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Abstract: Replacing lung cancer as the most commonly diagnosed cancer globally, breast cancer
(BC) today accounts for 1 in 8 cancer diagnoses and a total of 2.3 million new cases in both sexes
combined. An estimated 685,000 women died from BC in 2020, corresponding to 16% or 1 in every
6 cancer deaths in women. BC represents a quarter of a total of cancer cases in females and by far the
most commonly diagnosed cancer in women in 2020. However, when detected in the early stages
of the disease, treatment methods have proven to be very effective in increasing life expectancy
and, in many cases, patients fully recover. Several medical imaging modalities, such as X-rays
Mammography (MG), Ultrasound (US), Computer Tomography (CT), Magnetic Resonance Imaging
(MRI), and Digital Tomosynthesis (DT) have been explored to support radiologists/physicians in
clinical decision-making workflows for the detection and diagnosis of BC. In this work, we propose
a novel Faster R-CNN-based framework to automate the detection of BC pathological Lesions in
MRI. As a main contribution, we have developed and experimentally (statistically) validated an
innovative method improving the “breast MRI preprocessing phase” to select the patient’s slices
(images) and associated bounding boxes representing pathological lesions. In this way, it is possible
to create a more robust training (benchmarking) dataset to feed Deep Learning (DL) models, reducing
the computation time and the dimension of the dataset, and more importantly, to identify with
high accuracy the specific regions (bounding boxes) for each of the patient’s images, in which a
possible pathological lesion (tumor) has been identified. As a result, in an experimental setting using
a fully annotated dataset (released to the public domain) comprising a total of 922 MRI-based BC
patient cases, we have achieved, as the most accurate trained model, an accuracy rate of 97.83%, and
subsequently, applying a ten-fold cross-validation method, a mean accuracy on the trained models of
94.46% and an associated standard deviation of 2.43%.

Keywords: breast cancer detection; magnetic resonance imaging; computer vision; machine learning;
deep learning; convolutional neural networks

1. Introduction

Replacing lung cancer as the most commonly diagnosed cancer globally, Breast Cancer
(BC) today accounts for 1 in 8 cancer diagnoses and a total of 2.3 million new cases in both
sexes combined [1]. An estimated 685,000 women died from BC in 2020, corresponding to
16% or 1 in every 6 cancer deaths in women. BC represents a quarter of a total of cancer
cases in females and by far the most commonly diagnosed cancer in women in 2020 [2].
However, early detection and accurate diagnosis are significant to improve the prognosis
and increase the survival rate of patients with BC by 30% to 50% [3]. The treatment of BC is
highly effective when it is detected in the early stages of the disease [4]. Therefore, the early
detection of BC is a critical issue that represents an urgent global priority. In the coming
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years, countries with weak health systems and lower incomes will suffer more severe
consequences in terms of both diagnosis and mortality related to BC [5]. The COVID-19
pandemic severely hampered the process of cancer diagnosis and treatment at a worldwide
level, e.g., developed countries such as Canada, the Netherlands, Germany, Italy, the United
Kingdom, and Australia even suspended their national BC screening programs for long
periods of time (between one and six months) [6].

The heterogeneity of BC results from a diversity of factors, in general, dominated by
the morphological characteristics of tumors and the origin of the neoplasms [7]. The chal-
lenge of automated detection and/or classification of breast tumors arises from their
variety of types and subtypes. Magnetic Resonance Imaging (MRI) assessment is a more
time-consuming task. When compared to Mammography (MG), the workload of radiol-
ogists/physicians increases, as the efficiency of this modality is affected not only by the
variety of morphological characteristics of each specific tumor phenotype and its origin,
but also by the human fatigue of having to read/review hundreds of slices (images) to ana-
lyze each individual patient case. Therefore, the detection of BC pathological lesions is still
an unsolved problem with these added difficulties for radiologists in terms of MRI analysis.

In the last two decades, clinical trials have been reporting the utility of breast MRI in
detecting cancers not apparent by MG or clinical examination [8–10]. Currently, the problem
of BC detection has been addressed by applying Artificial Intelligence (AI) techniques,
namely Machine Learning (ML)/Deep Learning (DL) and Computer Vision (CV) algorithms
and methods. In this sense, Faster R-CNN models has been primarily used for general
object detection tasks and more recently in BC detection tasks. As main advantages, Faster
R-CNN-based models have demonstrated high accuracy to detect of breast cancer-related
pathological lesions in several medical imaging modalities (e.g., MG, MRI, Ultrasound).
Faster R-CNN efficiently generates region proposals, which could help in identifying
potential regions of interest in MRI and can be adapted for multi-class detection settings,
making it suitable for spotting different phenotypes of pathological lesions in MRI-based
BC detection tasks.

This work has focused on answering the following research question: is it possible
to improve the detection of pathological BC lesions (i.e., BC phenotypes) in MRI by using
Faster R-CNN-based detection models? To solve this research question we had to address
three issues/problems: (1) performing a research and requirement analysis work to se-
lect a dataset to serve as a golden standard (representative of the main subtypes of BC),
with sufficient data, i.e., digital content (annotated MRI images) and associated metadata
(genomics data); (2) developing an innovative method for patient’s images (slices) selection;
and (3) fine-tuning, training and testing several R-CNN models.

1.1. State of the Art
1.1.1. Medical Imaging Modalities

In general, most of the work developed to date on Computer-Aided Detection/Diagnosis
(CADe/CADx) methods/systems in BC pathological lesions (tumors), particularly on classi-
fication systems, is based on Histopathology (HP) biopsy images and or bi-dimensional (2D)
X-ray MG. However, other modalities including Ultrasound (US), Digital Tomosynthesis
(DT), Computer Tomography (CT), and MRI have been explored [11].

