Holistic RISC-V Virtualization: CVA6-based SoC

Bruno S4, Francisco Marques, Manuel Rodriguez, José Martins, Sandro Pinto
Centro ALGORITMI/LASTI - University of Minho, Portugal
id10037 @alunos.uminho.pt, pg47200@ alunos.uminho.pt, pg47436 @alunos.uminho.pt,
Jjose.martins @dei.uminho.pt, sandro.pinto@dei.uminho.pt

Abstract—This work describes our efforts to provide a holis-
tic hardware RISC-V virtualization SoC based on the CVA6
core. At the core level, we implemented hardware support for
virtualization through the ratified Hypervisor instruction set
architecture (ISA) extension version 1.0. At the system level, we
are working on providing reference open-source IPs for two non-
ISA components needed to build a virtualization-aware platform:
(i) the advanced interrupt architecture (AIA) to enable hardware
support for interrupt virtualization; (ii) the input/output memory
management unit (IOMMU) to protect memory accesses from
direct memory access (DMA) devices. All these IPs will be open
and freely available to the RISC-V community under permissive
open-source licenses.

I. INTRODUCTION

The use of virtualization technology has become ubiquitous in
modern computing, spanning a diverse range of applications
such as cloud computing, mobile devices, and embedded
systems. In the embedded space, virtualization has emerged
as a fundamental approach to consolidate and isolate several
systems of different criticality levels - a.k.a mixed-criticality
systems (MCS) - into a single platform to meet the market
demands to minimize size, weight, power, and cost (SWaP-C)

(11, [2].

The RISC-V architecture is a growing open-standard ISA that
emerged with a promise to disrupt the computer hardware
industry. Unlike its competitors, RISC-V is a royalty-free ISA
built to be highly modular and customizable that can scale
from small embedded computers to supercomputers.

In this work, we share our experience providing hardware
support for virtualization in a RISC-V CVA6-based SoC. In
summary, our contributions are as follows. At the core level,
we extended the CVA6 core [3] to support the Hypervisor ex-
tension version 1.0 and the RISC-V supervisor-level timer ex-
tension, specifically “stimecmp/vstimecmp” (Sstc). Moreover,
we complemented the design with a few virtualization-oriented
microarchitecture enhancements: (i) a G-stage TLB (GTLB);
and (ii) a second-level TLB (L2 TLB). At the system level, we
are working on implementing two open-source IPs compliant
with the RISC-V standard specifications: (i) the AIA; (ii) the
IOMMU. Finally, we open-sourced the virtualization-enabled
CVA6 ! and upstreamed it to the OpenHW CVA6 main
repository 2. The IOMMU and AIA 3 will be finished and
freely available with very permissive licenses in Q2 2023.
Our main goal is to democratize virtualization in RISC-V
and empower the next generation of CVA6-based SoC with
virtualization capabilities.

Ihttps://github.com/minho-pulp/cva6
Zhttps://github.com/minho-pulp/cva6/tree/feat/hyp-upstream
3https://github.com/minho-pulp/aia

CVA6

Hypervisor
Extension

Interrupts

Sources

MSI Config

SoC
Peripheral y
(wired)

Fig. 1. Example of a single core CVA6-based SoC with virtualization
capabilities (i.e., Hypervisor extension, IOMMU and AIA)

sl
SoC DMA

Peripheral w :
wis) Peripheral

II. CVAG6-BASED SOC VIRTUALIZATION SUPPORT:
OVERVIEW

The RISC-V architecture defines three crucial components to
create a virtualization-aware platform, divided into core and
system-level technologies. In Figure 1, we present an example
of a possible CVA6-Based SoC with full virtualization support.
At the core level, the RISC-V privileged architecture defines
hardware support for virtualization through their Hypervisor
extension. Hypervisors can leverage this extension to build
efficient implementations. At the system level, the following
two components are essential: (i) the AIA #; and (ii) the
IOMMU °. The AIA is the new RISC-V standard interrupt
controller specification that, unlike its predecessor platform-
level interrupt controller (PLIC), enables hardware interrupt
virtualization via messaged signal interrupt (MSI). This mech-
anism allows hypervisors to deliver interrupts directly to the
guest avoiding overheads of emulating the interrupt controller
[2]. Finally, the IOMMU is the RISC-V standard specification
for translating and restricting memory accesses from bus mas-
ters devices (e.g., crypto accelerators). The IOMMU prevents
malicious DMA-capable peripherals to access memory freely
and break encapsulation. In a virtualized environment, among
other features, the hypervisor can use the IOMMU to safely
allow the direct assignment of these devices to the guest VM,
thus avoiding device emulation [1].

III. CVAG6 CORE VIRTUALIZATION SUPPORT: STATUS
AND FEATURES

To support virtualization in the CVA6 [3] core, we imple-
mented the following RISC-V standard extensions: (i) the
Hypervisor extension; and (ii) the RISC-V Sstc extension.
Although the Sstc extension is not mandatory for virtualization
support, we argue that it is critical to achieve reasonable
performance results (up to 11% performance speedup in our

“https://github.com/riscv/riscv-aia
Shttps://github.com/riscv-non-isa/riscv-iommu

TABLE 1. AIA AND IOMMU FEATURE STATUS: @
FULLY-IMPLEMENTED; © PARTIALLY IMPLEMENTED; O NOT
IMPLEMENTED.

