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José Esṕırito Santoa, Maria João Fradeb, Lúıs Pintoa

aCentre of Mathematics, University of Minho, Portugal
bHASLab/INESC TEC & University of Minho, Portugal

Abstract

In the context of intuitionistic sequent calculus, “naturality” means permuta-
tion-freeness (the terminology is essentialy due to Mints). We study natural-
ity in the context of the lambda-calculus with generalized applications and its
multiary extension, to cover, under the Curry-Howard correspondence, proof
systems ranging from natural deduction (with and without general elimina-
tion rules) to a fragment of sequent calculus with an iterable left-introduction
rule, and which can still be recognized as a call-by-name lambda-calculus. In
this context, naturality consists of a certain restricted use of generalized ap-
plications. We consider the further restriction obtained by the combination
of naturality with normality w.r.t. the commutative conversion engendered
by generalized applications. This combination sheds light on the interpre-
tation of naturality as a vectorization mechanism, allowing a multitude of
different ways of structuring lambda-terms, and the structuring of a multi-
tude of interesting fragments of the systems under study. We also consider
a relaxation of naturality, called weak naturality: this not only brings sim-
ilar structural benefits, but also suggests a new “weak” system of natural
deduction with generalized applications which is exempt from commutative
conversions. In the end, we use all of this evidence as a stepping stone to
propose a computational interpretation of generalized application (whether
multiary or not, and without any restriction): it includes, alongside the ar-
gument(s) for the function, a general list – a new, very general, vectorization
mechanism, that structures the continuation of the computation.
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1. Introduction

The λ-calculus with generalized applications [1], here denoted λJ, corre-
sponds, in its simply-typed version, to natural deduction with general elim-
ination rules [2]. The generality added to the elimination rules engenders a
commutative conversion π (very much like what happens with disjunction),5

and this conversion, in turn, allows the definition of a “fully normal” form for
natural deduction proofs, not available with the usual natural deduction sys-
tem. Such normal proofs are in 1-1 correspondence with the cut-free proofs
of the intuitionistic sequent calculus – hence the name λJ, a reminder of LJ .

The usual natural deduction system (which corresponds to the simply-10

typed λ-calculus) has a less straighforward connection with the sequent cal-
culus. In the “folklore” view, two proofs of the intuitionistic sequent calculus
determine the same natural deduction proof if and only if they are inter-
permutable, that is one can be obtained from the other by permutations of
inferences [3, 4]; and the possibility of permuting inferences is an obstacle to15

the computational interpretation of the sequent calculus along the lines of
the Curry-Howard isomorphism [5]. In the cut-free setting, a subset of “nor-
mal” sequent calculus proofs can be identified in 1-1 correspondence with
normal natural deduction proofs [6, 7, 3]. The terminology “normal”, due
to Mints, is thus justified. Moreover, such “normal” sequent calculus proofs20

are permutation-free, as they consist of one representative per each class of
inter-permutable proofs [3]. In [8], this 1-1 correspondence is extended to
an isomorphism between β-reduction in the λ-calculus and an appropriate
cut-elimination rule whose normal forms are Mints’ normal proofs.

In a series of papers [9, 10, 11, 12, 13], this state of affairs was extended to25

the setting of a sequent calculus with cuts, presented as a certain extension
of λJ – its multiary version, named λJm. This extension allows a more
faithful modeling of reasoning in the sequent calculus, where the possibility
of inferring on the left-hand-side of the sequent symbol is on a par with
inference on the other side. In fact, λJ captures left-introduction in a form30

that is not iterable. This is not surprising: after all, λJ corresponds to a form
of natural deduction, and the latter just infers on the right-hand-side (this
point will be developed below with more detail). But the extension comes
with a price: a new conversion µ [14], which is neither π, nor any permutative
conversion γ of the sequent calculus that produces Mint’s normality.35

In a setting with cuts, Mints’ normality has to be extended to a concept
of naturality, so that the normal sequent calculus proofs are those that are
natural and cut-free [13]. This paper is about naturality, specificaly how
naturality and its variants help in structuring λJm and its numerous subsys-
tems, and how the computational interpretation of naturality and its vari-40
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ants builds a scafold to reach a computational interpretation of the generality
added to the application constructor in λJ and λJm.

Naturality consists of a certain restricted use of generalized applications,
as a mechanism for the vectorization of arguments in function application.
We consider the further restriction obtained by the combination of naturality45

with π-normality. This combination determines subsystems which may be
interpreted as formal vector notations, and which are coupled with isomor-
phic λ-calculi for which the vector notation is offered. Two examples of this
situation will be given. One may be seen as the multiary extension of the
above mentioned isomorphism from [8] involving the λ-calculus. The other50

involves a relaxation of naturality, called weak naturality, and a new system
of natural deduction with a restricted form of generalized applications which
is exempt from commutative conversions.

The isomorphism between the system of weak natural deduction and its
vector notation signals that the generality of generalized applications may be55

used as a vectorization mechanism beyond the natural fragment. This leads
us to go all the way and propose a computational interpretation of general-
ized application in λJ and λJm: it includes, alongside the argument(s) to
be passed to the function, a general list – a new, very general, vectorization
mechanism, which structures the computation after function application, and60

which is governed by some of the rules of λJ or λJm after an appropriate
reinterpretation.

Structure of the paper. Section 2 recalls system λJ and naturality and
gives a basic example of isomorphism between the λ-calculus and a formal65

vector notation. Section 3 introduces weak naturality and a generalization
of the previous isomorphism, holding for the weakly natural extension of
the λ-calculus. Section 4 recalls system λJm and naturality in the multiary
setting, and gives the multiary generalization of the first isomorphism. Sec-
tion 5 gathers all the systems and maps in a coherent picture, and discusses70

the new system of natural deduction and how the global picture points to
a new computational interpretation of generalized applications. Section 6
summarizes the contributions of this paper and suggests directions for future
work.
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Figure 1: Typing rules for λJ

x :A,Γ⊢x :A Axiom
x :A,Γ⊢ t :B

Γ⊢λx.t :A ⊃ B
Right

x : B,Γ⊢v :C
Γ|B⊢(x)v :C Select

Γ⊢ t :A ⊃ B Γ;A ⊃ B⊢a :C
Γ⊢ ta :C Cut

Γ⊢u :A Γ|B⊢c :C
Γ;A ⊃ B⊢(u, c) :C Left

2. Generalized applications75

2.1. Recapitulation

System λJ. Expressions E of λJ are generated by the following grammar:

(proof terms) t, u, v ::= x | λx.t | ta
(J-arguments) a ::= (u, c)
(continuations) c ::= (x)v

As usual, values, ranged over by V , are variables or λ-abstractions.
We identify simple types with formulas of intuitionistic, propositional,

implicational logic, ranged over by A, B, C, D. Contexts Γ are sets of
variable declarations x : A, with at most one declaration per variable. The
typing rules are in Fig. 1. They handle three kinds of sequents, one per
syntactic class:

(i) Γ⊢ t :A (ii) Γ;A ⊃ B⊢a :C (iii) Γ|C⊢c :D . (1)

λJ is equipped with the reduction relations →β and →π, given by the
compatible closure of the base rules in Fig. 2. Rule β employs ordinary
substitution, denoted with s, and calls functions λx.t according to the call-
by-name paradigm 1. Rule π employs the append operation a′@a, defined
simultaneously with c@a and t@a as follows:

(u, c)@a = (u, c@a) ((x)t)@a = (x)(t@a) V@a = V a (ta′)@a = t(a′@a)

The π-rule adopted in this paper is an eager version of the original one
of ΛJ [1] (even of its variant π′ considered in [10, 13]) 2, but retains its

1For the call-by-value version of λJ see [15]
2The original π rule reads: t(u, (x)v)a → t(u, (x)va). It simulates the variant of this

paper as follows: t(u, (x)v)a′ →π t(u, (x)(va′)) →∗
π t(u, (x)(v@a′)) = t((u, (x)v)@a′),

where for the penultimate step one observes by induction on t that ta →∗
π t@a.
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Figure 2: Reduction rules of λJ

