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Abstract
Given a transition system with an independence relation on the alphabet of labels, one
can associate with it a usually very large symmetric higher-dimensional automaton.
The purpose of this paper is to show that by choosing an acyclic relation whose
symmetric closure is the given independence relation, it is possible to construct a
much smaller nonsymmetric HDA with the same homology language.
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1 Introduction

Higher-dimensional automata are a powerful combinatorial-topologicalmodel for con-
current systems. A higher-dimensional automaton (HDA) is a precubical set (i.e., a
cubical set without degeneracies) with an initial state, a set of final states, and a label-
ing on 1-cubes such that opposite edges of 2-cubes have the same label (van Glabbeek
2006; Pratt 1991).AnHDA is thus a (labeled) transition system (or an ordinary automa-
ton) with a supplementary structure consisting of two- and higher-dimensional cubes.
The transition system represents the states and transitions of a concurrent system. An
n-cube in an HDA indicates that the n transitions starting at its origin are indepen-
dent in the sense that they may occur in any order, or even simultaneously, without
any observable difference. It has been shown in van Glabbeek (2006) that higher-
dimensional automata are more expressive than the principal traditional models of
concurrency.
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The fact that the two- and higher-dimensional cubes in an HDA represent inde-
pendence of transitions suggests that the higher-dimensional topology of an HDA
contains global information on independence of processes and components of the
modeled concurrent system. In Kahl (2021), the homology language has been devised
as a homological tool to describe this global independence structure of an HDA. The
homology language of an HDA is defined to be the image of the homomorphism
induced in homology by a certain labeling chain map that leads from the cubical chain
complex of the HDA to the exterior algebra on the alphabet of labels (see Sect. 3). The
homology language can be computed and analyzed using software (Kahl 2018).

Transition systems are arguably the most fundamental model for concurrent sys-
tems. A natural way to turn a transition system into an HDA is to fill in empty squares
and higher-dimensional cubes (van Glabbeek 2006; Gaucher 2010; Goubault and
Mimram 2012; Kahl 2019). This approach requires some concept of independence in
order to decide which cubes to fill in. Such a concept of independence may be given by
an independence relation—i.e., an irreflexive and symmetric relation—on the alpha-
bet of action labels. Independence relations play a fundamental role in trace theory
in the sense of Mazurkiewicz (1987). Asynchronous transition systems (Winskel and
Nielsen 1995) are an important example of transition systems that come equipped with
an independence relation on the set of labels.

HDAs constructed from transition systems using a cube filling procedure based on
a symmetric concept of independence, such as an independence relation on the set
of labels, are usually very large because an empty n-cube representing the execution
of n independent actions is filled in n! times. From a computational point of view,
it is therefore desirable to have a way to produce smaller HDA models of transition
systems. It has been shown in Kahl (2019) that using a cube filling rule based on an
asymmetric rather than an independence relation on the alphabet, one can construct
an HDA model of a transition system where the independence of n actions in a state
is represented by a single n-cube (at least if the transition system under consideration
is deterministic). It is, of course, not to be expected that two HDAs constructed using
different filling rules from the same transition systemwill be equivalent in ameaningful
sense.

Every independence relation on an alphabet is the symmetric closure of an acyclic
relation, i.e., a relation that is acyclic when seen as a graph (see Sect. 4). The purpose
of this paper is to establish that the HDAs constructed from a transition system using
cube filling rules based, respectively, on an independence relation on the alphabet
and a generating acyclic relation have the same homology language. The two HDAs
may therefore be regarded as equivalent from the point of view of their independence
structures. As we will show in Sect. 5, the HDA constructed using the independence
relation is the free symmetric HDA generated by the one constructed using the acyclic
relation. The latter is thus a significantly smaller HDA model of the given transition
system than the former.
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2 Precubical sets and HDAs

This section presents fundamental material on precubical sets, higher-dimensional
automata, and their symmetric variants.

2.1 Precubical sets

A precubical set is a graded set P = (Pn)n≥0 with face maps

dki : Pn → Pn−1 (n > 0, k = 0, 1, i = 1, . . . , n)

satisfying the cubical identities

dki d
l
j = dlj−1d

k
i (k, l = 0, 1, i < j).

If x ∈ Pn , we say that x is of degree or dimension n. The elements of degree n are
called the n-cubes of P . The elements of degree 0 are also called the vertices of P ,
and the 1-cubes are also called the edges of P . The i th starting edge of a cube x of
degree n > 0 is the edge

ei x = d01 . . . d0i−1d
0
i+1 . . . d0n x .