Of all BC tumors, 70% to 80% are related to one of the two major histopathological
types: Invasive Ductal Carcinoma (IDC) and/or Invasive Lobular Carcinoma (ILC). These
two main classes group most of the diverse spectrum of above mentioned types [7,12].
The remaining 30% to 20% of BC tumors not typed as IDC or ILC fit into other categories
weakly represented in datasets, a characteristic that traditionally is an impairing factor for
DL solutions.

Histopathological biopsy is an invasive and conclusive medical imaging modal-
ity, in which the details of the phenotype of the pathological lesion can be better ob-
served/identified [13]. Although their results in terms of ML algorithms for multi-class
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classification still are not optimal [14], the efforts/works in this direction are currently
being intensified [15].

MG is one of the most used modalities for early screening. This modality is not only
useful to help determine breast masses (nodules), but also their location [15]. Nevertheless,
along-side 2D MG additional screening with supporting modalities, such as the US, is
required as an MG has low sensitivity, particularly in presence of dense (fatty) breast tissue
images [16].

The advantage of US, compared to other more invasive techniques, is the fact that pa-
tients do not receive ionizing radiation. However, it has some limiting factors. For instance,
the US is limited in its ability to distinguish between calcifications and cancerous masses.
Its poor image quality is prone to cases of misinterpretation; in part, US is also used as an
auxiliary methodology in MG screening and to aid in decision making tasks, for example,
by prescribing additional exams with other modalities, such as biopsy tests [17].

Since it was introduced more recently, DT is one of the less studied modalities and
there are less available public data, i.e., annotated datasets released for public domain [18].
Compared to 2D MG, some recent published works have indicated that DT allows for more
effective BC diagnostic capability and produces more reliable interpretations. Its 3D views
prove to be more powerful for the detection of abnormalities [19]. However, as it is more
challenging to handle 3D data for automated detection, 2D MG classification results were
demonstrated to be more efficient [20].

MRI is the most accurate radiological method for accessing tumor size, multifocality,
and multicentricity, it has better sensitivity and higher diagnostic accuracy [21], but it’s
still not introduced/used for screening on its own, due to it is considered too expensive
and time-consuming [22] as for the analysis and assessment of MRI sequences, which can
easily group several hundreds of images for a single patient. Until a few years ago, MRI
had only been used as an auxiliary modality when the combination of modalities, such
as MG and US, did not provide conclusive results with the aim of increasing detection
rates. In addition, MRI was predominantly used to evaluate other features, such as size
and identification/detection of other tumor areas [16]. As aforementioned mentioned, MRI,
compared to other imaging modalities, such as MG, is particularly expensive and requires
a higher physician workload to evaluate patient cases, nevertheless, the same author states
that 7 out 8 of his studies reveal that the mean sensitivity of MRI is 95.6%. Therefore, it
is crucial to reduce human effort in reading/evaluating MRIs and take advantage of its
high sensitivity performance/capacity to detect pathological lesions. The studies reviewed
address both detection and classification—as one of the two main types—the binary early
detection (including classification), between benign and malignant tumors, or the multiclass
classification, which aims not only to distinguish benign and malignant but also different
tumor types and subtypes/phenotypes.

1.1.2. Artificial Intelligence/Machine Learning/Deep Learning Methods

Artificial intelligence (AI), ML and DL are popular terms sometimes used interchange-
ably, particularly when companies are marketing their products. The terms, however, are
not synonymous; there are important distinctions. AI refers to the simulation of human
intelligence by machines. ML as a branch (type) of artificial intelligence that uses algo-
rithms to learn from data to make sense of it or predict a pattern. ML uses algorithms
and methods to find hidden insights within data without being programmed where to
look or what to conclude. Based on this, machines are trained and “learns how to perform
a job” by analyzing relevant data, allowing it to understand how to accomplish the task
and then evolve its performance. DL is a branch (evolution) of ML supported on Artificial
Neural Networks (ANN), which uses advanced computer programming and training to
understand complex patterns hidden in large datasets. The ability of DL algorithms to
process massive amounts of data simultaneously and perform analyses quickly makes this
approach highly scalable.
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The ANN comprise a set of algorithms that enable computers to learn patterns from
large volumes of data. Initially, inspired on the functioning of the human brain, it consists
of an acyclic directed graph of neurons (nodes) organized in layers which are capable
of holding a state and, are updatable by using a backpropagation approach. They are
composed of several layers: an input layer, an output layer and at least one hidden layer.
The input layer has as many nodes as the number of data points of each input data instance,
e.g., a numerical representation for every char in a string. The output layer has as many
nodes as the number of classes the model should be able to predict. As for the hidden layers,
the purpose of each of its nodes is to calculate the normalized value of the weighted sum of
the inputs multiplied by the node current state weight. These calculations make ANNs very
expensive computationally and back in 1943, when they were first studied by McCulloch
& Pitts [23], computers were way to limited, which made them inadequate for processing
massive amounts of data. Today machines are way more powerful when compared with
the few existing ones in the first half of the XX century. Still ANN algorithms with multiple
hidden layers are very demanding computationally.

These ANN with multiple hidden layers are also known as DL. DL algorithms are
a specialization of ANNs. Convolutional Neural Networks (CNN) are a subset of DL
algorithms used for image’s classification. In general CNNs consist in a deep ANN preceded
by a variable range of layers intended to reduce the amount of data points (pixels) of each
data instance (images). This process is also a way of feature selection/extraction. A single
MRI image with 512 × 512 pixel has 262,144 data points, this is where feature extraction
becomes relevant.

