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A B S T R A C T

The Fast Fourier Transform is a family of algorithms indispensable for the computation of the Discrete Fourier
Transform. As a result, these transforms are the core of many applications in several areas and are required to be
computed efficiently in many scenarios.

The continuous evolution of GPUs has increased the popularity of parallelizable algorithm implementations on
this type of hardware. Traditionally GPUs were associated to graphics background, however, with the popularization
of the compute functionality of this hardware, most modern GPUs now have this capability, hence, algorithms
now are more likely to be implemented in the general-purpose compute pipeline of GPUs. As a result, many
applications take advantage of compute programming in GPGPU-capable frameworks such as GLSL, a high-level
shading language frequently used in the context of computer graphics.

In this dissertation we provide, refine and compare GPU-driven implementations of the family of FFT algorithms
in GLSL, with the goal to provide programmers with efficient and simplified compute kernels for this transform,
from the classic Cooley-Tukey algorithm to more suitable algorithms for the GPU such as the Stockham algorithm
with higher radix.

Accordingly, we also use the cuFFT NVIDIA framework for reference in the comparisons of the GLSL algorithms
implementations with the goal to analyse their significance on the tradeoff of using specialized implementations of
the FFT algorithms or integrating dedicated software tools for any case of application.

Finally, we demonstrate how all improvements discussed in this dissertation culminate in performance improve-
ment in a real-time rendering technique that heavily depends on multiple of these transforms in the Nau3D engine
as a case of study.

K E Y W O R D S FFT, GPGPU, GLSL, cuFFT, performance, compute, Cooley-Tukey, Stockham.
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R E S U M O

A Transformada Rápida de Fourier é um algoritmo ou uma família de algoritmos indispensáveis para o cálculo da
Transformada Discreta de Fourier. Assim, essas transformadas são o núcleo de muitas aplicações em diversas
áreas e precisam ser calculadas de forma eficiente em muitos cenários.

A evolução contínua dos GPUs aumentou a popularidade das implementações de algoritmos paralelizáveis
neste tipo de hardware. Tradicionalmente, os GPUs eram associadas ao fundo gráfico, no entanto, com a popu-
larização da funcionalidade de compute desse hardware, os GPUs mais modernos agora têm essa capacidade,
portanto, os algoritmos agora são mais propensos a serem implementados na compute pipeline de propósito
geral dos GPUs. Como resultado, muitas aplicações aproveitam a programação em compute em frameworks
compatíveis com GPGPU como GLSL, uma linguagem de shading de alto nível usada recorrentemente no
contexto de computação gráfica.

Nesta dissertação fornecemos, refinamos e analisamos implementações em GPU da família de algoritmos
FFT em GLSL, com o objetivo de fornecer aos programadores compute kernels eficientes e simplificados para
esta transformada, desde o clássico algoritmo de Cooley-Tukey até algoritmos mais adequados para o GPU.

Da mesma forma, também usamos a framework cuFFT NVIDIA como referência nas comparações das
implementações dos algoritmos em GLSL com o objetivo de analisar a sua importância no tradeoff entre usar
implementações especializadas dos algoritmos FFT ou integrar ferramentas de software dedicadas para qualquer
caso de aplicação.

Por fim, demonstramos como todas as melhorias discutidas nesta dissertação culminam na melhoria de
desempenho numa técnica de renderização em tempo real que depende de FFTs na engine Nau3D como caso
de estudo.

PA L AV R A S - C H AV E FFT, GPGPU, GLSL, cuFFT, performance, compute, Cooley-Tukey, Stockham.
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1

I N T R O D U C T I O N

1.1 C O N T E X T U A L I Z AT I O N

The Fast Fourier Transform (FFT) have been present in our surroundings for a long time. They are used extensively
in digital signal processing and many other areas. This transform often needs to be used in a real-time context,
where the computations must be performed fast enough to ensure the quality of the application. Fast Fourier
Transforms essentially are optimized algorithms to compute the Discrete Fourier Transform (DFT) of some data,
data that might be sampled from a signal, an oscillating object, or even an image, which is transformed into the
frequency domain allowing any kind of processing for a relatively low computational cost.

In computer graphics, the FFT can be implemented on the GPU to take advantage of the parallel nature of
this algorithm and boost the performance for various application cases. Traditionally, this transform used to be
implemented in the fragment shader within the graphics pipeline Moreland and Angel (2003), however, with the
popularization of the GPUs general purpose compute functionality, this primitive can be implemented using the
compute pipeline as of OpenGL 4.3.

1.2 M O T I VAT I O N

Although there are already famous and efficient GPU frameworks such as cuFFT (Nvidia) and Intel Math Kernel
Library (Wang et al. (2014)), integrating these Fast Fourier Transforms tools into an application can become a
difficult process to manage and might introduce dependencies and unused functionality when the application just
requires a specific case of the Fourier Transform.

When programmers need to implement features or applications that require the use of FFT, it is common to find
custom implementations that offer fast enough Fast Fourier Transforms (Flügge (2017)), however, they are often
left with the implementations of the most common algorithms such as Cooley-Tukey. Knowing the differences in
algorithms and implementations, their advantages and disadvantages is essential to ensure the performance of
the application in question.

This work focuses on studying the comparison of FFT implementations and improvements in GLSL compute
shaders that make this a viable option instead of adopting the support of FFT frameworks for the GPU.
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1.3. Aim of the work 6

1.3 A I M O F T H E W O R K

The main objective of this dissertation is to provide, refine and compare efficient FFT implementations in GLSL
in the context of computer graphics for power of 2 sizes. This dissertation achieves this by first studying the
FFT and providing the required background on this transform and its properties, then proceeding to describe the
Cooley-Tukey algorithm and its variants, and finally presenting different algorithms to improve the Cooley-Tukey
variants.

Following that, will be an implementation stage, where the algorithms will be incorporated into compute shaders
in GLSL and we study how we can compute and dispatch them more efficiently. To wrap things up, these
implementations will be compared with each other under the same conditions for multiple sizes and using the
cuFFT implementation benchmarks as a reference. The best results of the testing benchmarks will then be used
for the analysis of the performance impact on a case study applied to computed graphics that heavily relies on
multiple FFT to deliver quality performance.

1.4 D O C U M E N T S T R U C T U R E

This dissertation has the following structure:

• Chapter 1 exposes an introduction to the subject of this dissertation with the contextualization, motivation,
and aim of the work.

• Chapter 2 will have a state-of-the-art overview of the theory and practice associated with Fourier Transforms.
This chapter also elaborates on other algorithms that improve the Cooley-Tukey algorithm and presents a
way to perform the FFT of two real sequences in the same transform. The chapter ends with a description
of how to apply the FFT in two dimensions.

• Chapter 3 describes in detail how to implement the previously discussed algorithms in GLSL.

• Chapter 4 analyzes and compares the implementations described in the previous chapter and demonstrates
how the results apply to a more real case of application.

• Chapter 5 will discuss a conclusion to the work done and the results obtained and presents possible future
work.



2

T H E F O U R I E R T R A N S F O R M

It is noticeable the presence of Fourier Transforms in a great variety of apparent unrelated fields of application,
even the FFT is often called ubiquitous due to its effective nature of solving a great hand of problems for the most
intended time complexity. Some applications include polynomial multiplication Jia (2020), numerical integration,
time-domain interpolation, and x-ray diffraction. Moreover, it is present in several fields of study such as Applied
Mechanics, Signal Processing, Sonics and Acoustics, Biomedical Engineering, Instrumentation, Radar, Numerical
Methods, Electromagnetics and more (Shakshi (2016), Lee et al. (2017), Brigham (1988)). As already mentioned
before, this dissertation focuses more on the application of FFT in the context of Computer Graphics, where this
transform is applied in several cases such as image processing, image filtering, and ocean waves simulation.

In Signal Analysis when representing a signal with amplitude as a function of time, it can be translated to
the frequency domain, a domain that consists of signals of sines and cosines waves of varied frequencies, as
illustrated in Figure 1, but to calculate the coefficients of those waves we use the Fourier Transform.

Figure 1: Time to frequency signal decomposition Source: NTiAudio

Sine and cosine waves are in simple waveforms, they can then be manipulated with relative ease. This process
is constantly present in communications due to the transmission of data over wires and radio circuits through
signals and most devices nowadays perform it frequently.

In this introductory chapter, we present a preface on the Fourier Transform in Section 2.1 and describe the
discrete version of the Fourier Transform in Section 2.2, which is the focus of this dissertation. Furthermore, we
present the state of the art of the most popular algorithms in Section 2.3 and progressively demonstrate how

7



2.1. Continuous Fourier Transform 8

to improve them in the following sections Section 2.4 and Section 2.5. Regarding optimization of the FFT, we
then proceed to detail how a complex-to-complex FFT computation can simultaneously transform two distinct real
input sequences in Section 2.6. At the end of this chapter, in Section 2.7 we finalize with an explanation of how
one-dimensional algorithms can be applied in the context of 2D input sequences such as an image

2.1 C O N T I N U O U S F O U R I E R T R A N S F O R M

The Fourier Transform is a mathematical method to decompose a function into frequency components. Intuitively,
the Inverse Fourier Transform is the corresponding method to reverse that process and reconstruct the original
function from the one in frequency domain representation.

Although there are many forms, the Fourier Transform key definition (Adams (2020)) can be described as
Equation 1.

X( f ) =
∫ +∞

−∞
x(t)e−i f tdt

x(t) =
1

2π

∫ +∞

−∞
X( f )e−i f td f

(1)

where

• X( f ), ∀ f ∈ R → function in frequency domain representation, also called the Fourier Transform of
x(t);

• x(t), ∀t ∈ R→ function in time or space domain representation;

• i→ imaginary unit i =
√
−1.

This formulation shows the usage of a complex-valued domain, making the Fourier Transform range from real
to complex values, one complex coefficient per frequency X : R→ C

If we take into account Euler’s formula (Equation 2), we can rewrite the Fourier Transform as represented in
Equation 3.

eix = cos x + i sin x (2)

X( f ) =
∫ +∞

−∞
x(t)(cos(− f t) + i sin(− f t))dt (3)

Hence, we can break the Fourier Transform apart into two formulas that give each coefficient of the sine and
cosine components as functions without dealing with complex numbers.



2.2. Discrete Fourier Transform 9

X( f ) = Xa( f ) + iXb( f )

Xa( f ) =
∫ +∞

−∞
x(t) cos( f t)dt

Xb( f ) =
∫ +∞

−∞
x(t) sin( f t)dt

(4)

This model of the Fourier Transform applied to infinite domain functions is called Continuous Fourier Transform.