A precubical subset of a precubical set is a graded subset that is stable under the
face maps. The n-skeleton of a precubical set P is the precubical subset P≤n defined
by (P≤n)m = Pm for m ≤ n and Pm = ∅ else.

Amorphism of precubical sets is a morphism of graded sets that is compatible with
the face maps. The category of precubical sets can be seen as the presheaf category of
functors �op → Set where � is the small subcategory of the category of topological
spaces whose objects are the standard n-cubes [0, 1]n (n ≥ 0) and whose nonidentity
morphisms are composites of the coface maps δki : [0, 1]n → [0, 1]n+1 (k ∈ {0, 1},
n ≥ 0, i ∈ {1, . . . , n + 1}) given by δki (u1, . . . , un) = (u1, . . . , ui−1, k, ui . . . , un).

The geometric realization of a precubical set P is the quotient space

|P| =
⎛
⎝∐

n≥0

Pn × [0, 1]n
⎞
⎠ / ∼

where the sets Pn are given the discrete topology and the equivalence relation is
generated by

(dki x, u) ∼ (x, δki (u)), x ∈ Pn+1, u ∈ [0, 1]n, i ∈ {1, . . . , n + 1}, k ∈ {0, 1}.

The geometric realization of a morphism of precubical sets f : P → Q is the
continuous map | f | : |P| → |Q| given by | f |([x, u]) = [ f (x), u].
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2.2 The precubical set of permutations

The family of symmetric groups S = (Sn)n≥0 (with S0 = {id∅}) is a precubical set
with respect to the face maps given by

dki θ( j) =

⎧⎪⎪⎨
⎪⎪⎩

θ( j), j < θ−1(i), θ( j) < i,
θ( j) − 1, j < θ−1(i), θ( j) > i,
θ( j + 1), j ≥ θ−1(i), θ( j + 1) < i,
θ( j + 1) − 1, j ≥ θ−1(i), θ( j + 1) > i

(seeKahl (2022) and compareKrasauskas (1987), andFiedorowicz andLoday (1991)).
Since, by definition, d0i θ = d1i θ , we may simplify the notation by setting

diθ = d0i θ = d1i θ.

Since S1 = {id}, the two elements of S2 have the same faces. In degrees ≥ 3,
permutations are determined by their faces:

Proposition 2.1 Let n ≥ 3, and letσ, θ ∈ Sn such that diσ = diθ for all i ∈ {1, . . . , n}.
Then σ = θ .

Proof It follows from Kahl (2022, Lemma 3.3) that it is enough to show that there
exists an r such that σ(r) = θ(r). Suppose that this is not the case. Set i = σ−1(n)

and j = θ−1(n). Then i, j < n. Indeed, suppose that i = n. Then for 1 ≤ r ≤ n − 1,
dnσ(r) = σ(r) because r < n = σ−1(n), σ(r) ≤ n, and σ(r) �= σ(n) = n. Since
θ(r) �= σ(r) and θ(r), θ(r + 1) ≤ n, we have r ≥ θ−1(n), θ(r + 1) < n, and

σ(r) = dnσ(r) = dnθ(r) = θ(r + 1).

In particular, j = θ−1(n) ≤ 1. Hence j = 1 and θ(1) = n. Set s = σ−1(1). Since
σ(s) �= σ(n), s < n. Since θ(s + 1) = σ(s) = 1, θ−1(1) = s + 1. Since the values
of σ are ≥ 1, we have

d1σ(1) =
{

σ(1) − 1, 1 < σ−1(1) = s,
σ (2) − 1, 1 = s.

Since n > 2, we have σ(1), σ (2) �= σ(n) = n and therefore d1σ(1) ≤ n − 2. On the
other hand, 1 < s + 1 = θ−1(1) and θ(1) = n > 1 and therefore

n − 2 ≥ d1σ(1) = d1θ(1) = θ(1) − 1 = n − 1,

which is impossible. It follows that i < n. An analogous argument shows that j < n.
Hence 1 ≤ i, j ≤ n−1. We show that i < j . Since i ≥ i = σ−1(n), σ(i +1) ≤ n,

and σ(i + 1) �= σ(i) = n, we have dnσ(i) = σ(i + 1). Hence dnθ(i) = σ(i + 1) �=
θ(i + 1). Since θ(i + 1) ≤ n, it follows that i < j . Analogously, j < i . Since this is
impossible, there must exist an r such that σ(r) = θ(r). 	
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For later use, we state the following fact from Kahl (2022):

Proposition 2.2 (Kahl 2022, Prop. 3.6(i)) Let P be a precubical set, and let n ≥ 2,
1 ≤ i < j ≤ n, k, l ∈ {0, 1}, x ∈ Pn, and θ ∈ Sn. Then

dkdθ( j)θ(i)d
l
θ( j)x = dldθ(i)θ( j−1)d

k
θ(i)x .