Detection is essentially a discovery process. A process capable of analyzing either the
presence or absence of something or at the more generic level of computational language,
of objects. Detection is an important process of CV, and a preliminary process for other
processes such as segmentation and classification [24].

The Textural Analysis (TA) of MRI is already identified as having the potential to
assist in classifying tumors as benign or malign [25,26]. There are also studies on DL
algorithms for other modalities such as MRI Background Parenchymal Enhancement
(BPE) classification, which is not exactly a BC classification approach, but may affect
diagnostic accuracy becomes relevant for this study. Borkowski, K. et al. implemented
two well-performed CNN models for the classification of BPE to categorize its in four
classes/groups: minimal, mild, moderate, and marked [27]. Breast tumors are divided
into several categories, 20 major types, and 18 minor subtypes. Apart from the binary
classification, over 70% of the BCs belong to one of two types of BC, Invasive Ductal
Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC) [12]. This uneven distribution
of tumors results in added difficulty in automatically detecting BC using machine (deep)
learning techniques. Breast tumor type distribution alone embodies some concerns in
terms of dataset representativeness. As an example, in terms of training ML models the
standard is to split between training and testing subsets—previously randomized—with
percentages between 70%–30% to 85%–15% respectively, depending on several aspects.
This approach enables testing the model in fresh data that was previously isolated from
the training data subset, such as, the size and number of features of the dataset. Moreover,
in terms of DL models, the dataset is normally split into 90% for the training set and 10%
for the testing set. However, as DL algorithms are used when there are available massive
amounts of data, this ratio is used when we have Bigdata. In terms of cancer tumors,
with less than 30% representing 18 major types of BC, it means that—assuming a dataset
with all tumor types—the training set eventually may not include some of BC types, and,
probably, the testing set would not include some of the tumor’s types considered into the
training phase.

1.2. Contributions of This Work

As will be explained in detail in the following sections, we propose a novel Faster
R-CNN-based framework to automate the detection of BC pathological Lesions in MRI.
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As a main contribution, we have developed and experimentally (statistically) validated
an innovative method improving the “breast MRI preprocessing phase” to select the
patient’s slices (images) and associated bounding boxes representing pathological lesions.
In this way, it is possible to create a more robust training (benchmarking) dataset to feed
DL models, reducing the computation time and the dimension of the dataset, and more
importantly, to identify with high accuracy the specific regions (bounding boxes) for each
of the patient’s images, in which a possible pathological lesion (tumor) has been identified.
As a result, in an experimental setting using a fully annotated dataset (released to the public
domain) comprising a total of 922 MRI-based BC patient cases, we have achieved, as the
most accurate trained model, an accuracy rate of 97.83%, and subsequently, applying a
ten-fold cross-validation method, a mean accuracy on the trained models of 94.46% and an
associated standard deviation of 2.43%.

2. Dataset

This work aims to explore and validate algorithms and methods for supporting the
detection of BC pathological lesions in MRI-based patients’ cases. In these sense, af-
ter visiting/reviewing several datasets released for the public domain, we determined that
the dataset with the best characteristics/conditions/criteria to develop our work is the
Duke-Breast-Cancer-MRI dataset (DukeBC). DukeBC comprises a high quality compila-
tion of dynamic contrast-enhanced MRI of BC patients cases with tumors locations and
associated metadata (i.e., genomics data). This dataset comprises a collection of 922 pos-
itively diagnosed (biopsy proven) BC patients’ cases fully annotated and anonymized
captured/collected by the Duke Hospital, Durham, North Carolina, USA. DukeBC encom-
passes a large number of visual traits capable of distinguishing different BC phenotypes,
which made it ideal for developing and testing CV algorithms and DL models to support
BC cancer lesions detection methods. The patient’s age range is 21 to 89 years old, and the
average age is 52 years old. Annotations were performed by 8 radiologists to whom the
cases were randomly assigned. The pathological lesions (tumors) annotations are identified
using 3D bounding boxes delimited by 2D coordinates, plus a set of slices where the tumors
were found, as depicted in Figure 1. For each patient are available 5 or 6 image sequences
(series). A sequence is a series of radio-frequency pulses, each one with its specific settings,
resulting in a set of images (slices). Some patients’ cases present MRI sequences without
fat suppression, however, these sequences were not used as they do not have (match) the
corresponding annotation [28].

The MRI scans were performed using equipment from 2 manufacturers, GE Medical
Systems and Siemens, 8 distinct models were used, as illustrated in Table 1.

Table 1. Case count by MRI equipment model and manufacturer.

Manufacturer Model Cases

GE MEdical Systems

Optima MR450z 98
Signa Excite 10
Signa HDx 272
Signa HDxt 248

Siemens

Avanto 179
Skyra 57
Trio 1

Trio-trim 57
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Figure 1. Illustration of the annotation schema for the bounding boxes delimiting the tumor. The first
and last few slices may have loose bounding boxes (effect produced by lesions edges on the 3D boxes).

Overall, the dataset is composed of a total of 772,439 images (slices) distributed by
922 patients, an average of 838 images per patient. The complete dataset occupies a
disk storage space of approximately 342 gigabytes, with each DICOM image averaging
443 kilobytes. All images are square in shape and the size varies between 320 × 320 pixels
(33 cases), 448 × 448 pixels (261 cases), and 512 × 512 pixels (628 cases). Nevertheless,
the size of the images remains the same in all images from the same patient (patient case).