2.2 D I S C R E T E F O U R I E R T R A N S F O R M

The Fourier Transform of a finite sequence of equally-spaced samples of a function is called the Discrete Fourier
Transform (DFT). It converts a finite set of values in time/space domain to frequency domain representation. It
is an usefull version of the Fourier Transform since it deals with a discrete amount of data. This transform is
described in Equation 5.

Xk =
N−1

∑
n=0

xn · e−
i2π
N kn

xn =
1
N

N−1

∑
k=0

Xk · e
i2π
N kn

(5)

Notably, the discrete version of the Fourier Transform has some obvious differences since it deals with a discrete
time sequence. The first difference is that the sum covers all elements of the input values instead of integrating
the infinite domain of the function, but we can also notice that the exponential, similar to the aforesaid, divides the
values by N (N being the total number of elements in the sequence) due to the inability to look at frequency and
time f t continuously we instead take the k’th frequency over n.

We can expand this formula as:

Xk = x0 + x1e
i2π
N k + ... + xN−1e

i2π
N k(N−1)

Having this sum simplified we then only need to resolve the complex exponential, and we can do that by
replacing the e

i2π
N kn by the Euler formula as mentioned before to reduce the maths to a simpler sum of real and

imaginary numbers.

Xk = x0 + x1(cos b1 + i sin b1) + ... + xN−1(cos bN−1 + i sin bN−1) (6)

where bn =
2π

N
kn

Finally, the result will be a complex number.



2.2. Discrete Fourier Transform 10

E X A M P L E Let us now follow an example of calculation of the DFT for a sequence x with N number of
elements.

x =
[
1 0.707 0 −0.707 −1 −0.707 0 0.707

]
N = 8

With this sequence, we now want to transform it into the frequency domain, therefore we apply the Discrete
Fourier Transform to each element xn → Xk, thus, for each k’th element of X we apply the DFT for every
element of x.

X0 = 1 · e− i2π
8 ·0·0 + 0.707 · e− i2π

8 ·0·1 + ... + 0.707 · e− i2π
8 ·0·7

= (0 + 0i)

X1 = 1 · e− i2π
8 ·1·0 + 0.707 · e− i2π

8 ·1·1 + ... + 0.707 · e− i2π
8 ·1·7

= (4 + 0i)

...

X7 = 1 · e− i2π
8 ·7·0 + 0.707 · e− i2π

8 ·7·1 + ... + 0.707 · e− i2π
8 ·7·7

= (4 + 0i)

And that will produce our complex-valued output in the frequency domain.

X =
[
0i 4 + 0i 0i 0i 0i 0i 0i 4 + 0i

]

2.2.1 Matrix multiplication

The example shown above is done sequentially as if each frequency component is computed individually, but
there is a way to express the DFT using matrix multiplication (Rao and Yip (2018)). Since the operations are done
equally without any extra step we can group all analyzing function sinusoids (e−

i2π
N kn), also referred to as twiddle

factors.

W =


ω0·0

N ω1·0
N . . . ω

(N−1)·0
N

ω0·1
N ω1·1

N . . . ω
(N−1)·1
N

...
...

. . .
...

ω
0·(N−1)
N ω

1·(N−1)
N . . . ω

(N−1)·(N−1)
N

 =


1 1 . . . 1
1 ω . . . ω(N−1)

...
...

. . .
...

1 ω(N−1) . . . ω(N−1)·(N−1)





2.2. Discrete Fourier Transform 11

where ωN = e−
i2π
N

The substitution variable ω allows us to avoid writing extensive exponents.
The symbol W represents the transformation matrix of the Discrete Fourier Transform (Rao and Yip (2018)),

also called the DFT matrix, and its inverse can be defined as.

W−1 =
1
N
·


1 1 . . . 1

1 ωN . . . ω
(N−1)
N

...
...

. . .
...

1 ω
(N−1)
N . . . ω

(N−1)·(N−1)
N


where ωN = e

i2π
N

We separate the twiddle factors in a matrix and express the DFT as a matrix multiplication between the twiddle
factors and the input sequence. When the size is known before the transformation, it is possible to pre-calculate
and reuse the matrix of the factors

X = W · x

x = W−1 · X

It is also worth noting that normalizing the DFT and IDFT matrix be by
√

N instead of just normalizing the
IDFT by N, will make W a unitary matrix Horn and Johnson (2012). However, this normalization by

√
N is not

common in FFT implementations since it is more simple and efficient to normalize the inverse by N, than the
forward and the inverse by

√
N.

E X A M P L E Continuing the previous example, we can adapt the application of the DFT to the matrix multipli-
cation form.

W =


1 1 . . . 1
1 ω8 . . . ω7

8
...

...
. . .

...
1 ω7

8 . . . ω49
8


where ω8 = e

i2π
8

X = W · x = W ·


1

0.707
...

0.707

 =


0

4 + 0i
...

4 + 0i
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It is conspicuous that the complexity time for each complex multiplication of every singular term of the sequence
with the complex exponential value is O(N2), hence, the computation of the Discrete Fourier Transform rises
exponentially with the sequence length. Therefore, over time new algorithms and techniques were developed to
increase the performance of this transform due to its usefulness.

2.3 F A S T F O U R I E R T R A N S F O R M

The Fast Fourier Transform (FFT) is a family of algorithms that compute the Discrete Fourier Transform (DFT) of a
sequence, and its inverse, efficiently, since the direct usage of the DFT formulation is too slow for its applications.
Thus, FFT algorithms exploit the DFT matrix structure by employing a divide-and-conquer approach (Chu and
George (1999)) to segment its application.

Over time several variations of the algorithms were developed to improve the performance of the DFT and
many aspects were rethought in the way we compute the transform.

There are many algorithms and approaches on the FFT family such as the well known Cooley-Tukey Cooley
and Tukey (1965), known for its simplicity and effectiveness to compute any sequence with size as a power of
two, but also Rader’s algorithm Rader (1968) and Bluestein’s algorithm Bluestein (1970) to deal with prime sized
sequences, and even the Split-radix FFT Yavne (1968) that recursively expresses a DFT of size N in one DFT of
size N/2 and two DFTs of size N/4.

Computing the DFT directly requires N2 complex multiplies and N(N − 1) complex additions, by using an
FFT algorithm to compute the DFT, it only requires (N/2) log (N) complex multiplies and complex additions.

When we consider a DFT of a sequence of length 4, we can notice that some of the operations involved repeat
themselves for the computation of the whole sequence.

In Equation 7 we list the required operations to compute the DFT of a sequence with 4 elements.

X0 = x0 + x1 + x2 + x3

X1 = x0 − i · x1 − x2 + i · x3

X2 = x0 − x1 + x2 − x3

X3 = x0 + i · x1 − x2 − i · x3

(7)

When the operations are grouped together, we have a clear perception of the repetition of the operations, as
presented in Equation 8.
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X0 = (x0 + x2) + (x1 + x3)

X1 = (x0 − x2)− i · (x1 − x3)

X2 = (x0 + x2)− (x1 + x3)

X3 = (x0 − x2) + i · (x1 − x3)

(8)

The FFT takes advantage of the periodic roots of unity values and the repetitive operations to generalize the
grouping in Equation 8 for a sequence of size N. This algorithm itself is a multiplication of the input sequence by a
sparse matrix (Heckbert (1995)). It achieves this by computing the butterfly operations at each stage and stor-
ing them to allow the reuse of the intermediate values in the next stage until the DFT is computed for every element.

It is worth noting that for power of 2 sizes, the roots of unity are symmetrical and periodic over N, therefore,
any twiddle factor ωk

N is equal to ωk+N
N and −ωk+N/2

N . For example, in figure Figure 2 we have the roots of
unity for N = 8, where ω0

8 = −ω4
8 and ω0

8 = ω8
8 .

Figure 2: Roots of unity with N = 8 Source: Heckbert (1995)

Section 2.3.1 and Section 2.3.2 focus on the Cooley–Tukey algorithm for sequences with power of 2 sizes. In
Section 2.3.1 we describe how to generalize the FFT algorithm with decimation in time, and explain where this
algorithm reduces the computational cost of the DFT. Moreover, in Section 2.3.2 we present another well-known
variation of this algorithm with decimation in frequency.

2.3.1 Radix-2 Decimation-in-Time FFT

The Radix-2 Decimation-in-Time FFT algorithm rearranges the computation of a DFT of size N into two DFTs of
size N/2, one as a sum over the even indexed elements and the other as a sum over the odd indexed elements.



2.3. Fast Fourier Transform 14

Cooley and Tukey proved this possibility of dividing the DFT computation into two smaller DFTs by exploiting this
division (Cooley and Tukey (1965)), as presented in Equation 10. Hence, it is hinted the recursive definition of this
formulation on both DFT of size N/2.

Xk =
N−1

∑
n=0

xn ·ωkn
N

Xk =
N/2−1

∑
n=0

x2n ·ωk(2n)
N +

N/2−1

∑
n=0

x2n+1 ·ωk(2n+1)
N

Xk =
N/2−1

∑
n=0

x2n ·ωkn
N/2 + ωk

N

N
2 −1

∑
n=0

x2n+1 ·ωkn
N/2

(9)

where ωN = e
i2π
N

This formulation segments the full-sized DFT into two N/2 sized DFTs of the even and odd indexed elements
where the latter is multiplied by a factor called twiddle ωk

N . We can notice that in the N/2 sub-transform, the
twiddle factors of ωk

N/2 will be periodic for k = 0, 1, ..., N− 1. This periodicity can also be noticed in Equation 8
within the sub-transforms of the even and odd elements.

This algorithm is a Radix-2 Decimation-in-Time in the sense that elements are regrouped into 2 sub-transforms,
and the decomposition reduces the time values to the frequency domain. The understanding of this algorithm
comes from the recursive application of Equation 10, to compute the FFT for all the values of the input sequence.
Figure 3 illustrates the composition of the sub-transforms, where the DFTs of size N/2 can be replaced with the
same decomposition of even and odd sub-transforms.

