
Universidade do Minho
Escola de Engenharia

Marco Filipe Leitão Dantas

Accelerating Deep Learning Training
on High-Performance Computing
with Storage Tiering

March, 2022

Universidade do Minho
Escola de Engenharia

Marco Filipe Leitão Dantas

Accelerating Deep Learning Training
on High-Performance Computing
with Storage Tiering

Master’s Dissertation

Integrated Master in Informatics Engineering

Work supervised by

João Tiago Medeiros Paulo

Rui Carlos Mendes de Oliveira

March, 2022

ii

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

Acknowledgements

After all these years my journey is complete and it was only possible with the help of a lot of people that I

cannot forget to express my gratitude.

First of all, I would like to thank Professor Rui Oliveira for supporting this dissertation. Professor João

Paulo, for the opportunity to work on a project that allowed me to learn so much, for the constant guidance,

knowledge and encouragement that kept me focused on properly delivering this work. Ricardo Macedo,

who constantly contributed with great advice and expertise, having a major impact in the project. I cannot

thank enough the huge help of both João and Ricardo. You guys had so much patience with me. I was

always filled with doubts and failures and you helped me overcome them with our numerous meetings.

I want to thank Diogo Leitão, for taking the time to contribute with engineering skills to the project, as

well as Cláudia Correia that gave us many necessary know-hows to have a clearer and easier start to this

work.

To the Texas Advanced Computing Center (TACC) team, especially Weijia Xu, Xinlian Liu and Peter

Cui, who gave relevant input to the course of the project and provided us the necessary infrastructure to

conduct this work’s experiments.

A heartfelt thank you to my parents who fully supported and contributed to my education. They were

always by my side during the difficult times and were restless to make my aspirations possible.

To Tiago and Gabriel, who shared a roof with me through all this years. You gave me countless hours

of happiness and enjoyment, as well as support. Thank you so much.

With this journey’s end I need to thank all of the friends that I made in the Academy. It was a pleasure

spending time and work with them across all of my curricular units. They truly made the past years an

unforgettable learning experience.

Finally, I thank the Portuguese Foundation for Science and Technology (FCT) for funding this disserta-

tion within the PAStor project (UTA-EXPL/CA/0075/2019).

iv

Abstract

Accelerating Deep Learning Training on High-Performance Computing with
Storage Tiering

Deep Learning (DL) has become fundamental to the advancement of several areas, such as computer

vision, natural language processing and expert systems. Utilizing DL techniques demands vast amounts

of data and processing power, which raises challenges to the training performance of DL models. High-

Performance Computing (HPC) systems are becoming increasingly popular to support DL training, by

offering extensive computing capabilities, however, due to convenience and usability, many DL jobs running

on these infrastructures resort to the shared Parallel File System (PFS) for storing and accessing training

data. Under such scenario, where multiple Input/Output (I/O)-intensive applications operate concurrently,

the PFS can quickly get saturated with simultaneous storage requests and become a critical performance

bottleneck, leading to throughput variability and performance loss.

To solve these issues, this dissertation presents a storage middleware agnostic to any DL solution,

Monarch, that deploys storage tiering to accelerate DL models’ training performance and decrease the I/O

pressure imposed over the PFS. It leverages from existing storage tiers of supercomputers (e.g., compute

node’s local storage, shared PFS), as well as the I/O patterns of DL solutions to improve data placement

across storage tiers. Furthermore, this middleware is non-intrusive and easily installed in HPC centers,

thus enabling its wide adoption and applicability.

The performance and applicability of Monarch are validated with the TensorFlow and PyTorch DL

frameworks. Results show that, when the training dataset can only be partially stored at the local storage

tier, Monarch decreases TensorFlow’s and PyTorch’s training time by up to 28% and 37% for I/O-intensive

models, respectively. Furthermore, Monarch can reduce the number of I/O operations submitted to the

PFS by up to 56%.

Keywords: I/O optimization, Storage Tiering, Deep Learning.

v

Resumo

Aceleração do Treino de Aprendizagem Profunda em Computação Avançada
com Armazenamento por Camadas

Aprendizagem Profunda (AP) tornou-se fundamental para o avanço de diversas áreas, como visão por

computadores, processamento de linguagem natural e sistemas especializados. A utilização de técnicas

de AP requer vastas quantidades de dados e de poder de processamento, o que impõe desafios ao de-

sempenho do treino de modelos de AP. Os sistemas de Computação de Alto Desempenho (CAD) estão a

tornar-se cada vez mais populares para suportar treino de AP, uma vez que oferecem extensos recursos

de computação, contudo, por razões de conveniência e usabilidade, muitas tarefas de AP que correm

nestas infraestruturas recorrem a Sistema de Ficheiros Paralelos (SFP) para armazenar e aceder a dados

de treino. Neste cenário, onde múltiplas aplicações intensivas em Entrada/Saída (E/S) operam concor-

rentemente, o SFP pode ficar saturado com os pedidos de armazenamento simultâneos e tornar-se um

gargalo de desempenho crítico, levando à variabilidade do débito e perda de performance.

Para resolver estes problemas, esta dissertação propõe ummiddleware de armazenamento agnóstico

a qualquer solução de AP, Monarch, que implementa armazenamento por camadas, para acelerar o

desempenho do treino de AP e diminuir a pressão de E/S imposta sobre o SFP. Este sistema aproveita

camadas de armazenamento existentes em supercomputadores (p.ex., armazenamento local do nó de

computação, SFP partilhado), assim como o padrão de E/S das soluções de AP para melhorar a colocação

dos dados ao longo das camadas de armazenamento. Para além disso, este middleware é não-intrusivo e

facilmente instalado em centros de CAD, permitindo, deste modo, a sua ampla adoção e aplicabilidade.

O desempenho e aplicabilidade do Monarch são validados recorrendo às soluções de AP TensorFlow e

PyTorch. Os resultados mostram que, quando o conjunto de dados de treino apenas pode ser parcialmente

armazenado na camada de armazenamento local, o Monarch diminui o tempo de treino com TensorFlow

e PyTorch entre 28% e 37%, para modelos intensivos em E/S, respetivamente. Para além disso, o Monarch

consegue reduzir o número de operações de E/S submetidas para o SFP até 56%

Palavras-chave: Otimização de E/S, Armazenamento por Camadas, Aprendizagem Profunda.

vi

Contents

List of Figures ix

List of Tables xi

Listings xii

Acronyms xiii

1 INTRODUCTION 1

1.1 Problem . 2

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Results . 6

1.5 Document structure . 7

2 STATE OF THE ART 8

2.1 Background . 8

2.1.1 Machine Learning . 8

2.1.2 Deep Learning . 9

2.1.3 Overfitting . 11

2.1.4 Model’s evaluation metrics . 12

2.1.5 Deep Learning Frameworks . 13

2.1.6 Deep Learning Execution Time overview 13

2.1.7 Deep Learning on HPC systems . 15

2.1.8 Storage Solutions for Deep Learning . 18

2.1.9 TensorFlow’s Data Loading Solutions overview 20

2.1.10 PyTorch’s Data Loading Solutions Overview 22

2.2 Related work . 23

2.2.1 Data Ingestion Pipeline . 23

2.2.2 Parallel I/O . 24

vii

CONTENTS

2.2.3 I/O Buffering . 24

2.3 Summary . 32

3 PRELIMINARY EXPERIMENTS 35

3.1 Experimental Setup . 36

3.2 Results . 37

3.3 Summary . 39

4 MONARCH 41

4.1 Architecture . 42

4.1.1 Storage hierarchy . 42

4.1.2 Placement handler . 43

4.1.3 Metadata container . 44

4.2 Operation Flow . 45

4.3 Implementation . 47

4.3.1 Configuration . 47

4.3.2 Applicability Across DL Frameworks . 48

4.3.3 Threading and Background Processing 48

4.3.4 Metadata Management . 49

4.4 Summary . 49

5 EXPERIMENTAL EVALUATION 51

5.1 Experimental Setup . 51

5.2 Results . 53

5.2.1 TensorFlow 100 GiB . 53

5.2.2 TensorFlow 200 GiB . 56

5.2.3 PyTorch 100 GiB . 59

5.2.4 PyTorch 200 GiB . 62

5.2.5 Long run and accuracy analysis . 64

5.2.6 Discussion . 65

6 CONCLUSION 67

6.1 Prospects for Future Work . 68

Bibliography 70

viii

List of Figures

1 Deep Learning layers representation. 10

2 Deep Learning simplified training process steps. 10

3 Example of the dataset access of a training loop that uses Mini-batch Gradient Descent (Mini-

batch GD) and global shuffling. 11

4 Overfitting, appropriate fitting and underfitting for a classification problem. 12

5 Deep Learning generic data-flow and execution time components. 14

6 Deep Learning generic pipelined data-flow . 15

7 Parallel File System being used by multiple nodes. 16

8 Simplified example of cache thrashing originated by the LRU replacement policy existent in

the Page Cache, considering two epochs, cache quota of 2 units, and a worst case scenario

for a random access pattern. 17

9 Random access to an optimized file format. 19

10 Sequential access to an optimized file format. 20

11 Interleaved access to an optimized file format. 21

12 TensorFlow’s file system adapters. 22

13 Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and

ResNet-50 training models. 38

14 Central Process Unit (CPU) utilization of each model in the different setups. 39

15 Graphical Processing Unit (GPU) utilization of each model in the different setups. 39

16 Monarch’s cache eviction policy compared with LRU. 44

17 Monarch’s architecture and flow of requests. 45

18 Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and

ResNet-50 training models for the TensorFlow 100 GiB scenario. 53

19 TensorFlow’s throughput, in samples per second, of Lustre, Local, Cache, and Monarch

setups under LeNet, AlexNet, and ResNet-50 models, for 100 GiB. 54

20 TensorFlow 100 GiB PFS operations. 55

ix

LIST OF FIGURES

21 TensorFlow 100 GiB resource utilization. 56

22 Average training time for the Lustre and Monarch setups under LeNet, AlexNet, and ResNet-

50 training models for the TensorFlow 200 GiB scenario. 57

23 TensorFlow’s throughput, in samples per second, of Lustre and Monarch setups under LeNet,

AlexNet, and ResNet-50 models, for 200 GiB. 57

24 TensorFlow 200 GiB PFS operations. 58

25 TensorFlow 200 GiB resource utilization. 59

26 Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and

ResNet-50 training models for the PyTorch 100 GiB scenario. 59

27 PyTorch’s latency, in seconds, of Lustre and Monarch setups under LeNet, AlexNet, and

ResNet-50 models, for 100 GiB. 60

28 PyTorch 100 GiB PFS operations. 61

29 PyTorch 100 GiB resource utilization. 62

30 Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and

ResNet-50 training models for the PyTorch 200 GiB scenario. 62

31 PyTorch’s latency, in seconds, of Lustre and Monarch setups under LeNet, AlexNet, and

ResNet-50 models, for 200 GiB. 63

32 PyTorch 200 GiB PFS operations. 63

33 PyTorch 200 GiB resource utilization. 64

34 Top-1 and top-5 accuracy. 65

x

List of Tables

1 Specifications of the experimental environment. 36

xi

Listings

1 Setting up the storage tiers hierarchy with Monarch. 47

2 Examples of Monarch supported POSIX calls. 48

xii

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Network

AP Aprendizagem Profunda

API Application Programming Interface

CAD Computação de Alto Desempenho

CNN Concolutional Neural Networks

CPU Central Process Unit

DFS Distributed File System

DI Department of Computer Science and Informatics

DL Deep Learning

DLFS Deep Learning File System

DLT Deep Learning Training

DNN Deep Neural Network

DTT Data Tracking Tool

E/S Entrada/Saída

EOO Entropy-aware Opportunistic Ordering

FIFO First In, First Out

GPU Graphical Processing Unit

HDD Hard Disk Drive

xiii

ACRONYMS

HDF5 Hierarchical Data Format version 5

HFDS Hadoop Distributed File System

HPC High-Performance Computing

HSM Hierarchical Storage Management

HTTP Hypertext Transfer Protocol

I/O Input/Output

ILSVRC2012 ImageNet Large Scale Visual Recognition Challenge 2012

KV Key-Value

LDL Locality-aware Data Loading

LFU Least Frequently Used

LMDB Lightning Memory-Mapped Database

LRU Least Recently Used

Mini-batch GD Mini-batch Gradient Descent

ML Machine Learning

MP Single Node Multi-Process

MPI Message Passing Interface

NVM Non-Volatile Memory

NVMe Non-Volatile Memory Express

OS Operating System

PFS Parallel File System

PLF Prefetching for Large Files

QoS Quality of Service

RAM Random-Access Memory

RDMA Remote Direct Memory Access

xiv

ACRONYMS

ReLU Rectified Linear Unit

REST Representational State Transfer

RNN Recurrent Neural Networks

RTT Round Trip Time

SDS Software-Defined Storage

SFP Sistema de Ficheiros Paralelos

SGD Stochastic Gradient Descent

SP Single Node Single Process

SPDK Storage Performance Development Kit

SQL Structured Query Language

SSD Solid-State Drive

TACC Texas Advanced Computing Center

TanH Hyperbolic Tangent

TCP Transmission Control Protocol

TLU Threshold Logic Unit

TPU Tensor Processing Unit

VM Virtual Machine

xv

C
h
a
p
te

r

1
INTRODUCTION

Artificial Intelligence (AI) has been gathering interest from the scientific community and industry [99],

leading to technological solutions and innovations. For example, computer vision is becoming a major

investment for companies [99] to develop face detection and recognition solutions, used in so many

state-of-the-art smartphones. Another example is human pose estimation, that can be applied to create

augmented reality in the fashion industry [11] or to identify behaviors in the surveillance industry [2]. More-

over, natural language processing is also achieving rapid progress by having AI systems with high language

capabilities [99]. As an example, Google and Microsoft have both deployed the BERT [22] language model

in their search engines. Another example is the use of AI in biology, where DeepMind’s AlphaFold applied

DL to solve the protein fold problem [40].

It is challenging to specify a universal characterization of the AI field, since it branches out to many

specific subdomains with alternative approaches for problem-solving. Some of them are attached to the

evolutionary computation field, which mainly uses meta-heuristics or stochastic optimizations to achieve

high-quality solutions to optimization problems, for example, genetic algorithms [7]. Others can be as-

sociated with automatic improvement of the designed system through accumulated experience, such as

Machine Learning (ML).

ML uses Linear Algebra for a systematic representation of the knowledge that a computer can under-

stand, and Multivariate Calculus, to achieve a mathematical optimization of a given function. Thus, ML

allows the construction of AI for multiple real-world applications and uses real-world data, specific to a

problem, to do so. In this case, the computer, through an ML model will learn how to produce an output,

based on a set of inputs (i.e, training dataset), acquiring learning capabilities [32].

ML is composed by a considerable variety of models. The ones based on Deep Learning (DL) are well

know to deal with text, sound and image problems [99]. DL is based on Artificial Neural Networks (ANNs),

1

CHAPTER 1. INTRODUCTION

which are slightly inspired by biology, more specifically by the brain architecture, although DL models are

not models of the brain. The term ”Deep” merely states that the ANN, in this case, contains multiple

connected hidden layers in its topology. Each layer is a set of neurons or nodes that hold specific state

(weights) in their connections. During a training phase the neurons state will be optimized to achieve good

results at solving the predefined problem (e.g., distinguish an image of a dog from an image of a cat). As

in ML, this phase is only possible when a problem-specific dataset is used. This dataset will be repeatedly

read, as a whole, to provide the training data inputs.

Complex DL models must be trained with large datasets in order to be accurate [27, 82]. The ex-

ponential growth in data, supported by the rise of the internet, as a way to collect and distribute data,

was without a doubt one of the pivotal reasons to allow the DL field to bloom [27]. These datasets are

often comprised of hundreds of GiB, and even several TiB in size, for example, ImageNet-22k [21] (1.5

TiB), Open Images [65] (18 TiB) and YouTube-8M [4] (1.6 TiB). Each data sample is usually read in a

randomized order to ensure model convergence and optimal accuracy values [57, 59].

A realistic DL workload is formed by the combination of high computation and data ingestion times,

leading to prolonged training phases. Many solutions were developed and used by companies, as well as

the scientific community, to solve this performance issue, which further helped the rise of the DL field. For

example, and on the hardware side, accelerators like NVIDIA Graphical Processing Units (GPUs) [89] and

Google Tensor Processing Units (TPUs) [39] can improve the performance of training DL models. Like-

wise, on the software side, DL frameworks, such as Keras[41], TensorFlow[1] and PyTorch[66], are widely

adopted to facilitate the development of DL training scripts. These solutions provide efficient algorithms to

train DL models, as well as better approaches to take advantage of the available computational resources.

An example of the latter is the availability of distributed training techniques, that use multiple GPUs and/or

multiple nodes for the training process. These frameworks can also integrate in their source code other

external libraries, for example cuDNN [14], which is used to further improve the DL training performance

when using GPUs.

1.1 Problem

It is important, due to the storage and computational requirements of DL training (i.e., caused by the large

amounts of data and complex models, respectively), to use infrastructures with specialized hardware to

run DL jobs. HPC infrastructures are a great example to tackle the performance issues of DL training,

by accommodating thousands of compute nodes, where DL jobs can be deployed to effectively train DL

models. These compute nodes have high-speed interconnect networks for communications, and can pos-

sess multiple GPUs. Furthermore, compute nodes have easy access to one or multiple PFS backends

(e.g., Lustre [77], BeeGFS [17], GPFS [76]), which are shared by all HPC users to store and access their

information.

2

CHAPTER 1. INTRODUCTION

Indeed, HPC users that run DL jobs at compute nodes, generally use the available Parallel File System

(PFS) backend to store their large training datasets, despite contrary recommendations [28]. These storage

infrastructures are highly scalable, but when stressed by many users their performance can deteriorate,

leading to performance degradation [17, 53, 54, 96]. Moreover, DL datasets, in addition to being large,

are often comprised of millions of data samples. For example, Open Images has around 9 million images

and ImageNet-22k has approximately 14 million images. As such, PFSs, like other storage solutions, are

affected by the small files problem [51, 75], and the long-lived and recurrent access to millions of small

files (i.e., both data and metadata requests) during the training process of a DL model can cause a

massive impact in the supercomputer’s PFS, as stated in [100], a Texas Advanced Computing Center

(TACC) research project:

”As the dataset grows larger, the metadata and data traffic of thousands of directories and millions of

files can easily saturate the existing shared file system due to the high access frequency, concurrency,

and the sustained Input/Output (I/O) behavior.”

In fact, DL jobs storage access can be underwhelming in these infrastructures, causing performance

losses for the training phase, which evidences the existence of an I/O bottleneck for these jobs. Further-

more, the presence of multiple DL workloads can lead to performance degradation and high throughput

variability on concurrent jobs that also depend on the PFS performance. To alleviate the small files I/O

bottleneck,(i.e., reduce the number of metadata and data operations submitted to the PFS), optimized

data formats are used. These formats pack several small-sized files into a single, larger one. This type

of data representation diminishes the I/O bottleneck by allowing the use of large and sequential reads,

leading to the reduction of the number of files being accessed and, consequently, the number of metadata

operations required during the training phase. Some DL frameworks support optimized data formats, such

as TensorFlow’s TFRecords [86] or MXNet’s RecordIO [13, 72]. On the other hand, third-party libraries can

also be used, such as HDF5 [30].

Further, to boost the access to training data, DL frameworks also implement different I/O optimiza-

tions, such as in-memory caching, I/O prefetching, and parallel I/O. These optimizations are often con-

veyed through convenient programming interfaces, such as TensorFlow’s tf.data[85] and PyTorch’s [66]

DataLoader [70], or by using third-party libraries, such as DALI [61].

Complementary to these optimizations, and since several modern supercomputers include compute

nodes equipped with fast local storage mediums (e.g., Solid-State Drive (SSD), Non-Volatile Memory Ex-

press (NVMe)) [5, 80], storage tiering can be used to fully or partially cache datasets locally, reducing the

I/O pressure at the PFS and speeding up DL training [24, 44]. However, this work identifies four main

challenges that are currently limiting the adoption of storage tiering at supercomputers.

3

CHAPTER 1. INTRODUCTION

Storage tiering is not available to all DL frameworks. Most DL frameworks assume training

datasets are stored in a single storage backend. In such cases, moving the dataset from the PFS to the

local storage mediums must be done by users, either by manually copying the dataset or by providing the

DL framework, if possible, custom logic to read data samples. However, users are often not aware of these

local storage resources, or do not know how to use them correctly.

The full dataset must fit at the faster tier. While some approaches avoid manual intervention

from users, the training data must fit into the compute node’s local disk, which is not the case for large

DL datasets [78, 84]. In some approaches, the local disks from several compute nodes can be grouped

to provide a caching tier that supports large datasets [100]. However, under single-node DL jobs, such

solutions require allocating, and potentially wasting, resources from several compute nodes.

Intrusiveness for developers and users. Solutions addressing the previous challenges can require

changing the original codebase of DL frameworks, thus limiting their applicability. Also, these solutions

require understanding and using additional I/O libraries (e.g., custom-made, Message Passing Interface

(MPI)) for building DL training scripts, limiting user adoption.

DL-specific I/O patterns are unexplored. Current storage tiering approaches are focused towards

buffering scientific write workloads at intermediary storage mediums before reaching the PFS. However,

DL training workloads are read-oriented, and have specific I/O patterns that should be considered when

optimizing data placement over different storage tiers. Namely, the full dataset must be accessed for each

training epoch, and each dataset file is read once per epoch. Files may be requested in a randomized order

across epochs. Also, when using optimized data formats (e.g., TFRecords), several I/O read requests are

issued to read different data samples packed into a single file.

To address the aforementioned challenges, a framework-agnostic storage tiering middleware is nec-

essary. This solution should enable DL frameworks, in single-node training scenarios, to transparently

leverage local storage mediums of compute nodes, even for datasets that may not fit entirely on such

resources.

1.2 Objectives

Taking into consideration the problems described in the previous section, this dissertation has three main

objectives. First, it aims at accelerating single-node DL training. This performance improvement is targeted

at training phases that access supercomputer’s PFS storage infrastructure, thus being affected by the

previously described I/O bottleneck. This will allow DL developers at supercomputers to train DL models in

4

CHAPTER 1. INTRODUCTION

shorter periods of times and further increase the DL training evaluation metric result (e.g., accuracy). The

latter applies when regular user’s jobs have a time limit to run at the supercomputer (e.g., Frontera [80]).

