The Influence of the Optimization Algorithm in the Solution
of the Fractional Laplacian Equation by Neural Networks

C. Coelho'®, M. Fernanda P. Costa!"® and L.L. Ferras'®

Centre of Mathematics, University of Minho, 4710 - 057 Braga, Portugal

dCorresponding author: ceciliaeduarda58 @ gmail.com
' mfc @math.uminho.pt
9uislimafr@gmail.com

Abstract. In this paper, the influence of the optimization algorithms Adam, RMSprop, L-BFGS and SGD with momentum on the
solution of Fractional Laplacian Equation (FLE) by physics-informed neural networks is analysed when considering two different
analytical solutions, one smooth and one non-smooth. The influence of the optimization method, the smoothness of the analytical
solution and the network configuration on the accuracy of the predicted solution is discussed in detail.

INTRODUCTION

Physics-informed neural networks (PINN) [1, 2] are neural networks that are trained to solve supervised learning tasks
while respecting any given laws of physics described by general nonlinear partial differential equations and fractional
differential equations (integral operators) - fPINN [3].

In this work we aim to analyse the effect of different optimization algorithms when we use fPINN to solve the
following 1D fractional Laplacian equation (FLE) with the boundary conditions:

(=A)u(x) = f(x), u@0)=u(1)=0, xe(0,1), ae(,2) €))
where the fractional Laplacian operator (—A)*/? is given by:

n X 1\ n 1-
(=AY () = —)(! d(s) d9)+ Sld) d(&ds)),)

2c0s () T =@y dx Uy, =9y %) T =y ax \J, - 5=

with n = [a] + 1 and [a] the integer part of @. The 1D FLE finds application, for example, in electrostatics and
anomalous concentrations. To solve the 1D FLE using fPINN, we follow the schematic shown in Figure 1. For the
case of classical partial differential equations (PDE), automatic differentiation (AD) is used to obtain an analytical
expression that mimics the original PDE. This analytical expression is then used to compute the loss function [3].
Minimization of the loss function of fPINN [3] is performed over the training dataset {x; : x; € (0,1), i =1,...,N},
being this minimization process called training. At the end of the training process, we expect to obtain a set of optimal
weights and bias that allow our model to predict a good solution for each point in the testing dataset {x; : x; €
(0,1), j=1,..., M} where each x; # x; fori = 1,..., N. For the case of fractional differential equations, the classical
chain rule is no longer valid and consequently AD can not be used. Therefore, the analytic expressions are obtained by
a discretization of the original operators (e.g., a finite integral can be approximated by a finite sum). In this work, we
use the Griinwald-Letnikov finite difference scheme. In addition to the training and testing datasets, another dataset of
points (known as auxiliary points) is built that help to compute the fractional derivatives.

The aim of this work is then to investigate the influence of the optimization algorithms: Adam, RMSprop, L-
BFGS, SGD with momentum, the smoothness of the analytical solution and the neurons distribution, on the accuracy
of the predicted solution. The numerical tests are performed using the DeepXDE library [1].

—AG(x) — f(x) ': Minimize Loss so that:

= ' —Afi(x)—f(x) -0
a“i . g H

This transformation] o (B el itiongly B

forces the solution /'t backpropagation - a . Loss 4‘_.

to verify the ! specialized technique of !

boundary conditions @=2 | ap, |

o~) =xx-Da / e ’

@€ @) | ((—A)27i(x)) ga—f (x) 'i Minimize Loss so that:

i : —A)®/2g —
P \/ The above fractional | (A Eaa=f()~0
&/ ' operator is discretized (dd) ! I
i using Grunwald-Letnikov 4‘_. Loss il RS

! finite difference scheme and bias

Optimal weights
and bias

-
./
N
/

®

N

Q

Y

(
'
'
'
'

FIGURE 1. Schematic of the methodology used in the PINN method for the solution of differential equations using classical and
fractional (integral) operators (fPINN). Since the boundary conditions are u(0) = u(1) = 0, we simply choose the surrogate model
it(x) = x(x — 1)ii(x) to satisfy the boundary condition automatically, where #i(x) is the output of the neural network.