Figure 3: Radix-2 Decimation-in-Time FFT Source: Jones (2014)

Effectively, the main building block in the FFT is the butterfly operation of 2 elements since it calculates
intermediate values at each stage to compute the FFT of the whole sequence. This butterfly operation resembles
the computation of a length-2 DFT but with a shifted element according to the sub-transform size
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This butterfly, without any reuse of the twiddle factor, corresponds to:

A = a + b ·ωk
N

B = a + b ·ωk+N/2
N

(10)

where A = xkand B = xk+N/2

Yet, since the roots of unity for k and k + N/2 over N are symmetrical, as illustrated in Figure 2, we may
re-express this butterfly in terms of the same twiddle factor ωk

N , such that ωk+N/2
N will be equal to−ωk

N (Jones
(2014)). With this said, Cooley-Tukey butterfly (Chu and George (1999)) reuses the same twiddle factor, as
illustrated in Figure 4.

Figure 4: Cooley-Tukey butterfly

The complexity work of the algorithm is distributed within the DIT approach which decomposes each DFT
by 2 having log (N) stages Smith (2007). There are N complex multiplications needed for each stage of
the DIT decomposition, therefore, the multiplication complexity for a N sized DFT is reduced from O(N2) to
O(N log (N)).

The splitting of the DFT into two smaller half-sized DFTs causes the original input sequence to require a special
reordering to pass the even and odd numbers into, and when this algorithm is applied recursively, this reordering
is always needed, so in the end, we need a special order for the input elements, fortunately, as noted by Thong
(1981) this order corresponds to the bit reversed indices of the sequence, therefore, we need to apply a bit reverse
permutation to the elements of the input sequence.

The bit reversal of the input sequence corresponds to the permutation of swapping the position of the elements
to its bit reversed index, as illustrated in Figure 5. The bit_reverse of an index depends directly on the indexing
domain of the input sequence, therefore, it needs the size N, or more precisely the log (N) value, to use as a
reference to reverse the bit order while maintaining the value within the sequence range.

For example, for a sequence of size 16, we have some index with log 16 bits b1b2b3b4, which corresponds to
the bit reversed index as b4b3b2b1.

For the DIT algorithm, we apply the bit reversal permutation to the input sequence to return a natural order
result.
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Figure 5: Bit reverse permutation

There are many implementations of the bit reversal, and since it is quite simple, any suitable version can be
used in regard to this FFT algorithm since it is not the main bottleneck. An algorithm such as Algorithm 1 can be
used for the bit_reverse function or any other efficient alternatives (Prado (2004)).

Algorithm 1: Bit reverse
Data: Integer i
Result: Bit reversed integer i
n← 0
foreach i = 0 to log (N)− 1 do

n← n << 1;
n← n|(i&1);
i← i >> 1;

end
return i;

In practice, Algorithm 2 demonstrates the aforesaid with an iterative DIT implementation for the forward FFT.
To compute its inverse the algorithm is the same, we just need to use the twiddle factor with a positive exponent
wm ← exp(2πi/m).

Although this algorithm is congruent with a code implementation, it is worth noting that the input sequence can
either have real or complex numbers, since the arithmetic is the same for both domains the only thing that needs
to be specialized is the operator overloading in the innermost loop.
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Algorithm 2: Radix-2 Decimation-in-Time Forward FFT
Data: Sequence in with size N power of 2
Result: Sequence out with size N with the DFT of the input
/* Bit reversal step */

foreach i = 0 to N − 1 do
out[bit_reverse(i)]← in[i]

end
/* FFT */

foreach s = 1 to log (N) do
m← 2s;
wm ← exp(−2πi/m);
foreach k = 0 to N − 1 by m do

w← 1;
foreach j = 0 to m/2 do

bw← w · out[k + j + m/2];
a← out[k + j];
out[k + j]← a + bw;
out[k + j + m/2]← a− bw;
w← w · wm;

end
end

end
return out;

2.3.2 Radix-2 Decimation-in-Frequency FFT

The Radix-2 Decimation-in-Frequency FFT algorithm is very similar to the DIT approach, it is based on the same
principle of divide-and-conquer, however, it rearranges the original DFT into the computation of two transforms,
one with the even indexed elements and other with the odd indexed elements, as demonstrated in Equation 12.
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Xk =
N−1

∑
n=0

xn ·ωkn
N

Xk =
N/2−1

∑
n=0

xn ·ωkn
N +

N/2−1

∑
n=0

xn+N/2 ·ω
k(n+N/2)
N

Xk =
N/2−1

∑
n=0

xn ·ωkn
N + (−1)k ×

N/2−1

∑
n=0

xn+N/2 ·ωkn
N

Xk =
N/2−1

∑
n=0

(xn + (−1)k × xn+ N
2
) ·ωkn

N/2

(11)

X2k =
N/2−1

∑
n=0

(xn + xn+ N
2
) ·ω2kn

N =
N/2−1

∑
n=0

(xn + xn+ N
2
) ·ωkn

N/2

X2k+1 =
N/2−1

∑
n=0

(xn + xn+ N
2
) ·ω(2k+1)n

N =
N/2−1

∑
n=0

((xn − xn+ N
2
) ·ωkn

N/2) ·ωn
N

(12)

where ωN = e
i2π
N

As explained in the previous section, the computational savings for this algorithm come from exploiting the DFT
to reuse repeated calculations by storing intermediate terms in between stages.

This algorithm is a Radix-2 Decimation-in-Frequency since the DFT is decimated into two distinct smaller DFT’s
and the frequency samples will be computed separately in different groups as if the regrouping of the DFTs would
reduce directly to the frequency domain. The understanding of this algorithm comes from the recursive application
of Equation 12, to compute the FFT for all the values of the input sequence. Figure 6 illustrates the composition of
the transforms, where the DFTs of size N/2 can be replaced with the same decomposition in two transforms for
the even and odd elements.

Figure 6: Radix-2 Decimation-in-Frequency FFT Source: Jones (2014)
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Similarly to the DIT version, the DFT can be recursively reduced by the DIF algorithm until there is only the
computation of a length-2 DFT. At each stage, it is applied the Gentleman-Sande butterfly operation (Chu and
George (1999)) with a shifted element according to the sub-transform size, as illustrated in Figure 7.

Figure 7: Gentleman-Sande butterfly

Since this algorithm has similarities with the DIT, its complexity also lives to this similarity, maintaining the same
O(N log (N)) for the number of complex multiplications. Although they look different, Figure 7 and Figure 4
have the same number of operations 1 addition 1 subtraction, and 1 complex multiplication.

Unlike DIT, the DIF algorithm applies bit reversal permutation (Figure 5) to the output sequence to produce a
natural order result.

In practice, Algorithm 3 demonstrates the aforesaid with an iterative representation of a possible implementation.
To compute its inverse the algorithm is the same, we just need to use the twiddle factor with a positive exponent
wm ← exp(2πi/m). Although this algorithm is congruent with a code implementation, it is worth noting that
the input sequence can either have real or complex numbers, since the arithmetic is the same for both domains
the only thing that needs to be specialized is the operator overloading in the innermost loop.
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Algorithm 3: Radix-2 Decimation-in-Frequency Forward FFT
Data: Sequence in with size N power of 2
Result: Sequence out with size N with the DFT of the input
/* FFT */

foreach s = 0 to log (N)− 1 do
gs← N ≫ s;
wgs ← exp(2πi/gs);
foreach k = 0 to N − 1 by gs do

w← 1;
foreach j = 0 to gs/2 do

a← in[k + j + gs/2];
b← in[k + j];
in[k + j]← a + b;
in[k + j + gs/2]← (a− b) · w;
w← w · wgs;

end
end

end
/* Bit reversal step */

foreach i = 0 to N − 1 do
out[bit_reverse(i)]← in[i]

end
return out;

Nowadays, there is a lot more to the computation of FFTs than just the basic radix-2 Cooley-Tukey algorithm
described previously. As seen by a large amount of current literature, there are more algorithms, variations, and
improvements that enhance the computation of this transform in many aspects. Choosing the right conditions
enhances the calculation of the performance of this primitive, especially for specific systems (Bengtsson (2020)
and Mermer et al. (2003)).

One could optimize the FFT in many ways, and in the next section, we introduce a power of 2 sizes algorithm
called radix-2 Stockham, a natural order algorithm without explicit bit reversal permutation.

2.4 S T O C K H A M A L G O R I T H M

Despite existing fast solutions for index bit reversal (Prado (2004)), this shuffle step still weighs the algorithms with
extra overhead. The Stockham algorithm is an auto-sort algorithm that eliminates the need to have the bit reversal
permutation to output a natural order result. It does this by taking advantage of a reordering of the elements
(Govindaraju et al. (2008)) in between stages, as illustrated in Figure 8.
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Figure 8: Chain of even and odd compositions over each stage for a natural order DIF

The natural order elements are composed stage by stage and the butterfly computations stay the same, so
this approach takes advantage of the Cooley-Tukey algorithm and turns it into a more suitable form for highly
parallelizable hardware such as GPUs, making it a best fit for our implementation in a GPU programmable
language.

When the butterflies are performed, the even and odd elements are composed in such a way that the elements
will be in natural order. This composition follows the indexing scheme described in Equation 13.

x[q + 2 ∗ p] = y[q + p] (13)

x[q + 2 ∗ p + 1] = y[q + p + m] (14)

Where x and y are alternated sequences for read and write over each stage, q corresponds to the sub FFT
offset in this stage, p is the index of the sub FFT element shift for the current butterfly being computed, and finally
m corresponds to the size of the sub FFT divided by 2.

This algorithm requires the use of two alternating sequences for reading and writing the elements for each
stage since there is the possibility of reading from a position that it has already been written. That said, it is
ensured that at each stage no values are read to which the result of a butterfly has already been saved. Finally, as
a consequence of using these alternate sequences, the final result will be in the last sequence we wrote in the
last stage, hence, we can determine which sequence the result is based on the number of stages log (N).