Memory-based device context (DC) and process context (PC)
Two-stage address translation

Address translation caches

Memory-based queue interface to interact with software
Message-Signaled Interrupt (MSI) address translation
Memory-Resident Interrupt Files (MRIF) support

MSI or wired-signaled interrupt generation
Memory-mapped register interface

Smaia

Ssaia

APLIC

IMSIC

IOMMU

AIA

~o~00~O0~000

evaluation [4]). Furthermore, we also complemented our im-
plementation with a few micro-architectural enhancements to
the nested-MMU subsystem.

A. CVAG6 Architectural Extensions

The virtualization-aware CVA6 implementation complies with
the mandatory features of standard RV64 Hypervisor extension
specification version 1.0. Nevertheless, some optional features
were left unimplemented or partially unimplemented mainly
due to dependencies on other standard RISC-V extensions
(e.g., for the envcfg CSRs, the CBIE bit depends on the
standard RISC-V cache management instructions, not sup-
ported in the CVAG6 yet). We also complemented the CVA6
implementation with support for the RISC-V Sstc extension to
alleviate timer emulation overheads.

B. CVAG6 Virtualization-Oriented Enhancements

The RISC-V Hypervisor extension defines a second stage of
translation to translate guest physical addresses (GPA) to host
physical addresses (HPA). In our work [4], we demonstrated
that this extra stage is one of the major causes of performance
loss in the CVA6 core [4]. To tackle this, we designed a
collection of microarchitectural optimizations to reduce the
virtualization overhead. Firstly, we designed a small second-
stage TLB (GTLB) to store GPA to HPA and reduce the
number of PTW iterations to complete a full double-stage
translation. Secondly, we developed a set-associative second-
level TLB (L2 TLB) designed to increase the TLB coverage
and reduce the L1 TLB miss penalty. The L2 TLB follows a
split design with two TLBs: (i) a larger TLB to store 4KiB
page sizes; and (ii) a smaller TLB to hold 2MiB superpages.
The size and associativity of each TLB are configurable, as
well as the page size support (i.e., support 4KiB and/or 2MiB).
We refer readers to [4] for more details on the performance
speedup of these optimizations.

IV. RISC-V SYSTEM-LEVEL VIRTUALIZATION

The RISC-V ISA has reached a new state of maturity, and
the IOMMU and AIA specifications have now been ratified.
As part of our efforts, we are developing two open-source
IPs compliant with the RISC-V AIA and IOMMU standard
specifications to be integrated into a CVA6-based SoC.

A. RISC-V IOMMU IP: Status and Features

The RISC-V IOMMU specification defines support for mem-
ory translation and protection for I/O devices with DMA

capabilities while guaranteeing isolation between VMs and the
hypervisor itself. For instance, the IOMMU can be used to
allow the direct assignment of devices to a guest VM - a.k.a.
device pass-through. As shown in Table I, our IOMMU IP is
progressing towards a basic stable implementation with support
for all mandatory features.

B. RISC-V AIA IP: Status and Features

The AIA is divided into three main components: (i) the APLIC
which supersedes the PLIC; (ii) Core CSRS extensions (Smaia
and Ssaia); and (iii) the IMSIC is a mandatory component
to have hardware support for interrupt virtualization at the
VS-level. So far, we have completed the implementation and
functional validation of (i) the APLIC and (ii) the Smaia and
Ssaia extensions. For the validation process, we used: (i) small
functional tests; (ii) Linux baremetal (i.e., without a hypervi-
sor), and (iii) Linux as VM guest atop the Bao hypervisor.
Notwithstanding, the IMSIC IP has not been fully integrated
and tested. As of this writing, we are working on integrating all
three modules and performing more comprehensive validation
tests.

V. CONCLUSION AND ROADMAP

We present our work in providing open-source IPs for building
a CVAG6-based SoC. We have completed the virtualization-
aware CVAG6 fully compliant with the Hypervisor extension
version 1.0 and complemented the design with a set of
virtualization-oriented enhancements to increase performance.
Moving forward, we are finishing the implementation of the
IOMMU and AIA IPs compliant with the RISC-V non-ISA
standard specifications. Finally, we are focusing on evaluating
and improving the AIA and IOMMU specifications in the
context of MCS for the automotive domain. For instance, we
want to explore if the AIA interrupt virtualization addresses
the requirements of mixed-criticality embedded systems.

ACKNOWLEDGMENTS

This work has been supported by Technology Innovation Insti-
tute (TII), and the FCT — Fundag@o para a Ciéncia e Tecnolo-
gia within the R&D Units Project Scope UIDB/00319/2020
and Scholarships Project Scope SFRH/BD/138660/2018 and
SFRH/BD/07707/2021.

REFERENCES

[1] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on NG-RES, vol. 77, 2020.

[2] B. Sa, J. Martins, and S. Pinto, “A First Look at RISC-V Virtualization
from an Embedded Systems Perspective,” IEEE Transactions on Com-
puters, vol. 71, pp. 2177-2190, 2021.

[3] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v
core in 22-nm fdsoi technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-2640, 2019.

[4] B. Sa, L. Valente, J. Martins, D. Rossi, L. Benini, and S. Pinto,
“CVA6 RISC-V Virtualization: Architecture, Microarchitecture, and

Design Space Exploration,” 2023. [Online]. Available: https://arxiv.org/
abs/2302.02969