It can be observed that some relevant quantitative features of the pathological lesions,
i.e., shape and size differ highly, depending on the tumor type and subtype. Besides, it is im-
portant to note that the minimum number of slices in which a tumor is identified/detected
in a patient case is 2 slices and the maximum number is 131 slices. A limitation (restriction)
observed in this dataset is the fact that, even if more than one lesion were detected, only
the largest pathological lesion (tumor) was annotated for each patient case, i.e., physi-
cians/radiologists only annotated one (the largest) biopsy-proven tumor for each patient
case [28]. This can be a cause of undesired False Positives (FP) occurrences (Type I Error),
thus, it’s expected to have mismatched detections. Without ground truth annotations it is
impossible to validate these FPs. As the dataset doesn’t include patients’ cases without BC
pathological lesions, it is only possible to measure True Positives (TP) and False Negatives
(FN) patient-wise, in which we can compute patient-wise metrics. Thus, there is no means
to assess whether the FP are real or just a result of the lack of annotation. This inability
to assess correctly the tumors detected (FP and FN) prevents to compute some significant
metrics, such as, accuracy and recall as a result. To have all the tumors annotated would
undoubtedly be an added value in the validation of the model.

3. Proposed Framework

Figure 2 shows the high-level workflow of the proposed framework comprising three
well-defined phases: preprocessing, training, and evaluation, being the main contributions
in this work associated to the preprocessing phase.

The focal point of this work is to help physicians detect BC. In this sense, we have
trained CNN models for learning pathological lesions (tumors) patterns using a fully wide-
ranging annotated (golden standard) dataset. Our main goal is to improve the automatic
detection of BC pathological lesions (BC phenotypes) in MRI, i.e., new (unannotated)
patients’ cases.
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Figure 2. High-level workflow of the proposed method.

For that purpose we have trained models using a TensorFlow variant of the Faster
R-CNN Inception ResNet V2 method/architecture [29–31]. Specifically, we aim to point
out where—sequence and slice—the tumor is most noticeable as well as its classification
score. The most negative weakness—or damaging aspect—of the medical assisting AI
model are the FN errors (Type II Error) which can produce misleading evaluations, i.e., not
identifying a tumor when it exists. The tumors potentially detected by the model should
indicate to radiologists which sequences and in which slices they can perform further
research/analysis.

4. Preprocessing

This step aims to prepare the dataset before starting the training process. It includes
loading, selecting, extracting, and preprocessing the necessary information from the DI-
COM files (i.e., digital content—MRI images and associated metadata). This procedure
is crucial as DICOM image metadata includes specific information and relevant features
about the scanning options used and other annotations.

For resolution (size) normalization issues, the images of all patient cases were resized/
converted to a resolution of 448 × 448 pixels. Nevertheless, the original size is not discarded
given that it is necessary to calculate the coordinates of the bounding boxes for the new
image size. Next, with all the necessary data/information, well identified and organized,
for each image a XML annotation file is generated. This file includes the coordinates of the
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bounding boxes for each lesion as well as the object tag (tumor). Also, to increase image
diversification, several operations of data augmentation are performed. This procedure
typically covers specific transformations for inverting, rotating, adjusting brightness and
images contrast. This procedure is described in more detail in the next section, as it is
carried out in the DL model.

To be ready for the training process, patients’ cases are separated into train and test
sets. It is mandatory that the splitting process be performed by patient, rather than by
image, to ensure that images from the same patients are not included in both datasets
(training and test). The goal of choosing only one set of images from each patient is to
exclude images that have too little information or too much noise. The splitting process is
only performed after the dataset is split into train and test subsets (patient-wise).

To avoid problems of extreme looseness in the bounding boxes, i.e., to not include
slices where lesions represent very small areas of the bounding boxes, we filter/select which
tumor slices should or should not be included in the training set. It is important to note that
the patient cases selected to be part of the test subset must include all slices (images), i.e., the
inference process does not take into account the bounding boxes annotations. Therefore,
the trained model is expected to be able to detect all possible tumors present in each patient
case. Reiterating the matter, the loose bounding box is only a problem for the training
process since it is desirable not to introduce noise into the model.

List 1: Image preprocessing steps.

• Load images identifiers to memory and DICOM identifiers
• Filter images by scan options (annotation are only applicable to fat supressed images)
• Transform images to fixed shape and size
• Generate annotation XML file for each image
• Generate dataset split declaration file
• Apply slice selection algorithm
• Copy images and annotations to final directory

Patient Slice Selection Method

Our method focuses on the identification/selection of a reduced set of slices (images)
for each patient case, with better features to facilitate the detection of breast tumors. This
process is performed by a set of scripts that generates the training artifacts fed to the
TensorFlow Object Detection API. On one hand, the dataset has complex preprocessing
requirements, due to the specifications described in Section 2. On the other hand, the dataset
is great in size, over 340 GB, which takes a lot of time to process and can result in memory
shortage if handled incorrectly.

Most of the patients in this dataset have tumor slices that are not tightly fit into the
bounding box, as depicted in Figure 3 and previously shown as well in Figure 1. In Figure 1,
the initial and last slices (images) of the patient show significantly small/loose tumors
within the bounding boxes. This can lead to the decline of the model performance as it
introduces noise that will be back-propagated to the network (model) weights ([32]).

Preliminary tests with both, all slices and too few slices, revealed difficulties in the
model’s pattern learning. Removing slices means removing information. We need to avoid
both removing too many slices, which could lead to loss of important data, and removing
too few slices, which would include excessive noise from loose boxes. To address this
problem, a specific purpose-built function was developed to calculate the appropriate
number of slices for removal.

