphabet
{a, b} such that rank(α) = 3 and it is not difficult to verify that every finite semigroup satisfies
α = ab(ab)ωb4aω.

Using Lemma 2.1 above, one can show the following result.

Proposition 2.2. Let α be an ω-term such that rank(α) ≥ 1. It is possible to compute a rank
1 ω-term β such that A ∩ ECom |= α = β.
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The next lemma is a corollary of a well-known property concerning pseudoidentities over
finite nilpotent semigroups.

Lemma 2.3. Let α and β be ω-terms of rank at most 1 and let V be one of A∩ECom or AInv.
If V |= α = β, then either α and β are the same finite word or they both are rank 1 ω-terms.

So, for the study of the ω-word problem over A ∩ ECom and over AInv it remains to
consider ω-identities involving ω-terms of rank 1.

3 The automaton of an ω-term

Recall that a finite automaton is a quintuple A = (Q,A,E, I, F ) where Q is a finite set of
states,A is an alphabet,E ⊆ Q×A×Q is the set of transitions, I ⊆ Q is the set of initial states
and F ⊆ Q is the set of final states. A transition (p, a, q) is also denoted p a−→ q and the letter
a is called its label. An automaton in which each letter induces a partial bijection (possibly
empty) of the set of states is called reversible. This means that the transition semigroup of
such an automaton belongs to ECom. We let Ã denote the automaton Ã = (Q, Ã, Ẽ, I, F )

where Ã is the alphabet A ∪ A−1 and Ẽ = E ∪ {(q, a−1, p) : (p, a, q) ∈ E}. The automaton
A is said to be isomorphic to an automaton A′ = (Q′, A,E ′, I ′, F ′) if the states of A can be
renamed so that it is identical to A′.

A non-empty path in A is a finite sequence

q0
a1−→ q1

a2−→ q2 · · · qn−1
an−→ qn

of consecutive transitions of A. The word a1a2 · · · an is called the label of the path and the
states q0 and qn are named, respectively, the starting and ending states of the path. We admit
an empty path at each state and use the notation p

u
99K q to indicate a path from p to q labeled

by a word u. A path is called a cycle if the starting and ending states are the same. A simple
path is a path with no repeated states and a simple cycle is a cycle with no repeated states
other than the starting and ending state.

Let α = u0x
ω
1u1x

ω
2 · · ·xωnun be a generic rank 1 ω-term over an alphabetA, where ui ∈ A∗

and xj ∈ A+. In view of the ω-identities Σ, we assume that the xj are primitive words,
that is, they cannot be written in the form un with n > 1. We assume further that for any
1 ≤ i < j ≤ n, the factor xωi uix

ω
i+1 · · ·uj−1xωj of α is not of the form xωi x

ω
i+1 · · ·xωj−1xωi .

We associate with α the following A-labeled automaton A0(α) = (Q0, A,E0, {i0}, {f0})

i0 q1 q2 qn f0
u0 u1

x1 x2

un

xn

where si si+1

ui
represents a simple path if ui 6= 1, si = si+1 if ui = 1, and qj xj is a

simple cycle. Moreover, when qj = qk with j 6= k, we require that the only common state of

the cycles qj xj and qk xk is qj .
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Example 3.1. Consider the rank 1 ω-term α = aω(bbab)ωbb(aab)ωa. The automaton A0(α)

associated with α is
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The automata of the form A0(α) will be fundamental to solve the ω-word problem over
A∩ ECom, while the automata Ã0(α) will play the same role in the case of the pseudovariety
AInv. The automata Ã0(α) will be represented simply by B0(α).