This algorithm is described in Algorithm 4. To compute its inverse the algorithm is the same, we just need
to use the twiddle factor with a positive exponent wp = exp(2 ∗ π ∗ i ∗ p/gs). This version may seem
visually different from the Cooley Tukey, however, it preserves the algorithm logic and gets rid of the bit reversal
permutation. One main consequence of this algorithm is the requirement of additional space complexity for the
alternated read and write access within every stage.
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Algorithm 4: Stockham Radix-2 Decimation-in-Frequency Forward FFT
Data: Sequence pingpong0 with size N power of 2
Result: Sequence out with size N with the DFT of the input
foreach stage = 0 to log (N)− 1 do

gs← N ≫ stage;
s← 1≪ stage;
foreach i = 0 to N − 1 do

p← i div s;
q← i mod s;
wp = exp(−2 ∗ π ∗ i ∗ p/gs);
if stage mod 2 == 0 then

a← pingpong0[q + s ∗ (p + 0)];
b← pingpong0[q + s ∗ (p + gs/2)];
/* Perform butterfly */

pingpong1[q + s ∗ (2 ∗ p + 0)] = a + b;
pingpong1[q + s ∗ (2 ∗ p + 1)] = (a− b) ∗ wp;

else
a← pingpong1[q + s ∗ (p + 0)];
b← pingpong1[q + s ∗ (p + gs/2)];
/* Perform butterfly */

pingpong0[q + s ∗ (2 ∗ p + 0)] = a + b;
pingpong0[q + s ∗ (2 ∗ p + 1)] = (a− b) ∗ wp;

end
end

end
if log (N) mod 2 == 0 then

return pingpong1;
else

return pingpong0;
end

This algorithm description will give us a solid code base to use as reference when implementing it on the
GPU, mainly due to the way we are indexing and the usage of alternating read write sequences.

2.5 R A D I X - 4 I N S T E A D O F R A D I X - 2

After presenting the radix-2 version of the Stockham algorithm, in this section we expand the application of this
algorithm for higher radix such as radix-4 and consequently reflect on its advantages and disadvantages.
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We’ve discussed multiple radix-2 approaches, however, we can explore a wide range of alternatives when we
get into higher radices other than just radix-2. These FFT algorithms can use higher radix for better performance
and even mixed radix Singleton (1969) for a wider range of input sequence sizes.

Rearranging the Stockham algorithm to radix-4 upgrades the computation of the butterflies while reducing the
number of stages which will be crucial in later sections. The radix-4 performs the work of two radix-2 iterations
with less memory accesses (Bailey (1988)).

Theoretically, radix-4 formulation can be twice as fast as a radix-2 Hussain et al. (2010) since it only takes half
the stages with more complexity in the butterflies which are sometimes called dragonflies. Additionally, we can
use less multiplications with better factorizations (Marti-Puig and Bolano (2009)).

The radix-4 Stockham splits the FFT of size N into four sub-transforms of size N/4 each stage, therefore this
algorithm only features log(N)/2 stages and requires the size to be power of 4. Since this is a natural order
algorithm the computation of the dragonfly includes the reordering of the elements in natural order at every stage,
as illustrated in Figure 9.

Figure 9: Illustration of a stage in radix-4 Stockham with each color representing a radix-4 butterfly computation

The dragonfly for this algorithm is illustrated in Figure 10 and its computation involves 4 elements that compute
2 stages of 2 radix-2 butterflies.

In Equation 15 is presented the forward radix-4 dragonfly operations and in Equation 16 its inverse.

Figure 10: Radix-4 FFT butterfly structure Source: Marti-Puig and Bolano (2009)
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A = (a + c) + (b + d)

B = ((a− c)− i(b− d))×ω
p
N

C = ((a + c)− (b + d))×ω
2p
N

D = ((a− c) + i(b− d))×ω
3p
N

(15)

A = (a + c) + (b + d)

B = ((a− c) + i(b− d))×ω
−p
N

C = ((a + c)− (b + d))×ω
−2p
N

D = ((a− c)− i(b− d))×ω
−3p
N

(16)

With each stage, the dragonflies are calculated and the elements are reordered similarly to the radix-2 Stockham
algorithm. In the end, we get the forward radix-4 Stockham algorithm Algorithm 5. The inverse algorithm is similar,
but instead uses the inverse dragonfly as presented in Equation 16.
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Algorithm 5: Stockham Radix-4 Decimation-in-Frequency Forward FFT
Data: Sequence pingpong0 with size N power of 4
Result: Sequence out with size N with the DFT of the input
foreach stage = 0 to log (N)/2− 1 do

n← 1≪ (((log (N)/2)− stage) ∗ 2);
s← 1≪ (stage ∗ 2);
n0← 0;
n1← n/4;
n2← n/2;
n3← n1 + n2;
foreach i = 0 to N − 1 do

p← i div s;
q← i mod s;
w1p = exp(−2 ∗ π ∗ i ∗ p/n);
w2p = w1p ∗ w1p;
w3p = w1p ∗ w2p;
if stage mod 2 == 0 then

a← pingpong0[q + s ∗ (p + n0))];
b← pingpong0[q + s ∗ (p + n1)];
c← pingpong0[q + s ∗ (p + n2)];
d← pingpong0[q + s ∗ (p + n3)];
/* Perform dragonfly */

pingpong1[q + s ∗ (4 ∗ p + 0)] = a + c + b + d;
pingpong1[q + s ∗ (4 ∗ p + 1)] = w1p ∗ ((a− c)− (b− d) ∗

√
−1);

pingpong1[q + s ∗ (4 ∗ p + 2)] = w2p ∗ ((a + c)− (b + d));
pingpong1[q + s ∗ (4 ∗ p + 3)] = w3p ∗ ((a− c) + (b− d) ∗

√
−1);

else
a← pingpong1[q + s ∗ (p + n0))];
b← pingpong1[q + s ∗ (p + n1)];
c← pingpong1[q + s ∗ (p + n2)];
d← pingpong1[q + s ∗ (p + n3)];
/* Perform dragonfly */

pingpong0[q + s ∗ (4 ∗ p + 0)] = a + c + b + d;
pingpong0[q + s ∗ (4 ∗ p + 1)] = w1p ∗ ((a− c)− (b− d) ∗

√
−1);

pingpong0[q + s ∗ (4 ∗ p + 2)] = w2p ∗ ((a + c)− (b + d));
pingpong0[q + s ∗ (4 ∗ p + 3)] = w3p ∗ ((a− c) + (b− d) ∗

√
−1);

end
end

end
if log (N) mod 2 == 0 then

return pingpong1;
else

return pingpong0;
end
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2.6 T W O R E A L I N P U T S W I T H I N O N E C O M P L E X

It is possible that in the case of an application there is a requirement to compute multiple real FFTs at once.
Although we may simply invoke another FFT computation, we can optimize this step by computing multiple FFTs
in the context of the same transform.

We can take advantage of the complex input of our implementation to encode multiple real values to avoid
extra explicit FFTs. Since the input has elements in a complex format, but the values are real, we only use the
real component of the element, therefore, the output of the inverse also contains the complex with only the real
component, as illustrated in Figure 11.

Figure 11: FFT for an element without an imaginary part

Based on this, we can reuse the imaginary part of the complex with a meaningful value other than 0, as
illustrated in Figure 12.

Figure 12: FFT for an element with an imaginary part

The result of the forward pass will be a mixed frequency value for the two original real values. Additionally,
the frequency domain of both input sequences can be extracted from the mixed frequency value by performing
some calculations, as demonstrated by Shima (2000). These calculations exploit the symmetry property of the
frequency domain when the input sequence fills the real part of the complex and when it fills the imaginary part.
With this said we may extract each FFT sequence from the mixed transform with the presented pack and unpack
formulas in Equation 17 and Equation 18 respectively.

When considering two real valued sequences x1 and x2, whose transforms are X1 and X2, and having
y = x1 + ix2, we can get the mixed frequencies in Y by packing the separated transforms as in Equation 17.

Y(k) = X1(k) + X2(k) (17)

When we have the mixed frequency components Y, we may unpack X1 and X2 as in Equation 18, where Yr

and Yi are the real and imaginary parts of the complex-valued element.

X1(k) =
Y(k) + (Yr(N − k)−Yi(N − k))

2

X2(k) =
Y(k)− (Yr(N − k)−Yi(N − k))

2

(18)
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2.7 2 D F O U R I E R T R A N S F O R M

Up until now, we only described transforming one-dimensional sequences, however, 2D FFTs are not that different
from applying multiple 1D FFTs. Calculating the forward 2D FFT of a two-dimensional sequence produces the
frequency domain result. For images, this frequency domain result corresponds to the change of pixel intensities
in the original image.

Calculating a 2D Fourier Transform requires a two-dimensional input sequence that the Forward 2D FFT
converts numerical elements from real to complex domain and complex to the real domain on its inverse.

When dealing with images, we might have multiple values per pixel element, therefore, we have the possibility
of using it as a greyscale image if we derive the relative luminance via quantized RGB signals of the image (ITU
(2002)), using only the values of one channel, or compute multiple FFTs for each channel values. With this said,
when transforming the input in the forward FFT we will obtain a complex-valued output, and when applying the
inverse we obtain the real-valued result.

The 2D FFT is computed by performing single-dimension FFTs horizontally and vertically. In our case, we
implemented this by first performing the 1D FFTs for every row and then every column, that is, 1 2D FFT of size
N × N is equivalent to 2 ∗ N 1D FFT of size N, as presented in Equation 19. This is called the row–column
decomposition (Mermer et al. (2003)).

Xr,c =
N−1

∑
m=0

N−1

∑
n=0

xn,m ·ωrn
N ·ωcn

N (19)

In later sections, we refer to this decomposition in the implementation as the horizontal and vertical pass, with
the vertical pass being executed after the horizontal (Figure 13).

Figure 13: High-level illustration of horizontal and vertical passes

Additionally, the implementation of the 1D FFTs for every row and column is independent of the 2D FFT
structure, hence, there is the freedom to use any of the discussed algorithms. In Chapter 3, we implement multiple
FFT algorithms while reusing the same architecture of the horizontal and vertical passes.
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I M P L E M E N TAT I O N I N G L S L

The previous chapters introduced and expanded upon FFT algorithms to compute the DFT, which provides enough
background to back up the GPU implementations presented in this chapter.

As a result, in this chapter, we apply this background and implement these algorithms in GLSL compute shaders
as a two-dimensional transform.

The implementations were made using GLSL, a high-level shader language for graphics APIs such as OpenGL,
and we used the compute pipeline from OpenGL to integrate an FFT implementation using compute shaders,
which are general-purpose programmable shaders.

As there are many aspects that can impact performance, the implementation was an iterative process that
required research and testing to compose a more suitable solution.

The next sections go into detail about the way every major iteration evolved into the next one and why there
was the need to do it, starting with the Cooley-Tukey algorithm (Section 3.1) and then progressively improving to
the Stockham algorithm (Section 3.2 and Section 3.3)

3.1 C O O L E Y- T U K E Y

The GPU implementation took as a starting point the Cooley-Tukey algorithm since it is the most popular one with
a time complexity of O(N log (N)), and it is based on the iterative version adapted for parallel processors.

