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Abstract 
 

BT-Enabled Cognitive Architecture: Internal Affect Sensing-Processing-Acting 

Cycle/Subsystem 

Emotions provide a valuation system that assigns positive or negative affective states to different options, 

assisting in the assessment of risks and rewards. This emotional component allows cognitive 

architectures (CAs) to align the choices of an agent with its goals and well-being. Building upon this 

understanding, this dissertation extends a CA by integrating the internal affect subsystem. This subsystem 

is structured using Behavior Trees (BTs), taking advantage of the high degree of flexibility and the inherent 

ease with which BTs enable a modular expansion and adaptation of the CA.  

A custom BT engine is leveraged in order to ensure compatibility with other subsystems of the CA and 

optimize resource usage for an embedded environment. Given that the hierarchical structure of XML is 

highly suitable for representing BTs, the custom engine is expanded to accept BTs in XML format as 

input. Furthermore, in order to provide an efficient communication structure between the nodes within 

the engine, a communication mechanism is incorporated into the engine, the Blackboard.  

The internal affect subsystem adheres to the Sensing-Processing-Action (SPA) model of the brain and 

proposes a simplified model of emotions along with their corresponding memory manipulation processes. 

In order to enable the subsystem to make contextually appropriate decisions and generate intentions 

based on the current emotional state, a practical application was devised. This application is focused on 

guiding an agent from its present location to a desired destination. Within this context, the subsystem 

aligns the logical choices of the agent with its well-being, prioritizing routes that satisfy its needs. 

Additionally, the desired location is based on the current drive, which itself is determined by the current 

emotional state. 

The subsystem underwent several validation tests as part of the fully integrated CA. During these tests, a 

prototype and a controlled environment were developed and employed to validate each memory 

manipulation process and functionality of the subsystem, ensuring the successful achievement of the 

goal. 

Keywords: Emotions,  Cognitive architecture, Behavior Trees, XML, Sensing-Processing-Action (SPA) 

model   
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Resumo 

Arquitetura Cognitiva Ativada por Árvores de Comportamento: Subsistema Interno Afetivo 

As emoções fornecem um sistema de avaliação que atribui estados afetivos positivos ou negativos a 

diferentes opções, que auxiliam na avaliação de riscos e recompensas. Esta componente emocional 

permite que arquiteturas cognitivas alinhem as escolhas de um agente com os seus objetivos e bem-

estar. Com base nisto, esta dissertação estende uma arquitetura cognitiva ao integrar o subsistema 

interno afetivo. Este subsistema é estruturado em árvores de comportamento, tirando partido do alto 

grau de flexibilidade e a facilidade inerente com que as árvores de comportamento facilitam a extensão 

modular e adaptação da arquitetura cognitiva. 

Um motor de árvores de comportamento personalizado foi utilizado para garantir a compatibilidade com 

outros subsistemas da arquitetura cognitiva e otimizar o uso de recursos para um ambiente embebido. 

Dado que a estrutura hierárquica do formato XML é adequada para representar árvores de 

comportamento, o motor personalizado é expandido de forma a aceitar árvores de comportamento no 

formato XML como entrada. Além disso, de modo a fornecer um meio de comunicação eficiente entre 

nós, é desenvolvida e adicionada ao motor uma Blackboard. 

O subsistema interno afetivo baseia-se no modelo do cérebro Sensing-Processing-Action (SPA) e propõe 

um modelo de emoções simplificado juntamente com os respetivos processos de manipulação de 

memória. Para permitir que o subsistema tome decisões contextualmente apropriadas e gere intenções 

com base no estado emocional atual, foi criada uma aplicação prática. Esta aplicação foca-se em guiar 

um agente da sua localização atual para um destino desejado, selecionado pela motivação atual, que 

por sua vez é determinada pelo estado emocional atual. Dentro deste contexto, o subsistema alinha as 

decisões lógicas do agente com o seu bem-estar, priorizando rotas que satisfaçam essa condição.  

O subsistema foi submetido a vários testes de validação como parte da arquitetura cognitiva totalmente 

integrada, de forma a garantir que o objetivo final fosse alcançado. Para os testes foi desenvolvido e 

utilizado um protótipo num ambiente controlado para validar cada processo de manipulação de memória 

e funcionalidade do subsistema. 

Palavras-chave: Emoções, arquiteturas cognitivas, árvores de comportamento, XML, modelo Sensing-

Processing-Action (SPA)   
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I -  Introduction 

Emotions play a fundamental role in cognitive architectures (CAs), providing them with invaluable 

capabilities and enhancing their overall functionality. Therefore, the modeling of emotions holds significant 

importance [1]. Although emotions are often associated with subjective experiences and human behavior, 

their significance extends beyond our species and is essential for both biological and artificial cognitive 

systems [2]. Emotions provide a valuation system that assigns positive or negative affective states to 

different options, assisting in the assessment of risks and rewards. This emotional component allows CAs 

to align the choices of an agent with its goals and well-being [3]. Additionally, emotions provide the 

motivational drive required for a goal-directed behavior. Positive emotions, such as joy and excitement, 

promote approach behaviors toward rewarding stimuli, while negative emotions, such as fear and disgust, 

elicit avoidance or protective responses [4]. By integrating emotional signals, CAs align the actions of the 

agent with its goals, increasing persistence and enhancing the likelihood of success. 

Behavior Trees (BTs) have gained significant attention in the robotics community in the past decade as a 

powerful tool for modeling CAs [5]. Originally introduced in the game industry, BTs offer a structured 

approach for task switching in reactive and fault-tolerant systems [6]. Their modular nature has been 

particularly advantageous, leading to increased interest and application in various domains [7]. One of 

the key benefits of BTs is their ability to split a system into smaller, independently developed or reusable 

BTs, thereby saving valuable time and resources [8]. Additionally, their hierarchical organization, human 

readability, and reactiveness further contribute to their effectiveness [7]. Hence, BTs are a viable approach 

for the development of CAs. 

1. Main Goal 

This dissertation aims to develop, integrate, and validate the internal affect subsystem within a CA 

structured in BTs. The goal of this subsystem is to enhance the decision-making capabilities of the CA by 

integrating emotions into the decision-making process and generating intentions based on the current 

emotional state of the agent. 

The first step toward achieving this goal is to develop a simplified model for emotions within the CA. This 

model makes certain assumptions and simplifications to reduce the complexity involved in modeling 

emotions accurately. By simplifying the model, it becomes more feasible to integrate emotions into the 
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decision-making process and implement it within a BT. 

Furthermore, the emotional memory structure and subsequent memory manipulation processes within 

the internal affect subsystem will adhere to the same model as the co-existing physical world subsystem 

of the CA. This consistency ensures easy integration with the existing subsystem and maintains coherence 

within the CA. For the same reason, the internal affect subsystem follows the Sensing-Processing-Acting 

(SPA) model of the brain. The final step is to integrate both subsystems and validate the subsystem within 

the context of a fully integrated CA. 

2. Document Structure 

The dissertation follows a well-structured organization based on the Waterfall methodology, with each 

chapter addressing specific aspects of the research conducted. The document structure is outlined as 

follows: Chapter II delves into the theoretical fundamentals related to the topics explored in the 

dissertation. It starts by introducing BTs, discussing their structure, characteristics, and comparing them 

to earlier technologies. The chapter then delves into the state of the art in CAs and emotion modeling 

within such architectures. This comprehensive overview lays the foundation for the development of the 

internal affect subsystem and provides a strong basis for the research conducted. Next, in Chapter III, 

the design of the adaptation of two core elements for the BT custom engine is presented, namely the 

Extensible Markup Language (XML) parser and the Blackboard. Additionally, the chapter covers the 

detailed design of the internal affect subsystem within the CA, outlining its core elements and their 

interactions with the physical world subsystem. Chapter IV focuses on discussing the implementation of 

the two adapted elements of the BT custom engine and the internal affect subsystem. Next, Chapter V 

centers around testing and validation procedures, evaluating the impact of the internal affect subsystem 

on decision-making and validating the memory manipulation processes and intention generation within 

the CA. Finally, Chapter VI offers conclusions versing on the work developed in this dissertation and 

identifies possible opportunities for future research and development. 
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II -  Background and State of the Art 

In this chapter, theoretical fundamentals are provided with respect to the topics of interest in this 

dissertation. It first introduces Behavior Trees (BTs), discussing their structure, characteristics, and a 

comparison with earlier technologies. Subsequently, the state of the art in cognitive architectures (CAs) 

and emotion modeling within CAs is covered, serving as the foundation for the development of the internal 

affect subsystem in this dissertation. This comprehensive overview establishes the necessary context for 

the subsequent chapters, providing a strong basis for the research conducted. 

1.  Behavior Trees 

First introduced in the game industry, BTs are a way to structure the switching between tasks for reactive 

and fault-tolerant systems [6]. They provide an efficient way to increase modularity in complex systems, 

a property that is crucial in many applications [7], which led to a growing interest in the robotics 

community in the last decade [9]. One of the many advantages derived from their high modularity is the 

ability to split the system into smaller BTs that are developed independently or reused from other BTs 

[8], which ultimately saves time and resources. Other advantages include their hierarchical organization, 

human readability, and reactiveness [7].   

1.1. Classical Formulation 

The execution of a BT is tick-driven, which is a signal sent from the Root node at a chosen frequency that 

dictates whenever a node is executed. This signal propagates from the Root node through its children 

following the rules of different control flow nodes, and upon reaching a leaf node, it executes either an 

action or condition and returns one of three pre-defined statuses:  success, running, or failure [10].  This 

returned status is then propagated back and forth through the tree until finally one of the return statuses 

reaches the Root node [11]. 

As previously mentioned, the nodes from the classical formulation can be divided into control flow nodes 

(Fallback, Sequence, Decorator, and Parallel) and leaf nodes (Action and Condition). Each node will now 

be discussed in detail and at the end of this section, a table is presented with all the node principles 

compiled, see Table 1. 
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Root Node 

The Root node is the first node in the BT and where the execution of the tree starts and ends. This node 

can only have one single child and is represented by the symbol “Ø”, see Figure 1. It is responsible for 

ticking the tree at a given frequency and receiving the final return status at the end of the execution. 

 

Figure 1: Root node representation. 

Fallback Node 

The Fallback node is represented by the symbol “?”, see Figure 2, and can be interpreted as a logic OR 

function. It ticks its children from left to right until one of them returns either success or running and 

returns the received status to its parent. The only scenario where it returns failure to its parent is if all its 

children return failure. This node, upon receiving a running or success return status from one of its 

children, does not tick the subsequent children [7]. 

 

Figure 2: Fallback node representation. 

Sequence Node 

The Sequence node is represented by an arrow, see Figure 3, and can be interpreted as a logic AND 

function as it only returns success if all its children return success. It ticks its children from left to right 

and returns running or failure whenever a child returns respectively running or failure [6]. Upon receiving 

the return status failure from a child, it keeps ticking all the children to the left of the one that failed but 

stops ticking the subsequent children. 
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Figure 3: Sequence node representation. 

Parallel Node 

The Parallel node is represented by two arrows, as shown in Figure 4, and it is rarely used due to 

underlying concurrency problems [12]. These problems come from the concurrent execution of its 

children as it ticks all of them at the same time. The node returns success only if the number of children 

returning success surpasses a user-defined threshold 𝑀𝑀 and failure if at least 𝑁𝑁 −𝑀𝑀 + 1 children return 

failure, where N is the number of children and 𝑀𝑀 ≤ 𝑁𝑁 is a user-defined threshold. The node returns 

running otherwise [7] [11]. 

 

Figure 4: Parallel node representation. 

Decorator Node 

The Decorator node, which is represented by a rhombus, see Figure 5, has a single child and it returns 

a status according to user-defined rules. This node is used to introduce additional semantics, change the 

return status of a node, or alter the ticking policy [6]. 

 

Figure 5: Decorator node representation. 
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Action Node 

The Action node when ticked performs some user-defined operations and returns success whenever the 

operations are completed successfully, failure if the operations cannot be completed and running while 

the operations are being performed. It is represented by a rectangle. 

Condition Node 

The Condition node is a subset of the Action node represented by an oval, but it is given a separate 

category and graphical symbol to increase the readability of the BT. It checks for a user-defined 

proposition and returns success or failure depending on if the proposition holds or not [9], and never 

returns the status running.  

To recapitulate, all the node types, their symbol, and return status conditions, are compiled into the 

following table (Table 1). 

Table 1: BT node types. 

Node 
Type 

Symbol Returns Success Returns Failure Returns Running 

Root Ø If tree succeeds If tree fails While executing 

Fallback ? If one child succeeds If all children fail If one child returns running 

Sequence 
 

If all children succeed If one child fails If one child returns running 

Parallel 
 

If ≥ 𝑀𝑀 children succeed If 𝑁𝑁 −𝑀𝑀 + 1 children fail Else 

Decorator 
 

Varies Varies Varies  

Condition 
 

If true If false Never 

Action 
 

Upon completion If impossible to complete During completion 

1.2. Similar Technologies 

In this section, two well-known task-switching architectures, FSMs and HFSMs, are described and 

analyzed to better understand how they relate and compare to BTs, i.e., what are the advantages and 

disadvantages of these earlier technologies and how BTs solve some of the issues with them.  

Finite-State Machines (FSMs) 

Finite-State Machines (FSMs) are a common structure to implement task switching in a fast, simple, and 

intuitive way, and for those reasons they have been the technology of choice for AI in games [8]. However, 
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FSMs do not scale well, therefore, it becomes difficult to develop complex systems with many transitions 

and, consecutively, difficult to maintain [13]. This problem results from the nature of the transitions in 

FSMs, which are one-way control transfers, i.e., the control is transferred from one state to another much 

like a goto statement in assembly. In BTs, however, the transitions are composed of two-way control 

transfers, i.e., the control after being transferred to the next node, its child, the control always returns to 

its parent node after it is done executing, as the call/ret pair in assembly, see Figure 6.  

 

Figure 6: Illustration of one-way and two-way control transfers. 

One-way control transfers, in complex systems such as reactive systems, result in an FSM with a high 

number of transitions, hence the decrease in modularity, since if one component is removed, every 

transition to that component needs to be revised. Maintainability, scalability, and reusability problems 

result from the lack of modularity in complex FSMs [7], which is crucial when developing complex 

systems. Modularity allows the system to be split into building blocks, that can be developed and tested 

separately, and then integrated into the main system, promoting the reuse of code, incremental design 

of functionalities, and efficient testing.  

Hierarchical Finite-State Machines (HFSMs) 

Created to alleviate some of FSMs’ disadvantages and ensure extensibility, flexibility, and reusability [14], 

Hierarchical Finite-State Machines possess increased modularity, as it is possible to split tasks into sub-

tasks, and fewer scalability problems due to behavior inheritance [8], which provides different levels of 

abstraction.  

Although HFSMs fixed some critical issues with FSMs, problems in maintainability persisted, as it is still 

difficult to add or remove states. The newly added hierarchy also brought downsides given that it must 

be manually created and user-defined, which, in contrast to FSMs and BTs that are simple and intuitive, 

brings complexity to its development [7]. 
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2. Related Work 

In this section, the foundation for this dissertation is presented by introducing concepts such as cognitive 

architectures (CAs) and emotions, alongside some well-known CAs and relevant work on emotion 

research. As mentioned in the chapter’s introduction, the three CAs introduced and discussed are: Soar, 

ACT-R, and CLARION. For each architecture, a brief description of the concept, its structure, and 

distinctive characteristics is given, considering its most recent version. Additionally, the effects of emotion 

on memory and cognition are discussed, and three strategies for emotion modelling are presented: 

Lövheim’s Cube of Emotion, Geneva emotion wheel and Plutchik’s Wheel of Emotions. 

2.1. Cognitive Architectures 

Cognitive architecture is a term widely used in modern cognitive science that refers to both a theory about 

the structure of the human mind and a computational instantiation of such a theory [15], or according to 

a definition by Anderson [16], is “a specification of the structure of the brain at a level of abstraction that 

explains how it achieves the function of the mind”. It ultimately is a fixed structure that supports the 

acquisition and use of knowledge.  

Cognitive architectures distinguish themselves as generally intelligent entities, by having the ability to 

solve not just a single problem using a specific method but execute a wide variety of tasks using knowledge 

acquired through experience, in complex and dynamic environments [17]. Their structure comprises 

memories to store knowledge, processing units that retrieve, select, combine, and store knowledge, and 

languages to represent the knowledge that is stored.  

Soar 

Soar, one of the best-known existing CAs, has existed since mid-1982. It is a problem-solving architecture, 

that, like many artificial intelligence (AI) systems, attempts to provide an appropriate organization for 

intelligent action [18]. At the lowest level, Soar’s processing consists of matching and firing rules, which 

provide a flexible context-dependent representation of knowledge. Unlike most rule-based systems that 

choose a single rule to fire at a given time, which serves as the point of choice in the system, Soar allows 

additional knowledge to influence a decision by introducing operators as the point of choice in the system 

and using rules to propose, evaluate and apply operators [17].  
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Figure 7: Processing cycle of Soar [17]. 

Soar’s processing cycle, see Figure 7: Processing cycle of Soar [17].Figure 7, may be split into seven 

steps. The first step is Input, where perception changes are processed and sent to short-term memory. 

Then, occurs Elaboration, Operator Proposal, and Operator Evaluation, where rules compute entailments 

of short-term memory, propose operators, and create preferences for each. In the next step, Operator 

Selection, the operator is selected based on the generated preferences. The actions of the operator are 

performed in the step Operator Application and finally, any output commands are passed on to the system 

in the final step Output [18]. Up until recently, Soar’s structure, see Figure 8, has consisted of a single 

long-term memory, which is encoded as production rules, and a single short-term memory, which is 

encoded as a symbolic graph structure so that objects can be represented with properties and relations. 

However, to expand the types of knowledge Soar could represent, reason with, and learn, Soar’s structure 

was extended in [17], see Figure 9. 

 
Figure 8: Earlier Structure of Soar [17]. 

 

 

Figure 9: Extended Structure of Soar [17]. 