Second, considering the perspective of the HPC cluster, it is important to establish the additional

goal of mitigating the number of requests that are issued to the PFS (i.e., both data and metadata). This

objective is necessary to reduce the performance impact of DL jobs on the HPC infrastructure’s shared

PFS, thus improving the Quality of Service (QoS) of all users that resort to the PFS. Further, by depending

less on accessing the PFS, DL jobs, will be less affected by the I/O variability of that storage infrastructure,

leading to a more stable performance of DL training across different jobs.

Finally, it is important to ensure transparency for DL users and DL frameworks cross-applicability. With

this goal, this dissertation’s proposed system can be applied over different DL frameworks with distinct

I/O optimizations. Moreover, DL training scripts will not have the need to be modified and DL users do

not have the necessity to describe a complex set of configurations to use the proposed system. All of this

leads to the system’s wider adoption.

1.3 Contributions

To accomplish the objectives stated above the following contributions are made in this work:

• The first contribution is an experimental study that analyzes and compares the impact of running

DL training jobs at the compute node’s local storage medium and at a supercomputer’s PFS. This

experiment will serve as a foundation and baseline to determine the real advantages of using the

local storage medium as a faster storage tier.

• The second contribution is Monarch, a framework-agnostic storage tiering middleware for single-

node DL training at HPC centers. Monarch enables DL frameworks to transparently leverage local

storage mediums of compute nodes, even for datasets that may not fit entirely on such resources.

At its core, Monarch mediates dataset read requests between DL frameworks and HPC storage

resources (i.e., local storage and PFS), while providing a data placement strategy that is fine tuned

for the I/O patterns of DL jobs, that are performing model training under datasets that hold different

types of data, such as raw small files or optimized data formats (i.e., TFRecords, RecordIO). Namely,

data placement is done as a background task, to avoid adding extra latency at the critical I/O path

of DL frameworks. Further, it prefetches content from large files, stored at the PFS, to faster storage

mediums. This decision promotes the use of faster storage resources while avoiding unnecessary

data accesses at the PFS.

When combined, this middleware’s mechanisms i) accelerate DL training time, ii) reduce I/O vari-

ability, and iii) diminish I/O pressure at the PFS. Moreover, by decoupling storage tiering from other

5

CHAPTER 1. INTRODUCTION

I/O optimizations, Monarch can be combined with other mechanisms currently supported by DL

frameworks, such as optimized data formats, I/O caching, prefetching and parallelism. This de-

coupled design enables porting Monarch across different DL frameworks that rely on the POSIX

interface to access the training dataset (e.g., TensorFlow, PyTorch), without requiring any changes

to their codebase.

Finally, it can be utilized transparently by users without requiring any changes to the way they build

their DL training scripts or requiring any complex system configuration.

• Implementation of Monarch, which relies on the LD_PRELOAD technique to be portable across

DL frameworks without the need to change their source code or DL developers training scripts.

Monarch prototype is ready to be used with the TensorFlow and PyTorch (with DALI [61] enabled)

frameworks.

• An experimental evaluation that showcases the impact of Monarch in terms of training per-

formance, I/O variability, and number of operations submitted to the PFS. This evaluation was

conducted on a realistic scenario, using the Frontera [80] supercomputer and with the TensorFlow

and PyTorch frameworks to train the LeNet [50], AlexNet [45] and ResNet [33] models. Monarch

allows decreasing TensorFlow’s and PyTorch’s training times by up to 28% and 37%, respectively, for

I/O-bound models and datasets that do not fit entirely at the compute node’s local storage. Further-

more, Monarch is able to reduce I/O-variability, and decrease the number of operations submitted

to the shared PFS by up to 56%.

1.4 Results

Has a result of this work the two following scientific papers were published:

• M. Dantas, D. Leitão, C. Correia, R. Macedo, W. Xu and J. Paulo, “MONARCH: Hierarchical Stor-

age Management for Deep Learning Frameworks”, 2021 IEEE International Conference on Cluster

Computing, 2021.

• M. Dantas, D. Leitão, P. Cui, R. Macedo, X. Liu, W. Xu, J. Paulo, “Accelerating Deep Learning

Training Through Storage Tiering”, The 22nd IEEE/ACM International Symposium on Cluster, Cloud

and Internet Computing, 2022.

Moreover, Monarch is publicly available as an open-source project at https://github.com/dsrhaslab/

monarch.

6

CHAPTER 1. INTRODUCTION

1.5 Document structure

This document is structured in the following way: Chapter 2 elaborates on the state-of-the-art, where general

background concepts are discussed, giving clarity on DL concepts that are related to this work, focusing

more on the I/O-bottleneck of DL jobs, and how this problem is managed by both storage solutions and DL

frameworks. Not only that, but relevant related work is also discussed, concerning developed systems that

target DL training acceleration through I/O optimizations. Chapter 3 presents a preliminary experiment

to validate the use of local storage to optimize DL training. Chapter 4 gives a detailed explanation of

Monarch, followed with an extensive evaluation in Chapter 5. Finally, Chapter 6 will deliver this work’s final

conclusions and discuss some possible future research paths that build upon Monarch’s contributions.

7

C
h
a
p
te

r

2
STATE OF THE ART

Considering that this dissertation focuses on a storage solution designed for DL workloads it is necessary to

understand fundamental DL concepts, specifically focusing on the DL training phase, its I/O requirements

and how they are addressed by DL frameworks. Finally, details on how DL jobs are executed in HPC must

also be provided to fully comprehend the problems that concern HPC storage infrastructure (i.e., PFS).

Apart from the necessary background, systems that target problems similar to those that motivate this

dissertation are also analyzed.

2.1 Background

To better understand DL one must first understand ML, the field from which DL derives and shares base

concepts, thus contributing to a better understanding of the cornerstone principles that sustain this work.

2.1.1 Machine Learning

Machine Learning (ML) comes from the simple idea of having a computer that can generate self-taught

rules by looking at data. ML based systems should be automated by means of a training process, rather

than being explicitly programmed, as in a more traditional and conservative manner, where data-processing

rules must be previously defined.

The core of ML is the training phase, where many samples of a specific data domain (i.e., images,

text, audio) are fed to a model. The whole training process enables the ML model to recognize patterns

and derive conclusions that will lead to the automation of a specific job, such as time-series forecasting,

speech recognition and even autonomous driving. This process can be perceived as “learning” [27].

8

CHAPTER 2. STATE OF THE ART

To sum up, the ability to have intelligence and automation, eventually, arises from the patterns, struc-

ture and rules that the ML model discovers while training with the provided data samples. As such, to

achieve reasonable results, ML is dependent on the available training dataset. The model is often tuned

to achieve a high degree of capability to generalize the results beyond the training data, so that it can be

applied to data that it has not yet seen.

There are broadly four main branches of ML [27]. Supervised learning [43] where the model learns

to translate input data to known labeled targets (e.g, object detection, image segmentation, regression).

Unsupervised learning [42] is usually used as a first step towards supervised learning, in a way that it can

help find and visualize correlations within a dataset without the help of labels. Self-Supervised learning [12]

is supervised learning without labels provided by humans, but instead, typically using heuristic algorithms.

Reinforcement learning [81] introduces the concept of agent as an entity that receives information from a

certain environment and learns by being “rewarded” depending on the actions that it takes based on the

received input. Supervised learning is the most common case of ML and it is the characteristics of this

type of learning that this dissertation will focus.

2.1.2 Deep Learning

Deep Learning (DL) is a vast field inside of ML, where models are constructed upon several successive

layers of connected neurons, which are the fundamental units of DL. By stacking each layer on top of

each other a Artificial Neural Network (ANN) is created. This network can be broadly divided into three

components, the input layer, the output layer and those that reside between the previous two that are

called the hidden layers. When a ANN contains multiple hidden layers it is called a Deep Neural Network

(DNN), as seen in Figure 1.

In a common ANN architecture each connection between the existing neurons holds a weight. The most

commonly used types of neurons are the Threshold Logic Units (TLUs) [32]. These neurons compute a

weighted sum based on the inputs they receive from their connections. An activation function is then

applied to the sum value, which in turn, generates the output of that neuron. Some of the more well known

activation functions are the Rectified Linear Unit (ReLU) [98] and the Hyperbolic Tangent (TanH) [97].

The training phase, similar to the one performed on ML models, happens via the training loop, where

for each iteration of the loop, training samples and their corresponding targets are fetched from storage.

This process goes on until the full training dataset is passed over multiple times. Each full dataset pass is

an epoch.

Training samples are fed into the model, going from the input layer to the hidden layers, until they

reach the output layer, to achieve predictions for those inputs. This process is called forward pass. As

shown in Figure 2, having obtained the predictions, a loss function is used to measure how well the model

is doing, calculating the loss score, which is a measure of the error between the predicted values and

9

CHAPTER 2. STATE OF THE ART

Input Layer
Hidden
Layer1

Hidden
Layer2

Output Layer

Input 1

Input 2

Input 3

Output 1

Output 2

Output 3

Output 4

Figure 1: Deep Learning layers representation.

the real targets/desired output. The optimizer will then take the loss score and apply the backpropagation

algorithm, going from the output layers to the input layers, to calculate the contribution (i.e, error gradients)

of each connection of the layers to the loss score. With the error gradients of each connection’s weight

the optimizer will make a weight update, shifting the values of the weights in a manner that leads to the

reduction of the loss score, targeting a global minimum.

Weight update

True
Targets

Predictions

Loss
Function

Weights

Input

Loss
Score

O
p
ti
m
iz
er

Figure 2: Deep Learning simplified training process steps.

Mini-batch GD is a popular algorithm for performing optimization on neural networks, where a weight

update occurs after processing some predefined number of samples (i.e., a mini-batch of samples, as

seen in Figure 3).

With Mini-batch GD, each input that forms themini-batch is usually picked randomly (i.e., randomness

10

CHAPTER 2. STATE OF THE ART

derived from the Stochastic Gradient Descent (SGD)). This randomness has benefits to avoid local minima

and to find the global minimum. To achieve randomness, it is ideal to shuffle the whole training dataset

in each epoch. This step must be done with the input samples and labels jointly, so that it does not

interfere with the samples’ labeling. It is important to make sure that each sample has the same probability

distribution as the other samples and that all of them are statistically independent. This is done by either

using a global shuffling method on the whole dataset (i.e, usually done by shuffling the names of the files

to be read for each epoch) and then making storage requests that follow that predefined order, or by picking

each sample randomly from the dataset [32] at the time of the storage request. There are discussions on

how this random picking should be done [57], but it is certain that some degree of randomness is required

and that global shuffling has convergence guarantees (i.e., the guarantee that the model is approaching

the global minimum).

 4 22 45 33 12 99 2 1 17 88 90 71

List dataset files

Epoch 1

shuffle

33 13 1 41 81 8 23 5 11 63 50 39Epoch 2

shuffle

Dataset samples indexes

Iteration 1 Iteration 2 Iteration 3 Iteration x

Iteration 1 Iteration 2 Iteration 3 Iteration x

Figure 3: Example of the dataset access of a training loop that uses Mini-batch GD and global shuffling.

2.1.3 Overfitting

A common ML and, consequently, DL problem is overfitting the model to the available training data. When

dealing with i) complex models, which in the case of DNN they usually are, and ii) training datasets that

have noise or are not large enough to attenuate the sampling noise, DL models will find underlying patterns

in the noise and will not generalize well to unseen data, thus failing at problem solving (e.g., classify objects,

speech recognition).

Even though regularization techniques can be applied during DL training (e.g., 𝑙1 and 𝑙2 regulariza-

tion [60], Dropout [79], early stopping [95]), very commonly the best solution for overfitting (Figure 4a) is

to simply use a well balanced, diverse and large enough dataset [27, 82]. Techniques like data augmen-

tation to artificially enrich the dataset with new data derived from existing samples can also be part of the

solution for a better model [67].

11

CHAPTER 2. STATE OF THE ART

The stochastic (i.e., random) property of the Mini-batch GD can also be helpful to prevent the model

from being biased by the noise of a meaningful input order. The obstacle of biased data is even more

evident for classification problems where the dataset is usually organized in a class/target manner. In this

case, when fetching a mini-batch, a representative set of samples of the whole dataset is needed and not

just of some specific classes/targets. Therefore, shuffling the dataset is common when this is the case,

making this step important not only for convergence, but also to achieve good generalization levels.

Nevertheless, underfitting a model (Figure 4c) is also a possibility. This is the opposite of overfitting.

In this case the model, after training, could not capture the relationship of the data that is being fed to it,

thus lacking complexity and performing poorly. This is less common than overfitting and can arise from

trying to solve the latter problem. The solutions to this problem is to simply make the model more complex

or reduce restraints to the model such as regularization, if they are present.

(a) Overfitting. (b) Appropriate fitting. (c) Underfitting.

Figure 4: Overfitting, appropriate fitting and underfitting for a classification problem.

With all of this in mind, it is now easy to understand why large quantities of data must be used in

DL training. Not only that but, the random access pattern, characteristic of the DL training phase, is also

necessary for convergence guaranties and to help preventing overfitting.

2.1.4 Model’s evaluation metrics

DL developers need model evaluation metrics to quantify the model’s performance on solving a given prob-

lem. For example, in classification tasks that use a unskewed dataset (i.e., a dataset where the frequency

of some classes is not bigger than others), a frequently used metric is accuracy. This metric focuses on

the ratio between the total number of correct predictions versus the total number of predictions made. The

metrics precision and recall are more often used in the presence of skewed datasets. When chosen cor-

rectly, these metrics are extremely useful. On an DL production pipeline there are essentially two phases

of evaluation: model testing and training validation.

Model testing is used to determine how well the designed solution will generalize to new cases (i.e.,

data samples that were not used during the training phase), using a test dataset. This is a crucial phase that

12

CHAPTER 2. STATE OF THE ART

must happen before the model’s deployment, making it possible to know how well a model will behave

on new inputs. The training validation phase is mainly used for model optimization, targeting the shift

of the model’s hyperparameters (i.e, properties that govern the entire training process), also known as

hyperparameter search, and happens during the training phase. Tuning these properties is the process

of trying to determine the model that obtains the highest score, utilizing a predefined metric, such as

accuracy. When considering large datasets a hold-out validation dataset is used for this matter.

2.1.5 Deep Learning Frameworks

In order to facilitate the scientific advances of the DL field, building DL models cannot become very time

consuming. With this goal, specialized frameworks were built to create and train DL models. These frame-

works can be interfaces or libraries that help DL developers.

Firstly, DL frameworks contribute to the research and production of DL models, since they allow the

fine tuning of the whole training process with the existence of low-level interfaces. These interfaces offer a

high degree of customization and configurability to the internal processes of the framework, thus allowing

DL experts the possibility to achieve high-performing specialized solutions. This is the case of TensorFlow,

which is an open source software library, PyTorch, that can generally be found as a Python package, and

MXNet, a framework specifically built to train and deploy DNNs.

Finally, these frameworks can also give non-experts on the underlying DL’s algorithms andmechanisms

(e.g., Mini-batch Gradient Descent (Mini-batch GD)) the access to high-level interfaces. With this, users

that are still new to the field are able to construct complex problem solving models. A framework that is

well known to be user-friendly is Keras [41]. This framework focuses on offering a high-level Application

Programming Interface (API) to build DL scripts. It runs on top of other DL libraries, more predominantly

on top of TensorFlow.

This dissertation uses as use-cases the TensorFlow and PyTorch DL frameworks as these are two of

the most popular frameworks currently available.

2.1.6 Deep Learning Execution Time overview

For this work, the total execution time of a given DL training job is based on DL frameworks’ general

modus operandi and will be divided into two core components: computation time and data I/O time. It is

worth to mention that when parallel training execution is considered the communication time must also

be added to the sum. The communication time is introduced by the weight movement costs between the

devices involved in the distributed training. In the case of the data parallel model it is the cost of the

all-reduce operation. Although important, this component will be set aside, since this work will be focused

on single-node training.

13

CHAPTER 2. STATE OF THE ART

The computation time in DL training includes operations such as convolution or element-wise arith-

metic. The computations of a DL model are generally associated to the work of the optimizer (e.g, back-

propagation and Mini-batch GD), including, obviously, the forward pass of each mini-batch. This time

component is dependent on many hyperparameters, such as the number of epochs, batch size, layers

complexity, hidden layers depths, etc. The higher the epoch size, the longer the training process and more

full dataset traversals will be made. More hidden layers tend to lead to a larger number of parameters and

a bigger model complexity, which also increases computation time.

Furthermore, DL workloads are read-heavy, but some write operations may occur over the training

course, which result from checkpointing (i.e., persisting) the DL model’s state. These operations are done

in files that are disjoint from the training dataset, as such, this dataset remains as read-only for the duration

of the training phase. Checkpoiting provides some degree of fault tolerance in the presence of prolonged

training times and epochs. However, for this work, data I/O time will solely be defined as the time that

takes to fetch samples from the source dataset (i.e., storage I/O) and deliver them to the model’s input

layer, thus ignoring the small percentage of I/O that comes from checkpointing.

Between arriving from the storage backend to being delivered to the model’s input layer, data samples

are usually decoded and can be preprocessed in memory, and in a wide range of ways. Some common

preprocessing steps are data normalization and data augmentation, where, for example, horizontal flips

and crops on an image can be made to benefit the model’s performance [67]. Arguably this process can

be considered a very distinct component of the DL training phase, but for the purpose of this dissertation

it will be accounted as part of the data I/O time.

Although not being strictly imposed, the use of GPUs is widely adopted to reduce the computation

costs. However, since the main computation is placed on the GPU and the data is in the CPU’s memory,

the data must be transferred from CPU to GPU (i.e., involves traffic on the CPU-GPU interconnect), adding

an extra component to the data I/O time. Notably, the preprocessing of data is usualy made on the CPU, but

with the help of specialized data loading libraries, such as DALI [61], this can be made in GPU. Therefore,

the data I/O time is mainly dependent on the throughput of the storage backend and the complexity of

the preprocessing done to each sample (see Figure 5).

Dataset Reads Decode TrainPreprocess

CPU CPU/Accelerator AcceleratorBackend Storage

Data I/O time Computation time

Mini-batch 1

Figure 5: Deep Learning generic data-flow and execution time components.

With the help of DL frameworks, some of these operations can be overlapped, for example, computation

can proceed while new inputs can be fetched, buffered and preprocessed to later on be passed to the model

14

CHAPTER 2. STATE OF THE ART

input layers. These optimizations are often implemented in a pipelined manner.

Mini-batch 1

Decode TrainPreprocess

Reads Decode Preprocess Mini-batch 2

Mini-batch 3

Train

Stall (I/O throughput)

Stall
(compute)

Idle time

Reads

Dataset Reads Decode TrainPreprocess

CPU CPU/Accelerator AcceleratorBackend Storage

Figure 6: Deep Learning generic pipelined data-flow

A key concept to retain is that the predominant time consuming component will dictate where the

performance bottleneck will reside. In Figure 6 mini-batch 2 is ready to compute even before mini-batch 1

training step is concluded, hence there is a compute stall that prevents mini-batch 2 from being used for

training. If for the majority of the training process data samples are always ready for computation and the

computation time is predominant, then the overall configuration of the whole training process (i,e. model’s

architecture, model’s hyperparameters, I/O optimizations, hardware, etc.) leads that job to be compute-

bound. On the contrary, if for the majority of training steps the training loop sits idle waiting for input

data, such as the case of mini-batch 3, where the I/O throughput was decreased for some reason and

consequently delayed the training process, then the job will be considered I/O-bound. Generally speaking,

DL jobs are usually compute-bound, but they can easily become I/O-bound, if no I/O-optimizations are

used and under-performing storage backends are present.

2.1.7 Deep Learning on HPC systems

The performance of DL applications has been analyzed by many researchers and recent studies have

shown that, within the data I/O time, storage access to read data samples cannot be dismissed as an

existing bottleneck to the overall training efficiency [31, 63, 69, 92], especially in HPC infrastructures and

their underlying PFSs, which are the main scope of this dissertation.

As stated in Section 2.1.3, DL training is associated with complex models and large-scale datasets.

This leads to computational, network and storage needs for DL applications. Associated with these needs

there has been an increase in the popularity of modern supercomputers. Modern HPC infrastructures, by

design, provide parallel computing capabilities, enabling the execution of a particular job to be scaled up

and breaked down into separate computational tasks to be performed by many individual cores within a

single device or node. These systems also contribute to a scale-out job parallelism, where a job can be

split into many parts that can be processed in parallel by different servers, this is particularly useful for

the case of distributed training.

15

CHAPTER 2. STATE OF THE ART

Storage access is easily obtained in these infrastructures by means of a shared PFS (e.g, Lustre,

BeeGFS, GPFS), that provides fast global access to large volumes of data and ensures data persistence

through a high number of distributed storage devices. Several supercomputers, such as Frontera and

ABCI [5], also have their compute nodes equipped with local storage mediums, such as SSDs.

Node 1 Node 2 Node N

Parallel File System

I/OI/OI/O

Figure 7: Parallel File System being used by multiple nodes.

Despite not being always necessary to use, since local storage mediums are also available, the PFS

storage backend is appealing to users and they opt to store their datasets in that system for various

reasons [24, 100]:

• Users might not be aware of local storage mediums available at compute nodes and their perfor-

mance benefits

• In many cases, data must be manually copied from the PFS to local storage

• Large datasets may not fit entirely at the local storage resources

• Due to its shared namespace, data access in distributed training is guaranteed

Therefore, it is easy to understand that HPC users very often do not use the local storage that is

available at the compute nodes. This generates a problem, since the PFS itself cannot handle very well DL

workloads generated by the execution DL jobs.

This problem is evidenced by Chowdhury et al. [17], stating that DL workloads, impose serious chal-

lenges for PFSs and, in turn, lead to poor I/O performance of DL jobs. Traditional file systems are optimized

for large sequential reads and under-perform in the presence of large datasets comprised of small files [51,

75] and random access patterns. This is also true for remote storage, such as a PFS. These systems offer

large amounts of aggregate bandwidth, but when only small data requests are issued, only a small fraction

of that bandwidth is used.