2.3 Symmetric precubical sets

A symmetric precubical set is a precubical set P equipped with a crossed action of S
on P , i.e., a morphism of graded sets S × P −→ P , (θ, x) �→ θ · x such that

• for all n ≥ 0 and x ∈ Pn , id · x = x ;
• for all n ≥ 0, σ, θ ∈ Sn , and x ∈ Pn , (σ · θ) · x = σ · (θ · x);
• for all n ≥ 1, θ ∈ Sn , x ∈ Pn , i ∈ {1, . . . , n}, and k ∈ {0, 1},

dki (θ · x) = diθ · dk
θ−1(i)x .

Symmetric precubical sets form a category, in which the morphisms are morphisms
of precubical sets that are compatible with the crossed actions. We remark that the

category of symmetric precubical sets is isomorphic to the presheaf category Set�
op
S

where �S is the subcategory of the category of topological spaces whose objects are
the standard n-cubes [0, 1]n (n ≥ 0) and whose morphisms are composites of the
coface maps δki defined above and the permutation maps

tθ : [0, 1]n → [0, 1]n, (u1, . . . , un) �→ (uθ(1) . . . , uθ(n)) (n ≥ 0, θ ∈ Sn)

(cf. Grandis and Mauri (2003); Fahrenberg (2005); Gaucher (2010); Goubault and
Mimram (2012)).

The free symmetric precubical set generated by a precubical set P is the symmetric
precubical set SP defined by

• SPn = Sn × Pn (n ≥ 0);
• dki (θ, x) = (diθ, dk

θ−1(i)
x) (n ≥ 1, θ ∈ Sn, x ∈ Pn, 1 ≤ i ≤ n, k ∈ {0, 1});

• σ · (θ, x) = (σ · θ, x) (n ≥ 0, σ, θ ∈ Sn, x ∈ Pn).

The free symmetric precubical set is functorial, and the functor P �→ SP from the
category of precubical sets to the category of symmetric precubical sets is left adjoint
to the forgetful functor.

2.4 Higher-dimensional automata

Throughout this paper, we consider a fixed alphabet �. A higher-dimensional
automaton (HDA) over � is a tuple

Q = (P, ı, F, λ)
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where P is a precubical set, ı ∈ P0 is a vertex, called the initial state, F ⊆ P0 is a
(possibly empty) set of final states, and λ : P1 → � is a map, called the labeling
function, such that λ(d0i x) = λ(d1i x) for all x ∈ P2 and i ∈ {1, 2} (van Glabbeek
2006). We say that an HDAQ′ = (P ′, ı ′, F ′, λ′) is a sub-HDA ofQ and writeQ′ ⊆ Q
if P ′ is a precubical subset of P , ı ′ = ı , F ′ = F ∩ Q′

0, and λ′ = λ|Q′
1
. The n-skeleton

of Q is the sub-HDA Q≤n = (P≤n, ı, F, λ|(P≤n)1). Higher-dimensional automata
form a category, in which a morphism from an HDA Q = (P, ı, F, λ) to an HDA
Q′ = (P ′, ı ′, F ′, λ′) is a morphism of precubical sets f : P → P ′ such that f (ı) = ı ′,
f (F) ⊆ F ′, and λ′( f (x)) = λ(x) for all x ∈ P1.
A symmetric HDA is an HDA Q = (P, ı, F, λ) equipped with a crossed action

of S on P . Symmetric HDAs form a category, in which the morphisms are mor-
phisms of HDAs that also are morphisms of symmetric precubical sets. The free
symmetric HDA generated by an HDA Q = (P, ı, F, λ) is the symmetric HDA
SQ = (SP, (id, ı), S0 × F, μ) where μ(id, x) = λ(x) (x ∈ P1) and the crossed
action is the one of SP . The assignmentQ �→ SQ defines a functor from the category
of HDAs to the category of symmetric HDAs, which is left adjoint to the forgetful
functor.

3 The homology language and free symmetric HDAs

In this section, we recall the definition of the homology language of an HDA from
Kahl (2021) and show, as a first contribution of this paper, that an HDA and the free
symmetric HDA generated by it have the same homology language. We work over a
fixed principal ideal domain, which we suppress from the notation.