Since this implementation runs multiple threads in parallel we separated the reads and writes for each processor
into two different buffers in memory due lack of order between processors, therefore, the declaration of two complex
pingpong buffers.

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

Listing 3.1: Input buffer bindings

The read/write control for these buffers can be achieved with a flag variable pingpong.

28
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Initially, this algorithm will work with a pass-per-stage approach, where a kernel is dispatched every stage, and
since there is a synchronization step at the end of the pass it is granted that all the work groups have finished off
writing to the buffer when a pass ends. This case holds up for both the horizontal and vertical FFT steps.

As a result, each kernel has the opportunity to work within every segment of the image, hence, the local threads
can be dispatched with two dimensions. Each work group will have a total of 32 local threads, this number may
vary depending on the GPU for optimal performance.

An example dispatch group for this implementation could be ( f f t_width/8, f f t_height/8) work groups,
since 8 is the number of threads in the y axis.

By using GLSL there are some advantages to complex value operations since the addition and subtraction
for vector types already have operator overloadings that work the same as in the complex domain. However,
the multiplication works a bit differently so we need to provide an auxiliary function to abstract and support this
operator.

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

Listing 3.2: Complex multiplication

Due to the adoption of a different programming paradigm the FFT segment iteration loop doesn’t exist such as
in Algorithm 2, instead, the process identifiers are used to fetch the index of the butterflies they’re gonna work on
based on the work groups and threads dispatch setup, and this holds up for any implementation using compute
shaders.

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_GlobalInvocationID.y);

Listing 3.3: Invocation indices

Since this first approach is a dynamic implementation that invokes a pass-per-stage some stage control
variables need to be fed into the shader in order to compute the correct butterfly index or control the butterfly
process.

uniform int pingpong;

uniform int log_width;

uniform int stage;

uniform int fft_dir;

Listing 3.4: Uniform control variables

Effectively, we use these shader uniform input variables and obtain the actual index we are gonna use on the
1D FFT of the image.

int group_size = 2 << stage;
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int shift = 1 << stage;

int idx = (line % shift) + group_size * (line / shift);

Listing 3.5: FFT element index

To calculate the twiddle factor we use Euler’s formula (Equation 2) and resort to the control variable fft_dir
to flip the twiddle factor for the inverse if we want to reuse this shader.

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

// ...

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

// ...

}

Listing 3.6: Euler’s formula

Now with the computed twiddle factor, we may proceed to compute and store the Cooley-Tukey FFT butterfly,
and that’s where we need to control the reads and writes for each stage. Since the pingpong variable is
toggled every pass invocation, it is used to choose with what texture we will use to look up the elements and which
one to store into, and that is achieved with an if statement, just like it is used in Algorithm 4.

The butterfly computation itself is simply calculated as a Cooley-Tukey DIT butterfly as presented in Sec-
tion 2.3.1.

if (pingpong == 0) {

// Read

a = imageLoad(pingpong0, ivec2(idx, column)).rg;

b = imageLoad(pingpong0, ivec2(idx + shift, column)).rg;

// Compute and store

vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong1, ivec2(idx, column), vec4(raux, 0, 0));

raux = a - wb;

imageStore(pingpong1, ivec2(idx + shift, column), vec4(raux, 0, 0));

}

else {

// Read

a = imageLoad(pingpong1, ivec2(idx, column)).rg;

b = imageLoad(pingpong1, ivec2(idx + shift, column)).rg;

// Compute and store
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vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong0, ivec2(idx, column), vec4(raux,0,0));

raux = a - wb;

imageStore(pingpong0, ivec2(idx + shift, column), vec4(raux,0,0));

}

Listing 3.7: Computation of the Cooley-Tukey butterfly

Finally, there is only one step missing, the bit reversal of indices to have a natural order result. Abit_reverse
function could be easily defined, However, there’s already a GLSL alternative which is bitfieldReverse
together with bitfieldExtract (Kessenich et al.).

int bit_reverse(int k) {

uint br = bitfieldReverse(k);

return int(bitfieldExtract(br, 32 - log_width, log_width));

}

Listing 3.8: Auxiliary function that takes advantage of GLSL’s predefined utilities

This auxiliary function will be conditionally used inside the branching if statement for alternating read/writes to be
only applied on the first stage of transform both for the possible values of pingpong == 0 and pingpong
== 1, since the vertical pass might start reading on the first pingpong buffer. This is not the case for the
horizontal pass, it is ensured that the first stage will always read from pingpong0 reinforcing that the bit
reverse branching when pingpong == 0 is disposable.

if (pingpong == 0) {

if (stage == 0) {

a = imageLoad(pingpong0, ivec2(bit_reverse(idx), column)).rg;

b = imageLoad(pingpong0, ivec2(bit_reverse(idx + shift), column)).rg;

}

else {

a = imageLoad(pingpong0, ivec2(idx, column)).rg;

b = imageLoad(pingpong0, ivec2(idx + shift, column)).rg;

}

// ... Compute and store results

}

else {

a = imageLoad(pingpong1, ivec2(idx, column)).rg;

b = imageLoad(pingpong1, ivec2(idx + shift, column)).rg;

// ... Compute and store results

}

Listing 3.9: Computation of the Cooley-Tukey butterfly with bit reversal
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With all these steps aggregated, the shader for the horizontal pass of this FFT DIT Cooley-Tukey implementation
is presented in Listing A.1, see Appendix A.

For the vertical pass shader, there is, however, one extra multiplication by mult_factor in the butterfly
results for the last stage when the pass is inverse. This corresponds to the normalization of the multidimensional
transform similar to the normalization in the inverse DFT in Equation 5, this is demonstrated in Listing A.2.

3.1.1 All stages in one pass

The previous implementation demonstrates a generic 2D FFT that may be reused for multiple FFT sizes, However,
this comes at a cost of efficiency when it comes to the synchronization of the stage itself, moreover, it requires
multiple uniform variables for control of the FFT that are transferred between CPU and GPU when there are
updates in between stages.

The ideal solution here is to port this implementation synchronization step to be kernel-wise and this detail
changes how the code is structured and how it may be dispatched.

There is a lot of literature on behalf of GPU compute execution synchronization (Stuart and Owens (2011)). In
our case, we use execution barriers that synchronize all the threads within a work group (Kessenich et al.).

The current grouping of threads doesn’t allow the use of these barrier synchronizations since the computation
of one-dimensional FFT is distributed between multiple work groups, thus, using a call to barrier() inside
the kernel wouldn’t fix the race conditions of several segments of the image. We could, however, change the setup
of these work groups in such a way that each 1D FFT threads fit in one work group as illustrated in Figure 14.

Figure 14: Difference in invocation spaces for size 256 FFT to allow barrier synchronization between local threads

By restricting the invocation space to be only one dimensional we grant the possibility to use the barrier correctly
but at the cost of resizability, the work group’s local size must now be restricted to half the size of the FFT. This
restriction does not affect our results, where the tests were performed on images with a relatively small size. The
GPU is extremely parallel hardware, therefore, it is better to dispatch smaller programs with more instances than
overloading local threads in a work group to decrease its.
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When fitting all stages in one kernel, the algorithm stays the same but we provide all information needed, such
as the size and log size of the FFT for the compiler to be able to unroll the loop, since the for loop feature in GLSL
requires to be used with constant expressions that allow the loop to be inlined in the compiled code.

#define FFT_SIZE 256

#define LOG_SIZE 8

layout (local_size_x = FFT_SIZE/2, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

// ... Auxiliar functions

void main() {

// ...

int pingpong = 0;

for(int stage = 0; stage < LOG_SIZE; ++stage) {

int group_size = 2 << stage;

int shift = 1 << stage;

vec2 a, b;

int idx = (line % shift) + group_size * (line / shift);

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

// ... Perform butterflies

pingpong = (pingpong + 1) % 2;

barrier();

}

}

Listing 3.10: Unique pass structure for Cooley-Tukey

Aside from the variable fft_dir that allows the usage of this pass for the inverse, all needed data for the
FFT lives inside the code, hence, there are more opportunities for optimization when the kernel is compiled since
most data is within the code itself. For full code for horizontal and vertical passes see Appendix A.

3.2 R A D I X - 2 S T O C K H A M

Since we wanted to get rid of the bit reversal permutation in the shader code, we implemented the Stockham
algorithm (see Section 2.4). What differs from the previous code is mainly the reordering of the elements when
writing the results of the butterfly.



3.3. Radix-4 Stockham 34

Note that this algorithm is in DIF instead of DIT like the previous ones, although this change does not have a
performance implication.

When performing the butterfly in Listing 3.11 we read the elements from the image according to the thread
identifier, however, we store it in such a way that the output has its elements in natural order (see Algorithm 4).

for(int stage = 0; stage < LOG_SIZE; ++stage) {

int n = 1 << (LOG_SIZE - stage); // group_size

int m = n >> 1; // shift

int s = 1 << stage;

int p = line / s;

int q = line % s;

vec2 wp = euler(fft_dir * 2 * (M_PI / n) * p);

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(q + s*(p + 0), column)).rg;

vec2 b = imageLoad(pingpong0, ivec2(q + s*(p + m), column)).rg;

vec2 res = (a + b);

imageStore(pingpong1, ivec2(q + s*(2*p + 0), column), vec4(res,0,0));

res = complex_mult(wp,(a - b));

imageStore(pingpong1, ivec2(q + s*(2*p + 1), column), vec4(res,0,0));

}

else {

// ... Read pingpong1, write pingpong0

}

// ... Sync

}

Listing 3.11: Radix-2 Stockham DIF

Consequently, we got rid of the conditional read with bit reversed index, and the compute shader code for the
horizontal Listing A.5 and vertical passes Listing A.6 got simpler as a result of this.

3.3 R A D I X - 4 S T O C K H A M

In Section 2.5 we introduced how higher radix factorizations could improve the performance with the cost of size
constraints, hence, here we change the code with ease to implement the radix-4 factorization described previously.

First, we update the stage control variables and compute the multiple twiddle factors used in the radix-4 butterfly.
Note that now the for loop only iterates log (N)/2 times and the number of local threads is reduced by half.