Moreover, in an analysis of the data stalls that occur in DL training, Mohan et al. [59], concludes that,

when the dataset cannot be fully cached in memory, storage access can become a bottleneck, especially

when accessing remote storage and not local storage. This study points out that implicit mechanisms, more

specifically the Page Cache, are not efficient for DL training due to its caching replacement policy, that is

16

CHAPTER 2. STATE OF THE ART

a variant of Least Recently Used (LRU) [88]. This policy, when the Page Cache reaches its full capacity,

decides which cached items will be evicted to leave space for new insertions. Since DL training involves

a repetitive and very often random access to data samples (Section 2.1.2), using LRU causes thrashing,

leading to unnecessary item replacements and I/O movement. Figure 8 shows a simple example of the

behavior of this type of cache. As seen in this figure, where the initial state is derived from a warmup phase

(e.g., after 2 training steps) and cached samples are continuously accessed in a random order, the Page

Cache has already hit the maximum quota value and the replacement of items is active. In fig. 8, items

that are cached are also evicted without being read by the application (i.e., cache hit). For example, item

C is inserted in the first epoch of this figure, but in the second epoch it has already been replaced, which

happens for the majority of items in this illustration. As such, this represents a waste of computational

resources, with the needless replacement of items, increasing the number of cache misses.

Page Cache
with LRU

D B

Access Pattern

D B D B C B C A D A D C B C B D

CB A D BC D A

D C B A C D A C D B C D B A

 Initial State Replace the cached items with the misses

First epoch Second epoch

Figure 8: Simplified example of cache thrashing originated by the LRU replacement policy existent in the
Page Cache, considering two epochs, cache quota of 2 units, and a worst case scenario for a random
access pattern.

The size of a common deep learning dataset can easily surpass the caching capacities of a single

compute node of a supercomputer (e.g., Piz Daint [19] has 64 GiB of memory per node and Fugaku [73]

only has 32 GiB). This is more evident when local training is used and a single node has to fetch all of

the dataset samples. The lack of a better caching replacement policy is a reasonable concern since some

DL frameworks rely on this caching mechanism to cache the data samples in memory and accelerate

training performance (e.g., PyTorch, which does not have any caching mechanism). Furthermore, HPC

system administrators, recognize the I/O problem and try to obtain holistic performance guarantees for all

users, but they can either rely on this mechanism to accelerate job’s running times, and most importantly

to minimize the number of requests issued to the shared PFS, or they must ask the users to have good

practices [28], which is not an effective solution.

Wang et al. [92], took into consideration an AI specialized cluster, and showed that the I/O bottleneck

is present across multiple scenarios, being predominant in single-node scenarios, whereas in a distributed

setting it can potentially become the main performance bottleneck, but only when the communication time

stops being the leading cause of performance deterioration, through optimizations.

17

CHAPTER 2. STATE OF THE ART

Han et al. [31] empirically showed, in an HPC system with IBMPOWER architecture, that one of the

problems of training on large datasets in HPC systems is the usage of a distributed file system, Lustre [77]

in this case. This research compares the use of storing a dataset on a NVMe versus storing in Lustre. It

proves that, owning to the fact that the file system performance depends on the number of I/O requests

from all users and their diverse workloads, the performance variability using Lustre is bigger than that of

the NVMe, which can be minimal. This leads to a boost in performance when using NVMe for models

where the computational overhead is minimal. This is also backed by the common knowledge that shared

storage systems like Lustre suffer from performance variability [53, 54, 96].

A study characterizing TensorFlow’s I/O was also made [15]. In its experiments, it was observed that

the delay originated by I/O operations can be completely hidden by prefetching, making the execution time

non dependent on the number of threads used for data I/O and the storage technology used. On the other

hand, threading can be used to increase the rate of file ingestion, but this effect is more noticeable on fast

storage devices such as SSD, whereas in Hard Disk Drive (HDD), for example, the scaling flattens on a

reduced number of threads. This gives the hint of the importance of using a fast local storage medium to

store training datasets, instead of relying on a shared PFS.

2.1.8 Storage Solutions for Deep Learning

To speed up DL applications storage access times, some generic storage solutions might be used in

combination with DL frameworks. In-memory Key-Value (KV) systems are used for DL, since accessing

data through keys (e.g., file name) is already the standard for DL frameworks and relational operations

offered by Structured Query Language (SQL) databases are, generally, not needed. One of those systems

is Lightning Memory-Mapped Database (LMDB) [18], a database based on a B+tree, exposing the entire

dataset in an in-memory map, used by the Caffe DL framework [38].

Optimized data formats (e.g., TFRecord [86] and RecordIO [72]) can increase I/O throughput by allow-

ing large sequential reads and by drastically reducing the number of metadata operations issued during

training, yet there are additional concerns when using these formats, provided by DL frameworks. Firstly,

DL datasets are commonly found in their raw state (i.e., comprised of small files, possibly divided into

multiple directories), hence a conversion to the optimized format is needed. Secondly, the codebase of

the DL job needs to be changed, accordingly, which makes their adoption more difficult. Thirdly, since the

data samples are converted to records (i.e., data structure containing data and metadata from a dataset’s

sample) and serialized into single or multiple files, we can no longer perform random access to individual

records, unless there is an extra step of indexing each record, thus knowing their exact location on the bi-

nary file (i.e, offset and size). This indexation step can be used in the RecordIO format and Figure 9 shows

how records’ IDs can be shuffled to enable random access to records, making global shuffling possible

(2.1.2).

18

CHAPTER 2. STATE OF THE ART

Dataset File A

record 1

record 2

record 3

record 4

File B

record 5

record 6

record 7

record 8

File C

record 9

record 10

record 11

record 12

File D

record 13

record 14

record 15

record 16

6 1 14 16 9 2 7 11 13 4 10 3 8 15 5 12

a) Shuffle records’ IDs
order in memory

b) Load and decode
records to form batches

6 1

Batch 1

Load next Load next

14 16

Batch 2

8 15

Batch N-1

5 12

Batch N

Next
epoch

Deep Learning Model

Figure 9: Random access to an optimized file format.

On the other hand, TensorFlow does not rely on random access to records, performing fully sequential

reads instead. In this case, shuffling is provided by storing samples in a shuffle buffer, from where samples

will be chosen later on. In addition and to increase the randomization level, the IDs of the files that hold the

records can be shuffled, to obtain a different reading order in each epoch. Figure 10 explains this process,

where the shuffle buffer, will be filled with samples in a sequential order and then records are randomly

chosen from that buffer to form batches. State 1) and 2) represent possible states, since the buffering

operation and the consumption of buffered records are asynchronous. The use of a shuffle buffer not

only makes the randomization process dependent on the size of this staging area, but it further alters the

provided level of randomization, which can lead to a worse model accuracy [57, 59]. It is worth to mention,

that even though it is not illustrated in Figure 9 and Figure 10, the DL framework’s loading process of data

samples can also involve a read buffer, orthogonal to the shuffle buffer, to serve as a staging area for data

samples to be decoded and preprocessed.

Despite reducing metadata accesses, reading random records when a file index is present can defeat

the purpose of having a binary format, not enabling sequential reads. Moreover, similar to TFRecords,

when using the RecordIO format, a random chunk of records can be contiguously read from the storage

backend, instead of a single record, reducing the problem.

Finally, it is important to note one inefficiency of optimized data formats. Going back to one of the

problems discussed in the previous section, and as stated in [59]: ”TFRecord format results in 40% higher

19

CHAPTER 2. STATE OF THE ART

Dataset File A

record 1

record 2

record 3

record 4

File B

record 5

record 6

record 7

record 8

File C

record 9

record 10

record 11

record 12

File D

record 13

record 14

record 15

record 16

a) Shuffle files’ IDs
order in memory

b) Sequential load, decode
and buffer records

Next
epoch

Deep Learning Model

File B File AFile CFile D

5 6 7 8 13 14 15 16

1)

10 1 2 3

2) * Buffer quota = 8 records

c) Randomly get and
buffered records

6 13 14 16 5 13 7 8 10 3 1 2

Batch 1 Batch 2 Batch 3 Batch 4 Batch N-1 Batch N

2)1)

Figure 10: Sequential access to an optimized file format.

cache misses than the ideal because, the sequential access nature of TFRecords (and RecordIO) is at odds

with LRU cache replacement policy of the Page Cache”. In this case, using optimized data formats can

increase cache misses in the presence of a transparent cache system that uses LRU as a replacement

policy, when compared with DL training jobs that do not use these formats.

2.1.9 TensorFlow’s Data Loading Solutions overview

To look at a different perspective on speeding DL training data I/O times the internal capabilities of frame-

works can be analyzed. The TensorFlow framework’s I/O operations are conveyed through the TensorFlow

runtime, which is written in C++.

Through Python, TensorFlow provides the tf.data.Dataset API [85] that enables the creation of input

pipelines. These pipelines typically perform I/O operations, such as reading, decoding and preprocessing

data, and can be seen as producers, while accelerators, like GPUs, ingest their output, being the con-

sumers. This API optimizes the training process by parallelizing data extraction and overlapping data I/O

with computation, reducing accelerators idle time [15].

20

CHAPTER 2. STATE OF THE ART

This framework provides specific stages to be applied over a data loading pipeline. Some of the most

interesting stages to describe for the context of this dissertation are:

• Map is used to implement user-defined data stages, such as data preprocessing, over each sample

that is passed to the model. This stage can be sequential or parallel, offering the possibility to

accelerate data stage operations.

• Prefetch enables the overlap of data extraction with the model computation. In a broad sense, this

stage uses a dedicated background thread to read samples from the storage backend before the

time that they are needed by the consumer. This technique demands the existence of an internal

buffer to store the prefetched samples. Since it prefetched indivudual samples, this is a sample-

based prefetching optimization.

• Interleave can be used to parallelize data loading. For example, in a dataset composed of mul-

tiple input files that contain multiple samples (e.g., TFRecord files) this operation, when used as

parallel interleave, fetches a certain number of samples (defined by the block_size) from an input

file until it moves on to another file. The number of input files processed concurrently is given by

the cycle_length. This process can be seen in Figure 11, which can be related with the concepts

discussed in Section 2.1.8 and Figure 10.

• Shuffle is used to allow the construction of a shuffle buffer, as described in the previous section

and Figure 10.

• Cache is the stage that allows the caching of the dataset either on memory or on local storage,

saving data and metadata operations from being executed to retrieve dataset inputs from the storage

backend.

Dataset File A

record 1

record 2

record 3

record 4

File B

record 5

record 6

record 7

record 8

File C

record 9

record 10

record 11

record 12

File D

record 13

record 14

record 15

record 16

a) Shuffle files’ IDs
order in memory

b) Dataset.interleave(cycle_length=2,
 block_length=2)

File B File AFile CFile D

* Buffer quota = 24 records

5 6 13 14 7 8 15 16 9 10 1 2 11 12 3 4

Figure 11: Interleaved access to an optimized file format.

21

CHAPTER 2. STATE OF THE ART

All of these stages have configurable parameters, for example number of threads used (num_parallel_calls),

and they can be either manually configured or left alone to be auto configured with autotuning algorithms

(tf.data.experimental.AUTOTUNE), provided by the framework.

filenames = [“/var/data/file1.jpg”, “/var/data/file2.jpg”…]
dataset = tf.data.Dataset.from_tensor_slices(filenames)
dataset = dataset.map(function, num_parallel_calls=4)

TensorFlow File System Interface

POSIX AWSHDFS Google Cloud

P
yt

h
o

n
A

P
I

Te
n

so
rF

lo
w

R
u

n
ti

m
e

Figure 12: TensorFlow’s file system adapters.

TensorFlow also assists the process of reading data samples from different sources, providing adapters

to interact with various file systems, like Amazon S3, Google Cloud Storage, Hadoop Distributed File System

(HFDS) and standard POSIX-compliant solutions, exposing the same interface to users, as presented in

Figure 12.

2.1.10 PyTorch’s Data Loading Solutions Overview

The PyTorch framework enables data loading optimizations and utilities through the torch.utils.data pack-

age [70]. More specifically, the Dataloader class is the heart of PyTorch data loading. This class will deliver

the data samples to the training loop on demand.

The Dataloader can be enabled to use multiprocessing, and it does so by utilizing a main process

interacting with spawned background worker processes, enabled through multiprocessing queues. The

main process can submit requests to its workers to load data samples. Prefetching can be enabled by

increasing the rate of requests that the main process issues to the worker processes. PyTorch’s Dataloader

background worker processes will simultaneously load and preprocess data samples, which causes an

increase in data throughput to the training loop.

The Dataloader can also make data transfer to CUDA-enabled GPUs faster, by using pinned memory

buffers. This technique is effective, since host to GPU copies are faster when they are originated from

pinned (page-locked) memory [68].

PyTorch offers a considerable level of programmability for data loading and does it by designating the

Dataloader class an iterable over a Dataset. The latter represents the class where the logic to fetch a data

sample for a given key requested by the Dataloader must be programmed. On top of this, The Dataloader

uses the Sampler to request samples from the Dataset. Both Dataset and Sampler are base classes,

meaning that custom subclasses can be constructed on top of them, following a well-defined interface.

22

CHAPTER 2. STATE OF THE ART

For example, the custom logic implemented on a Dataset can purely be to get data samples from a folder

containing many subfolders with images at the root level. As for the Sampler, a classic custom strategy can

simply be to enforce the random order of requests, in other words shuffling, or even partition the requests

for a data parallel execution.

Although PyTorch provides some needed and broad implementations of these two classes, it typically

entrusts the work of implementing custom logic to the programmer, for example, it does not have well

defined adapters for reading data samples as in TensorFlow.

2.2 Related work

It is clear that storage I/O can become a bottleneck in DL training. This work will highlight many opti-

mizations and storage solutions specifically designed to improve the I/O performance of DL applications

workloads, that focus on different aspects of the problem, as well as more generic solutions that target

scientific workloads in general, but that may also improve the DL training process.

2.2.1 Data Ingestion Pipeline

Some proposals improve DL frameworks’ data loading and preprocessing efficiency by resorting to opti-

mizations of different aspects of the data ingestion pipelines.

Prisma [55] proposes a Software-Defined Storage (SDS) [56] data plane that performs file-level prefetch-

ing to memory in a parallel manner. This system relies on enforcing the DL framework to read data samples

using a predefined global shuffling order, that should be obtained by user interaction. This order is then

shared with Prisma to apply efficient loading of the training data samples.

DALI [61] is a library designed to accelerate DL training, through optimized and transparent data

loading techniques, such as parallel execution, sample-level prefetching (i.e., prefetch individual samples

and not whole files) and batch processing. It specializes in the loading and processing of image, video and

audio data. It stands out by addressing the problem of the CPU bottleneck, by making it possible to do data

processing, such as decoding, cropping and resizing in GPUs, allowing direct data path between storage

and the GPU device. DALI is meant to be a direct replacement for built-in DL frameworks’ dataloaders and

iterators (Section 2.1.9 and Section 2.1.10).

The strategy proposed by Lanaras et al. [48] aims at improving GPU access to the storage system,

focusing on providing a data path from storage to GPU. Firstly, it provides a Data Tracking Tool (DTT), which

can be seen as a data iterator that is integrated with the Caffe DL framework. The DTT provides in each

training iteration data pointers to the GPU, allocating memory on this device to prefetch batches of data.

Not supporting online preprocessing stands as a major flaw for this iterator, thus it needs to access data

that is already in its final state. Secondly, it provides a methodology to support GPUDirect Remote Direct

23

CHAPTER 2. STATE OF THE ART

Memory Access (RDMA) [29]. The latter contribution could not be empirically tested, since at that time

storage support for GPUDirect RDMA was not available, hence the DTT iterator was only tested by moving

data from Random-Access Memory (RAM) to GPU.

2.2.2 Parallel I/O

I/O inefficiencies are found when using DL frameworks in combination with specific storage access formats

that impair or reduce the effect of utilizing parallel I/O during the DL training phase.

Pumma et al. [69], with the LMDBIO plugin, optimizes Caffe’s LMDB I/O subsystem to improve the

mapping and caching of training data from storage to memory. This system tackles inefficiencies of using

the mmap call and LMDB. LMDBIO, for example, diminishes the number of context switches and sleep time

from executing mmap with many parallel processes. It performs this by defining a root process responsible

for reading data and distributing it to the remaining processes with MPI shared memory. Furthermore,

this I/O plugin also provides speculative parallel I/O, to surpass an LMDB inefficiency, when reading data

records, that leads to redundant I/O. It also reduces the mmap workflow overhead by replacing that call

with explicit I/O (i.e, the pread system call), among other optimizations.

TensorFlow allows for parallel processing of the training data samples with the map operator (see Sec-

tion 2.1.9), but when certain Hierarchical Data Format version 5 (HDF5) libraries are utilized, by necessity

and in detriment to the TensorFlow input pipeline, all operations can be serialized, thus negating any kind

of parallel execution. Kurth et al. [47] uses the Python multiprocessing module to allow the parallel execu-

tion of worker processes, each one with a HDF5 library instance, to overcome this problem and optimize

the data processing step.

2.2.3 I/O Buffering

I/O buffering is another solution to increase applications’ performance, and it is widely utilized in a variety

of forms in generic computational environments.

2.2.3.1 Burst Buffers

The concept of burst buffers is well known in the HPC community. These systems are very often composed

by a tier of SSD devices, allowing to temporarily store and manage bursty I/O from HPC applications [52].

In a HPC infrastructure these systems can be used as a staging area, providing higher bandwidth than

the PFS, leaving the latter to be provisioned for capacity and resilience. Later, if necessary, files staged at

these storage layers can also be transferred to the PFS for persistence. Such is the case exposed by Cray

DataWarp’s design [49]. This storage system joins many SSDs to form a service that results in a inter-

mediate storage layer (i.e., in-between the compute nodes and the PFS) that, through user configuration,

24

CHAPTER 2. STATE OF THE ART

dynamically provides a requested amount of storage space, noted as an instance that can be valid for the

lifetime of a job or persistent.

DataWarp instances can be configured with two different types. With the scratch type, users’ appli-

cations must explicitly move data between DataWarp and the PFS (e.g., stage additional files, read/write

data). This is achieved with the help of script-accessible and application-accessible APIs. Another type of

instance is cached where data movement becomes implicit (e.g., includes read-ahead and write-behind

capabilities, and LRU tracking), and no explicit requests are required. The storage provided by DataWarp

instances can also be shared by multiple jobs that run concurrently or sequentially.

Furthermore, DataWarp can be considered as a remote burst buffer, and can even be used as an I/O

storage system for on-demand deployments of PFS systems, such as BeeGFS. Systems like IME [35] and

aBBa [26] are other examples that also follow the design principle of remote burst buffers. However, this

design fails to properly utilize the already existing local resources of many HPC systems, and relies on

a new tier of devices to be deployed on, as well as needing an experienced programmer to utilize them

correctly.

In contrast with the latter burst buffer design, local burst buffers are also being discussed and ex-

amined by the scientific community. BurstFS [93] is designed to support the aggregation of I/O across

distributed node-local storage for the same lifetime of a job. When a batch job is allocated to a set of

compute nodes on an HPC system an instance of BurstFS is constructed using local resources, such as

SSDs or memory. This is achieved by mounting this system with a configurable prefix, by transparently in-

tercepting POSIX functions targeted to that prefix and by utilizing a distributed key-value store for metadata

management. However, BurstFS design is targeted towards checkpoint/restart and multi-dimensional I/O

access workloads (i.e., multi-dimensional variables are written in one particular order, and can be read for

analysis or visualization in a different order than the write order), which are different from DL workloads.

GekkoFS [90] presents a local, temporarily deployed and distributed file system, providing a global

namespace that is accessible by all participant nodes. This system allows for POSIX relaxation, by not

providing global locking mechanisms, leaving to the application the responsibility of making sure that

no conflicts occur. GekkoFS uses a pseudo-random distribution to spread data and metadata across all

involved nodes. This system has two primary components, the first is a client library, that needs to be pre-

loaded by the running application, making it possible to intercept of all related file system operations to be

forwarded to the second component, which is a server process/daemon to handle the requests and serve

them accordingly. This system, although transparent, relies on the explicit behavior of the application, not

providing any kind of data placement when the samples are stored at the PFS, unless it is demanded.

Following this trend, Kung et al. [83] optimizes the local design of burst buffers, by showing that RAM

can be used to solve the impact on the draining speed of distributed node-local burst buffers to the PFS

(i.e., to persist staged data), when their capacity is exhausted during high I/O peaks. This work exposes

proactive draining, where data when available at the burst buffer is divided into small blocks and write

25

CHAPTER 2. STATE OF THE ART

requests to the PFS are dispersed evenly across the entire computation and I/O period of the application.

2.2.3.2 File System Optimizations

Some relevant works focus on optimizing existing file system solutions or on providing new paradigms to

rethink file systems for the exascale era.

FS-Cache [34] is a kernel facility for Linux by which data retrieved from over the network (e.g., from a

PFS) can be persistently cached locally, trading disk space to gain performance improvements. This system

can handle partially cached files that do not fit in the local predefined cache. FS-Cache is applicable to

single-node scenarios and needs a cache backend to properly function. A cache backend is a storage driver

that needs to be mounted and configured to provide caching services.

LPCC [71] integrates with the Lustre’s Hierarchical Storage Management (HSM) solution and the Lus-

tre’s layout lock mechanisms to couple nodes’ local SSDs with the PFS and its global namespace. LPCC

provides a persistent caching system, by using the HSM mechanisms for data synchronization and can

provide either a read-write cache for single clients or a read-only cache for multiple clients, using the local

SSD. This system also provides a prefetching mechanism that follows rules or hints configured by the

user. LPCC can be configured to have different caching eviction policies to apply in the presence of cache

saturation, such as LRU or even a no-eviction policy. LPCC is specifically designed to work with the Lustre

PFS, however other PFS systems have HSM mechanisms implemented, so this system can be generalized

to other systems, but the specific implementation details have to be adapted.

Differently from the previous file system optimizations, DeltaFS’s [101] states that today’s PFSs con-

tinue to feature outdated semantics, such as having their persistent state globally synchronized at all times.