3.1 Cubical chains and cubical homology

The cubical chain complex of a precubical set P is the nonnegative chain complex
C∗(P) where Cn(P) is the free module generated by Pn and the boundary operator
d : Cn(P) → Cn−1(P) is given by

dx =
n∑

i=1

(−1)i (d0i x − d1i x), x ∈ Pn (n > 0).

The cubical homology of P , denoted by H∗(P), is the homology of C∗(P).

3.2 The homology language of an HDA

Let Q = (P, ı, F, λ) be an HDA over �. Consider the exterior algebra on the free
module generated by �, �(�). Recall that this is the quotient of the tensor algebra
on the free module on � by the two-sided ideal generated by all elements of the form
x ⊗ x where x runs through the free module on � (see Bourbaki (1974) for more
details). The exterior algebra �(�) is canonically graded by the exterior powers of
the free module generated by�. We view the gradedmodule�(�) as a chain complex
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with d = 0 and define the labeling chain map

l : C∗(P) → �(�)

on basis elements x ∈ Pn by

l(x) =
{
1�(�), n = 0,
λ(e1x) ∧ · · · ∧ λ(enx), n > 0.

ByKahl (2018, Prop. 4.4.5), the labeling chainmap is indeed a chainmap, and therefore
it induces a labeling homomorphism in homology:

l∗ : H∗(P) → H∗(�(�)) = �(�)

The homology language of Q is then defined to be the graded module

HL(Q) = im l∗ = {l∗(α) | α ∈ H∗(P)}.

The term reflects an analogy with the ordinary language of an automaton, which is a
set of labels of paths. Some fundamental properties of the homology language have
been established in Kahl (2021).

3.3 Simple cubical dimaps

A simple cubical dimap from a precubical set P to a precubical set P ′ is a continuous
map f : |P| → |P ′| such that for all n ≥ 0 and x ∈ Pn , there exist elements y ∈ P ′

n
and θ ∈ Sn such that for all u ∈ [0, 1]n ,

f ([x, u]) = [y, tθ (u)].

By Kahl (2018, Prop. 6.2.4), y and θ are uniquely determined by f and x . We may
therefore slightly abuse notation and write f (x) to denote y. Obviously, the geometric
realization of a morphism of precubical sets is a simple cubical dimap. In Kahl (2018),
a more general concept of cubical dimap has been defined, hence the adjective simple.

A simple cubical dimap from an HDA Q = (P, ı, F, λ) to an HDA Q′ =
(P ′, ı ′, F ′, λ′) is a simple cubical dimap of precubical sets f : P → P ′ that pre-
serves the initial and the final states and that satisfies λ′( f (x)) = λ(x) for all x ∈ P1.
Our interest in simple cubical dimaps is motivated by the following fact:

Proposition 3.1 (Kahl 2021, Prop. 5.7.2) LetQ andQ′ be HDAs such that there exists
a simple cubical dimap Q → Q′. Then HL(Q) ⊆ HL(Q′).
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3.4 The homology language of a free symmetric HDA

LetQ = (P, ı, F, λ) be an HDA. Since there exists the morphism of HDAsQ → SQ,
x �→ (id, x), by Proposition 3.1, HL(Q) ⊆ HL(SQ).We show inTheorem3.3 below
that actually equality holds.

Lemma 3.2 Let θ ∈ Sn (n ≥ 1), and let i ∈ {1, . . . , n} and k ∈ {0, 1}. Then

δk
θ−1(i) ◦ tdi θ = tθ ◦ δki : [0, 1]n−1 → [0, 1]n .

Proof Let (u1, . . . , un−1) ∈ [0, 1]n−1. We have

δki (u1, . . . , un−1) = (u1, . . . , ui−1, k, ui . . . , un−1).

For j ∈ {1, . . . , n}, set

v j =
⎧⎨
⎩
u j , 1 ≤ j < i,
k, j = i,
u j−1, i < j ≤ n.

Then we have

tθ ◦ δki (u1, . . . , un−1) = tθ (v1, . . . , vn)

= (vθ(1), . . . , vθ(n))

= (vθ(1), . . . , vθ(θ−1(i)−1), k, vθ(θ−1(i)+1), . . . , vθ(n))

= δk
θ−1(i)(vθ(1), . . . , vθ(θ−1(i)−1), vθ(θ−1(i)+1), . . . , vθ(n)).

We have

δk
θ−1(i) ◦ tdi θ (u1, . . . , un−1) = δk

θ−1(i)(udi θ(1), . . . , udi θ(n−1)).