By visual analysis of the dataset, in most patient cases, we think that it would be
appropriate to remove one half of the slices. However, given that there are many smaller
tumors with a total number of slices between 2 and 10, it would not be a good approach
to remove one half of these images. To address this issue, we developed a logarithmic
funneling function (see Equation (1)) to dynamically determine the amount of the slices
to keep and the amount of slices to be removed. Of course, with such a configuration to
prevent the over-removal of slices in those smaller tumors.
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Figure 3. Blue box: ground truth; green box: detection; red box: true positive. (A) Slice from patient
45 denoting a tight fit to the tumor. (B) Slice from patient 640 denoting a loose fit to the tumor.

The concept behind the methodology for excluding the slices with loose bounding
boxes, illustrated in the tumor represented in Figure 4, is to exclude slices CS-4, CS-3, CS+3,
and CS+4. Slice CS-2 and CS+2 already introduce noise, but show some beneficial info,
and the bounding boxes are not as loose as the end slices. As mentioned, the slice selection
process is only applied to the train dataset. The goal is to reduce the number of images
where the tumor is not fit into the bounding box in order to reduce the noise surrounding
the lesions. By applying Algorithms 1 and 2 to a sample patient case containing 9 slices, we
end up removing 4 slices and keeping 5 slices, as it is shown in Figure 4. As for the test
dataset, all slices are used to increase the chance of detecting the tumor.

Figure 4. Illustration of bounding boxes looseness on a 9-slice tumor. Slice CS represents the central
slice. CS-4 represents the first slice and CS+4 represents the last slice. The central slice (CS) is well fit
to the bounding box, from CS to each of the sides, the bounding boxes have increasing looseness.

In Equation (1), a and b are constant values to control the funneling effect. The values
of a and b were heuristically obtained through trials, starting with a set to 1 and b set to 2.
The value computed from this equation is then rounded up, and the result obtained is
considered the total number of slices to be maintained/selected for a given patient. Finally,
it was found that using the values a = 0.75 and b = 1.9625 respectively led to satisfactory
results. We do not assume that these are the best values possible for a and b. These are the
values that shaped the funneling effect in a way that we considered suitable to achieve good
results. However, we do not rule out the possibility that better results may be obtained
with different values.

By using the aforementioned settings, a patient with a tumor ranging 108 slices, would
keep only 55 central slices after applying this equation. A total of 53 slices would be
removed, 26 slices from the beginning of the tumor and 27 slices from the end of the tumor.
To compute the total number of slices to be removed, the value resulting from Equation (1)
is subtracted from the total number of tumor-containing slices for that patient. The resulting
value is divided by two to determine the number of slices to be removed from each side
(left and right) in each specific patient case. If the result is not an integer value, the value is
rounded down for the initial slices to be removed and rounded up for the final slices to
be removed.

f (x) = total_number_o f _slices_with_tumor ∗ a ∗ ln(b) (1)
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Algorithm 1 Pseudo-code: Application of the funneling function. As the result of the
funneling function is a real number, the value must be converted to an integer. We do so by
rounding the value up (ceiling).

1: function CALCNUMOFSLICESTOREMOVE(
total_number_o f _slices_with_tumor, total_number_o f _slices
)

2:
3: Real f unnel_result := f unneling_ f unction(total_number_o f _slices_with_tumor)
4:
5: return (Integer) total_number_o f _slices − ceil( f unnel_result)
6: end function

Algorithm 2 Pseudo-code: Based on the total number of slices, this algorithm calculates
the number of slices to remove from each end of the slices with tumor range. When the
total number of slices to remove is an odd number, we round down (floor) the number of
slices to remove from the beginning of the range and round up (ceil) the number of slices
to remove from the end of the range.

1: function NUMBEROFSLICESTOREMOVEFROMEACHSIDE(
total_number_o f _slices_with_tumor, total_number_o f _slices
)

2:
3: Integer number_o f _slices_to_remove := CalcNumO f SlicesToRemove(

total_number_o f _slices_with_tumor, total_number_o f _slices
)

4:
5: Real number_o f _slices_to_remove_on_each_side := num_o f _slices_to_remove/2
6:
7: return (Tuple<Integer, Integer>) (

f loor(number_o f _slices_to_remove_on_each_side),
ceil(number_o f _slices_to_remove_on_each_side)
)

8: end function

Results of the application of the Algorithms 1 and 2 are illustrated in Table 2. In the
descending gradient can be observed that gradually the total number of slices is decreasing
when compared to the original count. In the minimal case—patients with tumors with a
maximum count of 2—no slice will be removed by the algorithm. As the total number of
slices increases, the number of slices to be removed also increases. This is also observable
in the ascending gradients representing the number of slices to remove at the beginning
and end of the tumor.

A contribution of the proposed framework lies in the fact that it allows to extract/
consider only those slices (images) in which a lesion (or a part of a lesion) is sufficiently
represented within the bounding box selected by the physician, i.e., the percentage of
pixels of the lesion occupies a significant area that allows its use to differentiate/detect
the lesion. Table 3 shows the concentration of patient cases (PC—Patient Count) grouped
according to the total number of slices (SC—Slice Count). The SC ranges between 2 and 131,
and most of the patients have SC ranging between 10 and 30 slices. For instance, on a
patient with a 9 slices tumor, as illustrated in Figure 4, we would get to keep only 5 slices
(middle slices) and would remove 2 from each side. It is noticeable in the figure that the
tumor bounding boxes are loose in both extremities having more than half of area without
tumor representation.
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Table 2. Calculated values by applying the funneling function on Equation (1). Some rows are
skipped to save vertical space. (Rows with three dots represent a sets of omitted rows).