#define FFT_SIZE 256
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#define LOG_SIZE 8 // log2(FFT_SIZE)

#define HALF_LOG_SIZE 4 // log2(FFT_SIZE) / 2

layout (local_size_x = FFT_SIZE/4, local_size_y = 1) in;

// ...

void main() {

// ...

for(int stage = 0; stage < HALF_LOG_SIZE; ++stage) {

int n = 1 << (HALF_LOG_SIZE - stage)*2;

int s = 1 << stage*2;

int n0 = 0;

int n1 = n/4;

int n2 = n/2;

int n3 = n1 + n2;

int p = line / s;

int q = line % s;

vec2 w1p = euler(2*(M_PI / n) * p * fft_dir);

vec2 w2p = complex_mult(w1p,w1p);

vec2 w3p = complex_mult(w1p,w2p);

// ... Radix-4 butterfly

}

}

Listing 3.12: Radix-4 Stockham stage control variables

Then, we compute the radix-4 butterfly and store the results in natural order, as described in Figure 10.

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(q + s*(p + n0), column)).rg;

vec2 b = imageLoad(pingpong0, ivec2(q + s*(p + n1), column)).rg;

vec2 c = imageLoad(pingpong0, ivec2(q + s*(p + n2), column)).rg;

vec2 d = imageLoad(pingpong0, ivec2(q + s*(p + n3), column)).rg;

vec2 apc = a + c;

vec2 amc = a - c;

vec2 bpd = b + d;

vec2 jbmd = complex_mult(vec2(0,1), b - d);

imageStore(pingpong1, ivec2(q + s*(4*p + 0), column), vec4(apc + bpd, 0,0));
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imageStore(pingpong1, ivec2(q + s*(4*p + 1), column), vec4(complex_mult(w1p,

amc - jbmd), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 2), column), vec4(complex_mult(w2p,

apc - bpd ), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 3), column), vec4(complex_mult(w3p,

amc + jbmd), 0,0));

}

else {

// ...

}

Listing 3.13: Radix-4 Stockham butterfly

We take advantage of branchless programming to flip the signal of the butterfly to avoid unnecessary if
statements for the inverse.

imageStore(pingpong1, ivec2(q + s*(4*p + 0), column), vec4(apc + bpd, 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 1), column), vec4(complex_mult(w1p, amc

+ jbmd*fft_dir), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 2), column), vec4(complex_mult(w2p, apc

- bpd ), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 3), column), vec4(complex_mult(w3p, amc

- jbmd*fft_dir), 0,0));

Listing 3.14: Radix-4 Stockham dragonfly inverse arithmetic

With these changes, we now have the radix-4 Stockham shader complete (see Listing A.7 and Listing A.8).

Furthermore, we may expand the implementation of this radix-4 compute shader, in such a way that it supports
power of 2 sizes instead of just power of 4. For example, when a power of 2 size input is used in the radix-4
Stockham algorithm it performs half of log (N) stages, meaning that it will miss one final stage for a sub-transform
with a size that is not multiple of 4. In this final stage, we may apply the radix-2 Stockham algorithm stage as an
additional step to grant support for power of 2 sizes.

With this said, at the end of the compute shader in the radix-4 implementation we add a conditional last step
implementing the radix-2 Stockham stage butterflies. Likewise, this stage corresponds to the same code as in
Section 3.2, but partially more hardcoded for the last stage. For this reason, the presented code doesn’t use a
twiddle factor, since it will always correspond to 1 due to parameter p being equal to 0 for the last stage.

Finally, since we only have FFT_SIZE/4 local threads, therefore, 2 butterflies need to be computed at a
time, as demonstrated in Listing 3.15.

#define FFT_SIZE 512

#define LOG_SIZE 9 // log2(FFT_SIZE)

#define HALF_LOG_SIZE 4 // log2(FFT_SIZE / 2) / 2

int main() {
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// ... radix-4 Stockham stages

if(LOG_SIZE % 2 == 1) {

int s = FFT_SIZE >> 1;

int q = 2*line;

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(q + 0, column)).rg;

vec2 b = imageLoad(pingpong0, ivec2(q + s, column)).rg;

imageStore(pingpong1, ivec2(q + 0, column), vec4(a + b, 0,0));

imageStore(pingpong1, ivec2(q + s, column), vec4(a - b, 0,0));

q = 2*line + 1;

a = imageLoad(pingpong0, ivec2(q + 0, column)).rg;

b = imageLoad(pingpong0, ivec2(q + s, column)).rg;

imageStore(pingpong1, ivec2(q + 0, column), vec4(a + b, 0,0));

imageStore(pingpong1, ivec2(q + s, column), vec4(a - b, 0,0));

}

else {

vec2 a = imageLoad(pingpong1, ivec2(q + 0, column)).rg;

vec2 b = imageLoad(pingpong1, ivec2(q + s, column)).rg;

imageStore(pingpong0, ivec2(q + 0, column), vec4(a + b, 0,0));

imageStore(pingpong0, ivec2(q + s, column), vec4(a - b, 0,0));

q = 2*line + 1;

a = imageLoad(pingpong1, ivec2(q + 0, column)).rg;

b = imageLoad(pingpong1, ivec2(q + s, column)).rg;

imageStore(pingpong0, ivec2(q + 0, column), vec4(a + b, 0,0));

imageStore(pingpong0, ivec2(q + s, column), vec4(a - b, 0,0));

}

}

}

Listing 3.15: Radix-2 stage for the radix-4 Stockham code
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A N A LY S I S A N D C O M PA R I S O N

Finally, in this chapter, an evaluation of the explored implementations and improvements is provided followed by
an empirical analysis based on the results and tests done.

To establish a reference point on the results provided, we used the CUDA Fast Fourier Transform library from
NVIDIA.

4.1 C U F F T

The cuFFT library is the NVIDIA framework designed to provide high performance FFT exclusively on its own
GPUs that supports a wide range of FFT inputs and settings that compute FFTs efficiently on NVIDIA GPUs.

It has been proven multiple times that cuFFT is one of the fastest available tools for computing FFT such as in
Sörman (2016) and other resources.

The library is acknowledged as one of the most efficient FFT GPU frameworks for the flexibility it provides
and it is "de-facto a standard GPU implementation for developers using CUDA" (Střelák and Filipovič (2018)).
Furthermore, it offers all kinds of settings needed for most use cases, such as multidimensional transforms,
complex and real-valued input and output, support for half, single, and double floating point precision, execution of
multiple transforms simultaneously, and finally, since all this is implemented using CUDA we can take advantage
of streamed execution, enabling asynchronous computation and data movement.

Unfortunately, as mentioned before the main downside of cuFFT is the unavailability of this library for GPUs
from other vendors.

The library uses algorithms highly optimized for input sizes that can be written in the form 2a × 3b × 5c × 7d,
so it factorizes the input size to allow arbitrary-sized FFT sequences. Furthermore, sizes with lower prime factors
have better performance than higher prime factors (Nvidia), thus power of 2 sizes have the best performance
overall.

To use the results of the library as a reference point, we need to establish equivalent conditions to that of the
GLSL implementations:

• Out-of-place 2D FFT, the input buffer is different from the output buffer;

38
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• Power of 2 input sizes, such as 128, 256, 512, and 1024;

• Complex to complex FFT, input and output buffer are complex-valued;

• The benchmarks are average milliseconds of multiple executions, however, the first dispatch is not taken
into account since takes extra time to set up things on the GPU.

The results of the cuFFT out-of-place benchmarks are presented in Figure 16.

4.2 G L S L I M P L E M E N TAT I O N R E S U LT S

The implementations discussed in Chapter 3 were studied and benchmarks were made to come to a conclusion
about the advantages and disadvantages of using each one and how do they perform. With this in mind, we
prepared an interactive test environment using Nau 3D engine (Ramires) and profiled it using an internal pass
profiler.

The benchmark results in this section were tested with the following hardware and software configurations:

• CPU: Intel(R) Core(TM) i7-8750H @ 2.20GHz;

• GPU: NVIDIA GeForce GTX 1050 Ti Max-Q;

• NVIDIA driver: 511.65;

• CUDA version: V11.6.124;

• GLSL version: 4.60.

In Section 3.1.1 we discussed how the implementation would benefit by having a unique pass that synchronized
by stage instead of dispatching multiple stage passes. Accordingly, to prove this, we evaluated the difference
between the Cooley-Tukey algorithm in the unique pass and in a stage-per-pass approach. Hence, in Figure 15
are presented the CPU and GPU results of the benchmarks for this test case. The GPU time corresponds to the
total time spent in the GPU executing the compute shader.

These benchmarks were tested in Nau3D, a generic 3D rendering engine, therefore, the CPU side of the
stage-per-pass implementation takes into account the execution of a Lua script to update the state and control
variables at the end of each stage. For this reason, the CPU time besides the preparation of the compute dispatch
also includes some overhead for using this Lua script.
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Figure 15: CPU and GPU benchmarks of 2D forward FFT using stage-per-pass approach and unique pass for
the Radix-2 Cooley-Tukey algorithm

Sizes 128 256 512 1024

Unique pass CPU 0.06 0.052 0.049 0.06
GPU 0.05 0.15 0.598 2.698

stage-per-pass CPU 0.383 0.402 0.444 0.5
GPU 0.11 0.199 0.973 3.899

Table 1: CPU and GPU benchmarks of 2D forward FFT using stage-per-pass approach and unique pass for the
Radix-2 Cooley-Tukey algorithm

The results in Figure 15 and Table 1 demonstrate the approximate expected overhead of using the stage-
per-pass in an application. Since there is a need for the update of the following stages, the implementation
synchronizes with the GPU immediately over each stage, however, the compute shader is reusable, therefore, the
same shader module can be used for multiple sizes. In contrast, the CPU time of the unique pass kernel is mostly
constant and this approach is optimized for its own size so most calculations are inlined by the GLSL compiler.
The stage synchronization is kept inside the GPU until the kernel completes the execution. Since this type of
synchronization is on the work group level, much fewer actors are involved in the synchronization step. In addition,
these actors only correspond to the 1D FFT region of each row/column and not the entire 2D FFT.

Due to the difference in the performance of these two approaches, the following comparisons will exclusively
correspond to unique pass implementations of the investigated algorithms.