(β) (λx.t)(u, (y)v) → s(s(u, x, t), y, v)
(π) (ta)a′ → t(a@a′)

good properties. In particular, it induces a strongly normalising, and conflu-80

ent rewriting system, whose normal forms can be calculated by a mapping π
given homomorphically, except for the clause π(ta) = (πt)@(πa). Confluence
and strong normalisation of the reduction relation →βπ also holds (the proofs
of the corresponding results in [10] for the variant π′ are easily adapted to
deliver proofs for the rule π adopted in the present paper).85

λ-calculus. Let the λ-terms be given by the grammar

t, u, v ::= x |λx.t | tu

There is a trivial encoding ( )• of λ-terms as λJ-terms, given by (tu)• =
t•(u•, (x)x). This map establishes a bijection between the set of λ-terms and
the set of trivial λJ-terms, the latter being characterized by being restricted
to J-arguments of the form (u, (x)x), with trivial continuation (x)x. Such90

trivial terms are obviously closed under substitution, and hence closed under
β-reduction; and obviously such β-reduction of trivial terms is just a rephras-
ing of β-reduction of λ-terms, with ordinary arguments u written (u, (x)x).
We will not distinguish between λ-terms and their counterpart as trivial λJ-
terms. In this way, λ-terms form a proper subset of λJ. More generally,95

when writing a term t(u, c), we may omit c and write t(u), or just tu, when
c is trivial. The subset of trivial terms does not constitute a subsystem of
λJ, because it is not closed under π.

2.2. Naturality

Even if λJ is meant as a system of proof terms for natural deduction with100

general elimination rules [1, 2], the βπ-normal forms correspond to the cut-
free LJ proofs – and this actually explains the name “λJ” [1]. Such normal
forms are thus a vehicle to study the phenomenon of permutability in sequent
calculus proofs, and one can characterize with them a class of cut-free sequent
calculus proofs, named normal, in 1-1 correspondence with normal natural105

deductions [3, 6]. In [13] the terminology “natural” was introduced, so that
t ∈ ΛJ is “normal” iff t is “natural” and a βπ-normal form. Naturality is a
central concept in the present paper.
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Definition 1 (Natural lists). Natural arguments and lists and x-natural
terms are defined simultaneously as follows:110

� An argument a is natural if a = (u, c) and c is a natural list.

� A continuation c is a natural list if c = (x)v and v is x-natural.

� A term v is x-natural if v = x or: v = xa and x /∈ a and a is natural.

We let L range over natural lists. Every natural list L is either nil := (x)x
or (u+L) := (x)x(u, L), with x /∈ u, L.115

System λn and its subsystem λ⃗n. An expression of λJ is natural if all
continuations occurring in it are natural lists. Alternatively, natural expres-
sions are generated by the following grammar:

(natural proof terms) t, u, v ::= x | λx.t | ta
(natural J-arguments) a ::= (u, L)
(natural continuations) L ::= (x)v, with v x-natural

Notice that a natural continuation is a natural list, but not conversely: in a
natural continuation (x)v, v is not only x-natural, but also natural.

This syntax is closed for substitution: s(u, x, t) is natural if u, t are; and
for a natural argument a, one sees by simultaneous induction on natural L120

and a′ and x-natural v that the continuation L@a and the argument a′@a
are natural and that the term v@a is x-natural when x ̸∈ a. Therefore, this
syntax is closed for the reduction rules β and π and constitutes a subsystem
of λJ called λn.

The π-normal forms of λn are characterized by requiring t in ta to be a125

value V . Such normal forms are still closed under β, provided β is redefined
as employing, not ordinary substitution s(u, x, E), but instead a special sub-
stitution S(u, x, E). The latter is defined exactly as ordinary substitution,
except that S(u, x, V a) = S(u, x, V )@S(u, x, a).3 Preservation of π-normal
forms by the special substitution use the fact that also the append oper-130

ations preserve them, and of course special substitution preserves natural
expressions. The π-normal forms of λn, equipped with β, constitute the
subsystem λ⃗n of λn.

3Notice S(u, x, V )S(u, x, a) is not guaranteed to be π-normal. This exceptional equa-
tion can be written differently, as in [13]: S(u, x, xa) = u@S(u, x, a); and S(u, x, V a) =
S(u, x, V )S(u, x, a), if V ̸= x.
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2.3. The basic isomorphism

The subsystem λ⃗n is isomorphic to the ordinary λ-calculus, in the sense135

that there is a bijection between the sets of λ-terms and the π-normal forms
of natural proof terms which is an isomorphism between the respective β-
reduction relations. This fact is a cornerstone for the present paper. It is also
an unsurprising fact, when these systems are put in a wider context involving
the sequent calculus - we will return to this point. For now, the isomorphism140

can be motivated as an alternative encoding of λ-terms as λJ-terms whose
codes, contrary to the trivial encoding seen before, form a subsystem of λJ.

The sensitive point in the encoding of λ-terms is not the encoding of
values. As to application, the trivial encoding of the λ-term V u1 · · ·um is
V (u1) · · · (um). Here (ui) = (ui, (x)x). Let ai := (ui). The alternative145

encoding is V a where a is the natural list (u1, · · · , um) := a1@ · · ·@am.
4

Formally, the encoding t◦ of a λ-term t is defined simultaneously with
(t, R)◦, for t a λ-term and R a natural J-argument, as follows:

� x◦ = x and (λx.t)◦ = λx.t◦ and (tu)◦ = (t, (u◦, (z)z))◦

� (V,R)◦ = V ◦R and (tu, R)◦ = (t, (u◦, (z)zR))◦, with z /∈ R.150

The inverse map is as follows. For a λ⃗n-term t, Φt is defined simultane-
ously with Φ(t, R), for t a λ-term and R a natural J-argument, as follows:

� Φx = x and Φ(λx.t) = λx.Φt and Φ(V R) = Φ(ΦV,R)

� Φ(t, (u, (x)x)) = tΦu and Φ(t, (u, (x)xR)) = Φ(tΦu,R).

These maps not only are each other’s inverses, but also establish an isomor-155

phism between the relations →β in λ and λ⃗n. We collect these facts in the
following:

Theorem 1. λ ∼= λ⃗n.

As said, this will follow from know facts about the sequent calculus. In
addition, this fact will be immediately generalized in the following section.160

We can summarize the situation so far in the left diagram of Fig. 3. As the
diagram suggests, t◦ is the π-normal form π(t) of a λ-term t. This is proved
by induction on t, using the fact (t, R)◦ = t◦@R, the latter also proved by
induction on t. For the map γ : λJ → λn, see the next section.

165

4Notice the append of natural J-arguments is associative.

7



Figure 3: From naturality to weak naturality

λJ
γ

��
λn
π
��

λ⃗n λ∼=
πoo

λJ
γ1

��
λñn

π

��

γ2

��
λn

π

��

λ⃗ñn
γ2

��

λñ∼=
πoo

π;γ2;π−1
��

λ⃗n λ∼=
πoo

Example - part 1. Let us illustrate (non-)naturality starting from the
paradigmatic example of a λ-term t1 := t0u1u2, with t0 := λx.t. At the end
of Section 2.1 we agreed that λ ⊂ λJ - indeed we have λ ⊂ λn. For instance,
t1 is the natural term t0(u1, (x1)x1)(u2, (x2)x2). A single π-reduction step
t1 →π t0(u1, u2) = t0(u1, (x1)x1(u2, (x2)x2)) =: t2 leads us beyond the set
of λ-terms. The term t2, still in λn, is an application with continuation
c1 := (x1)x1(u2, (x2)x2), which is a natural list (notice x1 /∈ u2). If t1 has
type B, then t0 has type of the form A1 ⊃ A2 ⊃ B, the first argument u1

has type A1 and
|A2 ⊃ B⊢c1 :B ⊢u2 :A2 .

Naturality is lost if, for instance, c1 is (x1)v1(u2, (x2)x2), with v1 ̸= x1. In
the most general case of this situation, x1 is allowed to occur in v1 and u2.
Again, let t2 = t0(u1, c1), still of type B. Then, for some type C, t0 has type
A1 ⊃ C and

|C⊢c1 :B x1 : C⊢v1 :A2 ⊃ B x1 : C⊢u2 :A2 .