This extension, which retained the strengths of the original Soar, added new non-symbolic representations 

of knowledge and new learning and memory modules. The major additions include working memory 

activation, reinforcement learning, the appraisal detector, semantic memory, episodic memory, and 

clustering. Although all these new components have been built, integrated, and run with the traditional 

Soar components, so far, there is not a single unified system that runs all the components at once [17]. 
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ACT-R 

The history of ACT-R (Adaptive Control of Thought-Rational) began in 1973, and, since then, it has 

experienced many updates and extensions, being the current version ACT-R 7 updated in 2020 [19]. It is 

a hybrid CA that is heavily inspired by biology and cognitive psychology and its human alike cognition 

emerges from the interaction of declarative knowledge, represented by data structures called chunks, 

and procedural knowledge, which is represented by production rules. Although chunks and production 

rules are symbolic constructs, the activation process is sub-symbolic, thus being considered a hybrid 

architecture by having both symbolic and sub-symbolic components [20]. 

The ACT-R architecture is designed as a production system in which rules are activated when their 

preconditions are met. The existence of a specific goal is one example of a precondition, while the 

generation of a sub-goal is an example of produced action.  

The structure of ACT-R, see Figure 10, consists of modules and buffers. Modules are the mechanisms 

that modify and implement the buffers and each module is responsible for processing a different type of 

information. On the other hand, Buffers store contents visible to the other modules [19].  

 

Figure 10: Structure of ACT-R 7 [19] . 

ACT-R has four main modules (visual module, goal module, declarative module, and manual module) and 

a production system that coordinates the communication between them. The central production system 

has access to the buffers and will update them through the application of rules.  

A cycle in ACT-R starts with the buffers holding representations determined by the external world and, 

using production rules, patterns in these buffers are recognized. A production that matches the working 

memory is selected and applied, the buffers are updated, and a new cycle starts. 
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CLARION 

CLARION (Connectionist Learning with Adaptive Rule Induction ON-line) is a hybrid CA in the sense that, 

it not only combines connectionist and symbolic representations but also implicit and explicit psychologic 

processes [21]. It is composed of four main subsystems: the Action-Centered Subsystem (ACS), the Non-

Action-Centered Subsystem (NACS), the Motivational Subsystem (MS), and the Meta-Cognitive Subsystem 

(MCS), Figure 11. The role of ACS is mainly action decision-making, regardless of whether the actions 

are for external or internal mental operations. The role of NACS is to maintain general knowledge, i.e., to 

store declarative and episodic knowledge. The MS is responsible for determining motivational drive levels 

and providing underlying motivations for perception, action, and cognition. Finally, the MCS has the role 

of monitoring, directing, and modifying NACS and ACS based on drive levels reported by the MS [22]. 

 

Figure 11: Structure of CLARION [23] 

CLARION supports both top-down and bottom-up learning processes but the emphasis on bottom-up 

learning, i.e., the transformation of implicit knowledge into explicit knowledge, is what distinguishes 

CLARION from other CAs [22]. This approach to learning is unique as an agent may learn on its own, 

regardless of whether there is a priori or externally provided domain knowledge. However, the architecture 

does not exclude innate biases being represented within the architecture [20]. 

2.2. Modeling Emotion in Cognitive Architectures 

Although there are many projects modeling emotions [23] [4] [2] [24] [25] [26], there is no consensus 

on what emotions are and there are many terms in emotion research literature describing what is 

generally referred to emotions [3] [27] [28]. Despite having different connotations, it has been widely 
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recognized that emotions play an important role in human life [2]. In the context of CAs, emotions are 

essential as they provide valuable information for decision-making, allowing systems to prioritize options 

and make contextually appropriate choices, and provide intention, aligning the system's goals and actions 

with internal drives and external stimuli. By incorporating emotions, CAs exhibit greater adaptability, 

decision-making capabilities, and social intelligence. 

Emotions 

Emotions are complex and multifaceted phenomena that lack a consensus definition in the field of 

emotion research, and, within literature, various terms are used to describe them. Generally, emotions 

pertain to transient states and are characterized by familiar terms such as anger, interest, surprise, 

disgust, fear, and joy [20] [3]. Several models exist, such as Lövheim’s Cube of Emotion [29], Geneva 

emotion wheel [30] and, Plutchik’s Wheel of Emotions [31], applying different strategies, different basic 

emotions, and different dynamic transitions between them. These are depicted in Figure 12 – high 

resolution versions can be consulted in Appendix A. 

 

Figure 12: Lövheim’s, Geneva and Plutchik’s emotional models, respectively. 

Lövheim presented a new three-dimensional model for monoamine neurotransmitters and emotions, the 

Cube of Emotion, left side in Figure 12, with eight basic emotions ordered in an orthogonal coordinate 

system of the three main monoaminergic axes. The axes represent serotonin (5-HT), dopamine (DA), and 

noradrenaline (NE), and each end of the arrows represents low and high levels of signaling respectively. 

The Geneva Emotion Wheel (GEW) displays emotions methodically linked in a circle with their respective 

emotion groups. The alignment of the emotion terminology is based on two dimensions: control (low to 

high) and valence (negative to positive), dividing the emotions into four quadrants: negative/low control, 

negative/high control, positive/low control, and positive/high control. The numerous reaction choices are 

represented by "spikes" on the wheel that represent varying degrees of intensity for each emotion family, 

ranging from low intensity (towards the center of the wheel) to high intensity (towards the perimeter of 

the wheel).  
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Plutchik's Wheel of Emotions, depicted in the right in Figure 12, a three-dimensional circumplex model 

that shows the connections between various emotions, comparable to a color wheel, where emotions are 

represented by different hues. The model consists of a circle to represent the degree of similarity between 

emotions and a vertical cone to express intensity. The eight sectors of the wheel, which are arranged as 

four pairs of opposites, represent the theory's eight basic dimensions of emotions.  

Effects of Emotion in Memory and Cognition 

Emotion plays a significant role in shaping our memory and cognitive processes. Numerous studies have 

explored the effects of emotion on learning, memory formation, and information retrieval. It has been 

observed that emotional events and stimuli are often better remembered compared to neutral ones, 

exhibiting higher levels of confidence, vividness, and detail [32]. 

In the realm of human memory, researchers have discovered that the consolidation of information can 

be selectively enhanced if it is conceptually related and made salient through an emotional learning 

experience. This selective consolidation occurs when emotionally relevant information is represented in a 

common neural substrate [33]. However, when it comes to memory for complex emotional stimuli, a 

trade-off effect has been observed. Memory for emotionally salient components is enhanced, but at the 

expense of memory for neutral contextual details [34]. 

Emotion exerts a powerful influence on attention, modulating the selectivity of attention, and motivating 

action and behavior [35]. It has been found that some emotions facilitate the encoding of information and 

aid in efficient retrieval. For instance, when information is presented to someone while experiencing a 

positive emotion, they are more likely to remember it, than if in a negative emotional state [36]. 

Understanding and modeling the effects of emotion on attention, perception, and cognitive processing is 

a critical aspect of studying emotions. Extensive research has focused on the effects of different affective 

states, such as anxiety, fear, anger, and positive/negative affect, on attention and cognition. These effects 

manifest in alterations of attentional processing, working memory, perceptual categorization biases, 

memory encoding and recall, reasoning, judgment, decision-making, and learning. Emotion can influence 

both low-level processes like attention and working memory capacity, as well as higher-level processes 

like situation assessment, planning, and judgment [4]. 

Integrating Emotion in Cognitive Architectures 

As the goal of this dissertation is to modulate and integrate emotions by designing the internal affect 
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subsystem, two additional CA NEUromodulating COGnitive ARchitecture (NEUCOGAR) and MAMID are 

presented. Although there are many other projects modeling emotions [21] [22] [23], these may be used 

to represent the two main approaches to modulation and integration of emotions within cognitive systems, 

either through neuromodulation or through affect states. 

NEUCOGAR's foundation lies in Lovheim's emotion cube, integrating the biochemical influences of 

monoamines, such as dopamine, serotonin, and noradrenaline, into the computational processes of 

modern computers [2]. The information on the cube was adapted to the computing domain and extended 

to include parameters related to computing power, memory, and storage, as seen in Figure 13. It intended 

to bridge neuroscience and psychology with concepts of computing and AI systems. 

In NEUCOGAR, dopamine is associated with increased processor activity and memorized data, reflecting 

its role in reward processing and motivation. Serotonin influences computing utilization and storage 

bandwidth, enhancing overall processor activity and connectivity between nodes. Noradrenaline impacts 

computing and memory distribution, allowing the system to react to specific conditions and alerts, 

affecting processing and memory configuration. 

 

Figure 13: NEUCOGAR's mapping of Lovheim's cube of emotions to computing parameters as in [2]. 

On the other hand, the MAMID CA models emotion through affect appraisal [4]. It comprises various 

modules for sensory data processing, attention, situation assessment, expectation generation, affect 

appraisal, goal selection, and action selection. 

The affect appraiser module within MAMID derives the agent's affective state by considering stimulus 

properties and the agent's internal context. It calculates the valence (positive or negative) and represents 

emotions such as anxiety, anger, sadness, and happiness. These resulting affective states influence goal 

and action selection, processing speed, and module capacity within the architecture.  
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III -  Design 

In this chapter, the design of the Behavior Tree (BT) custom engine will be presented, with emphasis on 

the adaptation of two core elements of the BehaviorTree.CPP engine, the Extensible Markup Language 

(XML) parser, and the Blackboard, to enhance their compatibility with the proposed cognitive architecture 

(CA) and adapt their resource usage to an embedded environment. The design of the internal affect 

subsystem of the CA will also be discussed in detail, including an overview of its core elements and the 

interactions between them and the physical world subsystem.  

1. Behavior Tree Engine 

To fine-tune BehaviorTree.CPP's XML parser and Blackboard to this application, it is crucial to first gain 

a deep understanding of how they work. In the following section, both the XML parser and Blackboard 

will be dissected to identify possible areas of improvement. The structure and functionalities of each 

component will be analyzed to determine their strengths and limitations and finally, the changes and 

adaptations that are made to each component will be discussed. 

1.1. BehaviorTree.CPP 

BehaviorTree.CPP [37] is an open-source framework for designing and executing Behavior Trees (BTs). 

The framework is equipped with a flexible and extensible architecture, enabling the creation of custom 

nodes and tasks, making it well-suited for a variety of applications.  

Its engine generates a BT from an XML representation, either manually written or generated by the BT 

IDE, GROOT [38]. The hierarchical structure of XML is particularly well suited for representing BTs, as it 

allows the clear and concise representation of the relationships between the nodes in the tree, making it 

also a convenient and interoperable format for exchanging BT information between different tools and 

platforms. This process is accomplished by the BT factory, which is a critical element in the process of 

generating BTs from an XML representation. It is responsible for creating an instance of the XML parser, 

which generates node objects for each node in the tree and inserts them into the BehaviorTree.CPP 

object. The resulting tree structure is organized into a vector of subtrees, each with a vector of nodes and 

a Blackboard, which enables nodes to communicate and coordinate. This approach enables the 

BehaviorTree.CPP framework to provide, together with GROOT IDE, a flexible, intuitive, and extensible 
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architecture for implementing BTs with custom nodes and tasks. 

XML Representation of Behavior Trees 

To better understand how the XML parser works in generating BTs in the BehaviorTree.CPP framework, 

it is beneficial to first understand how BTs are structured in XML format by the GROOT IDE.  

The XML format used by GROOT IDE is based on a set of predefined tags that represent different types 

of nodes. For example, the <root> tag represents the root node of the BT, while the <sequence> and 

<fallback> tags represent control flow nodes that determine the flow of the BT. 

Default Control flow nodes from the GROOT IDE do not possess any attribute, however, custom Control 

flow nodes and Leaf nodes are defined by a set of attributes that specify their type and behavior. Custom 

nodes of each type can be created and marked with the corresponding tag (Decorator, Control, Action, 

and Condition). In Figure 14, the decorator node is a custom node created in the Decorator type category 

and therefore has the tag Decorator. The main attributes of custom nodes are an ID, which identifies the 

custom node, and a name that provides means to distinguish between different instances of the same 

custom node. 

 

Figure 14: Side-by-side comparison of BT and XML representations. 

As seen in Figure 14, the Root node has a single attribute, main_tree_to_execute, which indicates the 

main tree among the subtrees. This attribute is crucial to determine the primary execution path of the BT 

as all the subtrees are located below the root node. This structure provides an efficient approach to 

representing subtrees and enables the parser to promptly find subtrees when required. As can be seen 

in Figure 15, a subtree has the BehaviorTree tag like the main BT and, when invoked, the Subtree tag 

marks its location in the main BT.  
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Figure 15: Subtree representation in both BT and XML representations. 

XML Parser 

After establishing the structure of BTs in GROOT IDE's XML format, the parser converts the XML 

representation into the BT structure that can be executed by the BehaviorTree.CPP engine. This process 

is achieved using the TinyXML2 library [39], which is a lightweight open-source C++ library for parsing 

and manipulating XML documents. 

 

Figure 16: Flowchart describing the parsing algorithm in BehaviorTree.CPP. 

As seen in the flowchart in Figure 16, to instantiate a BT, the XML Parser class takes a root Blackboard 
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and the first child of the main tree as input. If a main tree ID is not provided, the parser automatically 

selects the ID from the main_tree_to_execute attribute in the first opened document or from the only 

registered tree ID. The parsing process involves recursively creating nodes from the XML elements with 

the root blackboard and the parent node as input. The parser determines whether each node is a subtree 

or a child node. If the node is a regular node, that is, not a subtree, the node is created, and a recursive 

call is made with its first child or the next sibling as the argument. However, if the node is a subtree, a 

new Blackboard is created for that subtree and remapping is performed if necessary. The parser then 

recursively creates the subtree nodes with the new blackboard and the current node as inputs. After this 

process, the BT is organized into a format that can be executed by the BehaviorTree.CPP engine. 

This XML parser also provides detailed error messages when parsing fails, which enables quick detection 

and resolution of parsing errors. The error-handling feature of the parser helps ensure the robustness and 

reliability of the BT. 

Blackboard 

Before delving into the specifics of the Blackboard in the engine BehaviorTree.CPP, it is important to first 

understand how data is passed between Nodes. The key mechanism for this is through ports, which are 

similar to the parameters (inputs) and return values (outputs) of functions. This dataflow mechanism 

between nodes is also used to interface with the Blackboard. to read and write entries through the input 

and output ports, respectively, as illustrated in Figure 17.  

 

Figure 17: Illustration of the Blackboard functionality, adapted from [40]. 

The Blackboard is a key-value store that is used to share typed data between different nodes in a BT 

designed to be thread-safe and managing simultaneous accesses from multiple threads. 

This Blackboard was designed to adhere to the principles of the singleton pattern, ensuring that only one 

instance of the class exists, with a global point of access provided to that instance. The Blackboard class 

relies on the utilization of an STL container, std::unordered_map. This container offers an average time 
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complexity of O(1) for both lookups and writes, making it a scalable solution for rapid and efficient data 

retrieval, independent of the number of elements within the container. 

As shown in the previous section, the main tree and any subtree use different instances of the Blackboard. 

Therefore, it is necessary to explicitly connect the ports of a tree to those of its subtrees. When a key-

value pair is added to the Blackboard, the key is used to map to the corresponding value. However, the 

key can also be remapped to a different key, allowing for more flexibility in the naming conventions used 

for the keys. This enables the integration of different Blackboards from different subtrees that may use 

different naming conventions for the same instance of data. For instance, as seen in Figure 18, the key-

value pair which is stored in one Blackboard with the key "the_answer" has "answer" as the key in the 

subtree that needs to access this data. By using the Blackboard's remapping feature, the key 

"the_answer" can be remapped to "answer", allowing for seamless integration between the two 

Blackboards without the need for modifying the underlying code. 

 

Figure 18: Illustration of port remapping functionality, adapted from [40]. 

1.2. Behavior Tree Custom Engine 

A new BT engine was developed from scratch to increase compatibility with the proposed CA and adapt 

the resource usage to an embedded environment. This granted full control over its functionalities, 

resulting in the improvement of crucial components and the removal of any unnecessary elements. 

For this dissertation, only the design of the XML parser and the Blackboard are of relevance, which will 

be discussed in detail in the following sections. The design of elements such as Action Nodes, Control 

Flow Nodes, Parallel Nodes, and Decorator Nodes is outside of the scope of this dissertation. Reference 

[41] can be consulted for further information on these elements. 

To better comprehend the algorithm of the new XML parser, it is of relevance to first understand the tree 
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structure of the BT custom engine. In contrast to the previous implementation, which aimed to serve as 

a versatile open-source solution for developing BTs, in the BT custom engine, there is no purpose for 

subtrees. It still supports subtrees generated in the GROOT IDE, however, they are directly inserted into 

its tree structure. Therefore, the use of subtrees is primarily intended to enhance the organization and 

simplify the development of the BT within the GROOT IDE. 

In the new tree structure, upon creation, all nodes are inserted into a single node vector. Depending on 

its type, nodes may possess multiple children, and as such, are equipped with a children vector. The 

children vector contains pointers to the corresponding nodes in the node vector, which are typically the 

nodes that follow the parent node. After the creation of the tree structure is complete, the node vector, 

which acts as scaffolding, is destroyed, and a sole pointer to the first node represents the root node and 

the beginning of the tree. In Figure 19, the representation of the BT shown in Figure 15 is used to illustrate 

the deletion of the node vector and the direct insertion of the subtrees into the main tree structure. 

 

Figure 19: Tree structure before (left) and after (right) the removal of the node vector. 

XML Parser 

The main improvement made to the XML parser was replacing the TinyXML2  library with PugiXML [42], 

which yields superior performance and resource utilization. PugiXML’s design philosophy prioritizes 

minimizing memory usage and maximizing parsing speed, making it an optimal choice for embedded 

environments with limited resources. For instance, in the benchmark comparison in [43], PugiXML 

demonstrated significantly lower parsing times over TinyXML2, approximately four times faster, while 

maintaining a lower peak in memory usage, approximately half.  

In addition to the benefits mentioned benefits, further memory optimizations can be achieved with the 

compact mode feature available in the library. This is particularly relevant as the XML BT representation 

is markup-heavy, resulting in a tree structure that can occupy more memory than the document itself. By 

activating the compact mode, the tree structure, on 64-bit architectures, can typically be reduced by a 

factor of approximately five [44]. Therefore, when handling large markup-heavy documents, the utilization 
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of compact mode can make the difference between processing of a tree running completely from RAM 

versus requiring swapping to disk. 