Thus, DeltaFS provides a relaxation of the file system’s namespace synchronization and serialization. It

does this with the help of per job metadata log records, used for an application to register the namespace

changes that result from its execution. These metadata logs do not need to be constantly merged back

into a single consistent global namespace, instead, a job can selectively merge metadata logs produced by

previous jobs to form new file system’s namespace views (i.e., a namespace snapshot) for sequential data

sharing. DeltaFS also allows jobs to self-manage their synchronization scopes to improve performance.and

removes the necessity of having to dedicate a single metadata service to meet the needs of all applications.

Moreover, this system requires an underlying object storage service to store file system’s metadata and

file data. In addition, a registry daemons that runs on dedicated server nodes for inter-job communication

(i.e., sharing snapshots) is also needed. DeltaFS can provide, upon specific configuration, the same se-

mantics as local burst buffers to provide ephemeral namespaces or persistent ones. Furthermore, each

job can start its own DeltaFS metadata server processes on its own compute nodes to perform namespace

merges and then to serve the reads, making use of local resources.

26

CHAPTER 2. STATE OF THE ART

2.2.3.3 Deep Learning Focused Caching

There are many systems that follow some burst buffers principles, such as, offloading I/O from the PFS

to improve applications performance, but focus specifically on DL applications running on HPC infrastruc-

tures.

Fanstore [100] aggregates the local storage of several compute nodes to enable data sharing in dis-

tributed training environments by providing remote file access with MPI and metadata broadcast across

the participating nodes to maintain a global namespace. Fanstore can be used transparently by DL users

and in a transient manner, but it requires the full dataset to fit in the node’s aggregate distributed stor-

age, hence it imposes distribution on the training process. Furthermore this system requires an extra data

preparation step before training, where a user must provide a list of all files that will be involved in the

training process to a preparation program.

Diesel [91] resorts to local storage mediums and an external distributed key-value store service to

cache data and metadata information. This system allows users to convert and aggregate small files and

their metadata into larger chunks of data. It also uses a chunk-wise shuffle to improve the performance of

reading small files. This operation works similarly to the TensorFlow loading and shuffling mechanism for

TFRecords (Section 2.1.8) and has the same issues.

CoorDL [59] provides insights on storage I/O data stalls and mitigates them by providing a specialized

in-memory caching replacement policy. The solution is targeted for the DL access pattern. In CoorDL, with

a single node training scenario, data samples, once cached are never evicted again, and once the cache

fills the DL framework requests are directed to the default storage backend. This policy avoids thrashing,

since it is not important which data is cached, since all data samples present the same probability of

being accessed across all DL training epochs. CoorDL also provides optimizations for distributed training.

One of them being partitioned caching, that allows remote file access between nodes over Transmission

Control Protocol (TCP). In addition it also provides coordinated prep that accomplishes the re-utilization of

already processed batches of samples to be staged and then shared among synchronized DL jobs that are

accessing the same dataset to perform hyperparameter search (Section 2.1.4). It is worth mentioning that

this system needs to be integrated with a DL framework, by being a direct replacement for the framework

data loading mechanisms.

Serizawa and Tatebe [78] focused on data staging utilizing the compute nodes’ local storage (e.g.,

SSDs) with the intent of optimizing DL training performance. Their approach establishes the principal goal

of concealing the copy of the dataset to the local storage with a pipelined solution. The first step of the

designed pipeline is to generate a list of indexes that define the data samples that will be present in each

mini-batch (Section 2.1.2). The second step is to share that list with parallel worker processes, so that they

can prefetch each mini-batch (e.g., from the PFS) and stage them at the node’s local storage. The final

step is to read the staged samples to form the corresponding mini-batch.

27

CHAPTER 2. STATE OF THE ART

The previous proposal follows the design of a specific data loading class in the Chainer DL frame-

work [87] and its logic is completely merged and integrated in it, which leads to a platform specific solution.

This work fails to properly utilize the local resources of compute nodes, not addressing the fact that the

dataset may not fit entirely on local storage.

AIStore [6] supports data processing pipelines that can execute on storage nodes and/or compute

nodes, inserting tensors directly into the GPU memory, through RDMA. AIStore provides a scalable names-

pace over a arbitrary number of disks, having the data flowing directly between compute clients and clus-

tered storage targets, providing a Representational State Transfer (REST) interface for clients. It uses Hy-

pertext Transfer Protocol (HTTP) redirects to enhance storage access control. Parallel dataset re-sharding

is additionally used in order to improve I/O performance, by aggregating small files into bigger shards, im-

proving performance with larger reads. The AIStore solution was only analysed in PyTorch by implementing

WebDataset, extending PyTorch’s Dataset class.

Finally, Deep Learning File System (DLFS) [103] builds on the idea of storage disaggregation to support

DNNs, by allocating a collection of local and/or remote storage devices to serve as staging areas and

improve the performance of DL jobs. By using Storage Performance Development Kit (SPDK)-based user-

level NVMe over Fabrics, DLFS can use RDMA in the SPDK protocol to allow data on an NVMe SSD device

to be accessible to all participating remote clients, which is ideal for distributed training. This systems

performs a initialization step to build the connection between the allocated NVMes devices, stage the DL

training dataset and build an in-memory sample directory to maintain a global namespace to track the

location of data.

DLFS allows opportunistic batching which comes in two forms of optimizations. The first is frontend

sample-level batching that translates to the sample-level prefetching, which is only possible by having

a predetermined global list with the data samples’ access order. The sample directory, through index

management at the sample level will allow DLFS, similarly to the RecordIO method (Section 2.1.7), to

have random access to any sample in a RecordIO or TFRecord file, which allows full randomization when

using optimized data formats. The second optimization is to perform bakend chunk-level batching, that

aggregates small data samples into chunks in the initialization process enabling larger reads, however

it adds the necessity of a shuffle buffer (Section 2.1.7). This system, however, requires some degree of

user interaction by enforcing the application to use a front-end API to mount the system and utilize its

capabilities.

2.2.3.4 Data Substitution

Other solutions, besides providing I/O buffering capabilities, explore DL semantics to employ data sub-

stitution techniques where training samples being served to DL frameworks are replaced by others (e.g.,

cached samples) that are faster to access.

28

CHAPTER 2. STATE OF THE ART

Data echoing [16] is a simple optimization in the form of a stage for TensorFlow’s tf.data API (Sec-

tion 2.1.9). It tries to reduce the total computation used by earlier training pipeline stages, such as disk

I/O and data preprocessing. Therefore, data echoing is designed to increase training performance in DL

training phases where the computation time in the accelerator represents a narrow portion of the wall

time, leading to idle time in those devices (Section 2.1.6). It does so by reusing intermediate outputs from

earlier pipeline stages up to a predefined number of times, for example using repeated data that is already

provided and transforming it differently with data augmentation.

For this technique to be used the practitioner must identify the major I/O bottlenecks of the pipeline and

insert the additional echoing stage after that bottleneck. Although data echoing shows interesting results

it reduces the number of new unseen data samples required for training. More prominently, if the echoing

step is introduced at lower levels of the input pipeline, it exhibits slightly worse performance when using the

ImageNet dataset to train the ResNet-50 model. Therefore, this setup required more fresh samples (i.e.,

that were not reused through caching) than what would be expected, leading to a more extensive training

time to reach the target accuracy. The data echoing solution can be abruptly reflected as a caching system

that supplies repeated data when a cache miss would take place. The amount of repeated data must be

defined in the pipeline stage. Contrary to other less intrusive solutions, like storage systems that also offer

data samples caching, this solution can store intermediate pipeline results, instead of just raw data.

Ohtsuji et al. [64] proposes a preliminary work that aims at monitoring the I/O requests of DL jobs and

skips the requests that are bound to be delayed, giving alternative training data to the training process, in

order to avoid the eventual tail latency of the underlying storage system.

DeepIO [102] is an in-memory storage system designed for large-scale DL training on HPC systems

and specifically designed for the TensorFlow framework. It stores data samples using in-memory buffers

to facilitate the generation of randomized mini-batches to be ingested by the training loop. DeepIO is a

solution focused on solving the massive number of small random reads directed to the backend storage.

When the DL model requires a specific sample order and the dataset exceeds the buffer capacity, DeepIO

implements Entropy-aware Opportunistic Ordering (EOO). With this method servers independently choose

which samples will make the next mini-batch, utilizing only the elements loaded in memory. This solution

uses input pipelining to overlap disk I/O, when the dataset does not fit completely in memory, reducing

the impact of the mini-batch construction for that case.

Quiver [46] is a distributed cache for DL jobs input samples. This storage management solution has the

key objective of improving cache efficiency, sharing data across multiple jobs, or even multiple users and

can dynamically prioritize cache allocation to jobs that benefit the most from caching, such as compute-

bound models. Quiver also places a significant emphasis to security in data sharing, without data leakage

and using secure content-based indexing of the cache. Quiver is not solely built for HPC infrastructures,

but designed for a shared GPU cluster allocated in the cloud. However, it stands out by also using data

sample substitution to avoid cache thrashing. It achieves this by replacing data samples that resulted in

29

CHAPTER 2. STATE OF THE ART

cache misses with cached data that was not yet utilized in the ongoing epoch, consequently changing

inputs order. For its caching strategy to work properly, Quiver must evict samples that were already used

by all participants in each training epoch. Replacing cached samples enforces the need of having to fully

read the dataset in each epoch from the source where the dataset is originally stored, which does not

reduce I/O pressure at storage systems, like the supercomputer’s PFS.

Even though it contributes to a clear boost in performance, systems with data substitution have to be

handled carefully. Altering the order of the inputs provided to the framework can lead to a worse conver-

gence of the model (Section 2.1.2). Choi et al. [16] clearly evidences that fresh data (i.e, data that was

not used in the current epoch) is inevitably required and more of it leads to a higher evaluation metric

(Section 2.1.4). Zhu et al. [102] (i.e, DeepIO) goes to show that their pipeline does not affect the delivered

accuracy, however it implies that depending on themini-batch size it might need some careful engineering

work on the training parameters in order to maintain high levels of accuracy. As well as DeepIO, Quiver

proves, using specific use cases, that their substitution technique does not affect the accuracy of the

model, however these solutions are dependent on the buffer size to store enough amounts of data that

enables the randomization process to still be adequate. When dealing with memory restricted environment

this systems can cause harm to the model’s final evaluation metric.

DL training metadata is usually fetched in separate from the actual data, unless an optimized data

format is being used (Section 2.1.8). This metadata is extremely important for DL training. Taking the

example of an image classification problem, the metadata provided to the DL framework is what enables

the correct training of the DNN, by providing the classes of each image. Data substitution techniques can

lead to more intrusive solutions, since this metadata needs to be joint with the corresponding data. By

substituting data samples these systems also need to provide the correct metadata to the framework, thus

an intrusive interface or client is needed to replace the DL framework’s built-in data loading mechanism.

Finally, Yang et al. [94] provides caching capabilities in the form of distributed caching. In this solution,

a so-called Locality-aware Data Loading (LDL) algorithm is enforced for distributed training, where learners

can assemble a mini-batch from their locally cached data. This can also be seen as data substitution

technique, but of a very different kind from the previous systems. In its algorithm, all samples specified

for a given global mini-batch will still be used for each training step. However, the participating nodes,

instead of reading samples in the predefined local mini-batch block order (i.e., order of the index list, see

Section 2.1.2), will read the samples that are found in their local cache. The samples that are read must

still belong to the global mini-batch, hence the difference from the previous systems. Nevertheless, this

leads to an imbalanced distribution of samples in each node as a result of the global mini-batch being

randomly sampled. To counter this a load balancing phase is needed. In it, the participating nodes need

to agree on how to load samples locally, so that they collectively assemble the global mini-batch. Learners

can subsequently achieve load-balancing by delivering samples either from the storage system, if they are

not in the cache, or by exchanging samples with other nodes.

30

CHAPTER 2. STATE OF THE ART

This work, elaborates on a proof of equivalence on the results of using this technique, showing that

the ordering of the samples within the global batch does not affect the training results after global synchro-

nization [10]. However, this system can affect the very common technique of batch normalization [37],

when the latter is applied to the local parts of the batches (i.e., found in each participating node).

2.2.3.5 Storage Tiering

Finally, there is a range of systems that, although they can provide caching of some sort, are characterized

especially by their ability to utilize multiple storage tiers (e.g., compute node’s local disk and memory, PFS)

in an efficient manner.

NoPFS [24] uses a performance model to proactively fetch training samples, to different storage tiers

(e.g., RAM and node-local SSD) and distributed memory (i.e., remote access to other nodes memory),

before these are requested by the DL framework. NoPFS relies on a in-memory staging buffer to store

samples that will be first consumed by the DL training phase. After being used, training samples are

evicted to serve space for the next samples that are being prefetched. There is no eviction for the remaining

storage tiers.

The NoPFS system is fully integrated with PyTorch and uses the fundamental idea that, by knowing the

seed for the pseudorandom number generator that determines the samples access order, it is possible to

know the sequence of samples that will be read by each worker process (i.e., similar to [55] and [78]). With

this, it is possible to make a probabilistic analysis of the predefined access pattern and show that there

is almost always an imbalance in the frequency a worker node accesses a particular sample. Knowing

which samples are more frequently accessed by each node will allow this system’s performance model to

cache more frequently read samples at faster local storage tiers to decrease DL training times. However,

NoPFS is intrusive to both developers and users, as it requires changing the original source code of DL

frameworks and the way training scripts are specified.

Hermes [44] provides a storage tiering solution for partially or totally buffering I/O from scientific

workloads at intermediary local storage mediums and across remote nodes (e.g., using RDMA). This

systems offers both an intrusive mode, with an API that users can interact with, and a transparent mode

to transparently intercept POSIX system calls. Hermes can be used in a persistent buffering mode where

data that is buffered by this system is also persisted to the PFS. This mode is used mainly for write-oriented

workloads that need persistence. Hermes can also be configured with the non-persistent buffering mode,

which is a mode designed for fast temporary I/O, used mainly for storing intermediate results and to

do in-situ data analysis and visualization. In addition, Hermes provides a wide variety of data placement

policies. For example, the maximum application bandwidth policy starts to place data in the first layer

(e.g., RAM) and when that layer is full, it goes to the next one, and so one. The latter policy moves data

down when the maximum amount of storage space is needed (i.e., where data moves from RAM to SSD).

This data movement can, however, become an eviction policy, when there is no space left in the lower

31

CHAPTER 2. STATE OF THE ART

storage tiers. Another example of a data placement policy is hot-data, where buffering is provided for data

that is frequently accessed. Moreover, Hermes allows a user to provide custom data placement policies.

Besides offering I/O buffering features, Hermes has the ability to change the buffering schema (i.e., the

order to where data is placed) dynamically by monitoring the system status such as capacity of buffers

and messaging traffic.

Similar to burst buffers, Hermes is designed for general purposed scientific workloads not having any

default data placement policy designed for the I/O patterns of DL jobs (e.g., full dataset is read for each

training epoch, random I/O accesses, possible use of optimized file formats). For this reason, Hermes

is complex to configure and demands that users know exactly what their workloads involve, which is not

trivial.

Data Elevator [23] proposes to transparently and efficiently move data between storage layers in HPC

systems with hierarchical storage available. The Data Elevator system, instead of having the user involved in

data movement, intercepts and stages applications’ write requests on a fast persistent storage layer, such

as a layer of SSD-based burst buffers, for faster I/O. When the data placement is complete, applications

can continue the normal course of computation, while Data Elevator asynchronously transfer that data

to the PFS. Data Elevator evidences that burst buffers are bound by a fixed number of server nodes to

perform data movement (e.g., persist buffered I/O to the PFS), which will impose a physical bound on

the I/O parallelism. Therefore, to reduce resource contention on the burst buffer layer, Data Elevator is

instantiated either on the compute node were the application is executed or on a separate node. The

asynchronous data transfer is done by reading the content written to the burst buffer layer to the compute

node’s memory, which, in turn, is transferred to the PFS. This work shows that reading data from the burst

buffer layer to the compute node’s memory is faster than writing data from the burst buffer layer to the

PFS. Thus, the Data Elevator mechanism results in the reduction of contention at the burst buffer layer.

Evidently, Data Elevator optimizations are solely focused on write-intensive workloads. Therefore, it is not

useful for DL workloads.

2.3 Summary

Deep Learning (DL) frameworks support and hide most of the complex algorithms to build outstanding DL

models, supporting both computing and data loading mechanisms. The execution time of the DL training

phase will be dependent on the performance and behavior of those same mechanisms. DL training is

associated with long training times, due to computational, network and storage needs. These needs lead

DL users to use HPC infrastructures.

However, recent studies show that storage I/O cannot be dismissed as a bottleneck [15, 17, 31, 59, 63,

69, 92], increasing the I/O-bound aspect of DL models. HPC infrastructures users can suffer greatly from

this problem, since it can lead to performance losses, but most importantly they can tarnish the overall

32

CHAPTER 2. STATE OF THE ART

performance of the PFS. This stems from the unpreparedness of shared Parallel File Systems (PFSs) to

support the random access pattern of DL applications, as well as the large amounts of data needed for

the training phase, which are very often found in the state of small files. Furthermore, the datasets used in

DL training become problematic, in terms of I/O performance, for transparent caching mechanisms used

in compute nodes, such as the Page Cache, when a random storage access pattern is present. Therefore,

DL jobs can suffer performance losses and their workloads can further increase performance variability

of concurrent jobs [53, 54, 96] due to the additional strain caused by the immense data and metadata

accesses that are directed towards the PFS. Nevertheless, since the PFS is a standard choice for storage

access during DL training, the local nodes’ resources, that could increase applications I/O throughput [15,

31], specially in single node scenarios, are left unused.

Due to the storage I/O bottleneck of the DL training phase, storage systems are used to optimize the

access to data samples [18, 30, 72, 86]. Some of these systems aggregate small files into larger ones to

reduce the number of metadata operations and perform sequential reads (i.e., TFRecords). DL frameworks

also acknowledge the storage I/O bottleneck and allow programmers to build optimized input pipelines in

conjunction with optimized storage solutions, however the I/O bottleneck still remains.

Therefore, multiple DL targeted optimizations address the DL storage I/O bottleneck by optimizing the

data loading pipeline [48, 55, 61], including data preprocessing and prefetching capabilities, as well as data

transfers to GPU. Researchers also took notice that there is room for further parallel optimizations in regards

to the already existing storage access utilities of certain frameworks [47, 69]. While this dissertation design

leverages ideas from these works (e.g., prefetching, applicability to different frameworks), it is focused on

using the available storage resources at the supercomputer to accelerate DL training performance and

reduce the I/O pressure on the shared PFS. Therefore, these are orthogonal to this work and can even be

used in conjunction with it.

Likewise, I/O buffering solutions resort to local resources, such as SSD devices, as a mean to in-

crease DL jobs performance. System designs that offload pressure from the HPC infrastructure’s PFS

such as remote burst buffers [26, 35, 49] or local burst buffers [83, 90, 93], are mainly targeting general

write-oriented scientific workloads. In addition, file system optimizations exist [34, 71, 101], but these are

targeted at generic workloads. Further, they need complex configuration steps, in order to be correctly

deployed, and even require the use of a specific PFS [71].

Other works developed caching mechanisms specifically focused for DL [6, 59, 78, 91, 100, 103].

Nevertheless, the majority of these systems are designed for specific DL frameworks and are intrusive,

requiring DL developers to make changes to their DL traning scripts [6, 59, 78, 103]. Coupled with this,

not all solutions allow the partial buffering of a DL training dataset [78, 100]. Furthermore and although

they are transparent, some designs require the allocation of additional resources and the orchestration

of complex data and metadata staging areas [91, 100]. On the contrary, this dissertation focuses on a

solution that is designed for single-node training and provides a self-contained middleware that avoids this,

33

CHAPTER 2. STATE OF THE ART

while not assuming that the dataset fits entirely on faster storage tiers.

Also targeting DL workloads, besides offering I/O buffering, some system employ data substitution

techniques [16, 46, 64, 94, 102], but these can effectively impact the accuracy of a model and need

to be carefully handled. Furthermore they are intrusive to the DL framework. Most of these solutions are

useful for scenarios where several jobs are training models from the same dataset (i.e., shared dataset).

Differently, this work optimizations are designed for single-node training scenarios where, to improve the

model’s evaluation metric, each file of the dataset must be read once per epoch.

Finally, storage systems that leverage different storage tiers must be taken into consideration, but they

can also be intrusive and do not provide modular optimizations [24]. This dissertation targets storage tier-

ing, but it outsources the proactive data fetching to built-in mechanisms already present in DL frameworks,

or provided by external solutions such as DALI. Other systems are designed for general purpose jobs [23,

44], being specially optimized for write-intensive workloads. This dissertation proposes a solution that is

targeted towards read-oriented DL training workloads that change the way data samples must be placed

across storage tiers.

With the existing related work in mind, it is crucial to build a framework-agnostic storage middleware

that can be integrated with different DL frameworks without the need to change the code of the DL training

scripts. This middleware must be focused on DL workloads, but without changing the outcome of the

evaluation metric for any given model. It must allow the efficient data placement of input samples on local

disks of compute nodes (e.g., SSD, NVMe) in a transparent manner to the user, while being decloupled

from other storage optimizations (e.g., parallel I/O, data preprocessing, sample-level prefetching) that are

already implemented in common DL frameworks and libraries.

34

C
h
a
p
te

r

3
PRELIMINARY EXPERIMENTS

To provide accurate predictions, DL models must be trained with large and varied datasets. Moreover,

HPC users store these datasets at the infrastructure’s PFS. Therefore, storage tiering should be done

automatically and transparently for users, in order to leverage the performance benefits of supercomputers

local storage resources.

Many studies point to the possibility of using the node’s local storage resources as means to speed up

DL training. Subsequently, in this work, an experimental evaluation, comparing three different DL training

setups that are currently available to users, was conducted.

• Lustre: dataset samples are served from the PFS

• Local: dataset samples are served from the compute node’s local storage

• Cache: dataset samples are served initially from the PFS (i.e., during the first training epoch), but

are then transparently cached and fully served from the local disk, for the remaining epochs

These setups were specifically chosen to understand and demonstrate the performance impact of

running DL jobs under different storage mediums, considering the two extremes scenarios Lustre and

Local, and also the Cache intermediate scenario, made possible by a caching mechanism. Furthermore,

the following experiment will confirm the properties of the chosen DL models in a given HPC infrastructure,

making it known if a model is I/O-bound or compute-bound. It will also serve as a baseline for further

comparisons with the solution proposed by this dissertation.