The term v1 is a “bridge” between the types C and A2 ⊃ B. In the natural
case, when v1 = x1 and x1 does not occur afterwards, v1 acts as a “link” to
the second argument u2. But, in the general case, v1 is itself involved in an
application, namely v1u2, and the continuation c1 = (x1)v1u2 is a parametric
version of such application.170

3. Weak naturality

We now want to develop the situation depicted in the right diagram of
Fig. 3. First we introduce a relaxation of the concept of naturality, which
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determines a subsystem λñn of λJ. Then we can form a system λ⃗ñn con-
sisting of the π-normal forms of λñn equipped with a rule β defined as in175

λJ, except that it employs a special substitution operation - this generalizes
the system λ⃗n seen before. There is an extension λñ of the λ-calculus with
which we can obtain the isomorphism λ⃗ñn ∼= λñ, a generalization of λ⃗n ∼= λ.

3.1. A relaxation of naturality

Let us analyze λ⃗n ∼= λ. An application ta in λ uses a trivial argument180

a = (u, c) with a trivial continuation c = (x)x. In λ⃗n, application V a′ is
constrained to have a value in the function position, but, as a compensation,
the argument a′ = (u, L) is a natural one, with a natural continuation L,
living in a class of continuations that can be obtained in this way: take the
trivial continuations, and close them under the operation c 7→ c@a, for a a185

trivial argument.
Now, we generalize this picture, starting, not from trivial continuations,

but from continuations (x)V . Let us call an argument of the form (u, (x)V )
weakly trivial. This determines an extension λñ of the λ-calculus where ap-
plications have the form ta, with weakly trivial a. The isomorphic represen-190

tation, in λ⃗ñn, has applications V a′, where a′ = (u,L), with L a continuation
living in the class obtained by closing the weakly trivial continuations under
the operation c 7→ c@a, for a a weakly trivial argument. In this way we
obtain a more general class of continuations than that of natural lists.

Definition 2 (Weakly natural lists). Weakly natural arguments and lists195

and weakly x-natural terms and values are defined simultaneously as follows:

� An argument a = (u, c) is weakly natural if c is a weakly natural list.

� A continuation c = (x)v is a weakly natural list if v is weakly x-natural.

� A term v is weakly x-natural if v = V and V is weakly x-natural or:
v = V a and x /∈ a and V is weakly x-natural and a is weakly natural.200

� A value V is weakly x-natural if V = x or V is a λ-abstraction.

We let L range over weakly natural lists.

System λñn and its subsystem λ⃗ñn. An expression of λJ is weakly natu-
ral if all continuations occurring in it are weakly natural lists. Alternatively,
weakly natural expressions are generated by the following grammar:

(weakly natural proof terms) t, u, v ::= x | λx.t | ta
(weakly natural J-arguments) a ::= (u,L)
(weakly natural continuations) L ::= (x)v, with v weakly x-natural

9



Notice that a weakly natural continuation is a weakly natural list, but not
conversely: in a weakly natural continuation (x)v, v is not only weakly x-205

natural, but also weakly natural.
This syntax is closed for substitution: Given weakly normal u, one proves

by simultaneous induction on weakly natural t, a, and L that: s(u, x, t),
s(u, x, a) and s(u, x,L) are weakly natural; in addition, s(u, x, t) is weakly y-
natural (for y ̸= x), if t is so. Notice the subtle point: s(u, x, V ) is a weakly210

y-natural value, regardless of u, if V is one such value (for y ̸= x). One
also sees by simultaneous induction on weakly natural L and a′ and weakly
x-natural v that the continuation L@a and the argument a′@a are weakly
natural and that the term v@a is weakly x-natural, when a is weakly natural
and x ̸∈ a. Therefore, this syntax is closed for the reduction rules β and π215

and constitutes a subsystem of λJ called λñn.
The π-normal forms of λñn are characterized by requiring t in ta to be

a value V . As for λn, such normal forms are still closed under β, provided
β is redefined as employing, not ordinary substitution s(u, x, E), but instead
a special substitution S(u, x, E), defined exactly as ordinary substitution,220

except that S(u, x, V a) = S(u, x, V )@S(u, x, a). The π-normal forms of λñn,

equipped with β constitute the subsystem λ⃗ñn of λñn.

3.2. A new isomorphism

We define the system λñ suggested above. Its terms are generated by

t, u ::= V | ta V ::= x |λx.t a ::= (u, (x)V ′)

where, in the last production, V ′ is a weakly x-natural value. This restriction
ensures this syntax to be closed for ordinary substitution. For this reason,225

we can define rule β in λñ exactly as in λJ, and therefore this syntax forms
a subset of the λJ-terms closed for β-reduction. However, as with the λ-
calculus, this syntax is not closed for π-reduction.

The encoding t◦ ∈ λ⃗ñn of a λñ-term t is based on this idea: given weakly
natural arguments ri = (ui, (x)Vi), V r1 · · · rm is mapped to V (r1, · · · , rm),230

where (r1, · · · , rm) = r1@ · · ·@rm. The definition of t◦ is done simultaneously
with (t, R)◦, for t a λñ-term and R a weakly natural J-argument, as follows:

� x◦ = x and (λx.t)◦ = λx.t◦ and (t(u, (x)V ))◦ = (t, (u◦, (x)V ◦))◦

� (V,R)◦ = V ◦R and (t(u, (x)V ), R)◦ = (t, (u◦, (x)V ◦R))◦.

For the inverse map, given a λ⃗ñn-term t, Φt ∈ λñ is defined simultane-235

ously with Φ(t, R), for t a λñ-term and R a weakly natural J-argument, as
follows:
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� Φx = x and Φ(λx.t) = λx.Φt and Φ(V R) = Φ(ΦV,R)

� Φ(t, (u, (x)V )) = t(Φu, (x)ΦV ) and Φ(t, (u, (x)V R)) = Φ(t(Φu, (x)ΦV ), R).

Theorem 2. λñ ∼= λ⃗ñn. (See Appendix A.1 for details of the proof.)240

Exactly as suggested after Theorem 1, one proves that t◦ is the π-normal
form of t.

3.3. Reduction to (weak) natural form

As in [13], reduction to natural form can be obtained naively through a
map γ : λJ → λn. The relaxed notion of weak normality suggests a split of245

γ as γ1 : λJ → λñn followed by γ2 : λñn → λn. The latter should be the
restriction of γ to λñn. We suggest here a definition of γ1, based on some
considerations about weak naturality that adapt similar ones developed for
naturality in [13]. With this, we will refine the left diagram of Fig. 3, to

obtain the right diagram, already integrating the isomorphism λñ ∼= λ⃗ñn.250

Let us define (as in [10, 13]): mla(x, v) if v = V (u, c), V is x-natural, and
x ̸∈ u, c. V is x-natural if V = x. We also say mla((x)v) when mla(x, v). 5

We also define the append of two continuations c′@c simultaneously with v@c
as follows: If v = V (u, c′) and x ̸∈ u, c′, and V is x-natural then ((x)v)@c =
(x)V (u, c′@c); else ((x)v)@c = (x)(v@c); and v@(x)t = S(v, x, t).6255

Every continuation c can be decomposed as δ(c) = ⟨L, c′⟩ with L a nat-
ural list, ¬mla(c′) and c = L@c′. The function δ is given by: δ((x)v) =
if ¬mla(x, v) then ⟨nil, (x)v⟩; else let v = x(u, c), let δ(c) = ⟨L, c′⟩ in
⟨(x)x(u, L), c′⟩. Two characterizations of natural lists follow immediately:
if δ(c) = ⟨L, c′⟩ then c is a natural list iff c′ = nil; and c is a natural list iff260

there is L such that c = L@nil.
Profiting from δ, it is natural to propose a map γ : λJ → λn whose

translation of applications is γ(t(u, c)) = s(γt(γu, γL), x, γv), where δ(c) =
⟨L, (x)v⟩.7

5Read mla(x, v) as “v is an application, and is also a linear left-introduction whose
main formula is an implication which is the type of x”.