Patients Total
Number of

Slices

Patient Total
Number of Slices

to Remove

Number of Slices
to Remove from

Start

Number of Slices
to Remove from

End

Number of
Slices to
Maintain

2 0 0 0 2

3 1 0 1 2

4 1 0 1 3

5 2 1 1 3

6 2 1 1 4

7 3 1 2 4

8 3 1 2 5

9 4 2 2 5

10 4 2 2 6

. . .

20 9 4 5 11

. . .

30 14 7 7 16

. . .

40 19 9 10 21

. . .

50 24 12 12 26

. . .

60 29 14 15 31

. . .

70 34 17 17 36

. . .

80 39 19 20 41

. . .

102 50 25 25 52

108 53 26 27 55

111 54 27 27 57

119 58 29 29 61

131 64 32 32 67

Table 3. Count of the number of patients PC with the total number of slices SC.

(2–16) (17–31) (32–46) (47–62) (63–77) (79–131)
SC PC SC PC SC PC SC PC SC PC SC PC

2 1 17 34 32 17 47 6 63 3 79 1
3 4 18 39 33 12 48 3 64 3 80 1
4 8 19 26 34 11 49 6 65 3 81 3
5 3 20 26 35 12 50 4 66 3 82 4
6 10 21 30 36 4 51 7 67 1 85 1
7 15 22 32 37 9 52 4 68 1 89 1
8 19 23 19 38 10 53 4 69 5 90 1
9 27 24 23 39 7 54 4 70 1 95 1

10 24 25 24 40 4 55 3 71 1 96 1
11 38 26 21 41 4 56 4 72 1 97 1
12 43 27 23 42 7 57 3 73 1 102 1
13 44 28 18 43 8 58 1 74 2 108 2
14 35 29 14 44 6 59 2 75 1 111 1
15 36 30 8 45 4 60 1 76 1 119 1
16 33 31 17 46 10 62 2 77 1 131 1
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5. Training
5.1. Environment Setup

The experiments consisted in two step, two preliminary training’s and a 10 fold cross-
validation using all in the same environment as described in Table 4. As mentioned we
use a Faster R-CNN network running on Ubuntu 20.04. All scripts were developed using
Python 3.9.12 and the Python’s virtual environment was managed with miniconda 4.12.0.

Table 4. The systems consists of two super computers, each having these specifications with CPUs.
This cluster belongs to the VISTA Lab Research Center of the University of Evora, Portugal.

Cluster—Vision at VISTA Lab (2x)

CPU Designation Dual AMD Rome 7742
Cores 128

System memory GB 1000

GPUs Designation NVIDIA A100 Tensor Core GPU
N. of GPUs 8
Cores 6912 (total 55,296)
Memory (GB) 40 (total 320)

5.2. Model Parameterization
5.2.1. Epoch Configuration

One epoch is one network pass through the data. One step is one network pass-
ing through one batch of images, backpropagation included. Using TensorFlow Object
Detection API, the model and network are configurable by editing a settings file called
pipeline.con f ig. It has settings for all stages of the Faster R-CNN workflow. The network
has parameters to define the total number of. Batch size, which is a setting highly related to
the GPU memory available, is shown in Table 5. The batch size must be divisible by the
number of GPUs used. In this project, 4 GPUs were used and a batch size of 32, which
means a batch of 8 for each GPU and, 5 GB of GPU memory allocated to each image.
The number of epochs is a relation between batch size and the total number of steps,
as demonstrated in Equation (2).

f (x) =
total_number_o f _steps ∗ batch_size

train_set_size
(2)

Table 5. System configuration and benchmark.

Cluster
Configuration Benchmark

GPUs used Total GPU
memory (GB) Batch size Steps per second

(avg)
Images processed
per second (avg)

4 160 32 1.90 60.8

5.2.2. Learning Rate

The learning rate is one of the most important parameters, it controls the magnitude of
the values used in back-propagation to update the weight of each node. A smaller learning
rate will cause the model to take longer time to train. On the other hand, a higher learning
rate will train faster, but it may never reach the optimal value of the weights. This is
because in this scenario the weights would be constantly updated with values higher than
the difference between the current value and ideal value, and thus may never converge to
an optimal value or at least to point near the optimal value.

In this project we have used a cosine learning rate decay approach. The goal is to
initially use larger values to update the weights, but as the model trains, the value will
gradually decrease. This leads to a higher probability of finding the optimal value and thus
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avoiding the above described effect. In Figure 5, we shown an example of the decay effect
using the cosine learning rate decay in a 200-thousand-step trained model.

Figure 5. 0.05 learning rate cosine decay visualization on a 200,000 steps trained model.

5.2.3. Data Augmentation

The model was configured to apply the following data augmentation transformations
randomly: 50% chance to flip the image horizontally, 50% chance to flip the image vertically,
50% chance to make a 90◦ rotation, changes image brightness up to a maximum delta of
0.05, and image contrast modification by a value between 0.5 and 0.95. The value is to
be multiplied by the image’s initial contrast. This process, along with a high number of
epochs, resulted in the data diversifying and expanding in number.

5.2.4. Network Weights Initialization

The network weights were initialized with values from a uniform distribution within
−limit and +limit. Being the limit calculated as demonstrated in Equation (3).

limit =

√
3
n

(3)

5.2.5. Classification (Scoring)

The network will be configured to use the SoftMax score converter on the last layer to
output probabilistic value because of the output nodes.