35

CHAPTER 3. PRELIMINARY EXPERIMENTS

3.1 Experimental Setup

Testbed. Experiments were conducted on a compute node of the Frontera supercomputer [80]. This

infrastructure has 448, 448 processing cores and is capable of 39 PFLOPS, being one of the most powerful
supercomputers in the world. Table 1 shows the software and hardware for the experiments.

Table 1: Specifications of the experimental environment.

Item Description

CPU 2x 16-core Intel Xeon E5-2620 v4 (“Broadwell”) Processor
GPU 4x Nvidia Quadro RTX 5000 16GB GDDR6
RAM 128 GiB DDR4
Local storage 119 GiB partition on a 240 GiB SSD
PFS Lustre
Operating System (OS) CentOS 7.8
Kernel version 3.10
File system XFS
TensorFlow version 2.3.2
CUDA version 10.1
Cudnn version 7.6.5
NCCL version 2.5.6
Python version 3.7.0
GCC version 8.3.0

The compute node memory was limited to 68 GiB to simulate an environment where the entire training

dataset would not fit in memory, thus not being fully implicitly cached by the Page Cache.

Models. To ensure a comprehensive evaluation, in terms of workload heterogeneity, experiments in-

cluded three different models, namely ResNet-50, AlexNet and LeNet. These models are based on Conco-

lutional Neural Networks (CNN) architectures [8], and designed to solve image classification problems (i.e.,

supervised learning). ResNet-50 is the most complex model of the three and is also the one with the most

number of layers, requiring a high degree of computational power, as such it is expected to be a compute-

bound model. AlexNet has less layers, but more parameters than the ResNet-50. However, AlexNet should

represent a slightly less complex model, in comparison to the ResNet-50. Hence, the I/O bottleneck should

start to manifest in this model. LeNet is I/O-bound and is the most simple of all three models. Therefore,

it is expected that this experiment will have one compute-bound model, and two I/O-bound models.

Dataset. To train the models, a truncated version of the ImageNet-1k dataset [74] was used, that

includes 900, 000 images (100 GiB), enabling the dataset to fit entirely on the local storage device. To

speedup the training performance, the dataset was converted into the TFRecord optimized data format,

36

CHAPTER 3. PRELIMINARY EXPERIMENTS

resulting in 1024 TFRecords. The size of each TFRecord varies, since both size per image and image

quantity per record is not constant, however it ranges in average between 90 MiB and 110 MiB.

DL framework. Due to its popularity, the TensorFlow framework was chosen. The model’s training

input pipeline received a different order of access to the TFRecords (i.e., shuffled file names) for each

epoch. Further, the shuffle stage (see Section 2.1.9) was also used. These two optimizations are meant

to deliver an increased level of randomization for the training process.. Moreover, the constructed model’s

training input pipeline was also capable of I/O optimizations by using the interleave stage, that lead to

the parallel loading of files to a buffer, and the map stage, which enabled the parallel preprocessing of

individual records. For the Cache setup, the TensorFlow’s caching mechanism is enabled with the cache

stage. The constructed TensorFlow’s input pipeline also used the tf.data.experimental.AUTOTUNE on the

map and interleave stages, hence the framework defined and optimized the level of parallelism necessary

(Section 2.1.9)

Methodology. The elapsed training time and average resource usage (i.e., average CPU, GPU, mem-

ory) were measured for all of the conducted experiments. The training scripts were configured to run for 3

training epochs with a 256 batch size [55], and simultaneously use all 4 GPUs available in the compute

node, through the tf.distribute.MirroredStrategy [58]. The latter functionality divides the batch size across

the available GPUs, leaving 64 batched samples for each, in this dissertation’s experiments. The results of

each experiment concern the average and standard deviation of 7 complete runs. Further, the results dis-

played in this chapter were derived from the DL framework output (i.e., training time per epoch), dstat [25]

(i.e., CPU utilization) and nvidia-smi [62] (i.e., GPU utilization)

3.2 Results

To evaluate the different setups performance, under the previously defined DL models and dataset, it is

necessary to examine the training time, and both GPU and CPU utilizations.

Training Time. Figure 13 depicts the overall training time, segmented by epochs, under Lustre, Local,

and Cache setups for the LeNet, AlexNet, and ResNet-50 models. When compared to Lustre, the Local

setup reduces the overall training time for the LeNet and AlexNet models. Under LeNet, the total execution

time (i.e., summing the 3 epochs times) decreases from 18.9 to 9.8 minutes (48%), while for AlexNet it

decreases from 18.8 to 15.1 minutes (20%). For both models, the decrease in training time is noticeable

across all epochs.

With the Cache setup, data samples are cached at the compute node’s local SSD (i.e., copied from

the PFS to the local file system) during the first training epoch. Subsequent epochs fetch data from the

37

CHAPTER 3. PRELIMINARY EXPERIMENTS

0
5

10
15
20
25

Lustre

Local

CacheT
ra

in
in

g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0
5

10
15
20
25

Lustre

Local

Cache

0
18
36
54
72
90

Lustre

Local

Cache

Figure 13: Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and
ResNet-50 training models. Each column is stacked with the elapsed training time of each training epoch,
namely first (), second (), and third ().

local medium, thus reducing the total training time of the LeNet model to 14.4 minutes (24%), and of

the AlexNet model to 16.6 minutes (12%), when compared to Lustre. The increase in total time, when

compared with the Local setup is explained by the first epoch of the Cache setup, in which there is a slight

loss of training performance. In comparison with Lustre, the LeNet and AlexNet first epochs show identical

results, increasing their times from 6.6 to 7.3 minutes (11%), when using Cache. This is explained by the

data copying phase of this setup, that must be done between Lustre and the local file system. For the

remainder training epochs (i.e., epochs one and two), the training time is very similar to the one achieved

by the Local setup. For RestNet-50, all setups perform relatively similar, ranging from 64 and 67 minutes of

total execution time, hence there are no clear gains, when using local storage mediums, since this model

imposes less I/O demand [55].

Interestingly, the Lustre setup exhibits the highest training time variability across identical runs of each

experiment, which can be observed from the runs’ standard deviation. The Lustre setup experienced a total

of 4 and 3.3 minutes of standard deviation for LeNet and AlexNet, respectively. In contrast and for example,

the Local setup obtained a total of 1.2 and 2.4 minutes of standard deviation, for the same models,

respectively, thus resulting in a 70% and 27% decreases. This is visible for the LeNet and AlexNet models

and is due to the fact that the PFS is shared with other jobs executing concurrently at the supercomputer,

which can lead to performance unpredictability.

Resource Usage. For I/O-bound models, CPU and GPU usage are related with the throughput at which

data samples are fetched from the corresponding storage backends and forwarded to the DL model. If data

is ingested at a higher rate, the CPU and GPU will be more occupied in the global time frame, avoiding idle

time. It is also important to state that the GPU utilization is proporcional to the model complexity, hence

the higher the computational side of a model the longer computations will occur in this device. Thus being

said, for both LeNet and AlexNet, CPU usage increases from 30% (Lustre) to 35% (Cache). The Local setup

has the highest CPU usage, namely 57% for LeNet and 43% for AlexNet.

38

CHAPTER 3. PRELIMINARY EXPERIMENTS

0

25

50

75

100

LeNet AlexNet ResNetC
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Local Cache

Figure 14: CPU utilization of each model in the different setups.

Similarly, LeNet GPU usage increases from 22% (Lustre) to 28% (Cache) and to 39% (Local). GPU

usage for AlexNet increases from from 58% (Lustre) to 63% (Cache) and to 72% (Local).

0

25

50

75

100

LeNet AlexNet ResNetG
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Local Cache

Figure 15: GPU utilization of each model in the different setups.

As expected, the compute-bound ResNet-50 model exhibits the same CPU (10%) and GPU (90%) uti-

lization for all the three setups, having the highest GPU utilization, not necessarily as a result of a high

ingestion rate, but due to the complexity of the model and the high number of computations per batch.

The low CPU usage is explained by the low ingestion and preprocessing rate, that makes the CPU being

idle for more periods of the training process. Further, TensorFlow’s memory usage is approximately 10

GiB for all models and setups.

3.3 Summary

From this preliminary evaluation, it is confirmed that LeNet and AlexNet remain I/O-bound models for this

experimental setup. When the two models are compared, they show very similar results under the Lustre

setup, however, AlexNet shows less performance improvements in the presence of cached samples, thus

it is less I/O dependent and, in fact, more computationally complex than LeNet. In this case, the I/O

bottleneck was hiding the complexity of the models, making them perform identically. Moreover, ResNet-

50 consistently showed similar results across all setups, hence it’s certain that, for the majority of runs,

the model will not suffer from the I/O bottleneck, for it is not sufficiently degrading in face of the high

amount of computations that must be made in each training step.

39

CHAPTER 3. PRELIMINARY EXPERIMENTS

To conclude, experiments show that serving the training dataset from local storage backends, which are

closer to the computation (i.e., Local and Cache), can i) significantly improve the DL training performance of

I/O-bound models; ii) improve the usage of the compute node’s CPU and GPU resources; and iii) decrease

training performance variability. However, the Local setup requires manual intervention from users. The

Cache setup provides transparency, but is limited to scenarios where the full training dataset can fit into

the available local storage resources. These limitations are addressed by Monarch, a storage middleware

that was developed within the ambit of this dissertation and that will be detailed in the next chapter.

40

C
h
a
p
te

r

4
MONARCH

Monarch is a framework-agnostic storage tiering middleware that leverages multiple storage backends at

HPC infrastructures. Its design is built under the following core principles:

Decoupling. Reading datasets from local storage mediums instead of the PFS proved to be effective to

accelerate training times of I/O-boundmodels [15, 31, 78, 100, 103]. Chapter 3 showed this for TensorFlow

with prefetching and parallel I/O enabled. Other DL frameworks with similar access patterns and I/O

optimizations should also benefit from storage tiering. Thus, to ensure applicability across different DL

frameworks (e.g., TensorFlow, PyTorch) and cross-compatibility with existing I/O optimizations (e.g., data

preprocessing, prefetching, and parallelism) and storage backends (e.g., local and remote file systems),

Monarch is decoupled from the internal DL framework logic, being implemented as an independent storage

middleware.

Transparency. Monarch does not change how users traditionally build training scripts and use DL

frameworks. It can be integrated with existing DL frameworks without requiring any source code changes.

This leads to a portable solution that is easy to use at HPC centers.

Large datasetsWhen datasets do not fit completely at local storage mediums, Monarch automatically

chooses the data samples to keep at each storage tier. Monarch, provides the tools to define a tiering

hierarchy, arranging available storage mediums, not requiring further allocation of resource than those

that are available at the compute node.

Optimized for DL workloads. Monarch is designed to handle I/O patterns specific to DL training.

This dissertation proposes an optimized data placement strategy for workloads that: i) read the full dataset

41

CHAPTER 4. MONARCH

for each training epoch; ii) may read data samples in random order; and, iii) may issue several small-

sized I/O requests to read the content of a given training file (i.e., when using large file formats such as

TFRecords).

Training performance and PFS I/O pressure. Monarch aims at accelerating the DL training

phase, while reducing the I/O operations submitted to the shared PFS. The former is important to improve

the QoS of DL jobs, while the latter is key to improve the QoS of all users resorting to the PFS, as it can

be accessed simultaneously by hundreds to thousands of different jobs. Thus, Monarch is designed to

balance performance gains with the I/O pressure directed at the PFS.

4.1 Architecture

As depicted in Figure 17, Monarch sits between the DL framework and a hierarchy of storage backends,

and follows a POSIX-compliant interface to store and fetch data from both local file systems (mounted on

the compute node’s local storage) and the PFS (e.g., Lustre).

Monarch intercepts file read operations submitted by the DL framework and transparently serves the

requested content from the most appropriate storage tier. This solution aims at caching as many training

data samples as possible (originally stored at the shared PFS) at the compute node’s local device. Monarch

is organized in three main components, namely the storage hierarchy, placement handler, and metadata

container.

4.1.1 Storage hierarchy

The storage hierarchy organizes and manages the storage tiers (or levels) that will be used to read and

cache data samples for DL training. Tiers are organized hierarchically, and their order can be configured

by users and system administrators. For instance, tiers can be organized in a descending order in terms

of performance. An example would be to look at the setup found in Chapter 3, where the local file system

could stand as level 1 and the PFS at level 2. These, however, could be organized with other criteria, such

as storage quota or energy consumption.

Each tier is represented by a storage driver, which abstracts the I/O logic performed under a given

storage backend. This driver contains a set of properties that allow governing the current state of that

backend, including storage path (i.e., file system directory where the training dataset will reside) and

available storage quota. This abstraction enables supporting different storage tiers, promoting modularity

and extensibility.

The last level (e.g., PFS) holds the full dataset and acts as a read-only data source. Other levels

are initialized at the beginning of the training phase without any data samples, being then populated in

42

CHAPTER 4. MONARCH

background by Monarch.

4.1.2 Placement handler

The placement handler is responsible for selecting and fetching dataset files to the correct storage tier

and has the following key features:

Placement policy. The selection of the tier where a given file should be placed is addressed with

the following policy. Given a storage hierarchy of size 𝑁 , the placement starts in descending order, writing

dataset files to the first level (i.e., level 1), until reaching its full capacity, moving then to the remainder

levels, until all levels are filled ([1, 𝑁 − 1]), leaving the last level untouched (i.e., read-only).
In most DL jobs all dataset files are read at each training epoch, and each file will be read exactly once

per epoch. Therefore, Monarch placement policy does not perform any file eviction at upper tiers when

their storage quota is reached. This decision allows reducing the number of I/O operations being served

by the PFS tier. Since the dataset access may follow a random distribution (i.e., to prevent overfitting [24]),

continuously promoting and evicting files (e.g., LRU and Least Frequently Used (LFU)) between storage

tiers would increase resource usage and the I/O pressure at the PFS, and would not bring performance

improvements to the DL training. Figure 16 is an extension of Figure 8 and shows the benefits of using no

eviction under a random access pattern (Section 2.1.7), in detriment to the LRU cache policy. In Figure 16,

the cache with LRU obtains 25% and 0% of cache hit ratio for the first and second epochs of this example,

respectively. However, these values are dependent on the actual access pattern. If in the first epoch after

requesting B the application, instead of requesting C, requested D, the value for the cache hit ratio of

the first epoch would be 50%. On the contrary, since samples are not replaced it is guaranteed that the

maximum percentage of cache hits, allowed by the cache quota under the DL access pattern in a no-

eviction policy, is obtained across all epochs. More specifically, in this illustration, for each epoch and

when using a cache with no eviction there is a 50% cache hit ratio.

Data fetching and caching. For each intercepted operation, Monarch validates if it is destined to

a file cached at the upper levels of the storage hierarchy. For non-cached files, the file’s content is read

from the PFS tier, and it is forwarded immediately to the DL framework. In background, the content of the

file is then written (copied) to the appropriate upper tier by following the aforementioned placement policy.

This asynchronous approach avoids adding extra latency to the critical I/O path and allows DL training

to start immediately and run simultaneously with our placement algorithm. Further, Monarch resorts to a

dedicated thread pool for this background processing, enabling DL frameworks’ I/O requests to be served

in parallel.

When the requested file is already cached at a faster storage tier, Monarch ensures that the requested

43

CHAPTER 4. MONARCH

Page Cache
with LRU

D B

Access Pattern

D B D B C B C A D A D C B C B D

CB A D BC D A

D C B A C D A C D B C D B A

 Initial State Replace the cached items with the misses

Cache with
no eviction

D B D B D B D B D B D B D B D B D B

First epoch Second epoch

Figure 16: Monarch’s cache eviction policy compared with LRU.

content is transparently served to the DL framework from such tier. No additional data placement process-

ing occurs for this case.

Prefetching for Large Files (PLF). When using large file formats (e.g., TFRecords), the DL frame-

work may submit read operations for obtaining a small portion (i.e., a subset of data samples) of the file’s

content. In this scenario, Monarch replies to the DL framework with the requested content, but in back-

ground, it prefetches the full file from the PFS to the desired storage level. Thus, when the file is available

at the upper storage tier, subsequent read operations to that file can be served from this tier instead.

When the DL framework is not dealing with large files, but rather small files that can be completely read

in one system call, this mechanism does not actuate and the data written to the local storage is the one

that was originally read. Note that since the file’s content is served to the DL framework in the same or-

der as requested, Monarch does not alter how data is provided to the training workload nor affects the

model’s evaluation metric. This aspect, along with the performance benefits of the previous optimizations,

are further validated and discussed in Chapter 5.

4.1.3 Metadata container

Even though the dataset is physically placed over different storage tiers, from the DL framework’s per-

spective (logical), it is stored in a single storage backend (e.g., PFS), preventing changes to the DL scripts

specified by users or to the framework’s codebase. However, to improve training performance and reduce

the PFS’s I/O pressure, Monarch aims to always serve requests from faster storage tiers. Therefore, the

metadata container is responsible for keeping the logical and physical locations of each dataset file. This

information needs to be updated when an existing file is cached at a given storage tier, other than the

PFS, and to be consulted when a file is being accessed by the DL framework. Since Monarch targets DL

44

CHAPTER 4. MONARCH

frameworks that are using POSIX-compliant backends, it requires two different metadata structures. The

first structure allows the mapping of logical file paths to physical ones, which is important to redirect sys-

tem calls, such as open and close. This is the FPath map that can be found in Figure 17. The second

structure allows the mapping of logical file descriptors to physical ones to redirect system calls, such as

pread and mmap. This structure corresponds to FD map in Figure 17.

4.2 Operation Flow

To understand the mechanisms of Monarch it is essential to describe its general operation flow, which will

be based on Figure 17.

DL framework
training file1

L2

L1

LN

L2

Storage driver
(e.g, local FS)

Storage
quota

Storage driver
(e.g, PFS)

Storage HierarchyMetadata Container
FD map

FPath map

logical fd physical fd

logical path physical path

Monarch

Local File SystemParallel File System

training file N...

Placement Handler

thread poolplacement
policy

...
T2 TNT1

training file N-1

open read1 readK close...
1

2

1 2

IV

I
II III

T1 read T1 write

4

3

4 5 3 6

Figure 17: Monarch’s architecture and flow of requests.

Initialization. Before execution, the system designer specifies the storage tiers that should be con-

sidered in a configuration file. For example, Monarch can be configured with two storage tiers — level 1
respects to the compute node’s local file system that is backed by a local SSD drive, while level 2 points to
the dataset location at the shared PFS (e.g., Lustre). When the training phase starts, a Monarch instance

is initialized, including all of its components. To initialize the metadata container, Monarch traverses the

directory where the dataset resides (level 2) and builds the necessary metadata information.

45

CHAPTER 4. MONARCH

I/O calls interception and handling. During the training phase, Monarch intercepts POSIX calls from

the DL framework, including open, pread, mmap, and close. Upon an open (1), Monarch verifies the

metadata container for the path where that file is stored. If the file is persisted at level 2, which is always
the case for files being accessed for the first time, then the request is forwarded to the corresponding

file path at the PFS. The resulting file descriptor (fd) is then stored at the metadata container (I) and

forwarded to the DL framework. If the file is cached at level 1, which can be consulted at the metadata

container through the requested file’s path, the request is sent to the file path at the local file system,

and the resulting fd is equally stored at the metadata container (I). Note that the fd returned to the DL

framework is always the logical (original) one associated with the PFS, which is available at the metadata

container. Again, this decision makes the process of data placement completely transparent to the DL

framework.

After opening a file, the DL framework will submit one or more requests (e.g., pread, mmap) to access

the content of that file (2 and 3). These are intercepted by Monarch and redirected to the corresponding

storage tier. Again, for these calls the mapping between logical and physical fds is available at themetadata

container. The content read by Monarch is then forwarded to the DL framework.

Upon a close (4), Monarch redirects it to the appropriate storage tier, and forwards the reply back

to the framework. Moreover, the metadata entry mapping that logical and physical fd is deleted at the

metadata container (II).

Background data fetching and placement. The data placement is triggered when the content of a

given file, which is not yet available at level 1, is requested (read) by the DL framework from level 2. If there
is enough free storage quota at level 1 (III), the requested file’s content is then written asynchronously

to that level by a background thread. When a small portion of a large file is being requested by the DL

framework, Monarch’s background thread will prefetch the full content of the file from level 2 to level 1 (5
and (6)).

When the full content for the requested file is available at level 1, the metadata container is updated

regarding the new physical file path for that file (IV), while the storage quota for that tier is updated (III).

Moreover, if the file is currently being accessed by the DL framework (i.e., an open call was submitted and

the corresponding fd has not been closed yet), the file now persisted at level 1 is opened by Monarch,

and the logical fd to physical fd metadata mapping is updated accordingly. This enables subsequent read

operations from the DL framework to that file to be served by level 1 (such as 3), instead of level 2, thus
further reducing the number of I/O calls redirected to the PFS. As previously explained, this optimization is

applicable for scenarios where the DL framework submits multiple read requests to a large file for fetching

different data samples.

46

CHAPTER 4. MONARCH

4.3 Implementation

The Monarch prototype was implemented with 3K lines of C++14. Hence, some crucial implementation

details and decisions are further detailed next.

4.3.1 Configuration

Monarch can be easily configured with the help of a YAML file. Listing 1 shows how to configure a storage hi-

erarchy with different storage tiers, leaving out other configuration that are less relevant to this explanation,

since they are used for debugging, profiling and other experimental features that are under development

and are not covered by this dissertation. Thus being said to define a storage tier users must define up to

four fields:

• type. The kind of the storage backend for that storage tier. Currently, only one type is available,

which is the file_system type.

• block_size. This field defines the block size of the calls issued by Monarch to perform file-based

prefetching and can be omitted.

• max_storage_quota. Defines the maximum storage quota, in bytes, that can be used to cache

data in that tier. This field can be omitted for read-only tiers.

• mount_point. Defines the storage tier’s mount point directory.

1# ...

2# Additional configuration options...

3# ...

4shared_tpool_size: ”6”

5hierarchy:

6- type: ”file_system”

7block_size: ”max”

8max_storage_quota: ”118111600640”

9mount_point: ”/tmp/monarch_staging_area”

10- type: ”file_system”

11block_size: ”max”

12mount_point: ”scratch/user_id/dl_datasets/imagenet-1k”

13# ...