6Note that these simultaneously defined append operations c′@c and v@(x)t differ
from the respective ones of [13] in that the latter sets v@(x)t = s(v, x, t), employing
ordinary substitution, instead of the special one. The change is necessary in order to
match the previous change in the definition of c@a an keep a Lemma from [13], which says
c@a = c@(z)za, for z /∈ a.

7We could consider a variant which employs the special substitution S rather than
ordinary substitution s, as is done in the definition of map γ in [13]. Such variant would
be a different function from the function γ being proposed here.
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We can repeat these developments for weak naturality. We define: wmla(x, v)265

if v = V (u, c), V is weakly x-natural, and x ̸∈ u, c. We also say wmla((x)v)
when wmla(x, v). We define the weak append of two continuations c′@wc
simultaneously with v@wc as follows: If v = V (u, c′) and x ̸∈ u, c′, and
V is weakly x-natural then ((x)v)@wc = (x)V (u, c′@wc); else ((x)v)@wc =
(x)(v@wc); and v@w(x)t = S(v, x, t), as before.270

Every continuation c can be decomposed as δw(c) = ⟨L, c′⟩ with L a
weakly natural list, ¬wmla(c′) and c = L@wc

′. The function δw is given
by: δw((x)v) = if ¬wmla(x, v) then (if v = V and V is weakly x-natural,
then ⟨(x)v,nil⟩ else ⟨nil, (x)v⟩); else let v = V (u, c), let δw(c) = ⟨L, c′⟩ in
⟨(x)V (u,L), c′⟩. Two characterizations of weakly natural lists follow imme-275

diately: if δw(c) = ⟨L, c′⟩ then c is a weakly natural list iff c′ = nil; and c is
a weakly natural list iff there is L such that c = L@nil.

Using δw, we can propose at last a map γ1 : λJ → λñn returning a
weakly natural term γ1(t), for each t ∈ λJ. Its translation of applications is
γ1(t(u, c)) = s(γ1t(γ1u, γ1L), x, γ1v), where δw(c) = ⟨L, (x)v⟩.280

4. The multiary extension

4.1. Recapitulation

Motivation. As said, the βπ-normal forms of λJ represent the cut-free
sequent calculus proofs. The “multiary” variant of them was essentially285

introduced in [14], to make a termination argument about permutative con-
versions [3]. However, the “multiary” variant of λJ-terms, when equipped
with appropriate reduction rules extending those of λJ, have another advan-
tage: they constitute a system, named λJm [12], which captures the sequent
calculus more faithfully than λJ.290

To make this evident, we made a presentation of λJ which is a bit unusual,
in its separation of three syntactic classes and forms of sequents (recall (1)) –
but the purpose was to show that the inference process in the left-hand-side
of sequents, which is the hallmark of the sequent calculus, is degenerate in
λJ. Referring to the inference rules in Fig. 1, we can select a formula B in295

the left-hand-side, producing (x)v; this formula has to be used as active for-
mula in the right premiss of a Left inference, producing (u, (x)v); but then
the left-introduced formula A ⊃ B is immediately cut with a proof t of the
same formula, and the process returns to the situation where no formula is
selected in the left-hand side. If we want to chain two left introductions, we300

have to make an artificial roundabout through a cut against an axiom, like
this: (u′, (y)y(u, (x)v)). Multiarity is a facility allowing the accumulation of
those u’s in a non-empty list U , allowing the inference process to stay in the
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left-hand-side.
305

System λJm. Expressions E of λJm are generated by the grammar

(proof terms) t, u, v ::= x | λx.t | ta
(Jm-arguments) a ::= (u, l, c)

(lists) l ::= u :: l | []
(continuations) c ::= (x)v

Relatively to λJ, the difference is in the Jm-arguments, with its non-empty
list u, l of arguments. Quite often we will write such lists as (u, l), and
U will range over them; Jm-arguments can thus be written as ((u, l), c) or
(U, c). For lists l, we keep using the usual notation [u1, · · · , um] to denote
(u1 :: · · · (um :: [])).8 For non-empty lists U we will allow ourselves, in some
informal discussions, the notation U1@U2, defined by

(u1, l1)@(u2, l2) = (u1, l1@(u2 :: l2)) .

If we erase construction u :: l, we can dispense with the class of lists, with
Jm-arguments reduced to the unary form (u, [], c). The corresponding unary
terms (the λJm-terms where every application is unary) is nothing else but
a rephrasing of λJ-terms inside λJm, the trivial encoding ( )♦ : λJ → λJm
determined by (u, c)♦ = (u♦, [], c♦). We will treat this encoding as an identity,310

by not distingushing between (u, c) and (u, [], c). In this way, λJ-terms form
a proper subset of λJm. This practice is well justified at the levels of typing
and reduction, as we now see.

The typing system of λJm requires a further form of sequents, Γ;B⊢ l :C,
corresponding to the new syntactic class of lists l. The new typing rules,315

relative to those already in Fig. 1, are shown in Fig. 4. If a sequent of the
mentioned form is derived in the system, then B = B⃗i ⊃ C (this notation
abbreviates B1 ⊃ · · · ⊃ Bm ⊃ C, including the case m = 0). So, the Leftm
inference rule in that figure introduces A ⊃ C only if l = [] and B = C – the
base case giving the Left rule of λJ.320

The reduction rules of λJm are recalled in Fig. 5. The novelties w. r. t. λJ
are the split of β into two cases, and the new rule µ, both novelties signaling
the presence of lists of arguments l in applications ta. A β-redex has the form
(λx.t)(U, (y)v). If U is a unary list (u, []), then one can apply rule β1, which
reduces as rule β of λJ. If U = (u, u′ :: l), then one applies rule β2, which325

calls the function with the first argument u, and rearranges the Jm-argument.

8On one occasion below (Fig. 10) we will write the non-empty list U = (u0, l) as
[u0, u1, · · · , un].
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Figure 4: Typing rules for λJm

Γ⊢u :A Γ;B⊢ l :C Γ|C⊢c :D
Γ;A ⊃ B⊢(u, l, c) :D Leftm

Γ;C⊢ [] :C Ax
Γ⊢u :A Γ;B⊢ l :C
Γ;A ⊃ B⊢u :: l :C Lft

Figure 5: Reduction rules of λJm

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, u′ :: l, c) → s(u, x, t)(u′, l, c)
(π) (ta)a′ → t(a@a′)
(µ) (u, l, (x)x(u′, l′, c′)) → (u, l@(u′ :: l′), c′), if x ̸∈ u′, l′, c′

Rule µ (whose idea goes back to [14]) eliminates the roundabout cut x(u′, l′, c)
- recall the discussion above in the second paragraph of the motivation; the
rule can also be written in a more compact form, as (U, (x)x(U ′, c′)) →
(U@U ′, c′), with x /∈ U ′, c′.330

The reduction rules employ substitution, written s(u, x, t), and the ap-
pend operation, introduced before for λJ, but in its multiary version, ob-
tained by this single change: (U, c)@a = (U, c@a). As said for λJ, this
append operation turns the corresponding version of rule π more “eager”
than any employed before: if the redex is (ta′)a, a is “pushed” inside a′ as335

much as possible.

Subsystem λnm. The unary terms are closed for substitution and append,
hence they are closed for β1 and π, constituting a copy of λJ inside λJm.
However, they are not closed for µ – for this reason they do not form a340

subsystem of λJm. But, if rule µ is the cause for this failure, it is also a
remedy.

As known since [10], µ-reduction is terminating and confluent. So we
can define a calculus on µ-normal forms by equipping them with →R, for
R ∈ {β, π}, defined as →R of λJm restricted to µ-normal forms, followed by345

reduction to µ-normal form of the contractum, if needed, to return to the
restricted syntax. We denote by λnm the resulting system.