4 Reversible aperiodic quotient of an automaton

Let A0 be a (finite) automaton. We describe an effective procedure for building a quotient
of A0 which is a reversible aperiodic automaton, denoted Ara

0 . Its transition semigroup is
therefore aperiodic with commuting idempotents. In particular, if A0 is either the automaton
A0(α) or the automaton B0(α), defined in Section 3 above for a rank 1 ω-term α, then the re-
versible aperiodic quotientAra

0 will be denoted respectively byA(α) and B(α). The automata
A(α) and B(α) characterize completely the values of α over the pseudovarieties A ∩ ECom

and AInv, respectively.
The automaton Ara

0 is built by a recursive process. We begin by transforming A0 into a
reversible quotientA1 using a certain “reversibility procedure”. The “reversibility procedure”
consists in the identification of the (eventual) states of A0 that prevent the automaton from
being reversible. The automaton A1 is therefore a quotient of A0 and its transition semigroup
has commuting idempotents. It is, however, not aperiodic in general. If A1 is aperiodic, then
Ara is taken as A1. Otherwise, we apply to A1 a certain “aperiodicity rule”. This identifies
(a part of) the states that make the automaton not aperiodic, thus defining a quotient A2 of
A1 and, so, of A0. The reversibility property may fail in A2, but this automaton is closer to
aperiodicity. The alternating application of the “reversibility procedure” with the “aperiodicity
rule” will produce a chain A0,A1, . . . ,Ak, . . ., of quotients of the original automaton A0.
This chain is necessarily finite and, so, after a finite number of steps the reversible aperiodic
automaton Ara

0 will be obtained. In case A0 is of the form A0(α), we will write Ak(α) for
Ak.

Reversibility procedure. For a given automaton A, the reversibility procedure is to apply
the two following transformation rules as long as possible:

(R.1) Identify two states q1 and q2 for which there are transitions of the form q1
a←− p

a−→ q2;

(R.2) Identify two states q1 and q2 for which there are transitions of the form q1
a−→ p

a←− q2.
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For instance, if α is the ω-term aω(bbab)ωbb(aab)ωa of Example 3.1, then A1(α) is the
automaton of Figure 1.
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Figure 1: The automaton A1(a
ω(bbab)ωbb(aab)ωa)

Notice that in this example the automaton A1(α) is aperiodic, so that A(α) is A1(α) and
its transition semigroup S(α) belongs to the pseudovariety A ∩ ECom. The letters define the
partial bijections ā =

(
1 2 3 4
1− 4 2

)
and b̄ =

(
1 2 3 4
2 3− 1

)
and, in S(α), one has

αS(α)(ā, b̄) =
(
1 2 3 4
4−−−

)
6=
(
1 2 3 4
−−−−

)
= āω b̄ω.

Hence, the semigroup S(α) and therefore the pseudovariety A ∩ ECom does not satisfy the
ω-identity α = aωbω. On the contrary, we shall see in Example 5.5 below that AInv verifies
this ω-identity thus showing that AInv 6= A ∩ ECom.

We now present an ω-term whose corresponding reversible automaton is not aperiodic.

Example 4.1. Consider the rank 1 ω-term β = (aba)ωbω. In this case, the automaton A1(β)

coincides with A0(β) since this one is the following reversible automaton

1

23 b

a

b

a

This automaton is not aperiodic since, in S1(β), (āb̄)ω = (āb̄)2 =
(
1 2 3
1− 3

)
6=
(
1 2 3
3− 1

)
= (āb̄)ω+1.

We introduce a third reduction rule that will serve to achieve aperiodicity. Let A be an
automaton in which every letter induces a partial map on the state set. Notice that the aperiod-
icity of A can be tested as follows: if s is the number of states of A, then it suffices to verify
whether there is a cycle

q1
u

99K q2
u

99K q3 · · · qn
u

99K qn+1 = q1 (4.1)

for an integer n ∈ {2, . . . , s}, pairwise distinct states q1, . . . , qn and a primitive word u ∈ A+

such that |u| ≤ |S(A)|. The automaton is aperiodic if and only if such a cycle does not exist.
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Aperiodicity rule. The third transformation rule is the following:

(R.3) For a cycle of the form (4.1), identify the states at the same position in each sub-path
qi

u
99K qi+1 (that is to say that any two sub-paths qi

u
99K qi+1 and qj

u
99K qj+1 are

identified).

Consider for instance the ω-term β = (aba)ωbω of Example 4.1. The automaton A1(β)

is not aperiodic since it contains the cycle 1
a−→ 2

b−→ 3
a−→ 1

b−→ 1 of the form (4.1)
with u = ab. The automaton A2(β) produced by the application of the aperiodicity rule to

this cycle is 1 a, b . Since this is an aperiodic reversible automaton, it follows that

A(β) = A2(β).