RESULTS and DISCUSSION

We will now analyse the performance of the optimization algorithms for both smooth and non-smooth solutions, with
a learning rate of 10~ and a maximum of 10000 steps (default settings). Note that Adam and RMSprop are adaptive
learning rate methods and L-BFGS computes the step size by using the Wolfe conditions. We consider two different
feed-forward NN. One with 5 hidden layers of 50 neurons each 50-50-50-50-50 (denoted by constant NN (c)), and
another with also 5 hidden layers but with a 128-64-32-16-8 neurons distribution (denoted by decreasing NN (d)).
Smooth Solution and @ = 1.99
-1

We start the study by considering the numerical solution of (1)-(2) with f(x) = (2 cos (’%)) X
[(27 + (1= 0% = R4 4 (1= 0+) + e (5 + (1= 0)*) = 125 (2 + (1 = x)°7]. The ana-
lytical solution is smooth and is given by u(x) = x*(1 — x*). The training was performed with 20 points in the domain.

constant number of neurons decreasing number of neurons
10 10
——Adam —— Adam
1k RMSprop 1 RMSprop
F SGD with M. x SGD with M.
01 | L-BFGS-B 01 | L-BFGS-B
W, 0.01 % 0.01
o o
| a
0.001 0.001
0.0001 0.0001
0.00001 0.00001
0.000001 0.000001
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Ne of Steps Ne° of Steps

FIGURE 2. Evolution of the loss during training, for the algorithms Adam, RMSprop, L-BFGS and SGD (with momentum), and,
for the two different architectures proposed (with the constant NN (c) and decreasing NN (d)). Case of a smooth solution.

TABLE 1. Performance metrics and training time obtained by solving the FLE (o = 1.99), with the constant NN (c)
and decreasing NN (d), using different optimizers.

L2 relative = Mean square Training L2 relative = Mean square Training
error (c) error (c) time (seconds) (c) error (d) error (d) time (seconds) (d)
Adam 0.026 5.422e-8 16.926 0.002 2.103e-10 17.740
RMSprop 0.029 6.416e-8 18.790 0.090 6.682¢-7 18.405
L-BFGS 0.001 9.998e-11 5.585 0.001 1.344e-10 4.162

SGD (with momentum) 0.033 9.717e-8 17.178 0.017 2.373e-8 17.763

Figure 2 shows the evolution of the loss during training, for the algorithms Adam, RMSprop, L-BFGS and SGD
(with momentum), generally obtaining a decreasing loss. The best results are obtained for Adam and L-BFGS, the
latter being notable for the steep reduction in the loss function. We note that the L-BFGS has a stopping criteria not
only based on the maximum number of steps and consequently reaches its optimality criteria before reaching 10000
steps. The worst results are obtained by SGD (with momentum) and RMSprop, showing the difficulty to effectively
reduce the training loss. The decreasing NN allows Adam to further reduce the loss function (compared to the constant
NN). The differences are less pronounced for the other algorithms. Moreover, L-BFGS is able to achieve the lowest
loss value of all methods, with the constant NN architecture.

These results are summarised in Table 1, where the L2 relative error, the mean square error and the training time
(in seconds) for the two neural networks, constant NN (c) and decreasing NN (d), are presented.

The L-BFGS algorithm has the lowest loss value and lower computation time. However, we cannot compare the
training time of this method with the others because the stopping criteria are not comparable. Nevertheless, L-BFGS
achieves the lowest loss function value among all methods when considering the same number of steps, and yields the
smaller L2 relative and mean square errors.

Non-Smooth Solution and @ = 1.11
We now consider the numerical solution of of (1)-(2) with f(x) = (2 cos (’%)) I'(a + 2)x. The analytical solution is

non-smooth, u(x) = x(1 — x*)/2. This case is more extreme, and is expected to bring increased difficulties in the
approximation of the fractional operator (by the difference scheme) and in the solution by fPINN.

constant number of neurons

10E IOE

1 1

decreasing number of neurons

01 0.1

0.01 0.01

Loss
Loss

0.001 0.001

0.0001 — Adam
RMSprop
SGD with M.
L-BFGS-B

0.00001

0.000001

0.0001

0.00001

0.000001

——Adam
SGD with M.

RMSprop
L-BFGS-B

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0

Ne° of Steps

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Ne° of Steps

FIGURE 3. Evolution of the loss during training, for Adam, RMSprop, L-BFGS and SGD (with momentum) algorithms, and, for
the two different architectures proposed (with the constant NN (c) and decreasing NN (d)). Case of a non-smooth solution.

TABLE 2. Performance metrics and training time obtained by solving the FLE (@ = 1.11), with constant NN (c) and
decreasing NN (d), using different optimizers.