Another basic isomorphism. Now, the map µ, defined on λJm, that
calculates the unique µ-normal form of a term, when restricted to unary350
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Figure 6: Reduction rules of λm

(β1) (λx.t)(u, []) → s(u, x, t)
(β2) (λx.t)(u, u′ :: l) → s(u, x, t)(u′, l)
(ζ) (t(u, l))(u′, l′) → t(u, l@(u′ :: l′))

terms (that is, to λJ-terms), becomes a bijection between the latter and
the µ-normal forms, indeed an isomorphism between R-reduction in λJ and
R-reduction in λnm as defined just now [10]. We consider λnm ∼= λJ as
another basic isomorphism.

355

Subsystem λm. In the same way as λJ admits the subset of trivial terms
(those with trivial continuations (x)x) closed under β, so does λJm has
the subset of multiary trivial terms (again, those with trivial continuation)
closed under β1. Closure under β2 is no problem either. As to the other
two rules: such trivial terms have no µ-redexes; but π can go beyond trivial360

continuations, because ((x)x)@a = (x)xa is not trivial. However, (x)xa, with
x /∈ a, signals a µ-redex (and hence, non-triviality), so we are led to consider
→π followed by reduction to µ-normal form.

This leads to the definition of a subsystem λm, whose terms are those with
m-arguments (u, l, (x)x), with a trivial continuation, written simply (u, l) - so365

an application has the form tU .9 These terms are equipped with β1, β2, and
the mentioned combination of π and reduction to µ-normal forms, named ζ.
These rules, written directly for this restricted syntax, are as shown in Fig. 6.
Notice rule ζ can be written in the more compact form tUU ′ → t(U@U ′).
Logically, system λm is a focused sequent calculus, the core of calculus LJT370

[7]. Computationally, λm is the multiary λ-calculus, where application t(u, l)
handles non-empty lists of arguments.

As clear from the above description, the subsystem λm is actually a

9Writting m-arguments as U can cause an ambiguity: two such arguments Ui =
(ui, li, (xi)xi), i = 1, 2, may be appended as arguments, resulting in U1@U2 =
(U1, (x1)x1(U2, (x2)x2)) = (U1, U2), or may be appended as non-empty lists, resulting
in U1@U2 = (u1, l2@(u2 :: l2), (x2)x2). This explains the need for the new symbol @.
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subsystem of λnm, so we obtain the following picture:

λJm

µ
��

λnm

��

λJ
µ

∼=
oo

λm

This picture has to be integrated with Fig. 3, and the result will be as shown
in Fig. 7, containing a concrete map λnm → λm. The figure shows the basic
isomorphism λ ∼= λ⃗n (resp. λJ ∼= λnm) crossing the frontier that separates375

λ (resp. λJ) from the wider world of λJ (resp. λJm).

Some structural consequences via λ⃗m. Now, we extract consequences of
the basic isomorphism aforementioned, in order to progress towards Fig. 7.
Given λJ ∼= λnm and the fact that λn is a subsystem of λJ, there is a380

subsystem of λnm isomorphic to λn. It turns out to be λm, with β (resp. π)
reduction in λm corresponding to β (resp. ζ) reduction in λn. At the level
λn ∼= λm, map µ just translates between applications t(u1, u2, · · · , um) and
t(u1, [u2, · · · , um]) (with m ≥ 1). Next, in the same way there is a subsystem

λ⃗n of λn based on π-normal forms, there is a subsystem λ⃗m of λm based385

on ζ-normal forms, such that λ⃗n ∼= λ⃗m. At this level, map µ just translates
between applications V (u1, u2, · · · , um) and V (u1, [u2, · · · , um]).

In the end, by composition of λ ∼= λ⃗n ∼= λ⃗m, we obtain the isomorphism
λ ∼= λ⃗m, which essentialy goes back to [8]. Logically, it corresponds to a
translation of natural deduction into sequent calculus, ultimately linked to390

the one proposed by Prawitz [16], rather than the one proposed by Gentzen

[17]. Computationally, λ⃗m gives a formal vector notation for the λ-calculus
– as opposed to the informal vector notation V u1 · · ·un, which is a meta-
language device. Since λ ∼= λ⃗m was known, the first basic isomorphism
we stated above (λ ∼= λ⃗n) was expected, and only its extension λñ ∼= λ⃗ñn395

deserved a proof.

4.2. Multiary naturality

Even if naturality was explained above in the context of λJ, its original
introduction in [13] was done directly for λJm, as follows.

Definition 3 (Multiary natural lists). Multiary natural arguments and400

lists and multiary x-natural terms are defined simultaneously as follows:
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Figure 7: The two frontiers

λJm

µ ''
λnm

γ1;µ

��

λJ=λnn
µ

∼=
oo

γ1

��
λñm

γ2;µ

��

λñn
µ

∼=
oo

π

��

γ2

��
λm

ζ=π;µ

��

λn
µ

∼=
oo

π

��

λ⃗ñn
γ2

��

λñ∼=
πoo

π;γ2;π−1
��

λ⃗m λ⃗n
µ

∼=
oo λ∼=

πoo

� An argument a = (u, l, c) is multiary natural if c is a multiary natural
list.

� A continuation c = (x)v is a multiary natural list if v is multiary x-
natural.405

� A term v is multiary x-natural if v = x or v = xa and x /∈ a and a is
multiary natural.

We may abbreviate “multiary natural” as m-natural. As in λJ, we let L
range over m-natural lists. Every m-natural list L is either nil := (x)x or
(u+ l +L) := (x)x(u, l, L), with x /∈ u, l, L. Given U = (u, l), we may also410

write (U+L) standing for (u+l +L).

System λnm and its subsystem λ⃗nm. An expression of λJm is multiary
natural if all continuations occurring in it are multiary natural lists. Alter-
natively, multiary natural expressions are generated by the same grammar415

as given in Section 2.2 for natural expressions, this time generating multiary
natural proof terms t, u, v, Jm-arguments a and continuations L. The only
difference is that multiary natural Jm-arguments have the form (U,L), and
so we simultaneously also define multiary natural U ’s and lists l in the obvi-
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Figure 8: The reduction rules of system λnm

(β11) (λx.t)(u, [],nil) → s(u, x, t)
(β12) (λx.t)(u, [], (u′+l +L)) → s(u, x, t)(u′, l, L)
(β2) (λx.t)(u, u′ :: l, L) → s(u, x, t)(u′, l, L)
(π) t(u, l, L)(u′, l′, L′) → t(u, l, L@(u′+l′ +L′))
(µ1) (u, l, (u′+l′ +L)) → (u, l@(u′ :: l′), L)
(µ2) (u+l +(u′+l′ +L)) → (u+l@(u′ :: l′) +L)

ous way: U = (u, l) is multiary natural if u and l are multiary natural; [] is420

multiary natural; and u :: l is multiary natural if u and l are multiary natural.
In [13] one finds a very detailed discussion of the fact that this syntax is

closed for the reduction rules of λJm, constituting the subsystem λnm. A
presentation of its reduction rules, also taken from [13], is in Fig. 8. Notice
λnm is not among the systems in Fig. 7.425

Reduction rule β12 is not strictly needed because each t1 →β12 t2 implies
t1 →µ1 t′ →β2 t2, for some t′. Reduction rules define root reduction in the
syntactic classes they are defined. Rules µ1 (resp. µ2) is defined on arguments
(resp. continuations). We define root µ1-reduction on terms as the closure
of rule µ1 under: a → a′ implies ta → ta′; and root µ2-reduction on terms as430

the closure of rule µ2 under the previous rule and this one: L → L′ implies
(U+L) → (U+L′). The compatible closure of root µ1-reduction on terms is
the same relation, on terms, as →µ1 . Similarly for µ2.

The π-normal forms of λnm are characterized by requiring t in ta to
be a value V . Such normal forms are still closed under µ1 and µ2. A β-
reduction step of the kind found in λnm may not preserve π-normal form,
so π-normalization may be required afterwards. Alternatively, β-reduction
in π-normal forms may be defined as being generated by these two rules

(β11) (λx.t)(u, [],nil) → S(u, x, t)
(β2) (λx.t)(u, u′ :: l, L) → S(u, x, t)@(u′, l, L)

which employ the special substitution S(u, x, E) we met before, defined ex-
actly as ordinary substitution, except that S(u, x, V a) = S(u, x, V )@S(u, x, a).435

The π-normal forms of λnm, equipped with β11, β2, µ1 and µ2 constitute the
subsystem λ⃗nm of λnm. Notice we gave up β12.