As we can see in Figure 16 we plot the performance of the benchmarks of cuFFT and the unique pass
algorithms in GLSL. These implementations are the single-pass approaches of the discussed algorithms in
Chapter 3. Based on the findings of these benchmarks, the GLSL radix-2 implementation of the Stockham
algorithm has an overall better performance comparing it to the Cooley-Tukey version. Additionally, it was also
implemented with a smaller kernel. Consequently, this happens due to the removal of the data reordering process
of the bit reversal done in the Cooley-Tukey version only in the first stage. Effectively, this change improves the
results consistently within the test size ranges.
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Figure 16: Forward 2D FFT benchmarks in milliseconds of out-of-place cuFFT and unique pass algorithms in
GLSL

Sizes 128 256 512 1024
cuFFT 0.0359 0.0494 0.1335 0.5609

GLSL radix-2 Cooley-Tukey 0.073 0.257 1.032 2.646
GLSL radix-2 Stockham 0.049 0.135 0.545 2.341
GLSL radix-4 Stockham 0.042 0.087 0.389 1.363

Table 2: Benchmarks of the forward 2D FFT benchmarks in milliseconds of out-of-place cuFFT and unique pass
algorithms in GLSL

Undoubtedly, the results that come closer to the cuFFT are the ones of the radix-4 Stockham. It drastically
improved the performance halfway close to the cuFFT, as presented in Figure 16 and Table 2. Yet, the complexity
of the shader code was sharply increased, not only due to the higher radix alternative but also due to the additional
support step in the last stage for the power of 2 sizes.

By choosing a radix-4 approach the number of stages reduces to half but with a lot more complex operations per
dragonfly on each stage. Since this dragonfly represents the operations required in an equivalent radix-2 Stockham
factorization. Although the work complexity remains the same, there are much fewer barrier synchronization
events and radix-4 iterations perform the work of two radix-2 iterations with only one memory access.

For each stage there’s a synchronization barrier in each local thread inside a work group, so fewer stages
means fewer sync points, hence, compensating for the 70% kernel size increase of the radix-4 version.

In the context of the same need for multiple FFTs, we reach a point where we need to batch executions together
for cuFFT. While this can also be achieved using our GLSL implementations, we can take a step further on the
usage of the same pass for double the FFTs. Accordingly, we adapted the radix-4 Stockham implementation to
use vec4 instead of vec2 for the elements of the input and output buffers.

Code integrity is conserved since changing to vec4 does not change operators in the compute kernel.
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To compare with an equivalent, the computation in cuFFT used a special setup of a 2D FFT plan to compute
with a batch size of 2. The cuFFT framework doesn’t have an explicit setup for multiple transforms in the same
kernel, hence, we use batched execution for comparison.

Figure 17: Forward 2D FFT benchmarks of double the transforms in milliseconds of out-of-place cuFFT and
radix-4 Stockham GLSL

In table Table 3, the benchmarks of Figure 17 are presented together with the results of calculating a single
transform in one step. To analyze the potential gain that the implementation with twice the transforms gives, we
also present the percentage of the performance gain per individual FFT.

Sizes 128 256 512 1024

cuFFT
Single FFT 0.035 0.049 0.133 0.560
Double FFT 0.038 0.098 0.23 1.032

Gain per single FFT 45.71% 0.0% 13.53% 7.85%

GLSL radix-4 Stockham
Single FFT 0.042 0.087 0.389 1.363
Double FFT 0.044 0.132 0.704 2.702

Gain per single FFT 47.61% 24.13% 9.51% 0.88%

Table 3: Benchmarks of the Forward 2D FFT for cuFFT and GLSL radix-4 Stockham for single and double
transforms in the same pass, together with the percentage of gain over individual transforms.

As a result, we can clearly notice a larger gain for size 128 inputs, both for cuFFT and for GLSL. From there,
the gain for the rest of the tested sizes is notably smaller, the most relevant gain being that of inputs of size 256
for GLSL since cuFFT did not show any difference to twice the time of a single FFT for this input size. Finally,
for input sizes 512 and 1024 the cuFFT batched execution demonstrated a valuable gain while the GLSL one
continued to decline.

Overall, we can conclude that it is worth including multiple FFTs in the same pass for the tested sizes when
multiple independent transforms are necessary.



4.3. Case of study 43

With the presented results, we can clearly notice better performance on the GPU regarding the implementation
in GLSL of radix-4 Stockham with a unique pass approach that reduces the number of synchronization stages and
calculates per dragonfly the equivalent 2 butterflies of two stages of radix-2 Stockham.

4.3 C A S E O F S T U DY

Based on the findings of Section 4.2 we measured how the GLSL implementations behaved, by analyzing the
performance of a test application that converted a 2D image to the frequency domain and then reversed it to its
original look. Yet, with the goal of highlighting the importance of the performance increase of these algorithms, in
this section, we provide an overview of the impact of the implementation within a more demanding scenario by
using an ocean rendering technique demo that heavily relies on the usage of FFT (Figure 18).

Figure 18: Tensendorf waves in Nau3D Engine

In this section we brief the Tensendorf waves demo in Section 4.3.1 where we describe in which way FFTs are
relevant for the implementation of this rendering technique, and how we improved an existing implementation for
Nau3D that used a pass-per-stage Cooley-Tukey implementation. After that we present results and how the FFT
implementation improves the demo performance and by how much in Section 4.3.2.

4.3.1 Tensendorf waves

The rendering of the oceans demo we used as a starting point was a real-time implementation in Nau3D of the
popular article published by Tessendorf et al. (2001). In this demo there are two main stages, the generation of
the height map and the actual rendering, the FFTs come into place in the generation of the height map since we
need to generate it and the additional vectors used for shading. In total, there are 4 2D inverse FFTs computed for
each frame, which translates to 8 ∗ FFT_SIZE 1D FFTs in total.
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Regarding the results in Section 4.2, we first changed the pipeline from a pass-per-stage radix-2 Cooley-Tukey
algorithm to implement radix-2 and radix-4 Stockham with synchronization within the kernel for the horizontal
and vertical passes. Each pass computes multiple FFTs at a time and we take advantage of the same kernel
to compute all required FFTs at the same time. Additionally, it is worth noticing that the inverse FFTs produce
from the frequencies components, two usable real values. Finally, we used vec4 as described in Section 4.2 to
compute multiple FFTs in the context of the SIMT instructions produced for the GPU.

Although the FFTs take a big role in this demo, it also renders the ocean waves that have around 2 million
vertices, hence, the performance does not only depend on the FFTs computation.

For this demo, we tested its performance with sizes 512 and 1024 for the ping pong buffers. We used size
512 to test a balance of performance and wave quality and 1024 to test for better wave quality as suggested by
Tessendorf et al. (2001).

Similarly to Section 4.2, the radix-4 Stockham implementation for the size 512 integrates a final stage with
radix-2 butterflies to be able to support the computation of this size.

4.3.2 Results

Figure 19: Time spent in the CPU and GPU for the size 512 FFT horizontal and vertical passes

Sizes 512 1024

Original CPU 1.805 1.946
GPU 3.241 14.086

Radix-2 Stockham CPU 0.191 0.203
GPU 2.457 13.48

Radix-4 Stockham CPU 0.249 0.2
GPU 1.632 7.621

Table 4: Time spent in the CPU and GPU for the size 512 FFT horizontal and vertical passes
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In Figure 19 and Table 4 we can note the performance difference the radix-2 Stockham gives when performing the
horizontal and vertical pass comparing it to the radix-2 Cooley-Tukey with a pass-per-stage. Not only is there an
improvement in time and resources used by eliminating CPU steps, but there is also better performance using
unique pass versions.

When running the application, the performance increase is noticeable and the frame rate is improved by up to
20%.

Testing the demo for higher quality waves the radix-4 Stockham performance stands out in Figure 19, as
predicted. When running the application, the difference in performance is noticeable, with the frame rate using
Stockham radix-2 being improved by up to 20%, while the radix-4 delivers a frame rate of up to 60%.

These results proved the need to implement adequate algorithms to ensure the quality and performance of the
target application.



5

C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we provided background on the Discrete Fourier Transform, with the goal of introducing the DIT
and DIF Cooley-Tukey algorithms. From there, we described how the Stockham algorithm removes the need
for the bit reversal permutation and what is the radix-4 of this algorithm. Moreover, we also discussed how a
complex-valued FFT can be used to compute 2 real-valued input sequences without any additional cost, and how
this transformation can be applied to the spatial domain of a 2D image.

After presenting the Fast Fourier Transform and its algorithms, we processed implementing the Cooley-Tukey
algorithm with a stage-per-pass approach followed by unique pass implementations of the radix-2 Cooley-Tukey
and Stockham algorithm. Additionally, we also implemented the radix-4 Stockham algorithm, however, with the
intent of having this algorithm support sizes of 2 instead of just power of 4, we altered the final stage of the code
to conditionally implement a final stage of radix-2 Stockham.

Finally, to analyze these algorithms, we conducted a comparison of the performance of the implementations
with benchmarks in a test environment and also measured implementation details such as the advantages and
disadvantages of using stage-per-pass versus unique-pass and double the FFTs in GLSL by reusing the same
vec4 operations. From the compared algorithms, the best results were those of radix-4 Stockham, which we
used as a model to test the possible benefits in the case study. The case study demonstrated positive results, by
applying the previously discussed knowledge in the real-time rendering technique with radix-4 Stockham multiple
FFTs.

5.1 R E S U LT S

Based on the findings of Chapter 4, we were able to conclude several aspects of the tests carried out. When it
comes to the tested unique-pass approach, it was demonstrated to be faster than the stage-per-pass, yet, we
concluded multiple advantages and disadvantages:

Advantages:

• Synchronization only on the GPU, and not with the CPU until the 2D FFT is fully calculated;

• The work synchronizes only on the 1D FFT, and not on the whole 2D FFT, hence, it finishes the work earlier
than the stage-per-pass approach;
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• Unique-pass shader has more constant expressions and information compared to the stage-per-pass
shader, thus it is more prone to compiler optimizations.

Disadvantages:

• Higher kernel size;

• The implementation is specialized for a specific size, therefore, not as flexible to reuse for other sizes.
While the stage-per-pass implementation is reused for multiple power of 2 sizes, the unique-pass strategies
require changing the provided macro constants and recompiling as an additional shader;

• Mixed radix stages do not have special invocation spaces. This was the case of the radix-4 Stockham for
power of 2 sizes, we were required to use duplicate the amount of radix-2 Stockham stage performed by
each thread since there were only FFT_SIZE/4 threads.

Furthermore, when it comes to comparing implementations, it was found that radix-4 Stockham obtained the
best results, up to 2× faster than radix-2 Cooley-Tukey. This was mainly due to the elimination of the bit reversal
permutation and the reduction in the number of memory accesses by half due to the computation of 2 radix-2
butterflies of 2 radix-2 stages at once.