The XML hierarchy representation in PugiXML is structured in a tree format that is convenient for data 

organization. The PugiXML library comprises several node types, with a particular emphasis on 

node_element type which are the content nodes and, in this case, translate to BT nodes. Additionally, the 

PugiXML library provides an effortless means of navigating and searching through the tree structure, 

thereby ensuring that all nodes are readily accessible. The PugiXML representation of the example in 

Figure 15 can be seen in Figure 20. Note that it exclusively displays the node_element type nodes and 

ignores nodes with irrelevant information such as comments and other node types.  

 

Figure 20: PugiXML's representation of Figure 15 example. 

Although the tree structure has been modified to meet the specific requirements of the application at 

hand, the parsing process used in the BehaviorTree.CPP engine, Figure 16, remains unchanged for the 

most part.  

The modified version, illustrated in Figure 21, depicts the simpler algorithm as subtrees are no longer 

mapped under the root node and the existence of a single global Blackboard. This also removes the need 

for Blackboards with scope limited to the subtree and the need for port remapping. The modified algorithm 

upon reaching a subtree node, simply finds the subtree under the root node in the PugiXML’s tree 

structure and recursively calls itself with the subtree node as argument passed in the function call. The 

algorithm will then consider the subtree’s children as regular nodes and insert them in the BT custom 

engine’s tree structure in the place of the subtree node.  
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Figure 21: Flowchart describing the parsing algorithm in Behavior Tree Custom Engine. 

When a node is created, a node of the corresponding type is generated and inserted into the node vector. 

If the new node has a parent (all nodes, except the root node, have parents), the node vector is traversed 

to locate the parent, and a pointer to the new node is added to its children node vector. The primary 

function of the node vector is to expedite the search for the parent node of the node being created, hence 

its deletion at the end of this process. 

Blackboard 

The Blackboard in the BT custom engine has been improved in two main ways. First, as previously 

mentioned, port remapping checks were removed since subtrees are now directly inserted into the main 

tree and a single global Blackboard exists. Hence, the core structure of the storage container has been 

modified to eliminate the need for saving port information for each entry. As a result, instead of each 

entry consisting of a key paired with a construct containing the value and port information, it has been 
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simplified to a basic key-value pair. Second, the synchronization mechanisms have been redesigned to 

fully exploit the multithreading capabilities of STL containers. According to the C++ standard reference 

[45], all const member functions do not require synchronization mechanisms. As long as the lookup 

functions used are const member functions, the only need is to prevent simultaneous reading and writing. 

Therefore, a read/write lock has been implemented, which allows multiple threads to read from the 

Blackboard simultaneously, but only allows a single writer. This works by acquiring the lock with shared 

ownership for read operations and exclusive ownership for write operations, as illustrated in Figure 22. 

This implementation is potentially a considerable performance boost considering that the 

BehaviorTree.CPP’s Blackboard does not allow simultaneous readings. 

  

Figure 22: R/W Mutex locking mechanism. 

Read heavy applications employing R/W locks may cause write operations to starve due to the prolonged 

read lock’s access time. Writer-priority policies are a common solution to this issue however, the 

std::shared_mutex, as explained in its official C++ standard implementation reference [46], lacks reader-

writer priority policies due to an algorithm credited to Alexander Terekhov [47]. This algorithm lets the 

Operating System (OS) decide which thread is the next to acquire the lock without differentiating between 

unique and shared locks. This results in neither reader nor writer starvation. 

2. Cognitive Architecture 

The designed CA consists of a physical world subsystem, an internal affect subsystem and a memory 

model based on the Atkinson-Shiffrin memory model. In this subsection, the design of the internal affect 

subsystem and related memory components is presented, alongside a brief introduction to the physical 

world subsystem and memory components.  
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Although the focus of this dissertation is the internal affect subsystem, it is crucial to first understand the 

physical world subsystem and all its components to fully comprehend the designed internal affect 

subsystem. This is due to the internal affect subsystem being designed to be an extension and, therefore, 

function as a wrapper around the physical world subsystem that can be easily inserted/removed. It is 

important to mention that the provided explanation on the physical world subsystem is very superficial 

and further details are available in reference [41]. 

It is important to emphasize that the CA presented is intentionally kept of low complexity and does not 

adhere to all plausible biological concepts. For instance, memory formation and retrieval are highly 

complex and dynamic processes that involve intricate interactions between various brain regions and 

molecular mechanisms. In contrast, the memory model in this CA may simplify or abstract some of these 

biological complexities for the purpose of proof of concept. Additionally, the time scales and capacity of 

the memory stores in this CA may not be an exact match to the biological counterparts or accepted 

models. 

2.1. Use Case 

A practical application was devised to provide comprehensive validation of the CA, particularly the internal 

affect subsystem. The goal is to enable the agent, steered by the designed CA, to navigate from the 

current to a desired location, by either following a known path or by acquiring directions from the built-in 

map. This required the development of a physical structure to provide its embodiment and of the use 

case environment. The physical structure is equipped with moving capabilities, three sensors – a camera, 

a luminosity sensor, and a decibel sensor – to provide sensory stimuli and another three – two infrared 

sensors and an ultrasound sensor – to prevent collision. Although Validation and Results subsection offers 

a comprehensive explanation of its design, it is important to mention that the embodiment relies on a 

separate control board to handle its movement’s processing. This way, the CA can take advantage of the 

full processing power of the target platform, a Raspberry Pi 4, and simply send I2C commands to the 

control board.  

To reduce the number of variables influencing the use case, the environment is closed, controlled, and 

simplified to a single matrix drawn on the floor in which a character is randomly assigned to each square, 

as illustrated in Figure 23. However, upon validation of this use case, serving as a proof of concept, both 

the CA and the use case can be scaled to encompass higher complexity levels, with higher resemblance 

of real-world scenarios.  
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Figure 23: Use case environment. 

The physical structure is able to move in four directions: up, down, right, and left, based on commands 

received in the control board of the prototype from the CA. These movements are predetermined and 

precisely executed to traverse the appropriate distance required to transition from the central point of one 

reference to another. Using the onboard camera, it detects the letters in the matrix, to know its current 

position, and the luminosity and decibel sensors to compute the emotional score associated with it. It is 

important to highlight that this use case serves as a proof of concept for validation purposes and despite 

relying solely on values from the luminosity and decibel sensors as inputs for the emotional subsystem, 

other sensors can be integrated. 

2.2. Memory Model 

The memory model is based on influential Atkinson-Shiffrin memory model [48]. This model distinguishes 

three memory stores: a sensory register, a short-term store, and a long-term store. As depicted in Figure 

24, the sensory register is a very short-lived store which temporarily holds incoming sensory information 

while it is being initially processed and transferred to the short-term store. The short-term store provides 

a working memory in which manipulations of information may take place on a temporary basis. Finally, 

the long-term store is a permanent repository of information. [49] 

For this architecture, however, the sensory register is referred to as sensory memory (SM), the short-term 

store as short-term memory (STM) and the long-term store as long-term memory (LTM). Additionally, as 

seen in Figure 24, it includes two extra memory storages that are specifically related to the internal affect 

subsystem, namely emotional short-term memory (eSTM) and emotional long-term memory (eLTM). 

These additional memory storages are used to store recent emotional states, to determine the current 

mood, and to store all the experienced emotional states, respectively.  
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Figure 24: Atkinson-Shiffrin memory model (left) and designed memory model (right). 

Memory Stores Structure 

To implement the Sensory Memory (SM), considering it requires a scalable implementation that also 

allows variables of any type to be stored, the Blackboard is used. These aspects are crucial for this type 

of memory to be able to store the large number of different types of outputs from the Sensory Module. 

Information stored in this memory store is raw and is yet to be encoded, and therefore does not yet 

constitute memory elements. 

There are two distinct structures that capture different dimensions of our recollections: physical memory 

elements and emotional memory elements. Physical memory elements can either be references 

(characters within the matrix) or connections (actions and other information necessary to transition from 

one reference to another). References are constituted by a tag that delineates their matrix reference, a 

vector that encompasses all their connections, and the hot index. Each connection retains the tag of its 

target node, pertinent connection-specific details, such as distance, and the hot index.  

Emotional memory elements complement the physical memory elements by incorporating the emotional 

aspect of the stored information. Each element is directly linked to a specific physical memory element, 

through its corresponding tag, and includes an emotional score, which represents the emotional state 

associated with the referenced physical memory. This emotional score adds a layer of subjective and 

affective value to the memory, reflecting the emotional impact or importance attached to the underlying 

physical memory element. 

The STM is designed to be a circular static array of exactly seven elements since, according to George A. 

Miller [50] [51], there is a finite span of immediate memory which is about seven items in length. Due to 

its circular design, the most recent element is tracked to allow the insertion of new elements. Memory 

elements are inserted in the array in the index of the most recent element plus one, as illustrated in 

Figure 25.  
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Figure 25: Insertion of an element in the STM. 

The LTM is designed as a weighted and directed graph, where the edges contain relevant information for 

their connections, and each vertex has a vector of connections that enables bidirectional connections. For 

instance, vertex C can be connected to A, but A might not be connected to C, as shown in Figure 26. 

Considering the use case, edges are references in the matrix and vertices correspond to connections 

between the references. The implementation of the graph in the LTM employs an unordered map, which 

is a scalable container offering constant time complexity irrespective of its size. This quality makes it an 

ideal choice for implementing the LTM's graph structure, enabling efficient storage and retrieval of 

information. 

The ability to save the current state of the LTM between different power cycles and restore a previous 

state without the need for repeated learning or knowledge acquisition is crucial. It leads to significant time 

and effort savings during development and testing, thus the LTM’s graph structure is periodically serialized 

and saved into a binary file. At boot, if a previously saved state is present, this state is loaded, otherwise 

a new graph structure is created. 

 

Figure 26: LTM graph structure. 

Each memory element is assigned a hot index, ranging from 0 to 100, which serves as an indicator of its 

recognition frequency, playing a crucial role in determining the outcome of the retrieval process. Following 

a successful recognition of a memory trace, the probability of its retrieval is computed using a sigmoid 

function, seen in Figure 27, resulting in older, frequent memories being highly likely to be retrieved while 

new memory elements, recently transferred from the STM, possessing a very low probability of retrieval. 

Every occurrence of either association or rehearsal results in an increase of the hot index by a fixed 

amount, although the actual increment takes place during consolidation. This amount differs from 
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references to connections relatively to the total possible quantity for each. Furthermore, when new 

information is introduced to the LTM, it triggers the decay of older memories, decreasing the hot index of 

all existent memory traces by a small, fixed amount. More information on these physical memory stores 

and their interactions can be found in [41]. 

 

Figure 27: Sigmoid function to determine the probability of retrieval. 

Shifting the focus to the emotional memory stores, eSTM and eLTM, they share structural and functional 

similarities with their physical counterparts, the STM and LTM respectively, and could have been designed 

as part of them. However, as previously mentioned, the goal is to create the internal affect subsystem as 

a wrapper to the physical world subsystem. Thus, the emotional memory stores are designed separately 

to facilitate their complete and effortless removal. 

The eSTM is designed as an exact copy of its physical counterpart, however, instead of storing physical 

memory elements, it holds emotional memory elements and, therefore, a numeric representation of the 

emotional state associated with the memory element in the same position in the physical STM. The 

numeric representation of the emotional state is referred to as emotional score.  

 

Figure 28: eSTM structure - mapping elements in eSTM to elements in STM. 

Similarly, the eLTM provides a permanent store for the emotional score associated with a certain memory 

element. However, instead of a graph, the eLTM is designed as a hash map using an unordered map, to 

efficiently map a physical memory element to its emotional counterpart, thus mapping the physical 

memory element to its emotional score. Figure 29, complemented by Figure 26, illustrates this.  
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Figure 29: eLTM structure - mapping memory elements (left) to emotional state (right). 

The emotional score of memories is not fixed in eLTM. Positive emotionally charged memories tend to be 

remembered more positively, a phenomenon known as rosy retrospection. Conversely, negatively 

emotionally charged memories tend to be remembered more negatively, referred to as blue retrospection 

[52]. While neutral memories remain unchanged, the emotional score of positive memories, with an 

emotional score greater than 50, increases according to the sigmoid function shown in Figure 30. 

Similarly, memories with an emotional score lower than 50 decrease following the same function. This 

phenomenon happens whenever new information is incorporated into the eLTM, resembling a process 

akin to the well-known interference theory [53], thereby taking place during consolidation and transfer. 

 

Figure 30: Sigmoid function illustrating the relationship between the decay and the emotional score. 

Given the intention for the eLTM to function as a permanent repository parallel to its physical counterpart, 

the restoration of the corresponding eLTM state becomes imperative whenever an LTM saved state is 

reinstated. To ensure this, the eLTM undergoes periodic serialization into a binary file. Consequently, 

there is the possibility of loading the serialized eLTM file during boot, guaranteeing the consistency and 

persistence of the eLTM in parallel with its physical representation. 

Memory Manipulation 

The management of the stored information involves various memory manipulation processes, as depicted 

in Figure 24, enabling the transfer of information between different memory stores. Focusing on the 

processes in the emotional memory stores, which mirror those of their physical counterparts, the 

processes are: 
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 Encoding – convert sensed data into a memory element that can be stored and processed by the 

memory system. During this process, the emotional score is computed, based on the 

concentration of certain hormones – stored in the Blackboard, this is discussed in detail in 

Internal Affect Subsystem – and associated with the corresponding physical memory element. 

 Rehearsal – maintain relevant information in the eSTM. Due to eSTM having such limited 

capacity, a strategy, such as rehearsal, is required to have the right information available at the 

right time. This process assigns the corresponding memory element as the most recent in eSTM 

and triggers either consolidation or transfer, depending on whether recognition occurs or not. 

 Association - link new information with existing knowledge. During this process, a memory 

element in the eSTM is updated with information from the corresponding memory trace present 

in the eLTM, allowing for the integration of new information with previously stored knowledge. 

The hot index from the corresponding physical memory is employed to determine the weight of 

the existing knowledge, with its range of 0-100 serving as a percentage. This percentage is then 

used to allocate the weight of the remaining percentage to the new information. 

 Consolidation – update existing knowledge with new information. This process involves updating 

the information in the eLTM by incorporating data from the corresponding memory element in 

the eSTM. Similar to association, the hot index from the corresponding physical memory is 

employed to determine the weight of the existing knowledge. 

 Transfer – transfer of information from a memory element in the eSTM to eLTM. During this 

process, the information of a memory element in the eSTM is inserted into a new memory 

element in the eLTM for permanent storage. 

These processes occur when specific conditions are met. The relationships between memory 

manipulation processes are illustrated in the flowcharts in Figure 31 and Figure 32. The encoding process 

initiates whenever new information is detected, and stored in the SM. As illustrated in the flowchart shown 

in Figure 31, if the new information is found encoded in the eSTM, it indicates that it has recently been 

processed or retrieved to the eSTM. In such cases, the information is designated as the most recent in 

eSTM through rehearsal, thus refreshing the information in the short-term memory.  
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Figure 31: Flowchart illustrating the processes new information is subjected to. 

On the other hand, if the information is not encoded in eSTM, it undergoes the encoding process, and 

the eLTM is searched for the presence of a memory trace. If no memory trace is found in the eLTM, it 

suggests that the memory has not yet been transferred from the eSTM. However, if detected, the 

information of the memory present in the eSTM is updated with the corresponding information stored in 

the eLTM. 

 

Figure 32: Flowchart illustrating the relationships between rehearsal, consolidation, and transfer.  

As the flowchart in Figure 32 illustrates, every occurrence of rehearsal triggers either consolidation or 

transfer. Consolidation takes place when, during rehearsal, a memory trace in the eLTM is successfully 

recognized, requiring the memory trace to be updated with the rehearsed information from the eSTM. 

Transfer, on the other hand, occurs if no memory traces are found and, therefore, the information of the 

memory element is transferred to a brand-new memory element in the eLTM, thus creating a memory 

trace. 
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2.3. Subsystems 

The physical world subsystem follows the sensing-processing-acting (SPA) computational model. This 

cycle starts by capturing stimuli from the environment (sensing), deciding how to act based on the 

information gathered (processing) and the current intention and, finally, executing the action scheduled 

by the processing stage (acting). This computational model can be observed in Figure 33, where the 

sensory module performs the sensing of the environment, the scheduling module schedules the next 

action, and the execution module executes the scheduled action.  

Similarly, the internal affect subsystem follows the same SPA computational module. Starts by acquiring 

the sensed data from the sensory memory, which, together with the previous emotional states and the 

emotional state associated with the current memory from the physical world subsystem, will be used to 

determine the emotional state. Much like Clarion’s motivational subsystem, the current emotional state 

is used to determine the drive and, consequently, the intention, influencing the scheduling process. The 

action picked by the scheduler is then evaluated, weighing emotional value into the decision and possibly 

selecting a more pleasant action. 

 

Figure 33: Designed cognitive architecture. 

The physical world subsystem is structured using BTs as they not only provide a visually appealing 

modular representation, while facilitating the parallelization of the different modules, but also enable a 

reactive design approach for the CA. The internal affect subsystem is also structured using BTs, taking 

advantage of the high degree of flexibility and the inherent ease with which BTs facilitate modifications 

and extensions to the CA, to extend the physical world subsystem. The base structure of the CA using 

BTs can be seen in Figure 34 and as expected, it is composed of the senses to provide the sensory 

stimuli, the behavior scheduler, the behavior executer, and the emotional scheduler added by the internal 

affect subsystem.  All these components execute in parallel, therefore, the arrangement of the modules 

in the BT is merely aligned with the SPA model for visual consistency. 
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Figure 34: Base cognitive architecture structured using BTs. 

2.4. Physical World Subsystem 

The BT seen in Figure 35 depicts the final physical world subsystem. The sensory module implements a 

rudimentary version of the sense of sight through the camera present in the physical structure, that 

detects and identifies the characters on each label via an Optical Character Recognition (OCR) algorithm. 

The identified character is stored in the SM as a new reference. Upon detecting a new reference in the 

SM, the information is either encoded into the STM or the corresponding memory element rehearsed, 

following similar flows as depicted in Figure 31 and Figure 32. Then, a random intention is generated 

from all the possible characters in the matrix, which is the intended destination reference, and will 

determine the subsequent action to be taken (Up, Down, Left or Right). To determine this, the shortest 

path to the destination is traced through the memories (references and connections) in the LTM for which 

retrieval successfully has occurred. If a complete path cannot be traced using memories from the LTM, 

the built-in map, which contains all the references, connections, and possible paths, is used. As can be 

understood by reading reference [41], this is intended to emulate the mechanism of learning by being 

told. The action associated with the connection between the current reference and the next reference in 

the shortest path is scheduled for execution. When the execution module detects a new scheduled action, 

it verifies the path in that direction for any obstacles. If there are no obstructions present along the path, 

the action is executed. 
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Figure 35: Final physical world subsystem structured using BTs. 