Since for j ∈ {1, . . . , n − 1},

udi θ( j) =

⎧⎪⎪⎨
⎪⎪⎩

uθ( j), j < θ−1(i), θ( j) < i,
uθ( j)−1, j < θ−1(i), θ( j) > i,
uθ( j+1), j ≥ θ−1(i), θ( j + 1) < i,
uθ( j+1)−1, j ≥ θ−1(i), θ( j + 1) > i

=
{

vθ( j), j < θ−1(i),
vθ( j+1), j ≥ θ−1(i),

the result follows. 	

Theorem 3.3 HL(Q) = HL(SQ).

Proof We only have to show the inclusion HL(SQ) ⊆ HL(Q). By Proposition 3.1, it
suffices to construct a simple cubical dimap SQ → Q. Consider the continuous map
f : |SP| → |P| defined by

f ([(θ, x), u]) = [x, tθ (u)] ((θ, x) ∈ (SP)n, u ∈ [0, 1]n).
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This is well defined because, by Lemma 3.2, for (θ, x) ∈ (SP)n , u ∈ [0, 1]n−1,
i ∈ {1, . . . , n}, and k ∈ {0, 1},

[x, tθ ◦ δki (u)] = [x, δk
θ−1(i) ◦ tdi θ (u)] = [dk

θ−1(i)x, tdi θ (u)].

By construction, f is a simple cubical dimap of precubical sets. We have f (θ, x) = x
for all (θ, x) ∈ SP . Hence f preserves the initial and the final states. Moreover, for
every edge x ∈ P1, λ( f (id, x)) = λ(x). It follows that f is a simple cubical dimap
of HDAs. 	


4 HDAmodels of transition systems

The purpose of this section is to define HDA models of transition systems. An HDA
model can be constructed with respect to an arbitrary relation on the alphabet of labels.
In this paper, we are interested in the case where this relation is an independence or
an acyclic relation. Except for the subsection on acyclic relations, the material of this
section is taken from Kahl (2019).

4.1 Transition systems and independence relations

A transition system is a 1-truncated extensional HDA, i.e., an HDA with no cubes
of dimension ≥ 2 and no two edges with the same label and the same start and end
vertices. An independence relation is an irreflexive and symmetric relation on the
alphabet of action labels �. An independence relation equips the alphabet with a
notion of concurrency: two actions are independent if they may be executed sequen-
tially or simultaneously without any relevant difference. Independence relations play
a fundamental role in trace theory (Mazurkiewicz 1987, 1995). The results of this
paper apply, in particular, to asynchronous transition systems, which are transition
systems over an alphabet with an independence relation satisfying certain conditions
(see Winskel and Nielsen (1995)).

4.2 Acyclic relations

A relation � on a set X is called acyclic if for all n ≥ 1 and x1, . . . , xn ∈ X ,

x1 � x2, x2 � x3, . . . , xn−1 � xn ⇒ xn ��x1.

Note that an acyclic relation is irreflexive (n = 1) and, moreover, asymmetric (n = 2).

Proposition 4.1 Let I be an independence relation on �. Consider a totally ordered
set (Z ,≤) and a map f : � → Z such that

∀ a, b ∈ � : a I b ⇒ f (a) �= f (b).
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Define a relation � ⊆ � × � by

a � b :⇔ a I b, f (a) ≤ f (b).

Then � is acyclic and its symmetric closure is I .

Proof Let x1, . . . , xn ∈ � such that x1 � x2, x2 � x3, . . . , xn−1 � xn . Then

f (x1) ≤ f (x2) ≤ · · · ≤ f (xn)

and therefore f (x1) ≤ f (xn). If f (xn) � f (x1), then xn ��x1. If f (xn) ≤ f (x1),
then f (xn) = f (x1). Therefore we do not have xn I x1. Hence xn � �x1 in this case
too. Thus, � is acyclic.

Let a, b ∈ �. Since ≤ is a total order, we have f (a) ≤ f (b) or f (b) ≤ f (a).
Hence if a I b (⇔ b I a), we have a � b or b � a. If, conversely, a � b or b � a, then
a I b by definition of �. Thus, I is the symmetric closure of �. 	

Example 4.2 (i) Consider an independence relation I ⊆ � × �, and let ≤ be a total

order on �. Then an acyclic relation � whose symmetric closure is I is given by

a � b :⇔ a I b, a ≤ b.