L2 relative = Mean square Training L2 relative = Mean square Training
error (c) error (c) time (seconds) (c) error (d) error (d) time (seconds) (d)
Adam 0.102 0.001 15.967 0.102 0.001 16.914
RMSprop 0.104 0.001 16.646 0.099 0.001 16.132
L-BFGS 0.100 0.001 26.438 0.102 0.001 13.631
SGD (with momentum) 0.267 0.009 15.871 0.193 0.005 15.313

Figure 3 shows the evolution of the loss during training for the two different proposed architectures: constant
NN (c) and decreasing NN (d). As expected, the values of the loss function are higher compared to the smooth
solution case, and the algorithms have difficulty in reducing the loss along the steps. Note that SGD (with momentum)
hardly reduces the loss in 10000 steps, behaving slightly better with the decreasing NN. The results show significant
improvement for the Adam algorithm when using the decreasing NN, managing to reach the lowest loss value of all
the experiments performed for the non-smooth solution.

Table 2 shows the L2 relative error, the mean square error and the training time (in seconds) for each optimization
algorithm and for the two neural networks, constant NN (c) and decreasing NN (d). We see that the errors are quite
high and fairly worse than the results achieved for the smooth solution. The SGD (with momentum) optimizer presents
the highest errors while the other three methods have similar performances, having an L2 error of ~ 0.1 and a mean
square error of ~ 0.001. These results were expected due to the singularity at x = 1. The high gradients near the

boundary lead to an increased difficulty for the model to predict accurate solutions (as shown in Figure 4 for the
algorithms L-BFGS and SGD). In terms of computational time, there are no significant differences except for L-
BFGS which did not keep the fast convergence behaviour (in the smooth solution), although performing less steps
than the other methods. This demonstrates that the computational costs of using a Hessian approximation are higher
in this case (non-smooth solution).

Figure 4 shows that more points would be needed near x = 1 to capture the high gradients. Note that the error
arises from both the difference scheme used to approximate the fractional operator and from the network.

constant number of neurons decreasing number of neurons

o Train
— True
41 -~ Prediction emmm—— -

o Train
— True p
4| -- Prediction >

o Train
— True
4} -- Prediction

o Train
— True
4} -- Prediction

015

005 | 4

L-BFGS-B SGD with M. L-BFGS-B SGD with M.
0 0z 0. [08 1 0 02 04 06 o8 1 0 02 04 [08 1 0 02 04 [08

@ ® % © X @ O ox

FIGURE 4. True solution vs prediction for the algorithms that presented the smaller (L-BFGS) and higher (SGD with momentum)
error: (a) and (b) constant NN; (c) and (d) decreasing NN.

We increased the number of points in the training dataset and also the number of auxiliary points, but the model
improved only slightly, keeping the L2 errors on the order of = 0.1.

CONCLUSIONS

The influence of the optimization algorithms Adam, RMSprop, L-BFGS and SGD with Momentum on the solution
of FLE by physically informed neural networks was analysed. These algorithms were tested in two different neural
network configurations, and considering smooth and non-smooth solutions.

The L-BFGS algorithm was found to be the most efficient algorithm, providing the most accurate solutions
for both networks and type of solution. However, for the non-smooth solutions, the high computational cost can be
prohibitive, making Adam a good alternative. As expected, SGD (with momentum) shows the worst performance
overall, which may be explained by the constant learning rate (10~) throughout the training. In contrast, at each
step, Adam and RMSprop computes adaptive learning rates for each parameter. The L-BFGS algorithm, at each step,
computes the learning rate based on the Wolfe conditions. For the case of non-smooth solution, a curious remark is that
by observing the variation of the loss function, we can see that L-BFGS and Adam achieve the same values, although
Adam requires more steps but not necessarily more time. This may be explained by the fact that L-BFGS performs
updates at each iteration using a search direction that requires the limited-memory inverse Hessian approximation,
while Adam only uses a search direction computed based on past gradients. Note that the decreasing NN architecture
allows the L-BFGS algorithm to decrease its computational time. Furthermore, none of the optimizers were able to
provide highly accurate solutions for strong singular solutions. In the future, we will test different configurations and
distributions of points in the training and auxiliary datasets to better capture the solution near the singularity.

ACKNOWLEDGMENTS

The authors acknowledge the funding by Fundagao para a Ciéncia e Tecnologia (Portuguese Foundation for Science
and Technology) through projects UIDB/00013/2020 and UIDP/00013/2020.

REFERENCES

[1] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, SIAM Review 63, 208-228 (2021).

[2] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Journal of Computational Physics 378, 686—707February
(2019).

[3] G. Pang, L. Lu, and G. E. Karniadakis, SIAM Journal on Scientific Computing 41, A2603—-A2626 (2019),
https://doi.org/10.1137/18M 1229845 .