2.5. Internal Affect Subsystem 

So far, with the physical world subsystem, the CA, although functional, pursues random intentions and is 

incapable of taking contextually appropriate decisions. For instance, it will consistently follow the shortest 

path known, disregarding other factors such as lighting conditions. While a longer path may sometimes 

be faster due to better lighting conditions, it prioritizes the shortest path known regardless. The internal 

affect subsystem plays a crucial role in decision-making by assigning emotional value to memories. This 

enables the system to prioritize certain decisions and make contextually appropriate choices. In the 

specific use case mentioned, the internal affect subsystem determines the quality of each reference it 

encounters and utilizes this information to determine the optimal path towards the destination. It takes 

into account not only the distance but also factors like the quality of the path taken, ensuring a 

comprehensive evaluation of the available options. 

Another important role of the internal affect subsystem is the motivational role, providing an intention for 

every action of the CA. It accomplishes this by determining drives based on the system's current emotional 

state. The emotional state can be categorized into three possibilities: positive, neutral, and negative. A 

positive emotional state, corresponding to an emotional score of above 60, will produce the “Explore” 

drive. This indicates a feeling of confidence and motivation, generating a random unknown reference from 

the map as its intention, which will enable the exploration of the map and further knowledge acquisition. 

On the other hand, a negative emotional state, corresponding to an emotional score of below 40, will 

result in the “Lift mood” drive, which focuses on lifting its current emotional state. To achieve this, the 

intention is changed to a known reference with a highly positive emotional score. Lastly, the “Neutral” 
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drive results from a neutral emotional state and simply maintains the current intention unchanged. 

The current emotional state is determined by the mood, which can be computed from the concentrations 

of two hormones. In this design, an approach similar to Lövheim’s cube of emotions is used alongside a 

few assumptions and simplifications to reduce complexity. Cortisol and serotonin are selected to model  

stress, depression, confidence, and anxiety due to their association with these feelings. Elevated cortisol 

levels are typically related to the physiological response to stress [54], while cortisol can also be linked to 

symptoms of depression [55]. Therefore, cortisol is chosen to represent these two. On the other hand, 

higher levels of serotonin are often associated with a sense of confidence [56], while lower levels can 

contribute to feelings of anxiety [57]. Thus, serotonin is chosen to model confidence and anxiety. These 

assumptions are broad and simplified, considering that the hormone system is complex and not easily 

characterized in such a straightforward manner. However, for the purpose of this proof of concept, they 

are adequate. 

The mood, whether positive, neutral, or negative, is determined by the concentrations of cortisol and 

serotonin, which range from 0 to 100 as shown in Figure 36. It is entirely dependent on the external 

environment and is not stored in memory, as it is computed for each moment in time. 

These hormone concentrations are stored in the Blackboard, and the mood is calculated based on the 

readings from two sensors: decibels and luminosity. The decibel sensor measures the intensity of sound, 

with high values indicating loud noises that increase the concentration of cortisol, resulting in heightened 

stress. Conversely, low decibel values indicate a quiet environment, which reduces the cortisol 

concentration and can lead to feelings of depression. On the other hand, the values of the luminosity 

sensor directly impact serotonin levels. In a well-lit environment, the serotonin levels increase, promoting 

a sense of confidence. Conversely, in a poorly lit environment, serotonin levels decrease, which 

contributes to feelings of anxiety. The values of the sensors are calibrated to the default ambience noise 

and lighting corresponding to neutral hormonal concentrations. 

 

Figure 36: Concentrations of cortisol and serotonin mapped to emotions. 

The mood is determined by the sum of the two concentration values, with a few modifications. When 
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computing the mood, the cortisol’s concentration value is adjusted to range from 0 to 50 and back to 0, 

rather than the standard 0 to 100 range, and the concentration of serotonin is simply divided in half. This 

adjustment broadly results in the following mood categorizations: (1) a positive mood when serotonin 

levels are high and cortisol concentration is neutral, (2) a neutral mood when both hormone 

concentrations are neutral, and (3) a negative mood when cortisol levels are either high or low, 

accompanied by a low concentration of serotonin. 

Whenever a saliency occurs, indicating a persistent change in mood, the emotional state undergoes a 

shift. While the possible emotional states remain the same (positive, neutral, and negative), the current 

emotional state is computed by considering two factors: the current mood and the weighted average of 

emotional states in the eSTM. In the weighted average, the emotional states of more recent memories in 

the eSTM carry greater significance, as they have a stronger impact on the current emotional state. This 

means that the emotional state is influenced not only by the current mood but also by the collective 

influence of recent emotional states weighted by their recency in the eSTM. The weights follow a 

decreasing exponential function, as seen in Figure 37. 

 

Figure 37: Weight distribution if the most recent memory element is index 0 (left) or 3 (right). 

To incorporate the internal affect subsystem, nodes were introduced into the physical world subsystem, 

Figure 35, and some nodes required modification. Since the internal affect subsystem functions as a 

wrapper, these modifications do not disrupt the flow of the physical world subsystem, rather, they provide 

supplementary information for the internal affect subsystem. As the whole BT cannot fit into a single page, 

the design is segmented into 3 parts. The full BT can be consulted in Appendix A. 

As depicted in Figure 38, two action nodes were introduced in the sensorial component of the CA. The 

action node "Measure sound intensity" conducts decibel sensor measurements during each execution 

tick of the BT. Moreover, it generates a signal when a significantly loud noise is detected. On the other 

hand, the action node "Measure light intensity" serves as a supplementary function to the existing sense 

of sight by reading measurements from the luminosity sensor. The readings obtained from these two 

sensors are normalized based on the ambient light or noise levels to correspond to the neutral 



37 

concentration of both cortisol and serotonin. The lowest and highest sensor readings are mapped to the 

minimum and maximum concentrations of these hormones, respectively. The concentrations of the 

hormones are stored in the SM. 

 

Figure 38: Action nodes added in the sensorial component of the cognitive architecture. 

The additions made in the behavior scheduler, as seen in Figure 39, provide the motivational component 

to the CA. The role of these additions is to determine the drive in accordance with the current emotional 

state. This drive will generate an intention so that the decided action aligns with it. 

A new sequence node is added before the existing random intention generator and three nodes are added 

at the left of it, to ensure their execution prior to the intention generation. The two added nodes, the 

condition node “Emotionally stable?” and the action node “Drive selection”, marked in Figure 39, are 

added under a fallback node in this order so that the action node only executes if the condition returns 

failure. The condition checks whether the emotional score is “negative” and if a signal was sent from the 

sensorial component. These scenarios result in a failure return from the condition node leading to the 

“Drive selection” action node execution and the subsequent selection of the adequate drive. The intention 

generator driver, next in the sequence node, then executes and selects an intention based on the current 

drive, instead of a random intention. 
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Figure 39: Additions made to the behavior scheduler of the cognitive architecture. 

Following the motivational component comes the decision-making process. Here, based on the selected 

intention, an action is scheduled either from known knowledge or obtained from the map. This underwent 

modifications so that, instead of outputting a single scheduled action, it would output all the known paths 

to the location either from memory or from the map. This is required so that in the emotional decision 

module all possible paths can be evaluated, weighing in their emotional value.  

The final additions to the CA’s BT compose the emotional scheduling module. This module first executes 

self-sensing to compute its current emotional state and then influences the decision making of the 

physical world subsystem.  

The first action node, “Self sensing”, retrieves the hormone levels from the SM and determines the current 

mood and emotional state, as previously explained at the beginning of this subsection. It subsequently 

updates the memory stores based on the most recent reference in the SM, following the memory 

manipulation processes outlined in the subsection Memory Manipulation. Once the current emotional 

state is calculated, the action node "Influence decision-making" is executed. This node considers all the 

potential paths determined by the physical decision-making process and selects the path that is, in theory, 

expected to result in a higher emotional state.    
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Figure 40: Emotional decision added to the cognitive architecture. 

To accomplish this, as illustrated in Figure 41, a vector of potential paths is utilized. For each path, each 

reference is retrieved, and its corresponding emotional score is added to calculate the total sum for that 

particular path. Subsequently, the total sum is divided by the number of references to determine the 

average score per path. However, it is essential to consider the distance factor to avoid favoring longer 

paths disproportionately. Hence, the average score per path is once again divided by the number of 

references, as longer paths will naturally have more references. This yields the average score per 

reference. The index of the path with the highest average score per reference is saved, and the next action 

from that path is scheduled for execution. 

If the vector of paths provided originates from the LTM and the highest average score per reference falls 

below the threshold value of 25, the path is deemed unsuitable, and the action node returns failure. The 

decorator node positioned above this action node does not adhere to the conventional repeater decorator 

node behavior. This repeater node will trigger a second execution of the action node below only if the 

action node returns failure and the path vector originated from the LTM. This ensures that a new path is 

computed from the map. During computation using paths determined by the map, there is a possibility 

that a reference has never been visited, and therefore does not have an associated emotional score. In 

such cases, a neutral value (50) is assigned to the reference. 
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Figure 41: Flowchart illustrating the emotional decision process. 
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IV -  Implementation 

In this chapter, it is first presented the implementation of the Behavior Tree (BT) custom engine focused 

on the adaptation of the two critical components explored in the Design chapter. The implementation of 

each of the components is reviewed in detail to exhibit the steps taken to achieve the improvements 

discussed in the design. Furthermore, the implementation of the internal affect subsystem of the cognitive 

architecture (CA) is examined alongside the required modifications to the physical world subsystem. 

1. Behavior Tree Custom Engine 

The BT custom engine is entirely implemented in C++, more specifically, C++17 as it is the latest fully 

supported version by g++ at the time of writing this dissertation. The structure of the BT in this engine 

relies heavily on pointers, however, while raw pointers provide a lightweight solution, they require manual 

memory management and can lead to memory leaks, dangling pointers, and other memory-related bugs. 

To address these issues, smart pointers, since C++11, provide automatic memory management through 

the Resource Acquisition Is Initialization (RAII) technique [58], ensuring that resources are properly 

managed and reducing the likelihood of memory-related bugs.  

The execution of the engine requires a BT, and therefore, requires an Extensible Markup Language (XML) 

file as argument. At the very start of the execution, the number of arguments is verified to ensure that, 

besides the name of the program, only one is provided and returns otherwise. As seen in Listing 1, the 

number of arguments must be two, as the name of the program is always passed in argv[0]. 

if(argc != 2){ 
    std::cout << "Expected 1 argument." << std::endl; 
    return(-1); 
}  

Listing 1: Verification on the number of arguments. 

Then, as seen in Listing 2, a smart shared pointer of TreeNodes is declared, which purpose is to point to 

the first node in the BT and, therefore, hold the entrance point and start of the BT. The TreeNode class 

defines the base type of all the nodes in the BT custom engine and is thoroughly explained in [41].  

Another step taken to optimize memory management in the BT generation process is to destroy the parser 

object at the end of its task, which can be accomplished using a scoped block, as illustrated in Listing 2. 

This ensures that the parser object is created, performs its function, and is subsequently destroyed at the 

end of the scope, freeing up memory that is no longer required. Hence, a parser object is created and 
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the name of the XML file, stored in argv[1], is passed to the parser as an argument of the loadTree(). At 

the end of the parsing process, the Root pointer is assigned to the first element of the generated BT.  

//Declare a smart pointer to hold the root node of the tree structure 
std::shared_ptr<TreeNode> Root; 
 
{ 
    XMLParser b_tree;           //Create a X parser object 
    b_tree.loadTree(argv[1]);   //Load the BT into the XML parser 
    Root = b_tree.getTree();    //Assign the root pointer to the first element of the tree structure 
}  

Listing 2: Scoped block to ensure the destruction of the parser object. 

1.1. XML Parser 

In this subsection, the implementation of the XML parser and the steps taken to achieve the designed 

functionalities are presented. To promote code organization and maintainability, the XML parser is 

implemented as a class, the XMLParser class seen in Figure 42. It encapsulates all the details and 

intricacies of the algorithm and provides at its interfaces only two public methods: an input method to 

provide the name of the XML file containing the BT, loadTree(), and an output method to return a reference 

to the first element of the generated BT, getTree().  

 

Figure 42: XMLParser class UML representation. 

The loadTree() method, depicted in Listing 3, starts by checking if the provided file does not exist, in 

which case prints an error message and calls exit() to perform termination procedures and terminate the 

process. However, if the file does exist, the getMainTreeNode() method is called to acquire the node of 

the main tree which is then fed to the nodeIterator() method. This function will perform the algorithm 

discussed in the design phase and presented in Figure 21. 
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void XMLParser::loadTree(const char* xmlFile)  
{ 
    //Confirm that the provided file can be opened before proceeding 
    if(!checkFile(xmlFile)){ 
        std::cout << "File \"" << xmlFile << "\" cannot be opened or does not exist." << std::endl; 
        exit(-1); 
    } 
 
    //Retrieve the first node of the main tree to execute 
    pugi::xml_node main_tree = getMainTreeNode(xmlFile); 
 
    //Construct the tree structure starting from the first node of the main tree to execute 
    nodeIterator(main_tree); 
}  

Listing 3: XMLParser – loadTree() method. 

The inline function checkFile(), shown in Listing 4, is used to confirm the existence of the file and that it 

can be opened for reading. This is achieved by attempting to open the file using the std::ifstream class 

and checking the outcome of the operation. If the operation was successful, the static cast to bool of a 

well-formed std::basic_ios object, which is the base class of std::ifstream class, results in the value true. 

Otherwise, the failbit flag in the stream state will be set and the static cast will result in the value false. 

This is a very simple and efficient way of checking if a file can be opened, however, it does not provide 

any information on the specific reason why the file could not be opened. For instance, insufficient read 

privileges or sharing violation are two different reasons for the constructor of std::ifstream to fail, but for 

this application it is only important to know whether the file can be opened or not, and not the specific 

reason for the failure. 

inline bool checkFile(const char *file_name) { 
    //Attempt to open file_name  
    //return the result of the static cast to bool of the constructed std::ios_basic object  
    return static_cast<bool>(std::ifstream(file_name)); 
}  

Listing 4: checkFile() function. 

To acquire the node of the main tree, which holds the first node of the main tree as its child, the method 

getMainTreeNode() uses the following content-based traversal functions provided by the PugiXML library: 

 load_file() - destroys any existing document tree and attempts to load a new tree from the 

specified file; 

 child()/attribute() - returns the first child/attribute with the specified name; 

 find_child_by_attribute() - returns the first child node with the specified attribute and value.  

The method, presented in Listing 5, starts by loading the XML file into the PugiXML’s document structure 

using the function load_file(). The return value is then checked for errors, in which case an error message 

is displayed, and exit() is called to perform termination procedures and terminate the process.  Upon a 

successful loading of the BT, the root node is first acquired by invoking the method child() on the 
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document with root as its argument. Then, the name of the main tree is retrieved by obtaining the value 

of the attribute main_tree_to_execute in the root node. This name, as explained in the Design chapter, 

is used to distinguish the main tree from the subtrees. Having the name of the main tree, the next step 

is to find the node which has the name of the tree as the value of its attribute ID. To accomplish this, the 

method find_child_by_attribute() is invoked with ID and the name of the main tree as arguments. Finally, 

the desired node is returned to the callee. 

pugi::xml_node XMLParser::getMainTreeNode(const char* xmlFile) { 
    //Load XML document 
    if (!_doc.load_file(xmlFile)) { 
        std::cout << "Failed loading file: " << xmlFile << std::endl; 
        exit(-1); 
    } 
 
    //Get root node 
    pugi::xml_node root_node = _doc.child("root");  
 
    //Get ID of the main tree to execute 
    std::string maintree = root_node.attribute("main_tree_to_execute").value(); 
    const char* maintree_c = maintree.c_str(); 
 
    //Get the node of the main tree to execute  
    pugi::xml_node maintree_node = root_node.find_child_by_attribute("ID", maintree_c);  
    return maintree_node; 
}  

Listing 5: XMLParser – getMainTreeNode() method. 

The method presented in Listing 6, as implied by its name, iterates through all the nodes bellow the 

provided node, recursively. It guarantees that the parseXMLNode() method, Listing 7, is called for each 

node and therefore the corresponding node object is created. It starts by declaring and initializing an 

iterator that will iterate the received node’s direct children. However, for each child that also has children, 

the method will execute a recursive call with the current node as argument. This process will repeat until 

a leaf node, i.e., a node without children, is found, which is the recursion break condition.  

For each node, certain information is collected such as its node type, name, ID, and its parent’s name 

and ID. This information is then used to create the corresponding node object by passing it as argument 

to the parseXMLNode() method. Then, as discussed in the Design phase, if the node is a Subtree tag, the 

corresponding Subtree must be located and inserted into the primary tree structure. To achieve this, the 

attributes of the detected Subtree tag node are iterated until the attribute ID is found and its value 

obtained. This ID is later used as argument in the function find_child_by_attribute() to acquire the 

corresponding node object, which in this context, is the first child of the Subtree. The method is then 

called with the first child of the Subtree as the argument, and subsequently, iterate through all its children. 

In contrast, for all the other node types, the method parseXMLNode() is called to create the node object, 

and if the current node still has children, the current node is passed as argument to the recursive call. 
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void XMLParser::nodeIterator(pugi::xml_node node)  
{ 
    //Iterate node's children 
    for(pugi::xml_node_iterator it = node.begin(); it != node.end(); ++it) 
    { 
        //Collect curernt node's relevant information 
        std::string node_type = it->name(); 
        std::string node_name = it->attribute("name").value(); 
        std::string node_id = it->attribute("ID").value(); 
        std::string parent_name = it->parent().attribute("name").value(); 
        std::string parent_id = it->parent().name(); 
 
        //Determine if current node is a Subtree    
        if(node_type == "SubTree" ){ 
            //Iterate current node's attributes and search for ID attribute 
           for(pugi::xml_attribute_iterator ai = it->attributes_begin(); ai != it->attributes_end(); ++ai) 
           { 
              std::string attr_name = ai->name(); 
              if (attr_name == "ID")  
              {    
                  //Retrieve the ID of the Subtree and search for the Subtree under the root node 
                  std::string subtree_id = ai->value(); 
                  const char* st_id_c = subtree_id.c_str(); 
                  pugi::xml_node st_node = _doc.child("root").find_child_by_attribute("ID", st_id_c); 
                   
                  //recursively call itself with the first node of the Subtree as argument 
                  nodeIterator(st_node); 
              } 
           } 
        } 
        //For all the other nodes provide required node information to construct the node object 
        else parseXMLNode(node_name, node_id, parent_name, parent_id); 
        //Recursively call itself with the current node as argument 
        if (!it->empty()) nodeIterator(*it); 
    } 
}  

Listing 6: XMLParser – nodeIterator() method. 