4.3. Another isomorphism

What happens next is as if we restarted with protagonists λm and λJm
what we have done before with λ and λJ (recall Fig. 7). The farthest we will440
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Figure 9: Left: another isomorphism. Right: reduction to (weak) natural form vs µ

λJm

γ

��
λnm
π
��

λ⃗nm λm∼=
πoo

λJm
γ1

�� µ ��
λñnm

γ2

�� µ ��

λnm
γ1;µ

��
λnm

µ ��

λñm
γ2;µ

��
λm

go in this paper is to build the multiary version of the left diagram in Fig. 3,
shown in the left diagram of Fig. 9.

As before, we introduce a map Φ : λ⃗nm → λm with inverse ( )◦, as a

multiary version of the maps between λ⃗n and λ. Hence, the idea behind ( )◦ is
to encode V U1 · · ·Um as V (U1, · · · , Um), where (U1, · · · , Um) := a1@ · · ·@am,445

with ai = (Ui, (x)x). Again map ( )◦ is actually calculating π-normal forms.

We define by simultaneous recursion on t, U, l ∈ λm: the term t◦ ∈ λ⃗nm,
as well as the term (t, U, L)◦ ∈ λ⃗nm, given U,L ∈ λ⃗nm; the non-empty list

U◦ ∈ λ⃗nm; and the list l◦ ∈ λ⃗nm as follows:

� x◦ = x and (λx.t)◦ = λx.t◦ and (tU)◦ = (t, U◦,nil)◦450

� (V, U, L)◦ = V ◦(U,L) and (tU, U ′, L)◦ = (t, U◦, (U ′+L))◦

� (u, l)◦ = (u◦, l◦) and []◦ = [] and (u :: l)◦ = u◦ :: l◦ .

We define by simultaneous recursion on t, L, U, l ∈ λ⃗nm: the term Φt ∈
λm; the term Φ(t, U, L) ∈ λm, given t ∈ λm and U ∈ λ⃗nm; the argument
ΦU ∈ λm; and the list Φl ∈ λm as follows:455

� Φx = x and Φ(λx.t) = λx.Φt and Φ(V (U,L)) = Φ(ΦV, U, L)

� Φ(t, U,nil) = t(ΦU) and Φ(t, U, (U ′+L)) = Φ(t(ΦU), U ′, L)

� Φ(u, l) = (Φu,Φl) and Φ([]) = [] and Φ(u :: l) = Φu ::Φl .

Theorem 3. λm ∼= λ⃗nm. (See Appendix A.2 for details of the proof.)
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Example - part 2. Let us go back to the example presented at the end460

of Section 2, and develop briefly its multiary version. We start with a λm-
term t1 := t0U1U2, with t0 := λx.t and Ui = (ui, li). Notice λm ⊂ λnm
- indeed t1 is the m-natural term t0(U1, (x1)x1)(U2, (x2)x2). A single π-
reduction step leads us beyond the set of λm-terms: t1 →π t0(U1, U2) =
t0(u1, l1, (x1)x1(u2, l2, (x2)x2)) =: t2. This latter term is an application with465

continuation c1 := (x1)x1(u2, l2, (x2)x2), which is a natural list (notice x1 /∈
u2, l2), also written (u2+l2 +nil). If t1 has type B, then t0 has type of the

form A⃗1 ⊃ A⃗2 ⊃ B, for vectors A⃗1 = A11, · · · , A1n1 and A⃗2 = A21, · · · , A2n2 .
The arguments ui have type Ai1 and |A⃗2 ⊃ B⊢c1 :B. Finally, instead of ana-
lyzing more general forms of the continuation c1 going beyond m-naturality,470

we remark a new possibility brought by multiarity, which is the µ-reduction
t2 → t0(u1, l1@(u2 :: l2)) = t0(U1@U2). The new possibility is felt even
if the start term t1 is a λ-term, hence with li = []. In that case, the path
t1 → t2 → t3 leads us from λ to λn to λm. In the general case, with arbitrary
li, the path leads from λm to λnm and then back to λm.475

4.4. Weak multiary naturality

Let us briefly mention weak naturality in the setting of λJm. In order
to define the multiary version of the concepts introduced in Def. 2, we just
change the first item there, and say an argument a = (u, l, c) is weakly m-
natural if c a weak m-natural list - no constraint imposed on the list l. We480

thus obtain the concept of weak m-natural lists, denoted L as in λJ.

System λñnm. The weakly m-natural expressions of λJm are those where
every continuation is one such L. Alternatively, they can be given by the
grammar after Def. 2, provided arguments a have the form (u, l,L) and lists485

l are generated by the usual two clauses [] and u :: l. By considerations
similar to those given before, the weakly m-natural expressions constitute
the subsystem λñnm of λJm. The contents of Subsection 3.3 is routinely
adapted to the multiary setting, providing a map γ : λJm → λnm, that can
be restricted to γ2 : λñnm → λnm, and a map γ1 : λJm → λñnm.490

Combination with µ-normality. Consider the right diagram of Fig. 9. Let
us elucidate the form of arguments a in the lower range of systems, where
only µ-normal forms are allowed (hence continuations (x)xa with x /∈ a are
forbidden). In λm, arguments have the form U = (u, l, L′), where L′ is a495

natural list which does not destroy µ-normality - hence L′ cannot in fact be
a natural list except for the trivial continuation (x)x. Going upwards, this
pattern repeats. In λñm, arguments have the form U = (u, l,L′), where
L′ is a weakly natural list that is not a natural list different from the trivial
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continuation. In λnm, arguments have the form U = (u, l,L′), where L is any500

continuation that is not a natural list different from the trivial continuation.
Consider again the right diagram of Fig. 9, and compose its two squares

to obtain a square with four vertices λJm, λnm, λnm and λm. In [13],
the same square, with edges labelled with γ (or γ;µ) and µ was shown to
be commutative. We leave similar commutation questions about the two505

composed squares for future work.

5. Discussion

In this section we discuss, with the help of Fig. 10,10 what we have
achieved in this paper. In the first subsection we focus on proof-theoretical
aspects; in the second, on aspects relative to the λ-calculus.510

5.1. Weakly general natural deduction

In the diagram of Fig. 10 there are 3 regions corresponding to 3 families of
proof systems: (1) the region below λñ, corresponding to natural deduction;
(2) the region below λJ, corresponding to natural deduction with generalized
applications; (3) the region below λJm, corresponding to sequent calculus.515

Here “below” means accessible by descending arrows. Region (1) has a copy
inside region (2): each of the two systems in the former has a matching
subsystem of λJ in the latter, with isomorphisms π (Theorems 1 and 2)
mediating between a system in (1) and its match. Similarly, region (2) has
a partial copy inside region (3), given by the isomorphism µ : λJ → λnm520

and its restrictions - we say “partial” because we did not develop the system
of π-normal forms of λñm that would complete the image of the region
(2). Isomorphisms π (resp. µ) cross the frontier between regions (1) and (2)
(resp. (2) and (3)).

By accepting this organization, we find in region (1) a system of natural525

deduction other than the ordinary system corresponding to the λ-calculus
- the system corresponding to λñ, which we name weakly general natural
deduction. In Section 3, this system is identified as a subclass of expressions
of λJ closed under β-reduction of the latter system. Let us give a direct and
self-contained definition - but still as a λ-calculus.530

A termM,N,P is either a value, or an ordinary applicationMN , or a new
form of application M(N, (y, z)P ). The latter is typed thus: if ⊢ M : A ⊃ B
and ⊢ N : A and y : B, z : C ⊢ P : D then ⊢ M(N, (y, z)P ) : C ⊃ D

10For the reader of [13], the final diagram obtained here should be compared with the
upper half of the final diagram obtained there. Notice we are not concerned with notions
of cut-free proof terms in the present paper.
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Figure 10: Alternative structuring of application
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(here we omitted the common context Γ). Since the type of P is not C ⊃ D,
the new form of application does not generate commuting conversions. But535

there are two β-rules, the ordinary and this one: (λx.M)(N, (y, z)P ) →
λz.s(s(N, x,M), y, P ).