Listing 1: Setting up the storage tiers hierarchy with Monarch.

Additionally, the thread pool size can also be specified with the shared_tpool_size field. Currently

this configuration is passed to Monarch, by defining the environment variable MONARCH_CONFIGS_PATH

47

CHAPTER 4. MONARCH

with the full path to the configuration file. Note that for production this configuration should be defined by

the system administrator. A user would then only need to define the full path to its dataset (last storage

tier prefix), since this varies to all users.

4.3.2 Applicability Across DL Frameworks

Monarch uses the LD_PRELOAD technique to alter the linkage of libraries and the resolution of symbols

at runtime. This allows Monarch to transparently intercept POSIX calls made by the DL framework, which

are destined towards the logical path, and route them to the physical data path (i.e., appropriate storage

tier). Specifically, the open, pread, mmap, and close POSIX calls, as displayed Listing 2, supported by

libc, were replaced by the ones that are serviced by Monarch. Supporting this set of calls is sufficient to

attend the requirements of the experiments presented in (Chapter 5).

1int open (const char* path, int flags, ...);

2

3ssize_t pread (int fd, void *buf, size_t size, off_t offset);

4

5void *mmap (void *addr, size_t length, int prot, int flags, int fd, off_t offset);

6

7int close (int fd);

Listing 2: Examples of Monarch supported POSIX calls.

4.3.3 Threading and Background Processing

Monarch is designed to work in a single-process multithreaded environment. When a DL framework is-

sues parallel I/O requests, each calling thread will follow an execution path that leads to the execution of

Monarch logic, replacing the issued POSIX call. These threads will only have access, as shared state, to

the metadata container structures to perform Monarch’s logic, namely the logic that deals with I/O calls

interception and handling (Section 4.2).

Monarch utilizes a dedicated thread pool to perform parallel I/O in background, which is triggered

after a small read request to a large file is made. When the Prefetching for Large Files (PLF) is needed, the

work of this thread pool involves reading files from a storage backend (e.g., PFS) and then writing them

to a local storage medium. When the latter is not the case (i.e., the framework’s request targets a read

of the whole file, usually done when small files are present), then the prefetching mechanism will not be

activated. In this case, the file will be completely read by the calling thread. This data will then be used

by the thread pool to asynchronously write to the local storage medium. The thread pool is implemented

utilizing the C++ Thread Pool Library (CTPL) (version 0.0.2) [20].

48

CHAPTER 4. MONARCH

4.3.4 Metadata Management

The metadata management is a crucial aspect of Monarch architecture and should be detailed even further,

so that its mechanisms are well understood.

To read a file with POSIX, DL frameworks issue multiple system calls. First comes the open, then

one or many requests to read data (e.g., pread, mmap), and finally the close call. If sequential I/O was

enforced, Monarch could easily track consecutive calls and associate them to the desired file, since they

always follow the same order, however Monarch deals with multithreaded and interleaved storage I/O,

which makes it impossible to correlate consecutive I/O calls that use different arguments to access a

file in this manner. Namely, the open call uses the file path to access a file and the consecutive calls

(i.e., pread, mmap, close) use the returned file descriptor. Therefore, this enforces the need to have the

combination of the FD map and the FPath map, permitting the correct delivery of the desired data.

The FPath map is populated during the metadata container initialization process and stays as a read-

only structure for the entirety of Monarch life cycle. The highly efficient Abseil’s (v20210324.2) [3] flat map

was used to implement this structure.

The FD map starts empty and its state changes during the training phase, when the open and close

calls are issued by the framework, which, respectively, insert and removes entries from the structure. It also

enables sharing file descriptors between the DL framework’s threads and Monarch’s background threads,

allowing Monarch’s mechanisms to only request the strictly necessary metadata calls. The values inserted

into this structure are provided by the FPath map. The removal of entries is necessary for the reason that

the OS does not perpetually increments/generates new file descriptors for each open, but instead reuses

the same ones when a close is emitted, thus freeing the file descriptor. Naturally, the updates in this map

state may be issued by different DL framework’s concurrent threads, hence this structure needs to be

thread safe. With this in mind, the FD map was built with the Intel Threading Building Blocks Concurrent

HashMap (v2021.2.0) [36] library.

Both structures are kept in memory due to performance considerations. Such design does not com-

promise the fault tolerance of this solution because, if a DL job fails, the metadata container information

can be initialized again with the data persisted at the PFS.

4.4 Summary

Monarch is a storage middleware solution specifically designed for DL workloads running in HPC systems

equipped with multi-tiered storage hierarchies (e.g., shared PFS, node-local SSD). This system targets

the performance bottleneck of the DL training phase and aims at decreasing both the training times of

I/O-bound models and the pressure exerted to the HPC infrastructure’s PFS. Monarch is built on already

proven concepts, such as the fact that the node’s local storage can be used to partially or completely cache

49

CHAPTER 4. MONARCH

training dataset, thus potentially accelerating the DL training process, and the use of a non-eviction cache

policy to avoid cache thrashing in the presence of a random access workload.

Monarch also utilizes I/O-optimizations with the help of background threads to actively and transpar-

ently prefetch large files that are being accessed through small reads, which happens for formats such as

TFRecords and RecordIO. The proposed solution decouples data staging from the I/O optimizations that

are provided by DL frameworks and libraries, and although it offers prefetching, this kind of mechanism is

compatible with the prefetching that is already used at the DL framework level, since it is file-based (i.e.,

prefetching of the whole file) and not sample-based (i.e., prefetching of individual samples or records).

Furthermore, Monarch distances itself from related work solutions that are intrusive to DL developers. It

does not require using a specific code library inside of DL training scripts, only requiring the need to specify

the location of their training dataset. Moreover, since this system is carefully designed for DL workloads,

system administrators do not need to fine-tune any kind of configuration to make it appropriate for this

workload, and only need to define the storage tiers hierarchy accordingly.

Monarch has the priority of keeping a balance between performance gains and pressure directed at

the PFS, therefore, it has metadata management mechanisms that avoid unnecessary POSIX metadata

calls by sharing file descriptors among the involved threads. Moreover, the no-eviction caching policy not

only avoids cache trashing, but it also prevents the need to be constantly reading the whole dataset, due to

the replacement of data files. Some state-of-the-art solutions do not take this into consideration, specially

under a single-node training scenario [44, 91]. Finally, Monarch is self-contained, following an ephemeral

life cycle that lasts for the duration of the DL job, not needing any kind of external computational resources

to hold, for example, metadata.

50

C
h
a
p
te

r

5
EXPERIMENTAL EVALUATION

The evaluation of Monarch seeks to answer the following questions:

• Is Monarch applicable over different DL frameworks?

• Can Monarch improve training the performance under different DL models and dataset sizes?

• Can Monarch reduce the I/O pressure on the PFS?

• Does Monarch impact the DL training accuracy?

5.1 Experimental Setup

Testbed, models and datasets. The experimental testbed and models used in these experiments

are the same as those described in Chapter 3, however two different datasets, based on the ImageNet-1k,

were used for this evaluation process. A small version, sizing at 100 GiB, and a large version, sizing at

200 GiB. The large version was used to assess a scenario where the dataset cannot fit entirely in the

compute node’s local storage and memory.

The small and large datasets were converted into TFRecords, resulting in 1024 and 2048 training

files, respectively. The doubled number of training files for the large dataset was used to maintain a similar

average size for each individual file.

Moreover, the 200 GiB dataset was obtained through data augmentation [67] of images that were

present in the original ImageNet-1k dataset and is comprised of roughly 3 million images, which is more

than three times the number of images of the 100 GiB dataset. The disproportional growth to the number

of images is caused by the augmentation process, which in this case reduced the size of the original

51

CHAPTER 5. EXPERIMENTAL EVALUATION

images. This made it so that the dataset needed more images to make it to 200 GiB. This characteristic

will serve as a test to evaluate the performance impact of having more records per TFRecord file.

Finally, for experiments where accuracy results were needed, a 6.5 GiB hold-out validation dataset

(Section 2.1.4) with 50, 000 images was used. This dataset was also converted to the TFRecords format,

resulting in 128 validation files.

Monarch configuration Monarch was configured with 6 threads for the placement handler ’s thread

pool and two storage levels for the storage hierarchy. Level 1 corresponds to the compute node’s xfs file

system, mounted on top of a local SSD partition with 115 GiB. Level 2 corresponds to the directory where

the dataset is stored at Lustre.

As a side note, the metadata container uses approximately 100 bytes per file entry. Thus for the two

datasets not even 1 MiB is used. Further, the initialization process of this module has the duration of 13

seconds for the 100 GiB dataset and 52 seconds for the 200 GiB dataset.

DL frameworks To demonstrate its applicability, Monarch was evaluated under TensorFlow (v2.3.2)

and PyTorch (v1.6.0). TensorFlow was set with the same configurations as in Chapter 3. PyTorch experi-

ments were conducted in conjunction with the DALI framework (v.1.5.0) [61].

As mentioned previously in Section 2.2.1, DALI provides better I/O optimizations for PyTorch, replacing

the PyTorch dataloader (Section 2.1.10), enabling PyTorch to properly read TFRecords. DALI dataloader

needs to be configured with training related parameters, however the I/O optimizations that it provides

such as prefetching and parallel I/O are implicit, hence it was only needed to configure the number of

working threads.

For the LeNet and AlexNet models 16 threads were used. For the ResNet model this number was

reduced to 8, since more threads would cause internal memory allocation errors. Both the DL framework’s

and the Monarch’s number of threads were determined by running preliminary experiments to find a

number that reached good performance. This dissertation, however, is not focused on finding the optimal

configuration setup to perform DL training, but focused on demonstrating the impact of using Monarch

mechanisms on the DL training process. The same can be said about using different DL frameworks. Each

DL framework has different data loading mechanisms with different levels of efficiency. It is necessary to

study and point out these differences, but it is more important to find how does Monarch impact the DL

training performance under different I/O optimizations. Thus, it is not this work’s objective to find the

optimal DL framework’s input pipeline or to strictly compare the different input pipelines.

Methodology The same methodology described in Section 3.1 is applied to this evaluation. In addition,

all training experiments, under both PyTorch and TensorFlow DL frameworks, use all 4 GPUs, available at

the compute node.

52

CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 Results

To answer the previous questions this section will analyze Monarch, regarding training performance, vol-

ume of data and metadata operations submitted to the PFS (i.e., Lustre), and resource usage for each

combination of DL frameworks (TensorFlow and PyTorch) and dataset size (100 GiB and 200 GiB).

5.2.1 TensorFlow 100 GiB

0
5

10
15
20
25

Lustre

Local

Cache

M
onarchT

ra
in

in
g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0
5

10
15
20
25

Lustre

Local

Cache

M
onarch

0
18
36
54
72
90

Lustre

Local

Cache

M
onarch

Figure 18: Average training time for the Lustre, Local, and Cache setups under LeNet, AlexNet, and
ResNet-50 training models for the TensorFlow 100 GiB scenario. Each column is stacked with the elapsed
training time of each training epoch, namely first (), second (), and third ().

Training performance. As shown in Figure 18, when compared to Lustre, Monarch significantly im-

proves the overall training performance for I/O-bound models, decreasing the training time to 11.8 minutes

for LeNet (38% decrease) and to 14 minutes for AlexNet (26% decrease). For ResNet-50, all setups perform

similarly.

For the first training epoch (steps [0, 3500]), under I/O-bound models, Monarch achieves a better

performance than Lustre and Cache. The LeNet’s and AlexNet’s first training epoch with Monarch has the

duration of roughly 5.3 minutes. For LeNet this poses as a 20% and 27% decreases, in comparison with

Lustre and Cache, respectively. For AlexNet the decrease values are 18% and 28%. Monarch times are

similar to those of the Local setup, which shows that there is little to no overhead of using this middleware.

The performance gains are explained by Monarch’s PLF mechanism. Specifically, when a read call

is submitted to a given TFRecord, Monarch fetches the whole file from the PFS. Under this scenario, both

reads (from the DL framework) and writes (submitted to the local storage tier by Monarch) are buffered at

the compute node’s page cache. As depicted in Figure 19, this optimization impacts the first half of the

first epoch, where Monarch experiences significantly higher throughput than the aforementioned setups.

However, for the second half, as the page cache fills, Monarch’s throughput degrades while matching the

performance of Lustre and Cache setups. Because the ingestion rate of the DL framework is higher than

the flushing rate of dirty pages to local storage, reads start being submitted to the PFS, as the requested

files are not yet available at local storage. Under the LeNet model, this behavior is also manifested at the

53

CHAPTER 5. EXPERIMENTAL EVALUATION

beginning of the second training epoch, since there is accumulated backlog (i.e., dirty pages) from the

first epoch still being written to the local disk and competing with read requests being done over the same

storage medium.

0
1500
3000
4500
6000

T
h

ro
u

g
h

p
u

t
(s

a
m

p
le

s
/s

)

Step

Lustre Local Cache Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet50
0

200
400
600
800

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

Figure 19: TensorFlow’s throughput, in samples per second, of Lustre, Local, Cache, and Monarch setups
under LeNet, AlexNet, and ResNet-50 models, for 100 GiB.

For the second (]3500, 7000]) and third (]7000, 10500]) training epochs, when the full dataset is

persisted at the local tier, Monarch experiences similar performance as of the Cache and Local setups.

When compared to Lustre, Monarch reduces the combined training time for those epochs to 6.7 (46%

decrease) and 8.7 (29% decrease) minutes for LeNet and AlexNet, respectively.

PFS operations. As depicted in Figure 20a, due to storage tiering and the PLF, Monarch significantly

reduces the number of read calls directed to the PFS. The Lustre setup submits approximately 395, 000
read calls per epoch, while Cache only submits that same number of read calls during the first epoch,

since after that, the dataset is served from the local storage tier. The number of reads is not equal to

the number of training records (i.e., 900000), since TensorFlow reads chunks of data from the TFRecords

(256 KiB each), instead of a single record (Section 2.1.8). These results (i.e., PFS operations) were obtained

using the output files of Lustre’s llite. All of the PFS operations results were obtained using a single

separated run (i.e., not using 7 runs to obtain an average and standard deviation), since their variability

can be neglected for this evaluation.

In Monarch, under I/O-bound models, the number of operations submitted to the PFS can be analyzed

in three phases, similarly to the training performance. At a first phase, due to Monarch’s PLF mechanism,

read calls are large, fetching the whole file from the PFS, and forthcoming reads are mainly served from the

compute node’s page cache. Then, when the page cache fills, the data staging of files loses performance

and cannot keep up with the DL framework rate of requests, thus Monarch submits the small-sized read

calls to the PFS, while simultaneously storing the dataset in local storage. Finally, when the full dataset is

avaliable from the local tier, the placement of files ends and no more read calls are submitted to the PFS.

Thus, for the LeNet model with Monarch approximately 202, 000 reads were submited to the PFS, while

54

CHAPTER 5. EXPERIMENTAL EVALUATION

0
0.25
0.5

0.75
1

1.25

A
c
cu

m
u
la

te
d
 O

p
s
 (

x
1
0

6
)

Step

Lustre Cache Monarch

LeNet

AlexNet

ResNet50

0
0.25
0.5

0.75
1

1.25

LeNet

AlexNet

ResNet50

0
0.25
0.5

0.75
1

1.25

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(a) Read calls.

0
1.5

3
4.5

6

A
c
cu

m
u
la

te
d
 O

p
s
 (

x
1
0

3
)

Step

Lustre Cache Monarch

LeNet

AlexNet

ResNet50

0
1.5

3
4.5

6

LeNet

AlexNet

ResNet50

0
1.5

3
4.5

6

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(b) Metadata calls.

0
0.8
1.6
2.4
3.2

4

A
c
cu

m
u
la

te
d
 B

yt
e
s
 (

x
1
0

1
1
)

Step

Lustre Cache Monarch

LeNet

AlexNet

ResNet50

0
0.8
1.6
2.4
3.2

4

LeNet

AlexNet

ResNet50

0
0.8
1.6
2.4
3.2

4

2000 4000 6000 8000 10000

LeNet

AlexNet

ResNet50

(c) Bytes read.

Figure 20: TensorFlow 100 GiB PFS operations. Accumulated read (a.), metadata (b.) and bytes read
(c.) operations submitted to the PFS for the Lustre, Cache, and Monarch setups under LeNet, AlexNet,
and ResNet-50 models, for the 100 GiB dataset.

for the AlexNet model the number was 155, 000. With AlexNet, Monarch’s PLF is able to prevent more

reads requests than for the LeNet.

In addition, Figure 20c shows another perspective of Monarch’s PLF mechanism’s effects. The loss of

data staging performance leads to the small-sized read requests being served by the PFS until the desired

file is completely prefetched. This means that the DL framework can read a portion of a given file from the

PFS and another portion from the local storage, which is backed up by the previous analysis of Figure 20a.

Moreover, this will increase the total amount of bytes that are read from the PFS (i.e., originates duplicate

data reads). As an example, it is possible, in a worst case and unlikely scenario, that the placement of

a file is so delayed that the DL framework finishes reading the whole file without it being placed in the

local storage, leading to a double read of the whole file. Therefore, because of Monarch’s PLF, for the

LeNet model 48 additional GiB were read, whereas for the AlexNet model this value was lower, reaching

36 GiB. This additional amount of read bytes, however proves itself useful, as results show. With it, a

decrease in the number of read requests was possible, hence the contention at the PFS was also reduced.

Furthermore, this makes a better use of the available bandwidth and reduces each remote I/O request

55

CHAPTER 5. EXPERIMENTAL EVALUATION

Round Trip Time (RTT), thus improving training time.

For the ResNet-50 model, since it is compute-bound, Monarch’s PLF is able to fetch all data samples

timely, only submitting 1024 read calls. In addition, with this model no additional amount of bytes was

read from the PFS.

A decrease is also noticeable for metadata operations, namely open and close. As depicted in

Fig. 20b, for Monarch and Cache setups, all operations are concentrated in the first training epoch, per-

forming a single open and close call for each training file. Lustre, on the other hand, repeats this behavior

at each training epoch. Additionally, to obtain the necessary information to populate the metadata con-

tainer (e.g., file size), Monarch performs 1024 additional getattr operations (i.e., one getattr call per

file).

0

25

50

75

100

LeNet AlexNet ResNetC
P

U
 U

til
iz

a
tio

n
 (

%
) Lustre Local Cache Monarch

(a) CPU Utilization.

0

25

50

75

100

LeNet AlexNet ResNetG
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Local Cache Monarch

(b) GPU utilization.

Figure 21: TensorFlow 100 GiB resource utilization.

Resource usage. Because Monarch can service training samples faster to the DL framework, it demon-

strates the second highest CPU and GPU utilization, being surpassed by Local. Specifically, it achieves a

CPU and GPU usage of approximately 45% and 33% for LeNet, 40% and 73% for AlexNet, and 10% and 92%

for ResNet-50. Regarding memory consumption, Monarch performs identically has the remainder setups

(i.e., 10 GiB).

5.2.2 TensorFlow 200 GiB

For the 200 GiB dataset, only Monarch and Lustre setups were considered, since both Cache and Local

require the full dataset to fit in the local storage tier.

Training performance. As depicted in Figure 22, Monarch, when compared with Lustre, improves

the training performance of I/O-bound models, decreasing the training time of the LeNet model from 46.4

minutes to 33.3 minutes (28%), and from 58.3 minutes to 45.9 minutes for the AlexNet model (21%).

Also, one could think that, since the dataset size doubled, the training time should also double, but that

did not happen. These results show that, when compared with the previous experiment (i.e., TensorFlow

100 GiB), by having a higher number of records per TFRecord, which is the case of the 200 GiB dataset, the

training time will increase in an disproportionate manner. This is justified by the extra preprocessing of each

56

CHAPTER 5. EXPERIMENTAL EVALUATION

0

16

32

48

64

Lustre

M
onarchT

ra
in

in
g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0
18
36
54
72
90

Lustre

M
onarch

0

60

120

180

240

Lustre

M
onarch

Figure 22: Average training time for the Lustre and Monarch setups under LeNet, AlexNet, and ResNet-
50 training models for the TensorFlow 200 GiB scenario. Each column is stacked with the elapsed training
time of each training epoch, namely first (), second (), and third ().

record and the additional amount of training steps. This is more noticeable in models that involve more

computations per step. For example, in the 100 GiB experiment, AlexNet and LeNet had similar training

times. For this dataset however, that is not observed. Likewise, training ResNet-50 with this dataset lasted

three times longer than with the 100 GiB dataset.

0
1500
3000
4500
6000

T
h

ro
u

g
h

p
u

t
(s

a
m

p
le

s/
s)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1000
2000
3000
4000

LeNet

AlexNet

ResNet50
0

200
400
600
800

5000 10000 15000 20000 25000 30000 35000

LeNet

AlexNet

ResNet50

Figure 23: TensorFlow’s throughput, in samples per second, of Lustre and Monarch setups under LeNet,
AlexNet, and ResNet-50 models, for 200 GiB.

During the first training epoch ([0, 11500]), as depicted in Figure 23, Monarch experiences throughput
degradation due to the page cache filling up and the local storage tier achieving its quota. For the remainder

epochs, Monarch serves the DL framework read calls from both local and remote storage tiers. In addition,

the dataset’s file names are shuffled (i.e., to improve the randomization level) and data samples are being

fetched in an interleaved fashion (i.e., using the interleave stage), which leads to random throughput

variation. With this, throughput spikes can still be seen across different steps of the training phase, since

the PFS is still being accessed for a large portion of the dataset and in random steps. However, the

throughput spikes show less amplitude when using Monarch, when compared to Lustre.

For the ResNet-50 model, Monarch and Lustre perform similarly. In Figure 23 throughput is more

stable with Monarch, however this did not have a significant impact on overall the training time.

57

CHAPTER 5. EXPERIMENTAL EVALUATION

PFS operations. As depicted in Figure 24a, the Lustre setup submits approximately 2.4 million read

requests to the PFS across all training epochs. ,Monarch is able to significantly reduce this value since a

large portion of the dataset is stored in the local storage tier (i.e., 115 GiB). Specifically, Monarch reduces

PFS read operations requests to 1.2 million for the LeNet model (50% reduction) and approximately 1.05
million for the AlexNet and ResNet-50 models (56% reduction, which roughly represents the percentage of

the dataset that is cached).