The method parseXMLNode(), as depicted in Listing 7, is responsible for creating the corresponding node 

in the parsing process. It does so by evaluating the ID of the node within a switch statement, constructing 

the appropriate node object, and assigning it to a previously declared shared pointer. Subsequently, the 

shared pointer, that now holds the newly created node, is inserted into the scaffolding node vector. This 

vector is referred to as "scaffolding" as its sole purpose is to facilitate the search for the parent node, and 

it is destroyed at the conclusion of the parsing process when the parsing object goes out of scope, as 

discussed in the Design section. 

To locate the parent node in the scaffolding node vector, the parent node's name and ID, received from 

the callee, are utilized. Once the parent node is identified, the newly created node is added to the parent 

node's children vector. However, this requires the use of a dynamic_pointer_cast in order to access the 

addChild() method, as the pointers being iterated are of the base class type and this method is exclusive 

to the derived class ControlFlowNode. This method is not part of the base class as not all nodes in a BT 

can have children, and thus it is not a member of the base class. It is worth noting that the decorator 

node is a special case, as it can only have a single child. Therefore, instead of adding the node to its 

children vector, it simply maintains a pointer to its child node. 
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void XMLParser::parseXMLNode(std::string node_name, std::string node_id,  
                                    std::string parent_name, std::string parent_id) { 
 
    //Declare a smart pointer to hold the node 
    std::shared_ptr<TreeNode> node; 
     
    //Create the corresponding node 
    switch(hash(node_id)){ 
        //Control 
        case "SequenceNode"_: node = std::make_shared<SequenceNode>(node_name); break; 
        case "ParallelNode"_: node = std::make_shared<ParallelNode>(node_name); break; 
        (...) 
 
        //Actions 
        case "SelfSystem"_: node = std::make_shared<A_SelfSystem>(node_name); break; 
        case "SchedEM"_: node = std::make_shared<A_Sched_EM>(node_name); break; 
        (...) 
 
        //Conditions 
        case "NewRef"_: node = std::make_shared<C_Sched_New_Ref>(node_name); break; 
        case "NewAction"_: node = std::make_shared<C_Exec_New_Action>(node_name); break; 
        (...) 
         
        //Decorators 
        case "Repeater"_: node = std::make_shared<D_Repeater>(node_name); break; 
        case "AlwaysSucceed"_: node = std::make_shared<D_Always_Success>(node_name); break; 
        (...) 
    } 
     
    //Insert the node into the scaffolding vector of nodes 
    _node_vector.push_back(node); 
 
    //If the node has a parent, set the node as child for that parent 
    if (!parent_name.empty()) { 
        for (auto it : _node_vector) { 
            if (it->getName() == parent_name) { 
                if(parent_id == "Decorator") 
                    std::dynamic_pointer_cast<SingleChildControlFlowNode>(it)->addChild(node); 
                else std::dynamic_pointer_cast<ControlFlowNode>(it)->addChild(node); 
            } 
        } 
    } 
}  

Listing 7: XMLParser – parseXMLNode() method. 

Prior to C++17, the usage of std::string as a controlling expression in a switch statement was not possible. 

However, with the introduction of constexpr hashing in C++17, std::string is now allowed as a controlling 

expression in switch statements, as seen in Listing 7. By using the keyword constexpr, the hash values 

generated by the hash() function, depicted in Listing 8, are determined at compile-time for the string 

literals used in the case statements of the switch statement. At runtime, when the switch statement is 

executed, the hash value of the input node_id string is computed using the hash() function and its value 

is then used to match against the case labels in the switch statement. This means that the case labels 

are effectively constant expressions that are evaluated at compile-time and the hashing is only performed 

at runtime for the input string, therefore its time complexity can be considered O(1). In contrast, the other 

possible approach, an if/else chain, would require multiple string comparisons at runtime, which, in the 

worst case, has a linear time complexity of O(n), where n is the number of cases.  

The hash() function, in Listing 8, takes a single parameter, data, which is a std::string_view. A 
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std::string_view is a non-owning, read-only view of a string that allows for efficient string manipulation 

without the need for memory allocations or copying. 

The function employs the djb2 hash algorithm created by Daniel J. Bernstein [59]. It is a common hash 

algorithm known for its simplicity and efficiency in providing good distribution and minimal collisions for 

short strings. The function begins by initializing a variable hash with an initial value of 5381. This value 

was picked by the author, as testing showed that it results in fewer collisions and better avalanching. 

Next, the function utilizes a range-based for loop to iterate over each character in the received string view. 

The loop uses a reference to access each character in the string view without making a copy. Inside the 

loop, the hash value is updated using the djb2 hash algorithm by multiplying it by 33 and then adding 

the ASCII value of the character, as shown in [60]. It is important to mention that left-shifting the hash 

value by 5 bits, which is equivalent to multiplying it by 32, and then adding it to the original hash value 

results in a multiplication by 33. 

constexpr uint32_t hash(const std::string_view data) noexcept  
{    
    uint32_t hash = 5381;     
     
    // Iterate through each character in the string view 
    for (const auto &e : data)      
        // Update the hash using the FNV-1a hash algorithm 
        hash = ((hash << 5) + hash) + e;    
 
    return hash;  
}  

Listing 8: hash() function. 

However, as seen in Listing 7, the function hash() is not invoked for each case to perform the compile-

time hashing of its string literals. Instead, a User-Defined Literal (UDL) operator overload, shown in Listing 

9, allows the creation of a user-defined suffix which calls the hash() function. This provides a more intuitive 

and convenient means of computing the hash values from string literals by simply adding an underscore 

to the end of the string. This subtle detail promotes readability and maintainability, as it does visibly 

impact the switch case and makes it appear as if it is working with integral types. 

constexpr inline unsigned int operator "" _(char const * p, size_t) { 
    //Return the hash value calculated by the hash() function  
    return hash(p);  
}  

Listing 9: Overload of the UDL operator ""_. 

1.2. Blackboard 

In this subsection the implementation of the Blackboard is presented alongside the improvements 

https://en.wikipedia.org/wiki/Collision_%28computer_science%29
https://en.wikipedia.org/wiki/Avalanche_effect


48 

discussed in the Design section. The Blackboard is implemented as a black box container which provides 

methods to manipulate its storage, hence its implementation as a class. As seen in its UML class 

representation in Figure 43, its constructor is private to prevent the construction of a different instance of 

the Blackboard, enforcing the singleton pattern. Its public methods provide means to obtain the instance 

of the Blackboard and to insert, retrieve, erase, and check the existence of entries.  

 

Figure 43: Blackboard class UML representation. 

The chosen storage container is an std::unordered_map that maps a key of type std::string to a value of 

type std::any. The utilization of std::unordered_map is justified by its scalability and efficiency in handling 

key-value pair lookup and insertion operations, rendering it a suitable choice for managing unordered 

data. To enhance the flexibility of the Blackboard and enable it to effectively store and manage diverse 

data types, the implementation employs std::any as the value type, which can accommodate single values 

of any copy constructible type. 

In order to enforce the singleton pattern, the constructor is kept private and the public method 

getInstance() is used instead. As depicted in Listing 10, this static function returns a shared pointer to 

the singleton instance of the Blackboard class. If the instance does not exist, it is created using a new 

Blackboard object, which is created only once due to the static storage allocation. Subsequent calls to 

this function will return the same instance of the Blackboard, ensuring that only one instance of the class 

is created and shared across the nodes. 

Although std::make_shared, is a more efficient alternative to new when creating std::shared_ptr objects, 

as it allows for better memory management and performance optimizations, it requires the constructor 

of the class being instantiated to be public. This poses a limitation when creating a singleton instance 

hence, new is used. 
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static std::shared_ptr<Blackboard> getInstance() { 
        // Create a static shared_ptr instance of Blackboard class 
        // Initialized with a new Blackboard object, created only once 
        static std::shared_ptr<Blackboard> instance(new Blackboard()); 
        return instance; 
}  

Listing 10: Blackboard – getInstance() function. 

As discussed during the Design phase, a read/write lock is implemented to synchronize the access to 

the Blackboard. This is achieved by taking advantage of the std::shared_mutex which can be locked using 

two different mechanisms, providing both shared and unique ownership. When using std::lock_guard to 

lock the shared mutex, it acquires exclusive ownership of the mutex, thereby blocking all other threads 

including those attempting to acquire read-only locks, from accessing the shared resource. On the other 

hand, when using std::shared_lock to lock the shared mutex for read-only operations, it allows multiple 

threads to concurrently acquire read locks, enabling efficient concurrent read access to the shared 

resource without blocking other threads. 

Listing 11 shows the aliases read_only_lock and write_lock that are created to provide a simplified and 

intuitive usage of the corresponding locking mechanisms with the std::shared_mutex. These aliases also 

facilitate the readability of the code, making it clearer and more concise when utilizing the shared and 

unique ownership of the mutex for read-only and write operations, respectively. The lock mechanisms 

being used, std::lock_guard and std::shared_lock, are scoped locks that automatically release the mutex 

when control leaves the scope in which the lock object was created, ensuring proper resource 

management. To ensure minimal contention for the mutex and promote efficient concurrent access to 

the shared resource, the scope in which the lock objects are being created is kept as small as possible. 

This allows other threads to acquire the lock as soon as it is no longer needed, minimizing potential 

contention. 

// Define an alias for std::shared_mutex 
using mutex_type = std::shared_mutex; 
// Define an alias for std::shared_lock and std::lock_guard. 
using read_only_lock  = std::shared_lock<mutex_type>; 
using write_lock = std::lock_guard<mutex_type>;  

Listing 11: Alias for mutex and locking mechanisms. 

To determine the existence of an entry, the checkEntry() method is provided. This method, as shown in 

Listing 12, returns a boolean value, true if the entry with the given key exists in the _storage container, 

and false otherwise. It begins by acquiring the mutex with shared ownership to allow concurrent access 

by multiple threads for read operations. Subsequently, the find() member function of the 

std::unordered_map is utilized to search the container for the provided key. The find() function returns 

an iterator to the element with the corresponding key, or an iterator to the element following the last 
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element of the bucket, if no such element is found. The return value is verified, and the method returns 

true if a valid iterator is obtained, and false otherwise, indicating the presence or absence of the element 

in the container, respectively. 

bool Blackboard::checkEntry(std::string key) 
{ 
    // Acquire a read-only lock on the mutex 
    read_only_lock lck (m);  
 
    // Check if the entry exists in the storage 
    if (storage_.find(key) != storage_.end())  
    {  
        return true; // Return true if entry exists 
    } 
 
    return false; // Return false if entry does not exist 
}  

Listing 12: Blackboard – checkEntry() method. 

The setEntry() method, presented in Listing 13, takes a key and a value as arguments, and sets the value 

for the corresponding key in the _storage container. It starts by checking if the entry already exists in the 

container using the previously discussed checkEntry() method. If the entry already exists, it acquires 

exclusive ownership of the mutex with write_lock to ensure exclusive access to the container and then 

updates the value for the key. On the other hand, if the entry does not exist, after acquiring the mutex 

with write_lock it uses the std::unordered_map's member function emplace() to insert a new key-value 

pair into the container. The use of emplace() is preferred over operator[] because it avoids unnecessary 

value copying if the key already exists.  

void Blackboard::setEntry(std::string key, std::any value) 
{ 
    // Check if the entry already exists 
    if(checkEntry(key)) {    
        write_lock lck (m);             // Lock the mutex with exclusive ownership  
        storage_[key] = value;          // Update the value of the existing entry 
    } 
    else { 
        write_lock lck (m);             // Lock the mutex with exclusive ownership  
        storage_.emplace(key, value);   // Add a new entry with the provided key-value pair 
    } 
}  

Listing 13: Blackboard – setEntry() method. 

The getEntry() method, shown in Listing 14, shares similarities with the previously discussed checkEntry() 

method. Both methods acquire shared ownership of the mutex using read_only_lock to enable concurrent 

read access by multiple threads, and both methods use the find() member function of 

std::unordered_map to check for the existence of a key in the _storage container. The key difference is 

the return type. Instead of a boolean type return indicating the existence of a key/value pair, the getEntry() 

method returns the value for the provided key. An exception is thrown if a non-existing entry is requested. 
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std::any Blackboard::getEntry(std::string key)  
{ 
    // Acquire shared ownership of the mutex 
    read_only_lock lck (m); 
 
    // Check if entry exists in the container 
    if (storage_.find(key) != storage_.end()){ //entry exists 
         
        // Return the value associated with the key 
        return storage_[key]; 
    } 
 
    // Throw an exception if entry doesn't exist 
    throw std::logic_error("Entry doesn't exist"); 
}  

Listing 14:  Blackboard – getEntry() method. 

As expected, the return type is std::any and must be casted to the appropriate type using std::any_cast 

when assigned to a variable of its original type. For instance, consider the key/value pair <std::string, 

int>. The value variable, which is of type integer, is stored as std::any in the container and therefore must 

be casted to integer type when retrieved, as seen in Listing 15.  

int value = std::any_cast<int>(blackboard->getEntry("key"));  

Listing 15: Cast of std::any type to its original type. 

2. Cognitive Architecture 

This section focuses on the practical implementation of the memory stores and BTnodes within the 

developed subsystem. This section addresses two key aspects: the implementation of the memory stores 

that were previously discussed in the design phase, and the implementation of the BT nodes integrated 

into the overall CA. By providing insights into the implementation of both the memory stores and BT 

nodes, this section offers a comprehensive understanding of how the CA was translated from the design 

phase to practical implementation. It showcases the technical considerations and decisions made to 

ensure the efficient functioning and cohesive integration of these components with the physical world 

subsystem. 

2.1. Memory Stores 

The design chapter has provided a detailed framework outlining the structure, functionality, and 

integration of these memory stores within the CA. This subsection focuses on elucidating the 

methodologies and mechanisms employed to accomplish the implementation, providing a comprehensive 

understanding of the underlying processes, translating design concepts into tangible, functional 

components in C++.  
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It is important to outline that all mutexes and their corresponding aliases utilized in the memory stores 

remain consistent with the description provided in the previous section, Blackboard. Consequently, to 

avoid redundancy, further elaboration on them will be omitted.  

In accordance with the design outlined in the Memory Model section, each emotional memory element 

needs a tag variable for storing the corresponding physical memory element's tag, as well as a variable 

to store the associated emotional score. Figure 44 depicts the e_memory_t struct, which includes a char-

type variable for the tag, a float-type variable for the emotional score, and a function to handle object 

serialization and deserialization.  

 

Figure 44: e_memory_t UML struct representation. 

eSTM 

The eSTM is implemented as a singleton class, seen in Figure 45, to encompass all the memory 

manipulation processes discussed while ensuring a single instance exists. As a singleton class, the 

constructor is private and a getInstance() method provides an instance, similarly to the one described in 

Listing 10. As seen in the class diagram in Figure 45, the eSTM class has an array of 7 elements, the 

primary storage, a variable, _mem_index, to track the most recent element - as discussed in the Memory 

Model design subsection -  and a shared mutex for synchronization. 

 

Figure 45: eSTM UML class representation. 

The first method depicted in the UML class representation is the isIneSTM() method, illustrated in Listing 

16. This method receives a tag and, after acquiring a read-only lock, iterates through the whole eSTM 
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looking for a match. If a match is found, the index of the corresponding element is returned, otherwise “-

1” is returned to denote no match was found. 

int eSTM::isIneSTM(char tag) 
{ 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (_memory_mutex); 
 
    //iterate whole arrary 
    for(int i = 0; i < 7; ++i) 
    { 
        //return index if the desired memory element tag matches 
        if(tag == _memory[i].tag) return i; 
    } 
    //return -1 to indicate the element was not found 
    return -1; 
}  

Listing 16: eSTM – isIneSTM() method. 

The rehearsal() method implements the rehearsal memory manipulation process discussed in the design 

phase. As illustrated in Listing 17, first an exclusive ownership lock is acquired to prevent data races, 

then the memory element to be rehearsed – to set as the most recent within the eSTM – is saved in a 

backup variable. This allows the element to be restored later after the shifts are completed. The number 

of shifts required is determined by the index of the most recent element and the index of the element to 

be rehearsed. This is achieved by subtracting the index of the element to be rehearsed, index, from the 

index of the most recent element, _mem_index, and then adding the size of the circular memory array 

to ensure a positive or zero result. Taking the modulus of this sum by 7 restricts the value to the range 

of 0 to 6, as the modulus operator wraps the result around if it exceeds the range.  

A loop then executes the determined number of shifts times, shifting the elements within the memory 

array. The variable curr determines the index where the next element will be shifted to, during the 

rehearsal operation. It is calculated considering the starting index, index, and the iteration counter i, 

allowing the target position to be determined for each element to be shifted. The modulus operation 

ensures that the resulting index remains within the valid range for the circular memory array of size 7. 

This ensures the elements are shifted in a circular manner while maintaining their recency order. 

After all the necessary shifts are completed, the previously saved element, backup, is inserted back into 

the memory array at the _mem_index position, making it the most recent element. 
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void eSTM::rehearsal(int index) 
{ 
    //acquire a lock with exclusive ownership 
    write_lock lck (_memory_mutex); 
 
    //save the element to be rehearsed 
    e_memory_t backup = _memory[index]; 
 
    //compute the number of shifts required 
    int it = (_mem_index - index + 7) % 7; 
 
    //iterate the number of shits required 
    for(int i = 0; i < it ; ++i) 
    { 
        //determine the index to where the next element will be shifted to 
        uint8_t curr = (index+i)%7; 
        //shift the curr+1 element to curr 
        _memory[curr] = _memory[(curr+1)%7]; 
    } 
 
    //insert the previously saved element as the most recent 
    _memory[_mem_index] = backup; 
}  

Listing 17: eSTM – rehearsal() method. 