(ii) Let I be an independence relation on �, and let pid : � → N be a function
associating with each label a process ID. If no two actions of the same process are
independent, an acyclic relation � whose symmetric closure is I is given by

a � b :⇔ a I b, pid(a) ≤ pid(b).

4.3 HDAmodels

Let T = (X , ı, F, λ) be a transition system, and let R be a relation on �. The relation
R does not have to satisfy any condition. We say that an HDAQ = (Q, j,G, μ) is an
HDA model of T with respect to R if the following conditions hold:

HM1 Q≤1 = T , i.e., Q≤1 = X , j = ı , G = F , and μ = λ.
HM2 For all x ∈ Q2, λ(d02 x) R λ(d01 x).
HM3 For all m ≥ 2 and x, y ∈ Qm , if dkr x = dkr y for all r ∈ {1, . . . ,m} and

k ∈ {0, 1}, then x = y.
HM4 Q is maximal with respect to the properties HM1-HM3, i.e.,Q is not a proper

sub-HDA of any HDA satisfying HM1-HM3.

Condition HM1 says thatQ is built on top of T by filling in empty cubes. By condition
HM2, an empty square may only be filled in if the labels of its edges are related.
Condition HM3 ensures that no empty cube is filled in twice in the same way. By
condition HM4, all admissible empty cubes are filled in.

It has been shown in Kahl (2019, Thm. 4.2, Cor. 4.5) that an HDA model of a
transition systemwith respect to a given relation always exists and that its isomorphism
class only depends on the isomorphism class of the transition system.
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For later use, we state two propositions from Kahl (2019). The first deals with the
filling of shells in the sense of Brown and Higgins (1981):

Proposition 4.3 (Kahl 2019, Prop. 4.3) Let T = (X , ı, F, λ) be a transition system,
and let Q = (Q, ı, F, λ) be an HDA model of T with respect to a relation R on �.
Consider an integer n ≥ 2 and 2n (not necessarily distinct) elements xki ∈ Qn−1

(k ∈ {0, 1}, i ∈ {1, . . . , n}) such that dki x
l
j = dlj−1x

k
i for all 1 ≤ i < j ≤ n and

k, l ∈ {0, 1}. If n = 2, suppose also that λ(x0i ) = λ(x1i ) for i ∈ {1, 2} and that
λ(x02 ) R λ(x01 ). Then there exists a unique element x ∈ Qn such that dki x = xki for all
i ∈ {1, . . . , n} and k ∈ {0, 1}.
Proposition 4.4 (Kahl 2019, Prop. 4.7) Let T = (X , ı, F, λ) be a transition system,
and letQ = (Q, ı, F, λ) be an HDA satisfying HM1 and HM2 with respect to T and
a relation R on �. Then λ(ei x) R λ(e j x) for all n ≥ 2, x ∈ Qn, and 1 ≤ i < j ≤ n.

5 The homology language of HDAmodels

Throughout this section, let T = (X , ı, F, λ) be a transition system, and let I be an
independence relation on � that is the symmetric closure of an acyclic relation �.
Let furthermore A = (P, ı, F, λ) and Q = (Q, ı, F, λ) be HDA models of T with
respect to I and �, respectively. By the main result of this paper,Q is a much smaller
HDA model of T than A with the same homology language:

Theorem 5.1 A ∼= SQ and HL(A) = HL(Q).

ByTheorem3.3, it is enough to prove thatA ∼= SQ. SinceT and ST are canonically
isomorphic transition systems, this is an immediate consequence of the fact that SQ is
an HDA model of ST with respect to I , which will be established in Proposition 5.6
below after a number of preparatory results. The labeling function of ST and SQ will
be denoted by μ. Recall that μ is defined by μ(id, x) = λ(x).

Lemma 5.2 LetB = (B, (id, ı), S0×F, μ) be anHDA satisfying HM1 andHM2with
respect to ST and I . Then for each b ∈ Bn (n ≥ 2), there exists a unique permutation
ϑb ∈ Sn such that for all 1 ≤ i < j ≤ n,

μ(eϑb(i)b) � μ(eϑb( j)b).

Moreover, setting ϑb = id for b ∈ B≤1, the map ϑ : B → S is a morphism of
precubical sets.