5.2. Computational interpretation

Let us recapitulate the computational interpretation of the (multiary)
natural subsystems, that is, the systems in Fig. 10 below λnm and λn. In540

λn, every application has the form t(u, L), and every n-argument (u, L) can
be written as (u1, · · · , um) = u1@ · · ·@um. So an n-argument is suitable to
collect the arguments of an application V u1 · · ·um in the λ-calculus, and this
is what the isomorphism λ ∼= λ⃗n does. Now we move to the multiary version
of this story. In λnm, every application has the form t(U,L), and every nm-545

argument (U,L) can be written as (U1, · · · , Um) = U1@ · · ·@Um. So an nm-
argument is suitable to collect the arguments of an application V U1 · · ·Um

in the λm-calculus, and this is what the new isomorphism λm ∼= λ⃗nm does.
An n-argument (u, L) is a non-empty list of ordinary arguments, with u being
the head and the natural list L being the tail of such non-empty list. An550

nm-argument (U,L) is a non-empty list of multiary arguments, with U being
the head and the multiary natural list L being the tail of such non-empty
list. In short, (multiary) natural lists L are lists of (multiary) arguments.

Now we want to move beyond the (multiary) natural subsystems. Why?

Because the isomorphism λñ ∼= λ⃗ñn repeats a similar story: in λñn, applica-555

tion has the form t(u,L), and the continuations L are lists of weakly natural
arguments r. We conjecture the same happens in λñnm, with every L there
being a list of multiary weakly natural arguments R. So we now take the
final step, and extend the interpretation to λJ and λJm respectively.

We will work out the extension of the interpretation from λnm to λJm
(for the extension from λn to λJ, replace U ’s by u’s). Let us write multiary
natural lists in λnm as follows:

L ::= NIL |CONSa a ::= (U,L)

The operations L@a and a′@a, when written with this syntax, read

NIL@a = CONSa (CONSa′)@a = CONS(a′@a) (U,L)@a = (U,L@a)

This just looks like a pedantic way of writing lists of U ’s, with a strange sepa-560

ration of the pair (U,L) out of which CONS constructs a list. But all of this
is just preparation for the general case, dealing with general continuations c.

A continuation c of λJm is either (x)V or (x)ta, with a = (U, c). We now
see the two forms of c as generalizations of NIL and CONS, respectively.
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For emphasis, we use L instead of c, and think of L as a general list :

L ::= NILx.V |CONSx.ta a ::= (U,L)

The operation L@a, when written with this syntax, reads

(NILx.V )@a = CONSx.V a (CONSx.ta
′)@a = CONSx.t(a

′@a)

with a′@a again given by (U,L)@a = (U,L@a). We know NIL = NILx.x

and CONS = CONSx.xa with x /∈ a. The general indexes x.V and x.t
added to NIL and CONS seem innocuous in these operations. In fact, their
use (and their computational interpretation) is seen elsewhere, in reduction
rule β1, which (as seen before in λnm) must be separated into two:

(λx.t)(u,NILy.V ) → V ′

(λx.t)(u,CONSy.va) → v′a′

where E ′ = s(s(u, x, t), y, E), for E = V, v, a.
Therefore NILx.V is not just a token to finish a list: it provides a value

V , an instance of which will be the result of the computation. CONSy.va565

does not merely construct a list out of the pair a, it provides a term v, an
instance of which will be applied to a similar instance of a – it is from this
application that the computation proceeds. The application of λx.t to u just
determines the instance of the parameter y that needs to be provided.

570

Example - part 3. Let us conclude the example at the end of Section
2. First we have the λ-term t1 = t0u1u2, with t0 = λx.t. Then t1 →
t0(u1, (x1)v1(u2, (x2)x2)) = t2, with v1 = x1 and x1 /∈ u2. If we let a =
(u2,NIL), then t2 = (λx.t)(u1,CONSa) →β1 t′a, where t′ = s(u1, x, t).
Here, the continuation c1 = CONSa just consists of the list with the next575

argument u2. In the reduction step, the symbol CONS is erased, so that
the list becomes a and can act as the argument of the next application,
whose function term t′ is calculated in a separate process, as a substitution.
However, if we allow v1 to be arbitrary and x1 to occur in v1 and u2, then
the reduction step is richer. We have t2 = (λx.t)(u1,CONSx1.v1a) →β1 v

′
1a

′,580

where E ′ = s(t′, x1, E), for E = v1, a. The separate substitution provides the
parameter t′ with which we instantiate the parametrized application (x1)v1a.
As the symbol CONS is erased, an instance a′ (rather than a) becomes the
argument of the next application, whose function term v′1 is an instance of
the term attached to CONS (rather than the parameter t′ itself).585
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6. Final remarks

This paper may be seen as an upgrade of our previous paper [13], and its
main results are the various isomorphisms, the concept of weak naturality,
and the final computational interpretation. In addition, the isomorphisms
become visible when we combine (weak) naturality and normality w. r. t. the590

commutative conversion π, and the study of this combination is also a novelty.
So, while in [13] we structured the space of calculi between the λ-calculus and
λJm mainly by means of the combination of γ (reduction to permutation-
free form) and µ, here the combination of these two with π produces a more
detailed picture showing all the nuances and alternatives in structuring λ-595

terms, and containing, at last, true subsystems (λ⃗n and λ⃗m) isomorphic to
the λ-calculus.

There is an immediate and direct question that deserves attention. The
isomorphism λ⃗nm ∼= λm (Thm. 3) is a multiary version of the isomorphism

λ⃗n ∼= λ (Thm. 1). But the latter was firstly generalized as λ⃗ñn ∼= λñ600

(Thm. 2). Do these two extensions join as λ⃗ñnm ∼= λñm? Here λ⃗ñnm is a
system not yet in the picture, but whose place is clear.

In the older papers about normality in the cut-free setting [3, 14], such
normal form corresponds to irreducibility in a well behaved rewriting system
of permutative conversions. In this paper, as in [13], we deal with normality605

in the presence of cut, but reduction to such normal form is done naively by a
map γ. This lacuna remains. At the same time, the present paper opens new
lines of inquiry: Are there other interesting, weakened notions of normality?
Is the upgrade from λ⃗n ∼= λ to λ⃗nm ∼= λm suggesting an iterative expansion
of the space of calculi? Indeed, λ⃗n ∼= λ can be prolonged to λ⃗m ∼= λ: can610

λ⃗nm ∼= λm be prolonged to a system where the natural lists (U1, · · · , Um)

of λ⃗nm are represented as [U1, · · · , Um]? Such representation would perhaps
live in a system λJm2, with lists of U ’s instead of lists of u’s.

A truly systematic development of the space of calculi between the λ-
calculus and λJm is still far beyond what we can reach with this paper, or615

perhaps with any paper. The final picture we obtained is only sketchy, in that
its coherence (commutativity) is still waiting for a verification, some systems
are still missing, and even parts of it still have tentative definitions, like what
concerns γ – let alone the consideration of the variety of notions of normal
form, seen in [11, 13] but out of scope in this paper. Maybe the systematic620

study of λ-calculi with generalized applications, even if we constrain ourselves
to the call-by-name setting as we do here, can only be achieved with the help
of machine assistance.
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Appendix A. Proofs of the new isomorphisms

Appendix A.1. Proof of Theorem 2 (λñ ∼= λ⃗ñn)

Proof. First, we need some bookkeeping about the maps.

1. (t, R)◦ = t◦@R.

2. s(u, x, t)◦ = S(u◦, x, t◦).680

3. Φ(t@R) = Φ(Φt, R).

4. Φ(S(u, x, t)) = s(Φu, x,Φt).