The insertAsRecent() method in Listing 18, as the name suggests, inserts the memory element received 

as argument in the eSTM as the most recent element. To achieve this, the method starts by acquiring 

exclusive ownership of the mutex. It then increments the index _mem_index, which keeps track of the 

most recent memory element, and uses the modulus operator with the array size to ensure it wraps 

around within the valid range of the array. Finally, the received element is inserted in the _mem_index 

position, thus replacing the oldest element, which is transferred to the eLTM. 

void eSTM::insertAsRecent(e_memory_t to_insert) 
{ 
    //acquire a lock with exclusive ownership 
    write_lock lck (_memory_mutex);  
 
    //increment the index keeping track of the most recent element 
    //ensuring the value remains within the size of the array 
    _mem_index = (_mem_index+1) % 7; 
     
  
    //prevent transfer of empty memory elements when eSTM is not full 
    if(memory[mem_index].emotional_score != 0) 
    { 
       //transfer element being removed of eSTM 
       eltm->transfer(memory[mem_index].tag, memory[mem_index]); 
       eltm->decay(); 
    } 
 
    //insert the received element in the _mem_index position – as the most recent 
    _memory[_mem_index] = to_insert; 
}  

Listing 18: eSTM – insertAsRecent() method. 

As discussed in the design chapter, the weighted average emotional score of all the memory elements in 

the eSTM  is required to compute the current emotional state. To achieve this, the method getAverage() 

in Listing 19, uses values taken from the sigmoid function shown in Figure 37 to weight each memory 

element in the eSTM.  
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It starts by acquiring a shared lock on the mutex as it will only perform read operations but still needs to 

prevent concurrent writes. Then, the value of the variable _mem_index is evaluated to determine if the 

eSTM is empty. In which case, the default value for neutral, 50, is returned. 

In the other hand, if the eSTM is not empty, a variable named total_sum is declared and initialized to 0. 

This variable will accumulate the sum of emotional scores multiplied by their corresponding weights. Next, 

the variable it_idx is set to the value of _mem_index, which represents the index of the most recent 

memory element. This variable, it_idx, will be used to iterate through the elements in the memory array 

in an ordered manner, from the most recent to the oldest. Within the subsequent loop, the code iterates 

over all the elements in the eSTM array and, during each iteration, the emotional score of the memory 

element at index correspondent to the index it_idx is multiplied by the corresponding weight from the 

weights array. As it starts from the most recent memory element, it uses the loop index to iterate the 

weight array, which is sorted by recency, starting with the weight correspondent to the most recent 

element. The resulting value is added to the total_sum variable. After calculating the sum for the current 

memory element, it_idx is updated to the next element in a circular manner, going back in recency. 

float weights[7] = {0.3, 0.21, 0.15, 0.12, 0.09, 0.06, 0.06}; 
 
int eSTM::getAverage() 
{ 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (m); 
 
    //_mem_index value bellow 0 indicates an empty eSTM 
    if(_mem_index < 0) return 50; 
 
    //declare and initialize total sum as 0 
    int total_sum = 0; 
    int it_idx = _mem_index; 
 
    //iterate all elements in the eSTM 
    for(int i = 0; i < 7; ++i){ 
        //add each element's emotional score multiplied by its correspondent weight 
        total_sum += _memory[it_idx].emotional_score * weights[i]; 
        //increment the circular index 
        it_idx = (it_idx + (7 - 1)) % 7; 
    } 
 
    //return the summed total 
    return total_sum; 
}  

Listing 19: eSTM – getAverage() method. 

The method getMostRecent(), as the name dictates, simply returns the most recent memory element. As 

the variable _mem_index tracks the most recent memory element, it simply returns the element in index 

_mem_index. Naturally, a read-only lock is acquired to prevent concurrent writes when retrieving the 

memory element. 
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e_memory_t eSTM::getMostRecent() 
{ 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (_memory_mutex); 
     
    //return the most recent memory element by _mem_index 
    return _memory[_mem_index]; 
}  

Listing 20: eSTM – getMostRecent() method. 

eLTM 

The UML class diagram provided in Figure 46 corresponds to the class eLTM and aligns with the 

discussions presented in the Memory Model section in the Design chapter. The main storage container, 

the _graph variable, is an unordered map to provide an efficient and flexible means of accessing memory 

elements from the corresponding physical memory’s tag. It stores pairs of keys and values, where the 

keys are of type char and represent the tag of the corresponding physical memory element, and the 

values are of type e_memory_t, representing the emotional memory element associated with each tag. 

The eLTM class is implemented as a singleton class (see discussion around Listing 10).  

 

Figure 46: eLTM UML class representation. 

To serialize the eLTM, the method save() is used. As seen in Listing 21, it starts by opening a file stream 

for output operations with a flag specifying that the file is treated as a binary file, meaning data is handled 

in a raw byte-by-byte format without any specific text encoding. This mode is suitable for storing non-

textual information or structured data. Additionally, a flag is used to truncate the file if it already exists. 

This operation erases any existing content within the file, ensuring a clean starting point for writing new 

data. This output stream is used to construct a binary archive to serialize the data. Finally, the mutex is 

locked with exclusive ownership and the serialized unordered map is written to the file using the binary 

archive. 
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void eLTM::save() 
{ 
    //Open output stream for binary file 
    std::fstream wf("EM.dat", std::ios::out | std::ios::binary | std::ios::trunc); 
 
    //Create a text output archive from the output stream 
    boost::archive::binary_oarchive os(wf); 
 
    //acquire a lock with exclusive ownership 
    write_lock lck (_graph_mutex); 
 
    //Serialize and write the unordered_map to the file 
    os << _graph; 
}  

Listing 21: eLTM – save() method. 

Similarly, the load() method in Listing 22 opens an input binary file stream and creates a binary input 

archive. This binary input archive is utilized to deserialize data from the file into the unordered map. 

However, before loading the file, a check is performed at the beginning to ensure that a serialized file 

exists and can be opened in the directory. Details on the checkFile() function are discussed in Listing 4. 

void eLTM::load() 
{ 
    //check if the provided file can be opened before proceeding 
    if(checkFile("EM.dat")){  
         
        //open input stream for binary file 
        std::fstream rf("EM.dat", std::ios::in | std::ios::binary);  
         
        //Create a text input archive for deserialization of unordered_map from the input stream 
        boost::archive::binary_iarchive is(rf);  
         
        //load from file to LTM's graph 
        is >> _graph;  
    } 
}  

Listing 22: eLTM – load() method. 

The method transfer(), seen in Listing 23, implements the memory manipulation process transfer. To 

accomplish this, the mutex is locked with exclusive ownership and the received memory element is 

emplaced into the graph structure using the received tag as key. The emplace() member function allows 

the new element to be constructed in-place while avoiding unnecessary copy or move operations, provided 

there are no elements with the provided key in the container. 

void eLTM::transfer(char tag, e_memory_t ememory) 
{ 
    //acquire a lock with exclusive ownership 
    write_lock lck (_graph_mutex); 
 
    //insert the value associated with the key to the eLTM 
    _graph.emplace(tag, ememory); 

}  

Listing 23: eLTM – transfer() method. 

Another memory manipulation process is association. This process links new information, received as 

argument, with existing knowledge in the eLTM. For this, as explained in the Memory Model section and 
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seen in Listing 24, the existing emotional score is weighted by the corresponding hot index in a weighted 

average. The remaining weight is attributed to the new emotional score, received as argument. The 

received memory element is updated and returned.  

e_memory_t eLTM::association(int hot_index, char tag, e_memory_t ememory) 
{ 
    //weight for current emotional_score 
    float trace_weight = (hot_index/100); 
 
    //weight for new emotional score 
    float weight = 1 - trace_weight; 
 
    //emotional score from memory trace 
    int memory_trace = _graph[tag].emotional_score; 
 
    //acquire a lock with exclusive ownership 
    write_lock lck (_graph_mutex); 
 
    //compute weighted average 
    ememory.emotional_score = (memory_trace * trace_weight) + (ememory.emotional_score * weight); 
 
    //return associated memory element 
    return ememory; 
}  

Listing 24: eLTM – association() method. 

Similarly, the consolidation() method depicted in Listing 25 applies the same concept as the association 

method, however, instead of returning the updated memory element it updates the corresponding 

memory element in the eLTM. 

void eLTM::consolidation(int hot_index, char tag, e_memory_t memory){ 
 
     //weight for current emotional_score 
    float trace_weight = (hot_index/100); 
 
    //weight for new emotional score 
    float weight = 1 - trace_weight; 
 
    //emotional score from memory trace 
    int memory_trace = _graph[tag].emotional_score; 
 
    //acquire a lock with exclusive ownership 
    write_lock lck (_graph_mutex); 
 
    //compute the weighted average and update the emotional score in the eLTM 
    graph[tag].emotional_score = (memory_trace*trace_weight) + (memory.emotional_score*new_weight); 
}  

Listing 25: eLTM – consolidation() method. 

The method depicted in Listing 26 implements the decay process. It iterates through all memory elements 

in the unordered map and applies the decay function shown in Figure 30.  

void eLTM::decay() 
{ 
    //iterate the whole graph 
    for(auto &element : _graph) 
        //apply the decay for each memory element's emotional score 
        element.second.emotional_score += (2/(1+exp(-0.2*(element.second.emotional_score-50))))-1; 
}  

Listing 26: eLTM – decay() method. 
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The checkEntry() method, seen in Listing 27, is responsible for checking whether a given tag exists in the 

eLTM and returns a boolean value, indicating the result. To achieve this, after acquiring a read-only lock 

on the mutex, it iterates through all elements in the eLTM. The find() member function of the container 

unordered map returns an iterator to the element with key equivalent to the provided key. If no such 

element is found, past-the-end iterator – same iterator returned by end() -  is returned. This is used to 

determine if the element is present or not and the appropriate boolean value is returned. 

bool eLTM::checkEntry(char tag) 
{ 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (_graph_mutex); 
 
    //iterate through all elements 
    if (_graph.find(tag) != _graph.end()) { 
        return true; 
    } 
    return false; 
}  

Listing 27: eLTM - checkEntry() method. 

Listing 28 depicts the getEScore() method. This method is a simple getter function that returns the 

emotional score associated with the given tag. To be thread-safe and prevent concurrent writes, a read-

only lock is acquired at the beginning. The method then iterates through the elements until the desired 

element is found. If the function is called for a non-existent memory element, it throws an appropriate 

exception to handle the situation. 

float eLTM::getEScore(char tag) 
{ 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (_graph_mutex); 
 
    //iterate through all elements 
    if (_graph.find(tag) != _graph.end()) 
    {  
        //return the emotional score associated with the received tag 
        return _graph[tag].emotional_score; 
    } 
 
    //throw exception if the element does not exist, which should never happen 
    throw std::logic_error("[eLTM] Entry does not exist"); 
}  

Listing 28: eLTM – getEScore() method. 

The getHighestESRef() method, shown in Listing 29, is responsible for returning the reference with the 

highest emotional score. This method is specifically invoked when the current emotional state is 

significantly low, aiming to generate an intention which will lift the mood. It starts by locking the mutex 

with shared ownership. Then, it proceeds to iterate through each memory element in the eLTM. Within 

the loop, if the emotional score of the current reference is greater than the highest_score encountered 

so far, the highest_score variable is updated with the new value and the current reference is assigned to 
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highest_es_ref. The loop continues until all memory elements in eLTM have been processed. After the 

loop finishes, the method returns the reference with the highest emotional score encountered during the 

iteration. 

char eLTM::getHighestESRef() 
{ 
    //variable to store the highest emotional score reference 
    char highest_es_ref; 
 
    //variable to store the highest emotional score 
    int highest_score = 0; 
 
    //acquire a read-only lock on the mutex 
    read_only_lock lck (m_graph); 
 
    //iterate through all memory elements 
    for(auto const& ref : graph) 
    { 
        //check if the current emotional score is higher than the previous highest score 
        if(ref.second.emotional_score > highest_score)  
        { 
            //update the highest score and reference variables 
            highest_score = ref.second.emotional_score;    
            highest_es_ref = ref.first; 
        } 
    } 
 
    //return the reference with the highest emotional score 
    return highest_es_ref; 
}  

Listing 29: eLTM – getHighestESRef() method. 

2.2. Internal Affect Subsystem 

The creation of nodes in the BT engine falls outside the scope of this dissertation, therefore, the creation 

of leaf nodes has not been mentioned thus far. Without delving into excessive details, the key concept to 

understand is that all condition nodes inherit directly from the base class TreeNode, while action nodes 

inherit from the class ActionNode, which itself inherits from the TreeNode class. The TreeNode class has 

an execute() method which must be overridden since it is the method called for each execution tick of the 

BT. The ActionNode class spawns a thread in the constructor, which, when notified by the overridden 

execute() method, invokes the overriden method taskFunction(). The purpose of this method is to execute 

the intended functionality for the action node. Consequently, to be executed, all condition nodes provide 

an overridden execute() method, and all action nodes have an overridden taskFunction() method. 

Measure Sound Intensity and Measure Light Intensity Action Nodes 

The two action nodes added in the sensorial module, "Measure light intensity" and "Measure sound 

intensity" are very similar. Their main difference lies in the ADC configuration, specifically adjusting the 

gain and the channel for reading. To avoid redundancy, only the code from the action node “Measure 
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light intensity” will be shown, along with the configuration details from the "Measure sound intensity" 

node. 

Considering the sensors are connected to the same ADC in different channels, the readings must be 

synchronized to prevent simultaneous access to the ADC with conflicting configurations. As seen in Listing 

30, a flag on the Blackboard is used, which is verified at the start. The value of this flag dictates if the 

action node returns failure or the execution proceeds by setting the flag to false immediately. To configure 

the ADC via I2C, the device driver for the corresponding I2C bus is opened, and the resulting file descriptor 

is stored in a variable. This variable is then used in the ioctl() system call to establish the slave address 

of the ADC.  

void A_ADC_Luminosity::taskFunction() 
{ 
    //check adc synchronization flag 
    if(!std::any_cast<bool>(blackboard->getEntry("adc_sync"))) 
    { 
        //node returns Failure 
        setStatus(NodeStatus::FAILURE, action_pusher);  
        return; 
    } 
    //acquire exclusive ownership of adc by setting flag to false 
    blackboard->setEntry("adc_sync", false); 
 
    int file_descriptor;            //declare variable for file descriptor 
    int addr = ADC_SLAVE_ADDRESS;   //declare and initialize variable with adc slave address 
    char buf[3];                    //declare buffer to send and receive data to and from the adc 
 
    //open the device driver for the I2C bus 
    if((file_descriptor = open("/dev/i2c-1", O_RDWR)) < 0) 
    { 
        //print adequate error message and node returns Failure 
        perror("Failed to open the bus: "); 
        setStatus(NodeStatus::FAILURE, action_pusher);  
        return; 
    } 
 
    //set the ADC slave address 
    if(ioctl(file_descriptor, I2C_SLAVE, addr) < 0) 
    { 
        //print adequate error message and node returns Failure 
        perror("Failed to acquire bus access and/or talk to slave: "); 
        setStatus(NodeStatus::FAILURE, action_pusher);  
        return; 
    } 
//--------------------------------- (...) --------------------------------  

Listing 30: Setup ADC slave I2C address for light and decibel sensors. 

As depicted in Listing 31 and Listing 32, to configure the ADC, first the address of the configuration 

register is sent, followed by the 16-bit desired configuration. The most significant byte (MSB), among 

other functions, allows the configuration of the input multiplexer to select the channel to read from, and 

to program the programmable gain amplifier. As the luminosity sensor is connected to pin A0, the bits 

14:12 are set to 0x04.  
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#define ADC_MUX_LIGHT 0x04 //A0 
#define PGA_FSR_LIGHT 0x01 //4.096V 
//--------------------------------- 
 
//config register 
buf[0] = 0x01;  
     
//bits 15-8 of config register (MSByte) 
buf[1] = 0x81|((ADC_MUX_LIGHT<<4)|(PGA_FSR_LIGHT<<1));  
     
//bits 7-0 of config register (LSByte) 
buf[2] = 0x83; 
 
//send the configuration to the ADC 
if(write(file, buf, 3) != 3) 
{ 
    //print adequate error message and node returns Failure 
    perror("[1] Failed to write to the i2c bus: "); 
    setStatus(NodeStatus::FAILURE, action_pusher);  
    return; 
}  

Listing 31: ADC configuration for luminosity sensor. 

Similarly, for the decibel sensor connected to pin A1, in Listing 32, the same bits are changed to 0x05. 

The programmable gain amplifier is chosen individually for each sensor based on their output voltage. 

This ensures that the values do not reach their maximum limit while still allowing significant and 

measurable changes to be detected. The least significant byte (LSB) is configured with 0x83 for both 

sensors, which corresponds to the default configuration for data rate and comparator mode. 

#define ADC_MUX_SOUND 0x05 //A1 
#define PGA_FSR_SOUND 0x02 //2.048V 
//--------------------------------- 
 
//config register 
buf[0] = 0x01;  
 
//bits 15-8 of config register (MSByte) 
buf[1] = 0x81|((ADC_MUX_SOUND<<4)|(PGA_FSR_SOUND<<1)); 
 
//bits 7-0 of config register (LSByte) 
buf[2] = 0x83; 
 
//send the configuration to the ADC 
if(write(file, buf, 3) != 3) 
{ 
    //print adequate error message and node returns Failure 
    perror("[1] Failed to write to the i2c bus: "); 
    setStatus(NodeStatus::FAILURE, action_pusher);  
    return; 
}  

Listing 32: ADC configuration for decibel sensor. 

According to the ADC datasheet, the conversion time is determined by 1/DR. Assuming the default data 

rate of 128 SPS, the thread needs to be interrupted for 8 milliseconds to allow for the conversion to 

complete. As seen in Listing 33, the thread is interrupted for 9 milliseconds instead to account for possible 

fluctuations. After that, the address of the conversion register, which holds the result of the most recent 

conversion, is transmitted. The result is then read and the MSB and LSB combined into a single value. 
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Since the ADC is 16-bit and can handle negative values, the obtained result is scaled from 0 to 100 by 

multiplying it by 100 and dividing it by 32767 (the range for 15-bit positive values).This value is the 

concentration of the corresponding hormone. Subsequently, the file descriptor is closed, and the 

synchronization flag is set to true, indicating to the other action node that the ADC is available for use. 