5.3. Preliminary Model Training
Preliminary Models Setup

The preliminary models (hereinafter referred to as model A and model B) were carried
out using the dataset setups, as described in Table 6. In model A we used all slices available.
In model B we used the proposed slice selection method described in Pre-Processing
Section 4. Both setups share the same patients’ cases for training (866) and test (56) datasets.
The test dataset is the same for both models, as no slices are excluded for the test set and
case selection is equal. Model A counts a total of 77,963 images for the training set and
Model B, which used the proposed slice selection method, has 53% of model A images
count for training, i.e., 41,317 images. The training process ran 160 epochs on batch sizes of
32 with a learning rate of 0.05 and cosine decay.
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Table 6. Dataset setup for preliminary models. The train set image count for model A is 189% of
the size of the model B train set. The train set image count for model B is 53% the size of model A
train set.

Designation Slice Selection Method Image Count

Train set Test set
Model A All slices with tumor 77,963 Same test set with 5031

images
Model B Funneling method described in

Pre-processing section 41,317

5.4. Cross-Validation
Cross-Validation Setup

The model is trained using a k-Fold Cross-Validation method with k = 10. According
to Marcot et al. [33] using k = 5 folds is usually sufficient for large datasets (e.g., 5000 data in-
stances) while for smaller datasets, a higher k values of folds can be beneficial. Although the
dataset used has a large number of files, i.e., slices (images), due to the fact that we have
chosen a patient-wise approach, the collection has a total of 922 data instances (patients’
cases), which, in turn, means a significantly reduced size. Using 5-fold cross-validation
would result in 5 training sets with 80% of the whole dataset (737 patient cases). By using
10-fold cross-validation we can count with 10 training sets with 90% of the whole dataset
(829 patient cases) each fold. Moreover, it enables a finer estimation of the classifier’s
performance. Thus, using k = 10 folds, 10 models were trained on different combinations
of the training and test sets. To produce this partition the patients are shuffled and divided
into 10 batches. The training set will always have 9 batches and the test set 1 batch. For each
of the 10 training phases, a different batch (1/10 of the patients) is used as the test set.

At the end of all 10 training phases, the predicted output scores and bounding boxes
are used to calculate the evaluation metrics. Thus, in each training phase, the model is
trained on 90% of the total patients and tested on 10% of the total patients. The 10-fold
cross-validation scheme is depicted in Figure 6. A particular caveat regarding this method
is that the dataset has 922 patients. As 10% of 922 is 92.2 and the rest of the patients are not
divisible by 10, the 2 extra patients will be used in the training sets.

Figure 6. 10-Fold cross-validation scheme.

The specific slices to be used in the training sets are selected according to the proce-
dures described in Section 4. As mentioned in the same section, the slice selection algorithm
is only applied to the training set as it is advantageous to test the model on all slices of each
patient to properly evaluate the model.

The experiment was conducted on the Dukes’ Hospital Breast Cancer MRI Dataset
described in Section 2. As referred, we split the dataset patient-wise, and only after patient
splitting process the slice selection process starts. As forementioned, each tumor has its
particular shape and size, and, of course, a different number of slices where the tumor is
identified. This means that each of the cross-validation folds has a different total image
count, as depicted in Table 7. Nevertheless, the network parameterization was the same
for all folds. The training process ran 162 epochs on 200,000 steps, with a batch size of 32,
a learning rate of 0.05, and cosine decay.
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Table 7. Cross-validation of patient and image count for each fold.

Fold 1 2 3 4 5 6 7 8 9 10 Avg

Total image 39,903 39,844 39,515 39,220 39,821 39,347 39,159 39,791 39,551 39,773 39,592

Images per
patient (avg) 48 48 48 47 48 47 47 48 48 48 48

Because the cross-validation train set has less patients, and therefore less images,
although we used in cross-validation the same hyper parameters as the previous section
model B the number of epochs increased accordingly.

6. Evaluation and Discussion
6.1. Preliminary Results

These results allow us to evaluate and draw some conclusions about the effect of the
slice selection algorithm as opposed to using all images. As summarized in Table 8, Model
B achieved better results in all metrics. Not only Model B has fewer FN (patient-wise),
a better SoftMax score, and better Intersection over Union, but also it has trained in fewer
images (53% of total slices of Model A) and therefore, for the same number of epochs,
the Model B is faster to train taking less 27.16 h than Model B.

6.2. Cross-Validation Results

Table 9 summarizes the results standard deviation calculus. Across all folds, the aver-
age accuracy in detecting the BC tumor is 94.46% with a standard deviation of 2.43%, which
is a good result. The average IoU and the average score are important results to evaluate
the models and their performance object-wise. But, as for the ability to assist radiologists in
prescriptive analysis, they are of minimal value.

Table 8. Summarization of the preliminary results.

Metric Model A Model B Std Dev

Train time (hours) 56.65 29.34 ±19.315

True Positives cases 53 54 ±0.707

False Negatives cases 3 2 ±0.707

False Negative slices 2611 2212 ±282.136

Accuracy 94.64% 96.43% ±1.27%

Average IoU 24.63% 31.58% ±4.91%

Average Score 48.78% 59.05% ±7.26%

Average Max IoU 59.61% 69.40% ±6.92%

Average Score @ Max IoU 81.61% 91.30% ±6.85%

Table 9. Cross-validation results and standard deviation calculation for each fold.