Item 1 is proved by induction on t and uses associativity of @. Item 2 is
proved together with (s(u, x, t),S(u◦, x, R))◦ = S(u◦, x, (t, R)◦), by induc-
tion on t (the proof of case t = x requires item 1). Item 3 is proved by685

case analysis of t and uses Φ(Φ(t, R′), R) = Φ(t, R′@R), with the latter
proved by induction on R′. Item 4 is proved together with s(Φu, x,Φ(t, R)) =
Φ(s(Φu, x, t),S(u, x,R)), by simultaneous induction on t and R.

Next, we prove the maps are each other’s inverse. One proves, for all
t ∈ λñ, Φ(t◦) = t and Φ((t, R)◦) = Φ(t, R), by induction on t; and proves,690
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for all t, R ∈ λ⃗ñn, (Φt)◦ = t and (Φ(t′, R))◦ = (t′, R)◦, by simultaneous
induction on t and R.

Finally we prove the isomorphism of reduction relations:

(a) t1 →β t2 in λñ iff t◦1 →β t◦2 in λ⃗ñn.

(b) t1 →β t2 in λ⃗ñn iff Φt1 →β Φt2 in λñ.695

The “only if” statements follow from the “if” statements and the fact that the
maps are inverse. The “if” statements are proved by induction on t1 →β t2.
The base case in (a) follows immediately by a calculation and using the
bookkeeping fact 2 above. The base case in (b) is slightly more interesting,
when the β-redex (λx.t)(u,L) is such that L = (y)V R, with y /∈ R. Then

Φ((λx.t)(u, (y)V R)) = Φ((λx.Φt)(Φu, (y)ΦV ), R) (by def. Φ)
→β Φ(s(s(Φu, x,Φt), y,ΦV ), R) (∗)
= Φ(Φ(S(S(u, x, t), y, V )), R) (by fact 4 above, twice)
= Φ(S(S(u, x, t), y, V )@R) (by fact 3 above)
= Φ(S(S(u, x, t), y, V R)) (by def. of S and y /∈ R)

where in (∗) we use the fact: t1 →β t2 implies Φ(t1, R) →β Φ(t2, R), easily
proved by induction on R.

The inductive cases are routine. This ends the proof.

Appendix A.2. Proof of Theorem 3 (λm ∼= λ⃗nm)

Proof. First, we need some bookkeeping about the maps.700

1. (t, U, L)◦ = t◦@(U,L).

2. s(u, x, t)◦ = S(u◦, x, t◦).

3. Φ(t@(U,L)) = Φ(Φt, U, L).

4. Φ(S(u, x, t)) = s(Φu, x,Φt).

Item 1 is proved by induction on t and uses associativity of @. Item 2705

is proved together with similar statements for U and l in the place of t,
by simultaneous induction on t, U , and l. The statement for t also in-
cludes the statement (s(u, x, t),S(u◦, x, U),S(u◦, x, L))◦ = S(u◦, x, (t, U, L)◦)
(the proof of case t = x requires item 1). Item 3 is proved by case analy-
sis of t and uses Φ(Φ(t, U ′, L′), U, L) = Φ(t, U ′, L′@(U,L)), with the latter710

proved by induction on L′. Item 4 is proved together with similar state-
ments for U and l in the place of t, and also with s(Φu, x,Φ(t, U, L)) =
Φ(s(Φu, x, t),S(u, x, U),S(u, x, L)), by simultaneous induction on t, U , l, and
R.
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Next, we prove the maps are each other’s inverse. One proves, for all715

E = t, U, l in λm, Φ(E◦) = E, by simultaneous induction on t, U , and l.
The statement for t is proved together with Φ(t, U, L)◦ = Φ(t, U, L). Next

one proves, for all E = t, U, L in λ⃗nm, (ΦE)◦ = E and, for all L ∈ λ⃗nm,
(Φ(t′, U, L))◦ = (t′, U, L)◦, by simultaneous induction on t, U , l, and L.

Finally we prove the isomorphism of reduction relations. We define a720

bijection between the reduction rules of λm and λ⃗nm: if ρ = β1, (resp.
β2, ζ) then ρ′ = β11 (resp. β2, µ).

(a) t1 →ρ t2 in λm iff t◦1 →ρ′ t
◦
2 in λ⃗nm.

(b) t1 →ρ′ t2 in λ⃗nm iff Φt1 →ρ Φt2 in λm.

The “only if” statements follow from the “if” statements and the fact that the725

maps are inverse. The “if” statements are proved by induction on t1 →ρ t2
and t1 →ρ′ t2, for each ρ, ρ′.

Let us analyze the base cases in (a). The case ρ = β1 follows immediately
by a calculation and using the bookkeeping fact 2 above. For the case ρ = β2,
we reason as follows:

(λx.t)(u, v :: l)◦ = (λx.t◦)(u◦, v◦ :: l◦,nil) (by def. of ( )◦)
→β2 S(u◦, x, t◦)@((v◦, l◦),nil)
= s(u, x, t)◦@((v◦, l◦),nil) (by fact 2 above)
= (s(u, x, t), (v◦, l◦),nil)◦ (by fact 1 above)
= (s(u, x, t)(v, l))◦ (by def. of ( )◦)

For the case ρ = ζ, we reason as follows:

(t(u, l)(u′, l′))◦ = (t, (u◦, l◦), ((u′◦, l′◦)+nil))◦ (by def. of ( )◦)
→µ (t, (u◦, l◦@(u′◦ :: l′◦)),nil)◦ (*)
= (t, (u◦, (l@(u′ :: l′))◦),nil)◦ (**)
= (t(u, l@(u′ :: l′)))◦ (by def. of ( )◦)

In (∗∗) we need the easily proved (l1@l2)
◦ = l◦1@l◦2. In (∗) we need

(t, (u, l), ((u′, l′)+L))◦ →µ (t, (u, l@u′ :: l′), L)◦

with all expressions in λ⃗nm, except t ∈ λm. The proof is a case analysis of
t. In the case t is not a value, one needs the following observation: L1 → L2

implies (t, U, L1)
◦ → (t, U, L2)

◦. The latter is easily proved by induction on730

t ∈ λm.
Now the base cases in (b). The case ρ′ = β11 follows immediately by a

calculation and using the bookkeeping fact 4 above. For the case ρ′ = β2 we
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reason as follows:

Φ((λx.t)(u, v :: l, L)) = Φ((λx.Φt), (u, v :: l), L) (by def. Φ)
→β2 Φ(s(Φu, x,Φt), (v, l), L) (∗)
= Φ(Φ(S(u, x, t)), (v, l), L) (by fact 4 above)
= Φ(S(u, x, t)@((v, l), L)) (by fact 3 above)

where in (∗) we use the fact: t1(ΦU1) →ρ t2(ΦU2) implies Φ(t1, U1, L) →ρ

Φ(t2, U2, L), for ρ = β2, easily proved by induction on L.
For the base case ρ′ ∈ {µ1, µ2}, recall the definition of root ρ′-reduction

on terms. We need the following:

Φ(t(Φu,Φl), (u′, l′), L) →ζ Φ(t, (u, l@(u′ :: l′)), L) (∗)

where t ∈ λm and the remaining parameters are in λ⃗nm. This is proved by
case analysis of L and requires an observation about Φ analogous to the one735

used in base case β2 with ρ = ζ, and the easily proved Φ(l@l′) = (Φl)@(Φl′).
Φ maps a root µ1-reduction step on terms as follows:

Φ(V, (u, l), ((u′, l′)+L)) = Φ(V (Φu,Φl), (u′, l′), L) (by def. of Φ)
→ζ Φ(V, (u, l@(u′ :: l′)), L) (by (∗))
= Φ(V, (u, l@(u′ :: l′), L) (by def. of Φ)

Φ maps a root µ2-reduction step on terms as follows:

Φ(t, U, (u+l +(u′+l′ +L))) = Φ(t(ΦU)(Φu,Φl), u′ :: l′, L) (by def. of Φ)
→ζ Φ(t(ΦU), (u, l@(u′ :: l′)), L) (by (∗))
= Φ(t, U, (u+l@(u′ :: l′) +L)) (by def. of Φ)

The inductive cases are routine. This ends the proof.
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