//--------------------------------- (...) -------------------------------- 
//wait for conversion 
std::this_thread::sleep_for(std::chrono::milliseconds(9)); 
 
//conversion register 
buf[0] = 0x00; 
 
//send the conversion register address 
if(write(file, buf, 1) != 1) 
{ 
    //print adequate error message and node returns Failure 
    perror("[2] Failed to write to the i2c bus: "); 
    setStatus(NodeStatus::FAILURE, action_pusher);  
    return; 
} 
 
//read the conversion result 
if(read(file, buf, 2) != 2) 
{ 
    //print adequate error message and node returns Failure 
    perror("[3] Failed to read from the i2c bus: "); 
    setStatus(NodeStatus::FAILURE, action_pusher);  
    return; 
} 
 
//combine the two bytes of the conversion result  
int16_t result = (buf[0] << 8) | buf[1]; 
 
//compute hormone concentration 0-100 
float horm_conc = (result*100)/32767;     
 
//close file descriptor  
close(file); 
 
//release ADC 
blackboard->setEntry("adc_sync", true); 
//--------------------------------- (...) --------------------------------  

Listing 33: Read converted value from the ADC and compute hormone concentration. 

As each hormone’s concentration is determined by the readings of the corresponding sensor, the 

hormone concentration is stored as cortisol in the “Measure sound intensity” action node, and as 

serotonin in the “Measure light intensity" action node, as shown in Listing 34 and Listing 35, respectively. 

Both action nodes then return success.

//store cortisol concentration in BB 
blackboard->setEntry("cortisol", horm_conc); 
 
//node returns Success 
setStatus(NodeStatus::SUCCESS, action_pusher);  

Listing 34: Store hormone concentration as cortisol in 

Blackboard.  

//store serotonin concentration in BB 
blackboard->setEntry("serotonin", horm_conc); 
 
//node returns Success 
setStatus(NodeStatus::SUCCESS, action_pusher);  

Listing 35: Store hormone concentration as serotonin in 

Blackboard.  



64 

Emotionally Stable Condition Node 

As previously mentioned, condition nodes inherit directly from the TreeNode base class and, therefore, 

need only the constructor and an overridden execute method. In the constructor for the “Emotionally 

stable?” condition node, seen in Listing 36, the signal and signal handler callback function are set.  

The real-time signal used for communication is SIGRTMIN+7. This signal is transmitted from the device 

driver, which monitors a GPIO pin connected to the decibel sensor. The sensor features a potentiometer 

that allows configuring a threshold. When the decibel level exceeds this threshold, the corresponding pin 

is toggled. At this point, the device driver sends a signal from the kernel space to the user space, indicating 

that the decibel levels have reached a critical level. It should be emphasized that signals in the kernel 

space and user space may have different numbering schemes. For instance, the pthread library uses two 

real-time signals, incrementing SIGRTMIN in the user space. This results in SIGRTMIN’s value 

corresponding to a value of 34 in the user space, while in the kernel space, SIGRTMIN being equal to 32. 

The signal handler simply sets the loud_noise_flag when the defined signal is caught. As signals are 

software interrupts, this flag is defined as volatile to ensure that any changes to its value are immediately 

reflected in memory, preventing any optimization that may lead to inconsistent or incorrect behavior in 

signal handling. For similar reasons, the flag is defined as sig_atomic_t, a type specifically indicated for 

variables that are accessed and modified within signal handlers as it guarantees that read and write 

operations on it are atomic. 

//set signal number considering SIGRTMIN is 34 in userspace 
#define SIG_LOUD_NOISE (SIGRTMIN+7)  
 
//declare and initialize flag for the signal handler 
volatile sig_atomic_t loud_noise_flag = 0; 
 
//signal handler callback function 
void signal_catcher(int signo, siginfo_t *info, void *context){ 
    if(info->si_signo == SIG_LOUD_NOISE) loud_noise_flag = 1; 
} 
 
C_Sched_Safe::C_Sched_Safe(std::string name) : TreeNode (name) 
{ 
    struct sigaction act;            //structure to configure signal and signal handler 
    act.sa_flags = (SA_SIGINFO);     //sigaction (3 arg) is to be used instead of sa_handler (1 arg) 
    act.sa_sigaction = signal_catcher;      //handler function 
    sigaction(SIG_LOUD_NOISE, &act, NULL);  //register signal 
}  

Listing 36: Signal and signal handler configuration. 

The overridden execute() method’s purpose is to determine if the drive must change based on the current 

drive and current emotional state. As depicted in Listing 37, it starts by checking (1) if the loud_noise_flag 

is set, (2) if the emotional score is notably low, and (3) if the current drive is “Lift mood” and the emotional 
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score is reasonably high. In each case, flags are set to indicate the desired drive selection to the "Drive 

selection" action node, which execution is triggered by setting the condition node’s return status as failure. 

If none of these cases verifies, then the return status is success, which prevents a new drive from being 

selected. 

NodeStatus C_Sched_Safe::execute() 
{ 
    //get emotional score and current drive from blackboard 
    float emotional_score = std::any_cast<float>(blackboard->getEntry("emotional_score")); 
    Drives drive = std::any_cast<Drives>(blackboard->getEntry("drive")); 
 
    //loud noise detected 
    if(loud_noise_flag)  
    { 
        loud_noise_flag = 0; 
        blackboard->setEntry("panic", true); 
        blackboard->setEntry("scared", true); 
        setStatus(NodeStatus::FAILURE); 
        return NodeStatus::FAILURE; 
    } 
    //negative emotional state 
    else if(emotional_score < 25.0) 
    { 
        blackboard->setEntry("negative", true); 
        setStatus(NodeStatus::FAILURE); 
        return NodeStatus::FAILURE; 
    } 
    //emotional state has improved 
    else if((drive == Drives::LIFT_MOOD) && (emotional_score > 60)) 
    { 
        blackboard->setEntry("positive", true); 
        setStatus(NodeStatus::FAILURE); 
        return NodeStatus::FAILURE; 
    } 
    //emotionally stable 
    else 
    { 
        setStatus(NodeStatus::SUCCESS); 
        return NodeStatus::SUCCESS; 
    } 
}  

Listing 37: execute() method of Emotionally stable condition node. 

Drive Selection Action Node 

The taskFunction() of this action node, as seen in Listing 38, selects a new drive based on the flags set 

by the previous condition node. It retrieves the flags from the Blackboard and sets the appropriate drive 

based on them. If the panic flag is set, the appropriate drive is to flee and avoid danger. In the case of a 

negative emotional state, the drive is changed to lift mood. On the other hand, if the emotional state has 

improved from negative to positive or is already positive, the drive is changed to explore as it feels 

confident to do so. Then, it stores the new drive in the Blackboard and sets a flag to signal that a new 

drive has been selected. This flag will trigger the calculation of a new intention in the "Generate new 

intention" action node based on the new drive. 
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void A_Sched_Danger::taskFunction() 
{ 
    //retrieve flags from blackboard 
    bool panic = std::any_cast<bool>(blackboard->getEntry("panic")); 
    bool negative = std::any_cast<bool>(blackboard->getEntry("negative")); 
    bool positive = std::any_cast<bool>(blackboard->getEntry("positive")); 
    Drives drive; 
 
    //loud noise? 
    if(panic)  
    { 
        blackboard->setEntry("panic", false); 
        drive = Drives::AVOID_DANGER; 
    } 
    //negative mood? 
    else if(negative) 
    { 
        blackboard->setEntry("negative", false); 
        drive = Drives::LIFT_MOOD; 
    } 
    //has mood improved? 
    else if(positive)  
    { 
        blackboard->setEntry("positive", false); 
        drive = Drives::EXPLORE; 
    } 
    //emotionally stable 
    else drive = Drives::EXPLORE; 
 
    //set new drive in blackboard 
    blackboard->setEntry("drive", drive); 
 
    //set flag to signal a new drive was set 
    blackboard->setEntry("new_drive", true); 
 
    setStatus(NodeStatus::SUCCESS, action_pusher); 
}  

Listing 38: taskFunction() method of Drive selection action node.  

Get Next Action from LTM and Get Next Action from Map Action Nodes 

As mentioned in the design chapter, some changes were implemented in these action nodes. However, 

these modifications were made with caution to ensure that the physical world subsystem remains 

operational even without the internal affect subsystem. The primary modification involves storing a vector 

containing all possible paths in the blackboard, in addition to scheduling the action to be performed. 

Thus, in Listing 39 the findShortestPath() method now saves not only the shortest path but also all paths 

that lead to the desired reference. These paths are stored in a vector of possible paths, along with their 

respective distances. The vector of paths is then sorted by distance and stored in the Blackboard. 

//--------------------------------- (...) -------------------------------- 
//found the destination? 
if(graph[start_node].connections[i].destination == dest) { 
  //save reference in path vector  
  it_path.push_back(std::make_pair(graph[start_node].connections[i].destination,   
                                                        graph[start_node].connections[i].action)); 
  //sum distance 
  it_distance += graph[start_node].connections[i].distance; 
                 
  //save path 
  paths.push_back(path_t(it_path, it_distance)); 
}  
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//destination not yet found 
else  
{                                                                          
  //save reference in path vector 
  it_path.push_back(std::make_pair(graph[start_node].connections[i].destination,  
                                                        graph[start_node].connections[i].action)); 
  //sum distance 
  it_distance += graph[start_node].connections[i].distance; 
 
  //recursive call to continue searching for destination       
  findShortestPath(graph[start_node].connections[i].destination, it_path, it_distance, dest); 
} 
 
//path didnt lead to destination, remove reference from vector and subtract distance 
it_path.pop_back(); 
it_distance -= graph[start_node].connections[i].distance; 
//--------------------------------- (...) --------------------------------  

Listing 39: Modification made to the method findShortestPath(). 

Self Sensing Action Node 

The taskFunction() of the "Self sensing" action node is responsible for computing the mood in conjunction 

with the current emotional state, represented by its emotional score. In the constructor shown in Listing 

40 instances of the memory stores are obtained, namely the eLTM, eSTM, and LTM. 

A_SelfSystem::A_SelfSystem(std::string name) : ActionNode(name) 
{         
    eltm = eLTM::getInstance();  //obtain instance of eLTM 
    ltm = LTM::getInstance();    //obtain instance of LTM 
    estm = eSTM::getInstance();  //obtain instance of eSTM 
};  

Listing 40: Constructor of the Self sensing action node. 

As discussed during the design phase, the mood is computed based on the concentrations of serotonin 

and cortisol, thus they are acquired from the Blackboard. Then, the emotional score is determined by 

combining the obtained average of emotional scores from the memory elements present in the eSTM 

with the current mood, as seen in Listing 41. As a loud noise triggers a feeling of insecurity, it heavily 

affects the current emotional state. To implement this, if the flag scared is set, the emotional score is 

decreased by 25.  

The function updateMemory() is then called to process the new information using the memory 

manipulation mechanisms with most recent emotional score. At the end, the final emotional score is 

updated on the Blackboard. 

void A_SelfSystem::taskFunction()  
{ 
  //Self sense 
  float serotonin = std::any_cast<float>(blackboard->getEntry("serotonin")); 
  float cortisol = std::any_cast<float>(blackboard->getEntry("cortisol")); 
 
  //compute mood and average emotional score present in eSTM 
  mood = ((cortisol>50) ? (100-cortisol) : cortisol ) + (serotonin/2); 
  int average_es = estm->getAverage();  
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  //compute emotional score 
  emotional_score = (mood+average_es)/2; 
 
  //loud noise heavily affects the current emotional state 
  if(std::any_cast<bool>(blackboard->getEntry("scared"))) { 
      blackboard->setEntry("scared", false); 
      (emotional_score > 25) ? emotional_score -= 25 : 0; 
  } 
 
  //update memory stores 
  updateMemmory(); 
     
  //save current emotional score in blackboard for other nodes to access 
  blackboard->setEntry("emotional_score", emotional_score); 
 
  setStatus(NodeStatus::SUCCESS, action_pusher); 
} 
  

Listing 41: Mood and emotional score computation. 

The updateMemory() function can be divided into two sections based on whether the new information in 

the SM is present in the eSTM or not. As seen in Listing 42, it begins by retrieving the most recent 

reference in the sensory memory and searching for it in the eSTM. If the reference is found in the eSTM, 

its index is returned, and rehearsal is performed, making this memory element the most recent in the 

eSTM. Subsequently, the eLTM is searched for a match with this memory element. If a match is found, 

consolidation takes place, otherwise transfer occurs. Decay affects the memory elements in the eLTM 

after both consolidation and transfer processes. 

void A_SelfSystem::updateMemmory(){     
 
    //obtain most recent reference from SM 
    char reference = std::any_cast<char>(blackboard->getEntry("reference")); 
 
    //search for the reference in eSTM 
    int index = estm->isIneSTM(reference); 
 
    if( index >= 0){ 
        //rehearsal 
        estm->rehearsal(index); 
        e_memory_t ememory = estm->getMostRecent(); 
 
        //recognition? 
        if(eltm->checkEntry(reference)) 
        { 
            //get most recent reference's hot index 
            reference_t c_reference = ltm->getReference(reference); 
            int hot_index = c_reference.hot_index; 
 
            //consolidation 
            eltm->consolidation(hot_index, reference, ememory); 
            eltm->decay(); 
        } 
        else 
        { 
            //transfer 
            eltm->transfer(reference, ememory); 
            eltm->decay(); 
        } 
    } 
//--------------------------------- (...) -------------------------------- 
 

 

Listing 42: First section of the updateMemory() function. 
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On the other hand, as shown in Listing 43, if the reference is not found in the eSTM, encoding takes place 

using the current emotional score. Using its tag, the memory element is searched in the eLTM and, if the 

element is found in the eLTM, it indicates that the previous knowledge must be incorporated in the newly 

encoded memory element, thus association is performed. Regardless of association occurring or not, the 

newly encoded element is inserted into the eSTM as the most recent memory element. 

//--------------------------------- (...) -------------------------------- 
    else  
    { 
        //encoding 
        e_memory_t ememory = { .tag = reference, .emotional_score = emotional_score}; 
         
        //recognition? 
        if(eltm->checkEntry(ememory.tag)) 
        { 
            //get most recent reference's hot index 
            reference_t c_reference = ltm->getReference(reference); 
            int hot_index = c_reference.hot_index; 
             
            //association 
            ememory = eltm->association(hot_index, reference, ememory); 
             
            //set new emotional state 
            emotional_score = ememory.emotional_score;    
        } 
 
        //insert as recent in eSTM 
        estm->insertAsRecent(ememory); 
    } 
}  

Listing 43:  Second section of the updateMemory() function. 

Influence Decision Making Action Node 

The method taskFunction() of this action node, sectioned in Listing 44, Listing 45 and Listing 46, retrieves 

a vector of possible paths from the Blackboard. It first attempts to fetch the vector of possible paths 

originated from the LTM. If this vector is empty, it indicates the physical world subsystem could not put 

a path together to the destination using references in the LTM and, therefore, the vector of paths 

originated from the map must be used instead. 

void A_Sched_EM::taskFunction()  
{ 
  //Get vector of possible paths from BB orginated from LTM 
  std::vector<path_t> paths = std::any_cast<std::vector<path_t>>(blackboard->getEntry("paths_ltm")); 
 
  //or from MAP 
  if((std::any_cast<bool>(blackboard->getEntry("es_threshold"))) || (paths.empty())) 
     paths = std::any_cast<std::vector<path_t>>(blackboard->getEntry("paths_map")); 
//--------------------------------- (...) --------------------------------  

Listing 44: Retrieval of possible paths from the Blackboard. 

In the next section of the function, Listing 45, first, some variables are initialized to hold the highest index 

path, its corresponding emotional score, and the average score of the best path. Then, a loop iterates 
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over all the paths contained in the paths vector. Within this loop another loop is nested to iterate through 

each reference within the current path. For each reference, it checks if there is an associated emotional 

score in the eLTM. If a score exists, it is added to the score_sum variable, which represents the sum of 

emotional scores for the current path, otherwise a neutral score of 50 is assigned. After processing all 

the references in the path, the average emotional score for the path is calculated by dividing the sum of 

the emotional scores of the path by the number of references. Additionally, it computes the emotional 

score per reference by dividing the average emotional score for the path by the number of references in 

the path, thus taking the distance factor into account. 

At this point, the score_sum variable is reset to 0 in preparation for the next iteration. The current 

emotional score per reference is then checked if it is greater than the current highest emotional score per 

reference. If this condition is true, the highest_score is updated with the new value, and the index of the 

current path is assigned to highest_idx, to keep track of the highest scoring path in the vector. This 

process continues until all paths have been iterated through. At the end, the variables highest_idx and 

highest_score will contain the index and emotional score, respectively, of the path with the highest score 

per reference. 

//--------------------------------- (...) -------------------------------- 
    //variables to store highest index path, its emotional score and average 
    int highest_idx = 0;  
    float highest_score = -1, best_path_average_score = 0;  
 
    //iterate all paths 
    for(int i = 0; i < paths.size(); ++i) 
    {    
        int j, score_sum = 0; 
        float path_average_score = 0; 
 
        //iterate all the references in the path 
        for(j = 0; j < paths[i].path.size(); ++j) 
        { 
            char reference = paths[i].path[j].first; 
            //retrieve the corresponding emotional score or attribute a neutral score 
            score_sum += (eltm->checkEntry(reference)) ? eltm->getEScore(reference) : 50; 
        } 
         
        //Compute the average for the path and then for each reference 
        path_average_score = (score_sum/j); 
        float score_per_ref = path_average_score/j; 
        score_sum = 0; 
 
        //keep track of the highest average score and its index 
        if(score_per_ref > highest_score) { 
            highest_score = score_per_ref; 
            highest_idx = i; 
        } 
    }   
//--------------------------------- (...) --------------------------------  

Listing 45: Determining of the best path from the vector of possible paths. 

The final section of the function, shown in Listing 46, starts by determining if the average score of the 

selected path is above a certain threshold. If not the case, it means that this path may negatively affect 
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the emotional state. Therefore, the action returns failure and a flag is set to signal the occurrence. This 

flag will indicate the decorator node above to re-execute the action node, and, as seen in Listing 44, at 

this instant,  the possible paths generated by the map will be used to calculate the best path. 

If the path is considered good, the action is retrieved from the first element of the selected path and 

scheduled for execution in the Blackboard.  