Proof Let b ∈ Bn (n ≥ 2). By Proposition 4.4, we have μ(ei b) I μ(e j b) for all
1 ≤ i < j ≤ n. Since I is irreflexive, it follows that the set

M = {μ(eib) | i ∈ {1, . . . , n}}

has n elements. Moreover, since I is the symmetric closure of �, we have μ(eib) �

μ(e j b) or μ(e j b) � μ(eib) for all i �= j . Since � is acyclic, this implies that it is
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transitive on M . Indeed, if μ(eib) � μ(e j b) and μ(e j b) � μ(ekb), then k �= i and
μ(ekb) � �μ(ei b), which implies μ(ei b) � μ(ekb). Hence � is a strict total order on
M . Since M has n elements, it follows that there exists a unique permutation ϑb ∈ Sn
such that

μ(eϑb(i)b) � μ(eϑb( j)b)

for all 1 ≤ i < j ≤ n.
It remains to check that ϑ is a morphism of precubical sets. Let b ∈ Bn (n ≥ 1),

i ∈ {1, . . . , n}, and k ∈ {0, 1}. If n ≤ 2, then diϑb = id = ϑdki b
. Suppose that n ≥ 3.

We have

e j d
0
i b =

{
e j b, 1 ≤ j < i,
e j+1b, i ≤ j < n.

Since parallel edges of a cube have the same label (see, e.g., Kahl (2019, Lemma 4.6)),
we have μ(e j d1i b) = μ(e j d0i b) for all j ∈ {1, . . . , n − 1}. Hence for k ∈ {0, 1},

μ(e j d
k
i b) =

{
μ(e j b), 1 ≤ j < i,
μ(e j+1b), i ≤ j < n.

We therefore have

μ(ediϑb( j)d
k
i b) =

⎧⎪⎪⎨
⎪⎪⎩

μ(eϑb( j)d
k
i b), j < ϑ−1

b (i), ϑb( j) < i,
μ(eϑb( j)−1dki b), j < ϑ−1

b (i), ϑb( j) > i,
μ(eϑb( j+1)dki b), j ≥ ϑ−1

b (i), ϑb( j + 1) < i,
μ(eϑb( j+1)−1dki b), j ≥ ϑ−1

b (i), ϑb( j + 1) > i

=
{

μ(eϑb( j)b), j < ϑ−1
b (i),

μ(eϑb( j+1)b), j ≥ ϑ−1
b (i).

Let 1 ≤ j < r ≤ n − 1. If j < r < ϑ−1
b (i), we have

μ(ediϑb( j)d
k
i b) = μ(eϑb( j)b) � μ(eϑb(r)b) = μ(ediϑb(r)d

k
i b).

If j < ϑ−1
b (i) ≤ r , we have

μ(ediϑb( j)d
k
i b) = μ(eϑb( j)b) � μ(eϑb(r+1)b) = μ(ediϑb(r)d

k
i b).

If ϑ−1
b (i) ≤ j < r , we have

μ(ediϑb( j)d
k
i b) = μ(eϑb( j+1)b) � μ(eϑb(r+1)b) = μ(ediϑb(r)d

k
i b).

Thus, ϑdki b
= diϑb. 	
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Lemma 5.3 LetB = (B, (id, ı), S0×F, μ) be anHDA satisfying HM1 andHM2with
respect to ST and I . Then there exists a unique morphism of graded sets φ : B → Q
such that φ≤1 : B≤1 → Q≤1 is the isomorphism given by (id, x) �→ x and such that
dki φ(b) = φ(dkϑb(i)

b) for all b ∈ Bn (n ≥ 1), i ∈ {1, . . . , n}, and k ∈ {0, 1}.
Proof We construct φ inductively. Let n ≥ 2, and suppose we have constructed φ up
to degree n−1. Let b ∈ Bn . Consider the elements yki = φ(dkϑb(i)

b) ∈ Qn−1. Suppose
that 1 ≤ i < j ≤ n. By Lemma 5.2, ϑdl

ϑb( j)b
= dϑb( j)ϑb and ϑdk

ϑb(i)b
= dϑb(i)ϑb.

Hence, by the inductive hypothesis and Proposition 2.2,

dki y
l
j = dki φ(dlϑb( j)

b) = φ(dkdϑb( j)ϑb(i)
dlϑb( j)

b)

= φ(dldϑb(i)ϑb( j−1)d
k
ϑb(i)

b) = dlj−1φ(dkϑb(i)
b)

= dlj−1y
k
i .

If n = 2, we also have

λ(y0i ) = λ(φ(d0ϑb(i)b)) = μ(d0ϑb(i)b) = μ(d1ϑb(i)b) = λ(φ(d1ϑb(i)b)) = λ(y1i )

for all i ∈ {1, 2}. Moreover, by Lemma 5.2,

λ(y02 ) = λ(φ(d0ϑb(2)b)) = μ(d0ϑb(2)b) = μ(eϑb(1)b)

� μ(eϑb(2)b) = μ(d0ϑb(1)b) = λ(φ(d0ϑb(1)b)) = λ(y01 ).