Fold 1 2 3 4 5 6 7 8 9 10 Avg Std Dev

False Negatives 3 4 2 6 3 5 6 8 5 9 5.10 ±2.23

Accuracy (%) 96.74 95.65 97.83 93.48 96.74 94.57 93.48 91.30 94.57 90.22 94.46 ±2.43

Average IoU (%) all 31.22 28.00 27.89 29.31 27.67 28.08 28.14 27.93 27.96 23.29 27.95 ±1.96
IoU > 0 32.27 29.27 28.51 31.36 28.60 29.69 30.11 30.59 29.57 25.81 29.58 ±1.77

Average Score (%) all 57.65 52.20 53.07 52.56 55.44 54.18 50.60 54.76 51.24 44.95 52.66 ±3.42
IoU > 0 59.16 54.57 54.04 56.06 57.26 57.25 54.06 59.61 54.05 49.34 55.54 ±3.01

Average Max IoU (%) all 69.02 63.69 66.47 65.42 64.44 66.35 65.87 62.82 66.51 61.85 65.25 ±2.09
IoU > 0 71.34 66.59 67.95 69.99 66.61 70.17 70.47 68.80 70.34 68.56 69.08 ±1.65

Average Score @ Max
IoU (%)

all 87.15 84.07 86.18 85.58 86.39 85.23 83.71 79.99 82.33 81.49 84.21 ±2.34
IoU > 0 90.08 87.89 88.09 91.56 89.30 90.12 89.55 87.61 87.06 90.32 89.16 ±1.44
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The average IoU and scores are relatively low, reflecting the failure to detect several
slices, generally corresponding to the edge slices. More important are the maximum metrics
which generally score well, with 89.16% for the average maximum score and 69.08% for the
average maximum IoU in cases where the tumor was detected. These two metrics effectively
reveal the model’s ability to detect and pinpoint the slices where a tumor is best identifiable,
thus providing actionable insight and aiding physicians in prescriptive analysis.

The best performing folds were the 1st and the 3rd folds. The 3rd fold is for best
accuracy (97.83%) and Average Score @ Max IoU (91.56%); the 1st fold is for best Average
Max IoU (71.34%).

6.3. Model Comparison

Since our method presents a patient-wise rather than image-wise perspective for
pathological lesions (tumors) detection, direct comparison with results obtained by other
authors has been a challenge. With exception to [34] we could not find other articles that use
the same metrics and at the same time focus on patient rather than on each image. However,
our method achieves promising results in terms of overall accuracy, demonstrating its
potential to detect BC tumors more comprehensively. The lack of comparable studies using
similar metrics and patient-wise analysis highlights the novelty of our approach. However,
we provide an overview of other authors’ results in Table 10. The prospective impact of
our methodology goes beyond object detection, focusing on the patient as a whole has the
potential to aid in BC screening planning by pin pointing suspicious cancerous lesions.

Table 10. Comparison with other authors models.

Article
Reference Test Method Model

Architecture Unit Train/Test Set Metric Type Metric Value

[34] One pass Mask R-CNN Patient/Case 241/98 Accuracy 100%

[35] One pass Faster R-CNN Image 5252/620 Sensitivity 87%

Proposed
method

10 fold cross validation (avg) Faster R-CNN Patient/Case 830/92 Accuracy 94.46%
10 fold cross validation (best) Faster R-CNN Patient/Case 830/92 Accuracy 97.83%

7. Conclusions

In this work we have developed an innovative methodology for the preprocessing
of patients’ cases including magnetic resonance imaging (MRI) that allows the selection
of a reduced interval of slices (images), in which there are annotated (automatically or
manually) bounding boxes representative of previously identified pathological lesions.
The proposed approach allows (i) minimizing background noise by selecting only slices
(images) that include bounding boxes with a sufficient area (representative percentage) of
identified/annotated pathological lesions (ii) reducing the number of slices per patient
needed to build reference (benchmarking) datasets and thus, (iii) reducing the compu-
tational time necessary to train ML/DL detection models. Based on this, and in order
to answer the research question that motivated this work, we developed a full lifecycle
framework for training and testing “Faster R-CNN-based deep learning models”. The pro-
posed framework has been successfully validated, in an experimental setting, using an
annotated dataset (Duke-Breast-Cancer-MRI dataset - DukeBC) released for public domain.
DukeBC comprising a high quality compilation of dynamic contrast-enhanced MRI of
922 BC patients cases with tumors locations and associated metadata (i.e., genomics data).
Trained Faster R-CNN models for detecting pathological lesions were extensively validated,
using a 10-fold cross-validation technique, achieving a satisfactory mean accuracy of 94.46%
with a standard deviation of 2.43%. Therefore, although it is difficult to make a fair compar-
ison with other previously published works, because in some cases the authors used other
datasets (with fewer patient cases), or in other cases the analysis/validation performed
is image-wise and we use a patient-wise approach, we demonstrated that based on the
proposed framework it is possible to improve the detection of pathological BC lesions
(i.e., BC phenotypes) in MRI by using Faster R-CNN-based detection models.
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An identified drawback is the fact that parameters used to fed the funneling function
(Algorithm 1) were heuristically defined and although we consider the results obtained
satisfactory, we cannot guarantee that this is the best configuration (i.e., selected parame-
ters). Therefore, we recognize it is needed more experimentation. Finally, we identified
as the main limitation to perform this work the training time, since finding the optimal
arguments for the funneling function took us several months.

Future work will focus on both expanding the MRI-based dataset by including new
fully annotated patient cases and improving the accuracy of DL methods for the detection
and classification of pathological lesions (i.e., phenotypes) of breast cancer.
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