//--------------------------------- (...) -------------------------------- 
    //determine if the average score of the best path is above the threshold 
    if((best_path_average_score<25) && !(std::any_cast<bool>(blackboard->getEntry("es_threshold")))) 
    { 
        //set the flag to trigger path selection from map 

blackboard->setEntry("es_threshold", true); 
        setStatus(NodeStatus::FAILURE, action_pusher); 
        return; 
    } 
 
    //get next action from selected path and update on BB 
    Actions next_action = paths[highest_idx].path[0].second; 
    blackboard->setEntry("next_action", next_action); 
     
    //new action available and path’s average score is above the threshold 
    blackboard->setEntry("new_action", true); 
    blackboard->setEntry("es_threshold", false); 
 
    setStatus(NodeStatus::SUCCESS, action_pusher); 
} 
 

 

Listing 46: Final decision on the best path and scheduling of the next action to take.  
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V -  Validation and Results 

This chapter presents the testing and validation procedures conducted to assess the performance and 

functionality of the developed cognitive architecture (CA), with a particular focus on the internal affect 

subsystem. The primary objective of the testing phase is to not only evaluate its influence in the decision 

making, but to also validate the memory manipulation processes and the generation of intentions within 

the CA The internal affect subsystem plays a pivotal role in these aspects by assigning emotional values 

to memories, enabling the system to prioritize decisions and make contextually appropriate choices. By 

evaluating the performance of the internal affect subsystem, the aim is to demonstrate its effectiveness 

in enhancing decision-making capabilities within the CA. 

To conduct the tests, the complete CA was first structured using the GROOT IDE, resulting in an Extensible 

Markup Language (XML) file that can be found in Appendix C. This XML file was then loaded into the BT 

engine, enabling the execution of the CA. A BT monitoring tool was utilized to facilitate the validation tests 

and ensure accurate monitoring and tracking of the CA's execution, which through a ZeroMQ connection 

with the BT engine, allowed real-time tracking of the nodes return status. The complete CA being 

monitored in this tool may be consulted in Appendix A, and more information on the BT monitoring tool 

can be found in [41]. 

1. Physical Structure 

To facilitate the validation process, a physical structure was used to embody the CA. As this prototype 

has been equipped with object detection and mobility capabilities, specifically designed to validate the 

physical world subsystem [41], it is deemed well-suited to validate the internal affect subsystem with 

minimal modifications.  

The Raspberry Pi 4 serves as the primary processing unit to host the CA. To ensure optimal performance, 

the BT engine operates within a customized Buildroot [61] image specifically tailored for this application. 

It is equipped with the necessary packages and libraries to provide essential features for the prototype 

such as, OpenCV, I2C, Wi-Fi, and SSH, enabling image processing, wired communication and wireless 

control of the prototype. For more detailed information, refer to [38]. 

To ensure the CA takes advantage of the full processing power of the target platform, the physical 

structure is controlled by a separate control board, a Romi32U4. It performs tasks such as powering the 
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Raspberry Pi, acquiring data from the wheel quadrature encoders, controlling the wheel motors, and 

correcting possible deviations. The control board establishes a direct I2C connection with the Raspberry 

Pi, enabling it to receive movement commands from the execution module. These commands are 

executed by the control board, resulting in the appropriate rotations and forward movements, taking into 

account the standardized distance of 24cm between references within the environment. Figure 47 depicts 

a photograph of the prototype within the environment. 

To validate the internal affect subsystem, the prototype, seen in Figure 48 and Appendix A, incorporates 

two additional sensors: a decibel sensor and a luminosity sensor. These sensors play a crucial role in 

providing the necessary data for the internal affect subsystem to compute hormonal concentrations. Since 

these sensors, SparkFun LMV324 and Light Dependent Resistor (LDR) module, operate on analog signals, 

an Analog-to-Digital Converter (ADC) is essential to convert the analog inputs from these sensors into valid 

digital inputs. The 16-bit ADC used in this setup, ADS1115 JOY-IT KY-053, facilitates the configuration 

and reading of converted data through I2C communication. It is worth noting that as the Buildroot image 

already includes the I2C package, which is necessary for communication with the control board, no 

additional packages were added. The complete list of components may be consulted in Appendix B.

 

Figure 47: Environment used in the validation tests. 

 

Figure 48: Prototype used in the validation tests. 

2. Memory Manipulation Processes 

To evaluate and validate the memory manipulation processes within the CA, a series of tests were 

conducted. These tests aimed to access the encoding, rehearsal, association, consolidation, and transfer 

processes in the emotional memory stores (eSTM and eLTM). Put differently, the goal was to determine 

if the internal affect subsystem could encode new information, maintain relevant information in the eSTM, 

link new information with existing knowledge, update existing knowledge with new information, and 

transfer information from the eSTM to the eLTM. 

To conduct these tests a predetermined itinerary was set, as depicted in Figure 49. This was 
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accomplished by setting the starting reference of the agent to 'P' and explicitly coding its intention to first 

go to reference 'A' and then to reference 'P'. This sequence of references would cause the agent to repeat 

certain references, thereby triggering multiple memory manipulation processes. As a result, this test 

scenario was considered appropriate. Due to the absence of a more efficient method for displaying the 

contents of data variables and structures, the relevant data is printed via wireless SSH (using Wi-Fi) for 

each SPA cycle, and screenshots are provided accordingly.  

 
Figure 49: Testing itinerary to validate memory manipulation processes. 

Rehearsal 

To validate the rehearsal process, the eSTM was printed in every SPA cycle. The most recent memory 

element was printed first, with the corresponding integer on the left representing its position in the array. 

As shown in Figure 49, the agent was positioned in the reference 'P', and its intention is to reach the 

reference 'A'. As the agent progresses through the references, each new reference is added as the most 

recent element in the eSTM. Rehearsal does not occur until a reference that already exists in the eSTM 

is encountered. When the agent reaches the reference 'A', its intention changes to reference 'P',  and the 

agent starts revisiting references that are already in the eSTM, thus rehearsal is triggered. In Figure 50 

(middle), the reference 'D' is rehearsed and becomes the most recent element. Similarly, in the same 

figure (right), the reference 'I', which was the third most recent, reappears and undergoes rehearsal, 

becoming the most recent element. It is important to mention that Figure 50, and subsequent figures, 

are divided into sections but represent a sequence. 

 

Figure 50: Rehearsal validation. 
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Association 

To validate the association process, the same itinerary was utilized. As the agent begins to move and 

references are added to the eSTM, they are searched in the eLTM. In Figure 51 (left), when the agent is 

located at the starting reference 'P', the memory trace associated with that reference has an emotional 

score of 50.0, and the corresponding physical memory possesses a hot index of 22. The resulting 

emotional score is determined, as discussed in the Design chapter, by the weighted average between the 

memory trace and the current emotional state. Being the weight for the memory trace given by the hot 

index. Similarly, when the agent progresses to the next reference, 'C', it is encoded and inserted into the 

eSTM, triggering an association.   

 

Figure 51: Association validation. 

Consolidation 

As the consolidation process occurs after rehearsal if a memory trace is present, the conditions for the 

test are similar to those used to validate rehearsal. When this situation arises, the physical hot index of 

the corresponding physical memory is retrieved to determine the weight of the memory trace in the 

weighted average. The new value of the emotional score is computed and updated in the eLTM. In Figure 

52 (left), this process is depicted as the agent follows the same selected itinerary. The agent encounters 

the reference 'D' while it is still in the eSTM, and the same occurs when the agent encounters the 

reference 'I', on the right side of the figure below.  

 

Figure 52: Consolidation validation. 
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Transfer 

To validate the transfer process, the file containing the eLTM was deliberately removed from the directory. 

Consequently, during rehearsal, no memory trace was available to initiate consolidation, resulting in the 

activation of the transfer process instead. As shown in Figure 53, when returning through the same path 

after reaching the reference 'A', the memory elements correspondent to references encountered along 

the way are still present in the eSTM. This occurrence prompts rehearsal, ultimately leading to the transfer 

of these memory elements to the eLTM. 

 

Figure 53: Transfer validation. 

Decay 

As memory elements only decay with the addition of new knowledge to the eLTM, to validate the decay 

process either consolidation or transfer must occur. The same scenario utilized for the validation of the 

consolidation process is applied, however, in this case, the eLTM is printed before and after the decay 

occurs, enabling visual observation of the changes. In the testing scenario, when going from reference 

‘A’ to reference ‘P’, rehearsal will be triggered in all references as it is moving through the same path. 

This will trigger either transfer or consolidation mechanisms based on the presence or absence of memory 

traces. As depicted in Figure 54, the memory trace for the references ‘D’ and ‘I’ are present. 

Consequently, the emotional scores of all other memory elements undergo positive or negative decay, as 

described in the Memory Model subsection in the Design chapter. 
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Figure 54: Decay validation. 

3. Internal Affect Subsystem 

To validate the influence of the internal affect subsystem on the decision-making process, a test scenario 

was designed. The sound intensity level in the environment was meticulously adjusted to maintain a 

neutral cortisol concentration of approximately 50. This deliberate setting allowed for the manipulation of 

the emotional score solely through the variation in light intensity.  

 

Figure 55: Testing scenario and itinerary to validate the influence in decision-making. 

A test scenario was then developed, involving the positioning of a flashlight towards the left top corner, 

as illustrated in Figure 55. To create a low light intensity setting, the references 'X' and 'K' were deliberately 

covered. The agent was first intentionally set to move through the relevant references to retrieve the 

respective emotional scores for each of them and subsequently store them in the eLTM. The final values 

can be consulted in Figure 55. 

Once the eLTM was established, the agent was positioned at reference 'P' with its intention hardcoded to 
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reach reference 'A'. This choice was intentional since the shortest path from 'P' to 'A' clearly involved 

passing through references 'X' and 'K'. However, as depicted in Figure 56, while the physical world 

subsystem, in reference 'H', scheduled an action to move right, the internal affect subsystem overrode 

this decision and changed the action to move upwards. This alternate path, indicated in yellow in Figure 

55, was longer in terms of distance but offered significantly higher emotional scores per reference, making 

it a preferable route. 

 

Figure 56: Influence in decision-making validation. 

In order to validate the motivational module, the same test scenario from before was utilized. However, 

this time the agent was positioned at reference 'A', and the initial intention was manually set to reference 

'L'. The purpose of this setup was to ensure that the agent would pass through reference 'K', which is 

known to have a very low emotional score. As illustrated in Figure 57, as the agent reached reference 'K', 

its emotional state deteriorated, triggering the selection of a new drive aimed at improving the current 

emotional state. Consequently, the intention was automatically set to reference 'O', which is known to 

have a high emotional score. The agent then began its journey towards reference 'O', with its emotional 

state gradually improving along the way. Eventually, its emotional state improved to a point where it was 

no longer considered negative, and the drive transitioned back to the “Explore”. This shift allowed for the 

automatic generation of a random reference as the new intention, enabling the agent to continue exploring 

its surroundings. 

 

Figure 57: Drive selection validation. 

To validate the loud noise detection and subsequent "Avoid danger" drive selection, a different 

experimental setup was devised. Utilizing the same eLTM file, the agent was initially positioned at 

reference 'P' with a randomly generated intention of reference 'Q, as its drive is initially set to “Explore”. 
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As the agent approached reference 'M', the volume of the speaker, which was maintaining neutral decibel 

values, was abruptly increased. This sudden increase surpassed the threshold defined in the decibel 

sensor, triggering the driver to send a signal to the condition node. As depicted in Figure 58, the emotional 

score associated with reference 'M' significantly decreased and the drive switches to "Avoid danger". 

Consequently, the agent's intention was redirected to a reference known to have a high emotional score, 

as a precautionary response to the detected danger. 

 

Figure 58: Loud noise detection and avoid danger drive validations. 

4. Discussion 

The validation tests provide compelling evidence of (1) the complete functionality and effectiveness of the 

memory manipulation processes, (2) the significant influence of the internal affect subsystem on the 

decision-making process showcasing its pivotal role in shaping the agent's choices, and (3) the successful 

adaptation of the motivational module to the agent's emotional states, highlighting its capability to 

dynamically adjust intentions. Additionally, the successful performance of the threat detection mechanism 

further reinforced the CA 's responsiveness to external stimuli. 

These validation tests, although focused primarily on validating components of the internal affect 

subsystem, as it was the main objective of the dissertation, also rely on the designed components for the 

BT engine. Furthermore, as these tests were conducted within the context of a fully integrated cognitive 

CA, they allowed for a thorough evaluation of both the integration of the subsystem within the broader 

architecture and its individual performance. By conducting the tests in this manner, a comprehensive 

assessment was achieved, ensuring a holistic understanding of the subsystem's capabilities and its 

impact on the overall CA.   
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VI -  Conclusions and Future Work 

Although this dissertation presented contributions to the custom BT engine, the goal was to develop an 

internal affect subsystem structured in BTs. This subsystem, based on the SPA model of the brain, 

involved the modeling of emotions and the integration of emotional memory. To enable the subsystem to 

make contextually appropriate decisions and generate intentions based on the current emotional state of 

the agent, a practical application was devised, which consisted of navigating an agent from the current to 

a desired destination. Within this context, the subsystem aligned its choices with the well-being of the 

agent, prioritizing affectively positive routes, while dictating the drive of the agent through its current 

emotional state, therefore establishing its intended destination. This required integration with the physical 

world subsystem within an embedded environment, without compromising its reactivity to events. 

The validation results, discussed in the Discussion subsection, demonstrated that the internal affect 

subsystem provides the CA with capabilities in decision-making and the ability to prioritize actions based 

on emotional value and memory recall. Even though the validation tests were performed in a controlled 

setting and a simplified environment, both the CA and the use case can be scaled to encompass higher 

complexity levels, with higher resemblance of real-world scenarios. Having that said, it is considered that 

the intended goal was successfully achieved. Nevertheless, there is room for improvement to enhance 

decision-making and take additional contextual factors into account. Possible future research directions 

could include: 

 Saliencies – prioritize and filter sensory inputs, helping with focus on relevant stimuli in the 

environment. By quickly assessing the salience and its significance, emotions guide attention and 

perception. This would allow the CA to allocate cognitive resources more efficiently, resulting in 

improved decision-making and problem-solving.  

 Influence the recalling of physical memories – emotional experiences are more likely to 

be encoded, retained, and retrieved compared to neutral experiences. The emotional content of 

an event enhances the formation of strong memories, improving recall and facilitating learning. 

This aspect of emotions would allow the CA to adapt and improve its performance over time by 

leveraging past experiences. 

 Additional sensory inputs – explore the integration of additional sensory inputs beyond the 

existing ones. By incorporating more diverse sensory information, the CA could have a richer 

understanding of the environment, leading to more nuanced decision-making and behavior. 
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 A more comprehensive and nuanced model of emotions – the current model simplifies 

emotions by relying on the concentrations of cortisol and serotonin as proxies for stress, 

depression, confidence, and anxiety. Future research could explore more sophisticated models 

that consider a wider range of emotions and their interplay, allowing for a more accurate 

representation of human-like emotional experiences. This could involve integrating additional 

hormones or considering other psychological theories of emotions. 
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Appendix A  

 

Figure A.1: Lövheim’s Cube of Emotion [27] (return to Figure 12). 

 

 

Figure A.2: Geneva emotion wheel [28] (return to Figure 12). 
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Figure A.3: Plutchik’s Wheel of Emotions [29] (return to Figure 12). 



89 

 

Figure A.4: Designed cognitive architecture structured in BTs (return to Figure 38). 
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Figure A.5: Cognitive architecture execution being monitored with BT monitoring tool (return to Validation and Results).
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Figure A.6: Luminosity (A) and decibel (B) sensors added to the prototype (return to Physical Structure). 
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Appendix B  

Table B.1: List of components used in the prototype (return to Physical Structure). 

Category Component Quantity 

Main processing unit Raspberry Pi 4 Model B (4GB) 1 

Secondary processing unit Romi 32U4 Control Board 1 

Sensors 

MakerHawk Fisheye Camera 1 

HC-SR04 Ultrasonic Sensor 1 

Infrared Funduino Sensor 2 

SparkFun LMV324 Sound Sensor 1 

LDR Light Sensor Module  1 

Romi Magnetic Quadrature Encoder 2 

Converter ADS1115 JOY-IT KY-053 16-bit ADC 1 

Structure 
Romi Chassis Kit 1 

Romi Chassis Expansion Plate 1 
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Appendix C  

<?xml version="1.0"?> 
<root main_tree_to_execute="BehaviorTree"> 
    <!-- ////////// --> 
    <BehaviorTree ID="BehaviorTree"> 
        <Control ID="ParallelNode" name="Par1"> 
            <Decorator ID="Repeater" name="Rep1"> 
                <Control ID="SequenceNode" name="Seq1"> 
                    <Condition ID="NewRef" name="NRef"/> 
                    <Control ID="FallbackNode" name="FB2"> 
                        <Control ID="FallbackNode" name="Fb2"> 
                            <Condition ID="Safe" name="Sf"/> 
                            <Action ID="DangerStatus" name="DangerSts"/> 
                        </Control> 
                        <Decorator ID="AlwaysSucceed" name="AS1"> 
                            <Control ID="SequenceNode" name="Seq2"> 
                                <Condition ID="IntCompleted" name="IntCplt"/> 
                                <Action ID="SchedCalcInt" name="SchCI"/> 
                            </Control> 
                        </Decorator> 
                    </Control> 
                    <Control ID="FallbackNode" name="Fb1"> 
                        <Action ID="SchedLTM" name="SchLTM"/> 
                        <Action ID="SchedLBBT" name="SchLBBT"/> 
                    </Control> 
                </Control> 
            </Decorator> 
            <Decorator ID="Repeater" name="Rep2"> 
                <Control ID="SequenceNode" name="Seq3"> 
                    <Condition ID="SchedCompleted" name="SchC"/> 
                    <Action ID="SelfSystem" name="SelfSys"/> 
                    <Decorator ID="EmotionalRepeater" name="EmRep"> 
                        <Action ID="SchedEM" name="SchEM"/> 
                    </Decorator> 
                </Control> 
            </Decorator> 
            <Decorator ID="Repeater" name="Rep3"> 
                <Control ID="SequenceNode" name="Seq4"> 
                    <Condition ID="NewAction" name="NAct"/> 
                    <Action ID="Exec" name="Exe"/> 
                </Control> 
            </Decorator> 
        </Control> 
    </BehaviorTree> 
</root>  

Listing C.1: Cognitive architecture XML representation (return to Validation and Results). 
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