After the first training epoch, contrary to the 100 GiB dataset experiments, Monarch continues submit-

ting operations to the PFS to access the data samples that could not fit in the local storage tier. Metadata

operations manifest the same behavior, as depicted in Figure 24b.

In terms of bytes read from the PFS, for the same reasons explained in the 100 GiB experiment, for

the LeNet model, Monarch read 40 GiB of additional data. For the AlexNet and ResNet-50 models no

additional bytes were read from the PFS.

0
0.5

1
1.5

2
2.5

A
c
c
u
m

u
la

te
d
 O

p
s

(x
1
0

6
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
0.5

1
1.5

2
2.5

LeNet

AlexNet

ResNet50

0
0.5

1
1.5

2
2.5

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

(a) Read calls.

0
3
6
9

12

A
c
c
u
m

u
la

te
d
 O

p
s

(x
1
0

3
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
3
6
9

12

LeNet

AlexNet

ResNet50

0
3
6
9

12

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

(b) Metadata calls.

0
2
4
6
8

A
c
cu

m
u
la

te
d
 B

yt
e
s

(x
1
0

1
1
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
2
4
6
8

LeNet

AlexNet

ResNet50

0
2
4
6
8

5000 10000 15000 20000 25000 30000

LeNet

AlexNet

ResNet50

(c) Bytes read.

Figure 24: TensorFlow 200 GiB PFS operations. Accumulated read (a.), metadata (b.) and bytes
read (c.) operations submitted to the PFS for the Lustre and Monarch setups under LeNet, AlexNet, and
ResNet-50 models, for the 200 GiB dataset.

Due to the higher number of records per file it seems that the AlexNet model with Monarch, unlike

the previous 100 GiB scenario, is very similar to the ResNet-50 model in terms of number of operations

58

CHAPTER 5. EXPERIMENTAL EVALUATION

submitted to the PFS. This means that the AlexNet model became less I/O-bound and the PLF can now

stage TFRecords in a timely fashion, which corroborates what was mention in this experiment training time

analysis. Since LeNet has a low number of computations this difference is less noticeable and the staging

of files continuous to be unable to keep up with the rate of requests.

Resource usage. Monarch is also able to increase CPU and GPU efficiency when compared to Lustre.

In more detail, CPU usage increases from 36% and 31% (Lustre) to 48% and 37% (Monarch) for LeNet and

AlexNet, respectively. GPU usage increases from 30% and 63% (Lustre) to 40% and 76% (Monarch). For

ResNet-50, both setups exhibit similar CPU (9%) and GPU (90%) usage. In regards to memory consumption,

both setups perform similarly (i.e., 10 GiB).

0

25

50

75

100

LeNet AlexNet ResNetC
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Monarch

(a) CPU Utilization.

0

25

50

75

100

LeNet AlexNet ResNetG
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Monarch

(b) GPU utilization.

Figure 25: TensorFlow 200 GiB resource utilization.

5.2.3 PyTorch 100 GiB

Unlike TensorFlow, PyTorch does not include a persistent caching optimization. Thus, experiments were

only conducted over Lustre, Local, and Monarch setups for the 100 GiB dataset.

Training performance. As depicted in Figure 26, PyTorch exhibits higher training times than Tensor-

Flow for the 100 GiB dataset and all three models, specially for the Lustre setup and I/O-bound models.

0
20
40
60
80

100

Lustre

Local

M
onarchT

ra
in

in
g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0
20
40
60
80

100

Lustre

Local

M
onarch

0
18
36
54
72
90

Lustre

Local

M
onarch

Figure 26: Average training time for the Lustre, Local, and Monarch setups under LeNet, AlexNet, and
ResNet-50 training models for the PyTorch 100 GiB scenario. Each column is stacked with the elapsed
training time of each training epoch, namely first (), second (), and third ().

59

CHAPTER 5. EXPERIMENTAL EVALUATION

The Local setup trains LeNet, AlexNet and ResNet-50 in 17.5, 16.1 and 69.9 minutes, respectively.

Monarch, when compared to Local, exhibits similar training execution times. Again, as with the TensorFlow

100 GiB experiment, the LeNet and AlexNet models showed very close results, however this also stayed

true for the Local setup, unlike the TensorFlow’s experiments. This observation combined with the higher

training times for I/O-bound models hints that the data loading optimizations for this experiment are less

efficient than those that are used in TensorFlow. One reason for this is the fact that DALI, differently from

TensorFlow’s pipeline, reads single records from each TFRecord file, instead of reading chunks of data to

reduce I/O contention. It is expected that the increase of the number of records (e.g., 200 GiB dataset)

will further accentuate this inefficiency.

When compared to Lustre, Monarch significantly improves the overall training performance for I/O-

bound models, decreasing training time from 77.3 to 20 minutes for LeNet (74%) and from 77.5 to 18

minutes for AlexNet (77%). For ResNet-50, Monarch reduces the training time from 84 to 72.4 minutes

(14%). Interestingly, when using PyTorch with DALI, the ResNet-50 model also becomes I/O-bound, thus

explaining the performance improvement of Monarch and showing a case for training performance degra-

dation of compute-bound models, in a case where the data loading pipeline does not correctly address the

I/O-bottleneck.

0
0.2
0.4
0.6
0.8

1

L
a
te

n
cy

 (
s)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

0 200 400 600 800 1000

LeNet

AlexNet

ResNet50

Figure 27: PyTorch’s latency, in seconds, of Lustre and Monarch setups under LeNet, AlexNet, and ResNet-
50 models, for 100 GiB.

Local achieves sustained latency per I/O operation throughout the overall execution and across all

training models, never exceeding 0.2 seconds. To ease illustration, Local results were not included in

Figure 27. At the latter figure and for the first training epoch (steps [0, 3510]), when compared to Lustre,

Monarch is able to reduce training time by 68% (18 min difference), 71% (18.7 min difference), and 6%

(1.8 min difference) for LeNet, AlexNet, and ResNet-50, respectively. Similarly to the results observed in

Section 5.2.1, this is due to Monarch’s PLF mechanism. Again, during the second half of the first epoch,

the compute node’s page cache fills (with dirty pages) and read calls start being submitted to the PFS,

as the requested files are not yet available at the local storage tier, leading Monarch to experience latency

spikes.

60

CHAPTER 5. EXPERIMENTAL EVALUATION

For the second (]3510, 7020]) and third (]7020, 10530]) epochs, since the full dataset is available at
the local tier, Monarch ensures sustained latency, improving training times by 77% (39.3 min difference),

80% (40.9 min difference) and 17% (9.7 min difference) for LeNet, AlexNet and ResNet-50, respectively.

PFS operations. The DALI library uses, by default, the mmap system call to map whole training files

to memory. Contrary to TensorFlow, which performs multiple explicit read calls per file. DALI’s I/O is

performed implicitly when it attempts to access the in-memory data (i.e., as a result of mmap) and a page

fault occurs, resulting in the data samples being copied on demand. As depicted in Figures 28a and 28b,

Monarch’s prefetching mechanism significantly reduces the calls directed to the PFS. In detail, Lustre

submits a total of 3, 461 mmap and 9, 234 (open and close) metadata calls, while Monarch only submits
1, 152 and 4, 618, respectively. Moreover, Monarch operations to the PFS are all done in the first training
epoch, since after that, all requests are served from the local storage tier. The implicit I/O, however, is not

traced by the tools used in this work, which makes it impossible to have plots that illustrate the amount of

bytes read, like the TensorFlow experiments, only registering each individual mmap call.

0
1
2
3
4
5

A
c
cu

m
u
la

te
d
 O

p
s

(x
1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
1
2
3
4
5

LeNet

AlexNet

ResNet50

0
1
2
3
4
5

200 400 600 800 1000

LeNet

AlexNet

ResNet50

(a) Read calls.

0
2.5

5
7.5
10

A
c
cu

m
u
la

te
d
 O

p
s

(x
1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
2.5

5
7.5
10

LeNet

AlexNet

ResNet50

0
2.5

5
7.5
10

200 400 600 800 1000

LeNet

AlexNet

ResNet50

(b) Metadata calls.

Figure 28: PyTorch 100 GiB PFS operations. Accumulated read (a.) and metadata (b.) operations
submitted to the PFS for the Lustre and Monarch setups under LeNet, AlexNet, and ResNet-50 models,
for the 100 GiB dataset.

Resource usage. Monarch shows the second highest CPU and GPU usage, as expected. For LeNet

and AlexNet, CPU ranges from 5% (Lustre), to 22% (Monarch) and to 26% (Local) while, for ResNet-50, it

increases from 7% (Lustre) to 9% (Monarch) and to 10% (Local). For LeNet, GPU utilization ranges from

14% (Lustre), to 50% (Monarch), and to 58% (Local) while, for AlexNet, it increases from 9% (Lustre), to

35% (Monarch), and to 41% (Local). For ResNet-50, it ranges from 75% (Lustre), to 85% (Monarch), and

to 88% (Local). All setups exhibit similar memory consumption, using 10 GiB for LeNet and AlexNet, and

8 GiB for ResNet-50.

61

CHAPTER 5. EXPERIMENTAL EVALUATION

0

25

50

75

100

LeNet AlexNet ResNetC
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Local Monarch

(a) CPU Utilization.

0

25

50

75

100

LeNet AlexNet ResNetG
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Local Monarch

(b) GPU utilization.

Figure 29: PyTorch 100 GiB resource utilization.

5.2.4 PyTorch 200 GiB

As in Section 5.2.2, for the 200 GiB dataset, only the Lustre and Monarch setups were considered for

analysis.

Training time. As depicted in Figure 30, Monarch significantly improves training performance under

I/O-bound models, decreasing the training time from 166.4 to 108 minutes (35%) under LeNet and from

165 to 104 minutes (37%). With Monarch the ResNet-50 model training time is reduced by 5% (12 min

difference). Again, as discussed in Section 5.2.2, due to the increased number of files for this dataset the

training times are much higher.

0

45

90

135

180

Lustre

M
onarchT

ra
in

in
g
 t
im

e
 (

m
in

) LeNet AlexNet ResNet50

0

45

90

135

180

Lustre

M
onarch

0

65

130

195

260

Lustre

M
onarch

Figure 30: Average training time for the Lustre and Monarch setups under LeNet, AlexNet, and ResNet-
50 training models for the PyTorch 200 GiB scenario. Each column is stacked with the elapsed training
time of each training epoch, namely first (), second (), and third ().

Looking at the performance over time (Figure 31), Monarch’s latency degrades at the second half of

each training epoch. The reason behind this is twofold. First, Monarch caches approximately half of the

training dataset (i.e., 56%, which corresponds to the storage quota at the compute node’s disk) in the

local storage tier, serving DL requests from local resources rather than the PFS. Second, when combining

PyTorch and DALI, TFRecords are read from storage sequentially and the shuffling process is made in-

memory, very similarly to the TensorFlow’s shuffle buffer. However the ability to shuffle file names across

epochs is not available. This leads to a deterministic storage I/O pattern across training epochs (i.e., the

first half of the dataset is served from the local storage tier, while the remainder is read from the PFS, and

always considering the same order of files).

62

CHAPTER 5. EXPERIMENTAL EVALUATION

0
0.2
0.4
0.6
0.8

1

L
a
te

n
cy

 (
s
)

Step

Lustre Monarch

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

LeNet

AlexNet

ResNet50

0
0.2
0.4
0.6
0.8

1

0 500 1000 1500 2000 2500 3000 3500

LeNet

AlexNet

ResNet50

Figure 31: PyTorch’s latency, in seconds, of Lustre and Monarch setups under LeNet, AlexNet, and ResNet-
50 models, for 200 GiB.

Given this sequential access pattern, to further optimize training performance, Monarch could evict

and prefetch samples based on the deterministic order that these are requested. However, as discussed

in Section 4.3, this would increase the I/O pressure at the PFS, since with an eviction policy, Monarch

would always submit operations to the PFS regardless of the training epoch.

0
2
4
6
8

A
c
cu

m
u
la

te
d
 O

p
s

(x
1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
2
4
6
8

LeNet

AlexNet

ResNet50

0
2
4
6
8

500 1000 1500 2000 2500 3000 3500

LeNet

AlexNet

ResNet50

(a) Read calls.

0
5

10
15
20

A
c
cu

m
u
la

te
d
 O

p
s

(x
1
0

3
)

Step (x10)

Lustre Monarch

LeNet

AlexNet

ResNet50

0
5

10
15
20

LeNet

AlexNet

ResNet50

0
5

10
15
20

500 1000 1500 2000 2500 3000 3500

LeNet

AlexNet

ResNet50

(b) Metadata calls.

Figure 32: PyTorch 200 GiB PFS operations. Accumulated read (a.) and metadata (b.) operations
submitted to the PFS for the Lustre and Monarch setups under LeNet, AlexNet, and ResNet-50 models,
for the 200 GiB dataset.

PFS operations. Similarly to Section 5.2.2, the number of operations submitted by Monarch to the

PFS is directly related with the portion of the dataset stored at the local storage tier (i.e., roughly 56%).

As depicted in Figure 32a, during the first training epoch, both Lustre and Monarch perform 1, 890 mmap

calls. This number is not reduced by Monarch, because, as explained in Section 4.2, what triggers the

prefetching for large files is, in this case, the mmap call, hence all of the calls will be directed at the PFS, only

the implicit I/O that comes after the mmap is optimized. However, for the remainder epochs, while Lustre’s

mmap calls increase linearly, Monarch submits 2, 322, representing a 50% reduction. This reduction did

63

CHAPTER 5. EXPERIMENTAL EVALUATION

not reach the 56% mark, which can be attributed to the order that files were placed. Since some files

are larger than others, these will possibly fill up the staging area, leaving more files to be read from the

PFS. For the second and third epochs (Figure 32b), Monarch reduces the number of combined open and

close metadata calls from 9, 274 (Lustre) to 4, 640.

Resource usage. Monarch increases CPU and GPU efficiency when compared with Lustre. For LeNet

and AlexNet, CPU increases from 6% (Lustre) to 10% (Monarch). For ResNet-50, CPU usage is 7% for both

setups. For LeNet, GPU utilization goes from 20% (Lustre) to 31% (Monarch). For AlexNet, it increases from

13% (Lustre) to 21% (Monarch). For ResNet-50, it ranges from 83% (Lustre) to 87% (Monarch). Memory

consumption results and conclusions are identical to those presented in Section 5.2.3.

0

25

50

75

100

LeNet AlexNet ResNetC
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Monarch

(a) CPU Utilization.

0

25

50

75

100

LeNet AlexNet ResNetG
P

U
 U

til
iz

a
tio

n
 (

%
)

Lustre Monarch

(b) GPU utilization.

Figure 33: PyTorch 200 GiB resource utilization.

To conclude, the CPU and GPU utilization values are low when compared to the TensorFlow experi-

ments. The latter, when faced with the 200 GiB dataset, performed similarly to the 100 GiB dataset in

terms of resource utilization, however this is not the case for DALI.

5.2.5 Long run and accuracy analysis

Monarch’s training performance and accuracy were assessed for a 48 hours long training workload (i.e.,

time limit for regular user’s jobs at the Frontera supercomputer). The AlexNet model was chosen, along

with the PyTorch deployment and the 200 GiB ImageNet-1k dataset. Next, the results for the Lustre and

Monarch setups are compared.

As depicted in Figure 34, in 48 hours, Lustre completes 48 training epochs and reaches Top-1 and

Top-5 accuracies of 37% and 61%, respectively. Monarch, on the other hand, completes the same set of

epochs in 28 hours (reduction of 20 hours), while achieving similar Top-1 and Top-5 accuracies, namely

38% and 63%.

For the full workload (i.e., 48 hours), Monarch completes 81 epochs and achieves Top-1 and Top-5

accuracies of 51% and 75%. This shows that, for the same time frame, Monarch can increase the number

of epochs and, consequently, the accuracy of trained models.

While this experiment is based on the PyTorch deployment and AlexNet model, for other combinations

of frameworks and models (e.g., TensorFlow, LeNet), one would also experience performance improve-

ments proportional to the results discussed in the previous sections.

64

CHAPTER 5. EXPERIMENTAL EVALUATION

0

15

30

45

60

0 10 20 30 40 50T
o

p
-k

 A
c
cu

ra
cy

Epochs Epochs

Top-1

Top-5

Lustre Monarch

0

20

40

60

80

0 16 32 48 64 80

Lustre Monarch

Figure 34: Top-1 and top-5 accuracy results for PyTorch with Lustre and Monarch setups the AlexNet
model and 200 GiB dataset, over a 48 hours period.

5.2.6 Discussion

A framework-agnostic middleware like Monarch enables an easy utilization of optimizations, such as data

staging and prefetching, which accelerate the training of I/O-bound models.

Notably, besides showcasing Monarch’s applicability to different frameworks, models and dataset sizes,

the previous experiments validate three key aspects. First, Monarch is able to reduce the training times of

I/O-bound models across all experiments, contributing to a substantial mitigation of the I/O bottleneck. In

fact, these results correlate into a higher CPU and GPU utilization, which is originated by a higher rate of

data ingestion and the minimization of CPU and GPU idle time.

Furthermore, Monarch showed higher performance gains for the first training epoch, when compared

with the Cache setup, which is justified by the PLF mechanism. With it, Monarch executed larger sequential

reads, during placement, taking advantage of the high PFS’s aggregate bandwidth. This lead the majority

of the DL framework’s small read requests to be served from local storage, during the first epoch, thus

reducing each request RTT. However, the PLF mechanism was affected by the flushing of the Page Cache’s

dirty pages to local storage, which made Monarch prefetching mechanism and, consequently, the DL

training to lose performance at the time that the Page Cache filled up, across all experiments. After the

first epoch and for the 100 GiB dataset across different setups, Monarch performed similarly to the Local

setup, showing that there is no performance overhead, when intercepting POSIX system calls with this

storage middleware.

Moreover, for TensorFlow, Monarch achieved training time reduction percentages of up to 38% for the

100 GiB dataset and by up to 28% for the 200 GiB. Naturaly, the acceleration for the 200 GiB dataset is

lower than the 100 GiB dataset, since Monarch is only able to partially cache the training dataset. However,

this reduction is disproportional. For the 200 GiB dataset, using TensorFlow and the LeNet model, the

reduction was not 21% (i.e., the percentage of training time reduction obtained for 56% of dataset caching,

considering the reduction value obtained for the 100 GiB). The same happened for the AlexNet model,

which went from a 26% reduction (100 GiB dataset) to a 21% reduction (200 GiB dataset), being just a

small loss in performance acceleration. These additional performance gains are explained by the higher

number of records per TFRecord file in the 200 GiB dataset, which is an interesting study case. Therefore,

65

CHAPTER 5. EXPERIMENTAL EVALUATION

for the same amount of GiB cached, there are additional training samples placed in the local storage.

Since TensorFlow reads the same amount of data in each read request (i.e., each requests reads 256 KiB

of data), more records are read per request, thus Monarch effect on the training acceleration is enhanced.

Likewise, for PyTorch + DALI Monarch reduced the training time by up to 77% for the 100 GiB dataset

and 37% for the 200 GiB dataset. Nevertheless, the Pytorch + DALI setup showed a considerably higher I/O-

bottleneck than TensorFlow across all models. One of the reasons is that the DALI pipeline reads individual

records from each TFRecord file, without requesting chunks of data. This explains the high performance

gains with Monarch in the 100 GiB scenario, where hundreds of thousands of requests to read individual

records are served from local storage instead of the PFS. For the 200 GiB dataset the performance gains

remain disproportional, however and contrary to the TensorFlow case, these gains are smaller than what

would be expected (i.e., 43%, which is the percentage of reduction obtained for 56% of dataset caching,

having the 100 GiB values as reference). This loss in performance is also attributed to the DALI inefficiency

of reading individual records, which imposes a considerable bottleneck for the 200 GiB dataset that cannot

be fully solved with caching.

Second, for both compute and I/O-intensive models, Monarch reduces the number of data and meta-

data operations submitted to the PFS by up to 56%, when using a dataset that does not fit completely

on local storage. This is key to ensure stable storage performance for DL workloads and other jobs using

the PFS, showing the applicability of Monarch for compute-bond models, where the training performance

does not benefit from Monarch mechanisms.

Third and final, Monarch does not impact the accuracy of DL workloads, in fact, it enables running

more training epochs, and consequently achieving better accuracy values, in HPC infrastructures, such

as Frontera, were jobs are forced to execute in limited time frames. Moreover, all of this contributions are

achieved with a system that has a high level of transparency for users.

66

C
h
a
p
te

r

6
CONCLUSION

The I/O bottleneck is a pressing issue for DL jobs deployed at HPC infrastructures [9, 15, 17, 31, 63]. This

problem is substantially exacerbated from the inability to implicitly store the large amounts, both in aggre-

gated size and in number, of training files in memory (i.e., Page Cache or application buffers), therefore the

shared PFS takes the toll of having to deal with millions of data and metadata requests per DL job. This not

only can cause training performance issues, but it can also lead to the degradation of performance at the

PFS and high throughput variability, affecting all PFS users. Although HPC infrastructures’ compute nodes

often have local storage capabilities that could help to lessen these issues, they are generally overlooked.

With the I/O bottleneck in mind, DL frameworks implement I/O optimizations through custom APIs to

be used as iterators and data loaders, however these cannot be shared among different frameworks and

have problems of their own. An example of this is TensorFlow’s cache stage, that does not allow partial

data caching. In addition, neither with PyTorch vanilla nor with PyTorch + DALI is a caching mechanism

offered.

State-of-the-art solutions that target the performance of scientific workloads consider a wide range of

optimization paths, such as deploying or improving the efficiency of data ingestion pipelines, improving I/O

parallelism, and even construct I/O buffering systems. These solutions, however, have strong disadvan-

tages, since they can be highly dependent on extensive user configurations or integration on the training

scripts code. Some of them are also built for specific DL frameworks. In addition, existing I/O buffering

solutions are not correctly optimized for DL workloads and can even change the way data is read, which

might lead to unpredictable results to the model’s accuracy.

Therefore, this dissertation examined, through a preliminary experiment, the effective impact on the

training performance of a DL model, when using the compute nodes’ local storage to stage training sam-

ples. This study showed that I/O-bound models have a clear training acceleration, as well as a decrease in

67

CHAPTER 6. CONCLUSION

the performance variation across runs, when using a dataset that is cached at the local storage medium,

instead of strictly accessing the PFS.