Example 4.2. Let α = (abab2a)ω(aba3)ω(bab2)ω(ba2b)ωac(ababa)ωbω. The automatonA1(α) is
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Now, to apply rule (R.3) in order to obtain an automaton A2(α), we have to choose a cycle
of the form (4.1). So, for the choice of the cycle

1
a−→ 2

b−→ 3
a−→ 4

b−→ 5
b−→ 6

a−→ 1
b−→ 7

a−→ 8
b−→ 9

b−→ 1

with u = abab2, we get for A2(α) the automaton

1

3

4

5

10

11

1213

14

a b

a

c

b

a
a, b

b a

b

a

b

a

This automaton is not reversible. So, the reversible automaton A3(α) is distinct from A2(α)

and is equal to
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Now, the cycle 10
b−→ 10

a−→ 11
b−→ 12

a−→ 13
b−→ 14

a−→ 10 in A3(α) of the form (4.1)
with u = ba determines for A4(α) the automaton

101

a, b a, b

c

This is reversible aperiodic, so A(α) = A4(α).

5 The ω-word problems over A ∩ ECom and AInv

As already mentioned in Section 4, the reversible aperiodic automaton A(α), associated with
a rank 1 ω-term α, characterizes completely the value of α over the pseudovariety A∩ ECom.

Theorem 5.1. Let α and β be rank 1 ω-terms. Then, A ∩ ECom |= α = β if and only if A(α)

and A(β) are isomorphic automata.

Since, for any rank 1 ω-term α, the automaton A(α) is effectively computable, the above
theorem combined with Proposition 2.2 and Lemma 2.3 proves the following result.

Corollary 5.2. The ω-word problem over A ∩ ECom is decidable.

In turn, the characterization of the value of a rank 1 ω-term α over the pseudovariety AInv

is given by the automata B(α), introduced in Section 4 as the reversible (inverse, in this case)
aperiodic quotient of the automaton B0(α) := Ã0(α). The analogue of Theorem 5.1 for the
pseudovariety AInv is therefore the following result.

Theorem 5.3. Let α and β be rank 1 ω-terms. Then, AInv |= α = β if and only if B(α) and
B(β) are isomorphic automata.

This theorem together with Proposition 2.2 and Lemma 2.3 proves the following decid-
ability result.

Corollary 5.4. The ω-word problem over AInv is decidable.

Before giving an example of application of Theorem 5.3, let us present some remarks
about the automaton B(α) and its relationship with automaton A(α). Recall first that A(α)

and B(α) denote, respectively, the automata (A0(α))ra and (B0(α))ra. If A0(α),A1(α), . . .,
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Am(α) is a sequence that generates automaton A(α) using the procedure in Section 4, then
it can be seen that B0(α),B1(α), . . . ,Bm(α), where Bj(α) is the automaton Ãj(α) for every
j, is a chain of quotients of B0(α) that can be obtained with the same procedure, choosing
the same cycles used in the computation of A(α) when the aperiodicity rule is applied. In
particular Bm(α) is the inverse automaton Ã(α). We deduce therefore that

B(α) = (Ã(α))ra,

meaning that the computation of the automaton B(α) can be made from the automaton Ã(α).
Although A(α) is always aperiodic, the automaton Ã(α) can be not aperiodic.

Example 5.5. Let α be the ω-term aω(bbab)ωbb(aab)ωa of Example 3.1. Then A(α) is the
automatonA1(α) exhibited in Figure 1. The inverse automaton B1(α) is the automaton Ã(α)

pictured below

1
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4

a, a−1

b

b−1

b

b−1

a−1

a
b−1

b

a

a−1

The automaton B1(α) is not aperiodic since it admits the cycle 1
a−→ 1

b−1

−−→ 4
a−→ 2

b−1

−−→ 1

of form (4.1) with u = ab−1. The rule (R.3) applied to this cycle identifies the states 1, 2 and

4, thus setting for B2(α) the automaton 13 a, b, a−1, b−1

b, a−1

a, b−1

. Hence, B(α) is B3(α), the

automaton 1 a, b, a−1, b−1 . In view of Theorem 5.3 this means that the pseudovariety

AInv satisfies the ω-identity α = aωbω.
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