By Proposition 4.3, there exists a unique cube y ∈ Qn such that dki y = yki for all
k ∈ {0, 1} and i ∈ {1, . . . , n}. We set φ(b) = y. This defines φ in degree n. 	

Lemma 5.4 SQ satisfies HM1 and HM2 with respect to ST and I .

Proof HM1: We have

(SQ)≤1 = ((SQ)≤1, (id, ı), S0 × F, μ) = (SQ≤1, (id, ı), S0 × F, μ)

= (SX , (id, ı), S0 × F, μ) = ST .

HM2: Let (θ, x) ∈ (SQ)2 = S2 × Q2. For i ∈ {1, 2},

μ(d0i (θ, x)) = μ(diθ, d0
θ−1(i)x) = μ(id, d0

θ−1(i)x) = λ(d0
θ−1(i)x).

Thus if θ = id,

μ(d02 (θ, x)) = λ(d02 x) � λ(d01 x) = μ(d01 (θ, x)).

If θ is the transposition (2 1),

μ(d01 (θ, x)) = λ(d02 x) � λ(d01 x) = μ(d02 (θ, x)).

In both cases, μ(d02 (θ, x)) I μ(d01 (θ, x)). 	
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Lemma 5.5 In SQ, ϑ(θ,x) = θ for all elements (θ, x).

Proof Let (θ, x) ∈ (SQ)n . We may suppose that n ≥ 2. By Kahl (2022, Prop. 4.3),
ei (θ, x) = (id, eθ−1(i)x). Hence

μ(ei (θ, x)) = μ(id, eθ−1(i)x) = λ(eθ−1(i)x).

Thus, μ(eθ(i)(θ, x)) = λ(ei x). By Proposition 4.4,

μ(eθ(i)(θ, x)) = λ(ei x) � λ(e j x) = μ(eθ( j)(θ, x))

for all 1 ≤ i < j ≤ n. Consequently, by Lemma 5.2, ϑ(θ,x) = θ . 	

Proposition 5.6 SQ is an HDA model of ST with respect to I .

Proof By Lemma 5.4, we only have to show HM3 and HM4.

HM3: Let m ≥ 2, and let (σ, x), (θ, y) ∈ (SQ)m = Sm × Qm such that dkr (σ, x) =
dkr (θ, y) for all r ∈ {1, . . . ,m} and k ∈ {0, 1}. Then (drσ, dk

σ−1(r)
x) = (drθ, dk

θ−1(r)
y)

for all r and k. If m ≥ 3, this implies (σ, x) = (θ, y) by Proposition 2.1. In the case
m = 2, it is enough to show that σ = θ . Suppose that this is not the case. Then we
may assume that σ = id and θ = (2 1). But then

λ(d01 y) = λ(d02 x) � λ(d01 x) = λ(d02 y),

which is impossible because � is asymmetric.

HM4: Suppose that B = (B, (id, ı), S0 × F, μ) is an HDA satisfying conditions
HM1–HM3 with respect to ST and I that contains SQ as a sub-HDA. We have to
show that B = SQ. Since SQ ⊆ B, the maps ϑ : B → S and ϑ : SQ → S coincide
on SQ. Let φ : B → Q be the map of graded sets of Lemma 5.3. The corresponding
map for SQ is the map ψ : SQ → Q given by ψ(θ, x) = x . Indeed, by Lemma 5.5,
dki ψ(θ, x) = dki x = ψ(dθ(i)θ, dki x) = ψ(dθ(i)θ, dk

θ−1(θ(i))
x) = ψ(dkθ(i)(θ, x)) =

ψ(dkϑ(θ,x)(i)
(θ, x)). Since SQ ⊆ B, the restriction of φ to SQ is ψ .

By HM1, B≤1 = (SQ)≤1. Let m ≥ 2, and suppose inductively that B<m = (SQ)<m .
Let b ∈ Bm . By the inductive hypothesis, dki b ∈ (SQ)m−1. Write dki b = (θ, x). We
have

dki (ϑb, φ(b)) = (diϑb, d
k
ϑ−1
b (i)

φ(b)) = (ϑdki b
, φ(dki b)) = (ϑdki b

, ψ(dki b))

= (ϑ(θ,x), ψ(θ, x)) = (θ, x) = dki b.

By HM3, it follows that b = (ϑb, φ(b)) ∈ (SQ)m . 	
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