To address these problems, this dissertation proposes Monarch, a storage tiering middleware for ac-

celerating DL training and reducing the I/O pressure and variability imposed in the shared PFS. To achieve

this, and promote a wider adoption of storage tiering at HPC infrastructures, Monarch builds upon four

main principles: i) it leverages faster local storage mediums, available at compute nodes, to fully or par-

tially cache the training data samples; ii) it does so automatically and without changing the way users build

their DL training scripts; iii) it is portable across different frameworks without requiring source code modi-

fications; and iv) it provides data placement mechanisms that are optimized for the I/O patterns present

at DL training workloads.

To validate the applicability and performance of Monarch, the developed prototype was applied over

the TensorFlow and PyTorch frameworks. Results show that TensorFlow’s and PyTorch’s training time

can be reduced by up to 28% and 37% for I/O-intensive models, even for large datasets, that can only be

partially cached at local storage mediums. Further, Monarch is able to reduce the number of I/O operations

submitted to the PFS by up to 56%.

6.1 Prospects for Future Work

Monarch is a well rounded system built on solid concepts. Nevertheless, there are many investigation

paths that can be carried to further enhance its capabilities.

Storage Tiers. Monarch architecture is designed for modular storage tiers. Hence, deeper storage

hierarchies, with different tiers (e.g., persistent memory and RAM) can further accelerate the performance

of DL training. Moreover, these storage tiers can allow data migration for DL training acceleration. With

this, data samples can be transferred between storage tiers, beyond the first training epoch, in case the

DL framework’s storage access order is known. That order allows data migration from slower storage tiers

to faster ones, by identifying what data samples should be transferred, and in what order. The storage

access order, however, should only be used in cases where user intervention to determine it is not needed.

An example of this is training DL models with the PyTorch + DALI + TFrecords combination, where the

dataset’s file names cannot be shuffled, thus their access order becomes predictable across epochs.

Autotuning. Monarch has configuration parameters (e.g., shared_tpool_size) that can be auto-

tuned to achieve its easier adoption and optimal performance. Autotuning can follow predefined rules

that would determine the focus of the tuning. For example, maximizing performance versus minimizing

resource usage. Autotuning can also be applied to determine the performance of each storage tier, thus

68

CHAPTER 6. CONCLUSION

freeing the HPC infrastructure administrator from the need to specify any meaningful order to their stor-

age tiers. Furthermore, this mechanism can improve the Prefetching for Large Files (PLF) efficiency, by

controlling the prefetching and data placement rates (e.g., proactive draining [83]) in relation to the DL

framework’s data ingestion rate, with the goal of minimizing storage tiers’ bandwidth and DL frameworks

training times. The autotuning approach also lays ways to a more broad solution that considers SDS [56]

for infrastructure’s holistic autotuning. In this case, Monarch mechanism would be transformed into a data

plane, having a control plane, that has a global view of the HPC center state, to enforce autotuning policies

to Monarch instances.

Distributed Training. Applying storage tiering to distributed DL training [10] is challenging. By using

multiple compute nodes to train a model the possibility of having distributed memory, as a storage tier

arises (i.e., compute nodes can remotely access each others memory). This, however, needs specific

placement algorithms that take into consideration which data samples each participant compute node is

going to locally cache so that data is shared among compute nodes in the most optimal way, maximizing

the use of local storage tiers. This solution requires the need of metadata synchronization and coordination

among compute nodes to achieve the best possible results.

Small Files. This dissertation used TFrecords to train DL models, however, serializing small files into

a binary file format requires knowledge and a preprocessing step. Therefore, in cases where a datasets

with small files are used, it can be effective to implement a transparent small file aggregation/chunking

mechanism in the background. Additionally, it is necessary to identify or design an optimized data format

for DL workloads that allows efficient data and metadata writes and reads.

69

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V.

Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. “TensorFlow: A system for large-scale ma-

chine learning.” In: 12th USENIX Symposium on Operating Systems Design and Implementation.

USENIX, 2016, pp. 265–283.

[2] A. A. Abdulhussein, H. K. Kuba, and A. N. A. Alanssari. “Computer Vision to Improve Security

Surveillance through the Identification of Digital Patterns.” In: 2020 International Conference on

Industrial Engineering, Applications and Manufacturing. IEEE, 2020, pp. 1–5.

[3] Abseil. url: https://abseil.io/.

[4] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and S. Vijayanarasimhan.

Youtube-8m: A Large-Scale Video Classification Benchmark. 2016. arXiv: 1609.08675 (cs.CV).

[5] AI Bridging Cloud Infrastructure. url: https://abci.ai.

[6] A. Aizman, G. Maltby, and T. Breuel. “High Performance I/O For Large Scale Deep Learning.” In:

arXiv preprint arXiv:2001.01858 (2020).

[7] T. Alam, S. Qamar, A. Dixit, and M. Benaida. Genetic Algorithm: Reviews, Implementations, and

Applications. 2020.

[8] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding of a convolutional neural network.”

In: 2017 International Conference on Engineering and Technology (ICET). IEEE, 2017, pp. 1–6.

[9] Alibaba Platform for Artificial Intelligence. https://www.alibabacloud.com/product/

machine-learning. Accessed December 14, 2021.

[10] T. Ben-Nun and T. Hoefler. “Demystifying Parallel and Distributed Deep Learning: An In-Depth

Concurrency Analysis.” In: ACM Computing Surveys 52.4 (2019).

[11] R. Boardman, C. Henninger, and A. Zhu. “Augmented Reality and Virtual Reality: New Drivers

for Fashion Retail?” In: Technology-Driven Sustainability: Innovation in the Fashion Supply Chain.

Springer, 2020, pp. 155–172.

70

BIBLIOGRAPHY

[12] F. A. Breiki, M. Ridzuan, and R. Grandhe. “Self-Supervised Learning for Fine-Grained Image Clas-

sification.” In: CoRR abs/2107.13973 (2021).

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet:

A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. 2015.

arXiv: 1512.01274 (cs.DC).

[14] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer.

“cuDNN: Efficient Primitives for Deep Learning.” In: CoRR (2014). arXiv: 1410.0759.

[15] S. W. D. Chien, S. Markidis, C. P. Sishtla, L. Santos, P. Herman, S. Narasimhamurthy, and E.

Laure. “Characterizing Deep-Learning I/O Workloads in TensorFlow.” In: 2018 IEEE/ACM 3rd

International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems.

IEEE, 2018, pp. 54–63.

[16] D. Choi, A. Passos, C. J. Shallue, and G. E. Dahl. Faster Neural Network Training with Data Echoing.

2020. arXiv: 1907.05550 (cs.LG).

[17] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Goldstone, K. Mohror, and W. Yu. “I/O

Characterization and Performance Evaluation of BeeGFS for Deep Learning.” In: 48th International

Conference on Parallel Processing. ACM, 2019.

[18] H. Chu. “MDB: A memory-mapped database and backend for OpenLDAP.” In: Proceedings of the

3rd International Conference on LDAP, Heidelberg, Germany. Citeseer. 2011, p. 35.

[19] CSCS. Piz Daint. https://www.cscs.ch/computers/piz-daint/. Accessed March 16,

2022.

[20] CTPL. url: https://github.com/vit-vit/CTPL.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A large-scale hierarchical

image database.” In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,

2009, pp. 248–255.

[22] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding.” In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies. ACL,

2019, pp. 4171–4186.

[23] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, and N. Keen. “Data Elevator: Low-

Contention Data Movement in Hierarchical Storage System.” In: 2016 IEEE 23rd International

Conference on High Performance Computing. IEEE, 2016, pp. 152–161.

71

BIBLIOGRAPHY

[24] N. Dryden, R. Böhringer, T. Ben-Nun, and T. Hoefler. “Clairvoyant Prefetching for Distributed Ma-

chine Learning I/O.” In: International Conference for High Performance Computing, Networking,

Storage, and Analysis. ACM, 2021.

[25] dstat(1) - linux man page. https://linux.die.net/man/1/dstat, note=Accessed February

25, 2022.

[26] EMC: ABBA. https://www.theregister.com/2012/09/21/emc_abba/. Accessed January

27, 2022.

[27] C. Francois. Deep learning with Python. Manning Publications Company, 2017.

[28] Frontera Managing I/O Best Practices. url: https://portal.tacc.utexas.edu/tutorials/

managingio#bestpractices-tmp.

[29] GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-rdma/index.html.

Accessed February 6, 2022.

[30] T. H. Group. Hierarchical data format version 5. 2000-2021. url: https://www.hdfgroup.

org/solutions/hdf5/.

[31] J. Han, L. Xu, M. M. Rafique, A. R. Butt, and S.-H. Lim. “A Quantitative Study of Deep Learning

Training on Heterogeneous Supercomputers.” In: 2019 IEEE International Conference on Cluster

Computing. IEEE, 2019, pp. 1–12.

[32] Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc, 2019.

[33] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition.” In: IEEE

Conference on Computer Vision and Pattern Recognition. IEEE, 2016, pp. 770–778.

[34] D. Howells and R. Hat. “Fs-cache: A network filesystem caching facility.” In: In Proceedings of the

Linux Symposium. 2006.

[35] Infinite Memory Engine. https://www.ddn.com/products/ime-flash-native-data-

cache/. Accessed January 27, 2022.

[36] Intel Threading Building Blocks Concurrent HashMap. url: https://github.com/oneapi-

src/oneTBB.

[37] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift.” In: Proceedings of the 32nd International Conference on International

Conference on Machine Learning. JMLR.org, 2015, pp. 448–456.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.

“Caffe: Convolutional Architecture for Fast Feature Embedding.” In: Proceedings of the 22nd ACM

International Conference on Multimedia. ACM, 2014, pp. 675–678.

72

BIBLIOGRAPHY

[39] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,

A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B.

Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,

R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,

N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,

A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M.

Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G.

Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E.

Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. “In-Datacenter Performance

Analysis of a Tensor Processing Unit.” In: Proceedings of the 44th Annual International Symposium

on Computer Architecture. ACM, 2017, pp. 1–12.

[40] J. M. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,

R. Bates, A. Zídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. Ballard, A. Cowie, B.

Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. A. Reiman, E. Clancy, M.

Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W.

Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. “Highly accurate protein structure prediction

with AlphaFold.” In: Nature (2021), pp. 583 –589.

[41] Keras. https://keras.io/. Accessed December 16, 2021.

[42] M. Khanum, T. Mahboob, W. Imtiaz, H. Ghafoor, and R. Sehar. “A Survey on Unsupervised Machine

Learning Algorithms for Automation, Classification and Maintenance.” In: IJCA (2015), pp. 34–39.

[43] S. B. Kotsiantis. “Supervised Machine Learning: A Review of Classification Techniques.” In: Pro-

ceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer

Engineering: Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and

Pervasive Technologies. IOS Press, 2007, pp. 3–24.

[44] A. Kougkas, H. Devarajan, and X.-H. Sun. “Hermes: A Heterogeneous-Aware Multi-Tiered Dis-

tributed I/O Buffering System.” In: 27th International Symposium on High-Performance Parallel

and Distributed Computing. ACM, 2018, pp. 219–230.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolutional

Neural Networks.” In: (2017), pp. 84–90.

[46] A. V. Kumar and M. Sivathanu. “Quiver: An Informed Storage Cache for Deep Learning.” In: 18th

USENIX Conference on File and Storage Technologies. USENIX, 2020, pp. 283–296.

[47] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh, M. Matheson,

J. Deslippe, M. Fatica, Prabhat, and M. Houston. “Exascale Deep Learning for Climate Analytics.”

73

BIBLIOGRAPHY

In: Proceedings of the International Conference for High Performance Computing, Networking,

Storage, and Analysis. IEEE, 2018.

[48] F. P. Lanaras. “Reducing data path from storage to GPUs for Deep Learning.” In: 2018.

[49] B. R. Landsteiner, D. Henseler, D. Petesch, and N. J. Wright. “Architecture and Design of Cray

DataWarp.” In: Cray User Group Conference. 2016.

[50] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. “Gradient-based Learning Applied to Document

Recognition.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[51] S.-H. Lim, S. Young, and R. Patton. “An analysis of image storage systems for scalable training of

deep neural networks.” In: Apr. 2016.

[52] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. “On the

role of burst buffers in leadership-class storage systems.” In: 2012 IEEE 28th Symposium on Mass

Storage Systems and Technologies. IEEE, 2012, pp. 1–11.

[53] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J. Wright. “A Year in the Life of a

Parallel File System.” In: International Conference for High Performance Computing, Networking,

Storage and Analysis. 2018, pp. 931–943.

[54] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan, and M. Wolf.

“Managing Variability in the IO Performance of Petascale Storage Systems.” In: 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Analysis.

IEEE. 2010, pp. 1–12.

[55] R. Macedo, C. Correia, M. Dantas, C. Brito, W. Xu, Y. Tanimura, J. Haga, and J. Paulo. “The Case

for Storage Optimization Decoupling in Deep Learning Frameworks.” In: 2021 IEEE International

Conference on Cluster Computing. IEEE, 2021, pp. 649–656.

[56] R. Macedo, J. Paulo, J. Pereira, and A. Bessani. “A Survey and Classification of Software-Defined

Storage Systems.” In: ACM Computing Surveys 53.3 (2020).

[57] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu. “Convergence analysis of distributed stochastic

gradient descent with shuffling.” In: Neurocomputing 337 (2019), pp. 46–57.

[58] Mirrored Strategy. https://www.tensorflow.org/api_docs/python/tf/distribute/

MirroredStrategy. Accessed February 14, 2022.

[59] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram. “Analyzing and Mitigating Data

Stalls in DNN Training.” In: Proceedings of the VLDB Endowment 14.5 (2021), pp. 771––784.

[60] A. Y. Ng. “Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance.” In: Proceedings

of the Twenty-First International Conference on Machine Learning. ACM, 2004.

[61] NVIDIA Data Loading Library. url: https://developer.nvidia.com/dali.

74

BIBLIOGRAPHY

[62] Nvidia system management interface. https://developer.nvidia.com/nvidia-system-

management-interface. Accessed February 25, 2022.

[63] L. Oden, C. Schiffer, H. Spitzer, T. Dickscheid, and D. Pleiter. “IO Challenges for Human Brain

Atlasing Using Deep Learning Methods - An In-Depth Analysis.” In: 27th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing. 2019, pp. 291–298.

[64] H. Ohtsuji, E. Hayashi, and N. Fukumoto. “Mitigating the Impact of Tail Latency of Storage Systems

on Scalable Deep Learning Applications.” In: Parallel Data Systems Workshop. 2019.

[65] Open Images Dataset. 2017. url: https://github.com/cvdfoundation/open-images-

dataset.

[66] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer. “Automatic Differentiation in PyTorch.” In: NIPS 2017 Workshop Autodiff. 2017.

[67] L. Perez and J. Wang. The Effectiveness of Data Augmentation in Image Classification using Deep

Learning. 2017. arXiv: 1712.04621 [cs.CV].

[68] Pinned Memory. https : / / developer . nvidia . com / blog / how - optimize - data -

transfers-cuda-cc/. Accessed January 20, 2021.

[69] S. Pumma, M. Si, W.-C. Feng, and P. Balaji. “Scalable Deep Learning via I/O Analysis and Opti-

mization.” In: ACM Transactions on Parallel Computing 1.1 (2019), pp. 1–34.

[70] Pytorch Dataloader. https://pytorch.org/docs/stable/data.html. Accessed November

12, 2021.

[71] Y. Qian, X. Li, S. Ihara, A. Dilger, C. Thomaz, S. Wang, W. Cheng, C. Li, L. Zeng, F. Wang, D. Feng,

T. Süß, and A. Brinkmann. “LPCC: Hierarchical Persistent Client Caching for Lustre.” In: Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage and

Analysis. ACM, 2019.

[72] RecordIO. https://mxnet.apache.org/versions/1.8.0/api/python/docs/api/

mxnet/recordio/index.html. Accessed December 15, 2021.

[73] RIKEN Center for Computational Science, About Fugaku. https://www.r-ccs.riken.jp/

en/fugaku/about/. Accessed March 16, 2022.

[74] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. “Imagenet Large Scale Visual Recognition Challenge.” In: International Journal

of Computer Vision 115.3 (2015), pp. 211–252.

[75] Scaling Uber’s Apache Hadoop Distributed Filesystem for Growth. https://eng.uber.com/

scaling-hdfs/. Accessed January 31, 2021.

75

BIBLIOGRAPHY

[76] F. B. Schmuck and R. L. Haskin. “GPFS: A Shared-Disk File System for Large Computing Clusters.”

In: 1st USENIX Conference on File and Storage Technologies. USENIX, 2002, pp. 231–244.

[77] P. Schwan. “Lustre: Building a File System for 1000-node Clusters.” In: Proceedings of the 2003

Linux Symposium. 2003, pp. 380–386.

[78] K. Serizawa and O. Tatebe. “Accelerating Machine Learning I/O by Overlapping Data Staging and

Mini-Batch Generations.” In: 6th IEEE/ACM International Conference on Big Data Computing,

Applications and Technologies. 2019, pp. 31–34.

[79] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: A Simple Way

to Prevent Neural Networks from Overfitting.” In: Journal of Machine Learning Research (2014),

pp. 1929–1958.

[80] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and D. K. Panda. “Frontera: The Evo-

lution of Leadership Computing at the National Science Foundation.” In: Practice and Experience

in Advanced Research Computing. ACM, 2020, pp. 106–111.

[81] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[82] V. Sze, Y. Chen, T. Yang, and J. S. Emer. “Efficient Processing of Deep Neural Networks: A Tutorial

and Survey.” In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

[83] K. Tang, P. Huang, X. He, T. Lu, S. S. Vazhkudai, and D. Tiwari. “Toward Managing HPC Burst

Buffers Effectively: Draining Strategy to Regulate Bursty I/O Behavior.” In: 2017 IEEE 25th Inter-

national Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems. 2017, pp. 87–98.

[84] TensorFlow API: tf.data.Dataset.cache. url: https://www.tensorflow.org/api_docs/

python/tf/data/Dataset\#cache.

[85] Tensorflow Input Pipeline. https://www.tensorflow.org/guide/data. Accessed November

12, 2021.

[86] TFRecord. url: https://www.tensorflow.org/tutorials/load_data/tfrecord.

[87] S. Tokui, K. Oono, S. Hido, and J. Clayton. “Chainer: a next-generation open source framework for

deep learning.” In: Proceedings of workshop on machine learning systems (LearningSys) in the

twenty-ninth annual conference on neural information processing systems. Vol. 5. 2015, pp. 1–6.

[88] Understanding the Linux Virtual Memory Manager. https://www.kernel.org/doc/gorman/

html/understand/understand013.html. Accessed December 15, 2021. 2020.

[89] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun. “Fast Convolutional

Nets With fbfft: A GPU Performance Evaluation.” In: arXiv preprint arXiv:1412.7580 (2015).

76

BIBLIOGRAPHY

[90] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes, and A. Brinkmann. “GekkoFS - A

Temporary Distributed File System for HPC Applications.” In: 2018 IEEE International Conference

on Cluster Computing. 2018, pp. 319–324.

[91] L. Wang, S. Ye, B. Yang, Y. Lu, H. Zhang, S. Yan, and Q. Luo. “DIESEL: A Dataset-Based Distributed

Storage and Caching System for Large-Scale Deep Learning Training.” In: 49th International Con-

ference on Parallel Processing. ACM, 2020.

[92] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia. “Characterizing Deep Learning

Training Workloads on Alibaba-PAI.” In: 2019 IEEE International Symposium on Workload Charac-

terization. 2019, pp. 189–202.

[93] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. “An Ephemeral Burst-Buffer File System for Sci-

entific Applications.” In: SC ’16: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. 2016, pp. 807–818.

[94] C. Yang and G. Cong. “Accelerating Data Loading in Deep Neural Network Training.” In: 2019

IEEE 26th International Conference on High Performance Computing, Data, and Analytics. 2019,

pp. 235–245.

[95] Y. Yao, L. Rosasco, and A. Caponnetto. “On Early Stopping in Gradient Descent Learning.” In:

Constructive Approximation 26 (2007), pp. 289–315.

[96] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu. “On the Root Causes of Cross-Application

I/O Interference in HPC Storage Systems.” In: 2016 IEEE International Parallel and Distributed

Processing Symposium. IEEE. 2016, pp. 750–759.

[97] B. Zamanlooy and M. Mirhassani. “Efficient VLSI Implementation of Neural Networks With Hyper-

bolic Tangent Activation Function.” In: IEEE Transactions on Very Large Scale Integration Systems

22 (2014), pp. 39–48.

[98] M. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Senior, V. Vanhoucke, J.

Dean, and G. Hinton. “On rectified linear units for speech processing.” In: 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing. 2013, pp. 3517–3521.

[99] D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli, B. Grosz, T. Lyons, J. Manyika,

J. C. Niebles, M. Sellitto, Y. Shoham, J. Clark, and R. Perrault. “The AI Index 2021 Annual Report.”

In: AI Index Steering Committee, Human-Centered AI Initiative, Stanford University (2021).

[100] Z. Zhang, L. Huang, U. Manor, L. Fang, G. Merlo, C. Michoski, J. Cazes, and N. Gaffney. FanStore:

Enabling Efficient and Scalable I/O for Distributed Deep Learning. 2018. arXiv: 1809.10799

(cs.DC).

77

BIBLIOGRAPHY

[101] Q. Zheng, C. D. Cranor, G. R. Ganger, G. A. Gibson, G. Amvrosiadis, B. W. Settlemyer, and G. A.

Grider. “DeltaFS: A Scalable No-Ground-Truth Filesystem for Massively-Parallel Computing.” In:

Proceedings of the International Conference for High Performance Computing, Networking, Stor-

age and Analysis. ACM, 2021.

[102] Y. Zhu, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu. “Entropy-Aware I/O Pipelin-

ing for Large-Scale Deep Learning on HPC Systems.” In: 2018 IEEE 26th International Symposium

on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems. IEEE, 2018,

pp. 145–156.

[103] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury. “Efficient User-Level Storage

Disaggregation for Deep Learning.” In: 2019 IEEE International Conference on Cluster Computing.

2019.

78