When the acquired knowledge was applied to the case study, as expected, there was an increase in performance
similar to that of the tests carried out. This case study applied strategies that were described and tested, such as
the use of double FFTs by using the vec4 operations and the multiple real values from the FFT frequencies. The
results improved the frames per second of the application by up to 60%.

5.2 F U T U R E W O R K

With the obtained results, other questions arise, which may lead to future studies to expand the work carried out.
Although the radix-4 reduced the memory accesses by half, these memory loads still weigh on the performance

of the compute shaders, other strategies for this problem could be studied to reduce the overhead this introduces.
Since the results of the radix-4 Stockham were the fastest when using radix higher than 4, what is the most

suitable configuration for dispatching a higher radix implementation while still supporting power of 2 sizes? With
the size restriction of the invocation space until the kernel is done executing, the unique-pass approach needs to
duplicate the number of butterflies for each lower radix stage of the implementation. Therefore, we could study the
implementation of these higher radix algorithms to verify if the usage of stage passes for the lower radix stages
would be more beneficial than strictly having a unique-pass approach. A study could be carried out to explore
these conditions for multiple GPUs, and come to a conclusion on the best configuration on average for the tested
hardware.
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David Střelák and Jiří Filipovič. Performance analysis and autotuning setup of the cufft library. In Proceedings of
the 2nd Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient HPC Systems, pages 1–6,
2018.

https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
https://www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft
https://github.com/Nau3D/nau


B I B L I O G R A P H Y 50

Jeff A Stuart and John D Owens. Efficient synchronization primitives for gpus. arXiv preprint arXiv:1110.4623,
2011.

Jerry Tessendorf et al. Simulating ocean water. Simulating nature: realistic and interactive techniques. SIGGRAPH,
1(2):5, 2001.

Tran Thong. Algebraic formulation of the fast fourier transform. IEEE Circuits & Systems Magazine, 3(2):9–19,
1981.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel math
kernel library. In High-Performance Computing on the Intel® Xeon Phi™, pages 167–188. Springer, 2014.

R Yavne. An economical method for calculating the discrete fourier transform. In Proceedings of the December
9-11, 1968, fall joint computer conference, part I, pages 115–125, 1968.



Part I

A P P E N D I C E S



A
G L S L F F T

#version 440

#define M_PI 3.1415926535897932384626433832795

layout (local_size_x = 4, local_size_y = 8) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 0, rg32f) uniform image2D pingpong1;

uniform int pingpong;

uniform int log_width;

uniform int stage;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

int bit_reverse(int k) {

uint br = bitfieldReverse(k);

return int(bitfieldExtract(br, 32 - log_width, log_width));

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_GlobalInvocationID.y);

int group_size = 2 << stage;

int shift = 1 << stage;
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vec2 a, b;

int idx = (line % shift) + group_size * (line / shift);

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

if (pingpong == 0) {

if (stage == 0) {

a = imageLoad(pingpong0, ivec2(bit_reverse(idx), column)).rg;

b = imageLoad(pingpong0, ivec2(bit_reverse(idx + shift), column)).rg

;

}

else {

a = imageLoad(pingpong0, ivec2(idx, column)).rg;

b = imageLoad(pingpong0, ivec2(idx + shift, column)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong1, ivec2(idx, column), vec4(raux, 0, 0));

raux = a - wb;

imageStore(pingpong1, ivec2(idx + shift, column), vec4(raux, 0, 0));

}

else {

a = imageLoad(pingpong1, ivec2(idx, column)).rg;

b = imageLoad(pingpong1, ivec2(idx + shift, column)).rg;

vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong0, ivec2(idx, column), vec4(raux,0,0));

raux = a - wb;

imageStore(pingpong0, ivec2(idx + shift, column), vec4(raux,0,0));

}

}

Listing A.1: FFT Radix-2 Cooley-Tukey Horizontal stage pass, see Section 3.1

#version 440

#define M_PI 3.1415926535897932384626433832795

layout (local_size_x = 8, local_size_y = 4) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;
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uniform int pingpong;

uniform int log_width;

uniform int stage;

uniform int fft_dir;

int iter = 1 << log_width;

int shift = (1 << stage);

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

int bit_reverse(int k) {

uint br = bitfieldReverse(k);

return int(bitfieldExtract(br, 32 - log_width, log_width));

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_GlobalInvocationID.y);

int group_size = 2 << stage;

int shift = 1 << stage;

vec2 a, b;

int idx = (column % shift) + group_size * (column / shift);

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

float mult_factor = 1.0;

if ((stage == log_width - 1) && fft_dir == 1) {

mult_factor = 1.0 / (iter*iter) ;

}

if (pingpong == 0) {

if (stage == 0) {

a = imageLoad(pingpong0, ivec2(line, bit_reverse(idx))).rg;

b = imageLoad(pingpong0, ivec2(line, bit_reverse(idx + shift))).rg;

}

else {
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a = imageLoad(pingpong0, ivec2(line, idx)).rg;

b = imageLoad(pingpong0, ivec2(line, idx + shift)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = (a + wb) * mult_factor;

imageStore(pingpong1, ivec2(line, idx), vec4(raux,0,0));

raux = (a - wb) * mult_factor;

imageStore(pingpong1, ivec2(line, idx + shift), vec4(raux,0,0));

}

else {

if (stage == 0) {

a = imageLoad(pingpong1, ivec2(line, bit_reverse(idx))).rg;

b = imageLoad(pingpong1, ivec2(line, bit_reverse(idx + shift))).rg;

}

else {

a = imageLoad(pingpong1, ivec2(line, idx)).rg;

b = imageLoad(pingpong1, ivec2(line, idx + shift)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = (a + wb) * mult_factor;

imageStore(pingpong0, ivec2(line, idx), vec4(raux,0,0));

raux = (a - wb) * mult_factor;

imageStore(pingpong0, ivec2(line, idx + shift), vec4(raux,0,0));

}

}

Listing A.2: FFT Radix-2 Cooley-Tukey Vertical stage pass, see Section 3.1

#version 440

#define M_PI 3.1415926535897932384626433832795

#define FFT_SIZE 256

#define LOG_SIZE 8

layout (local_size_x = FFT_SIZE/2, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,
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v0.x * v1.y + v0.y * v1.x);

}

int bit_reverse(int k) {

uint br = bitfieldReverse(k);

return int(bitfieldExtract(br, 32 - LOG_SIZE, LOG_SIZE));

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_WorkGroupID.y);

int pingpong = 0;

for(int stage = 0; stage < LOG_SIZE; ++stage) {

int group_size = 2 << stage;

int shift = 1 << stage;

vec2 a, b;

int idx = (line % shift) + group_size * (line / shift);

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

// alternate between textures

if (pingpong == 0) {

if (stage == 0) {

a = imageLoad(pingpong0, ivec2(bit_reverse(idx), column)).rg;

b = imageLoad(pingpong0, ivec2(bit_reverse(idx + shift), column))

.rg;

}

else {

a = imageLoad(pingpong0, ivec2(idx, column)).rg;

b = imageLoad(pingpong0, ivec2(idx + shift, column)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong1, ivec2(idx, column), vec4(raux, 0, 0));

raux = a - wb;

imageStore(pingpong1, ivec2(idx + shift, column), vec4(raux, 0, 0));

}

else {

a = imageLoad(pingpong1, ivec2(idx, column)).rg;

b = imageLoad(pingpong1, ivec2(idx + shift, column)).rg;
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vec2 wb = complex_mult(w, b);

vec2 raux = a + wb;

imageStore(pingpong0, ivec2(idx, column), vec4(raux,0,0));

raux = a - wb;

imageStore(pingpong0, ivec2(idx + shift, column), vec4(raux,0,0));

}

pingpong = (pingpong + 1) % 2;

barrier();

}

}

Listing A.3: FFT Radix-2 Cooley-Tukey Horizontal unique pass, see Section 3.1.1

#version 440

#define M_PI 3.1415926535897932384626433832795

#define FFT_SIZE 256

#define LOG_SIZE 8

layout (local_size_x = FFT_SIZE/2, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

int bit_reverse(int k) {

uint br = bitfieldReverse(k);

return int(bitfieldExtract(br, 32 - LOG_SIZE, LOG_SIZE));

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_WorkGroupID.y);

int column = int(gl_GlobalInvocationID.x);

int pingpong = LOG_SIZE % 2;
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for(int stage = 0; stage < LOG_SIZE; ++stage) {

int group_size = 2 << stage;

int shift = 1 << stage;

vec2 a, b;

int idx = (column % shift) + group_size * (column / shift);

vec2 w = euler(fft_dir * 2 * (M_PI / group_size) * ((idx % group_size) %

shift));

float mult_factor = 1.0;

if ((stage == LOG_SIZE - 1) && fft_dir == 1) {

mult_factor = 1.0 / (FFT_SIZE*FFT_SIZE);

}

if (pingpong == 0) {

if (stage == 0) {

a = imageLoad(pingpong0, ivec2(line, bit_reverse(idx))).rg;

b = imageLoad(pingpong0, ivec2(line, bit_reverse(idx + shift))).

rg;

}

else {

a = imageLoad(pingpong0, ivec2(line, idx)).rg;

b = imageLoad(pingpong0, ivec2(line, idx + shift)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = (a + wb) * mult_factor;

imageStore(pingpong1, ivec2(line, idx), vec4(raux,0,0));

raux = (a - wb) * mult_factor;

imageStore(pingpong1, ivec2(line, idx + shift), vec4(raux,0,0));

}

else {

if (stage == 0) {

a = imageLoad(pingpong1, ivec2(line, bit_reverse(idx))).rg;

b = imageLoad(pingpong1, ivec2(line, bit_reverse(idx + shift))).

rg;

}

else {

a = imageLoad(pingpong1, ivec2(line, idx)).rg;

b = imageLoad(pingpong1, ivec2(line, idx + shift)).rg;

}

vec2 wb = complex_mult(w, b);

vec2 raux = (a + wb) * mult_factor;

imageStore(pingpong0, ivec2(line, idx), vec4(raux,0,0));

raux = (a - wb) * mult_factor;
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imageStore(pingpong0, ivec2(line, idx + shift), vec4(raux,0,0));

}

pingpong = ((pingpong + 1) % 2);

barrier();

}

}

Listing A.4: FFT Radix-2 Cooley-Tukey Vertical unique pass, see Section 3.1.1

#version 440

#define M_PI 3.1415926535897932384626433832795

#define FFT_SIZE 256

#define LOG_SIZE 8

layout (local_size_x = (FFT_SIZE/2)/NUM_BUTTERFLIES, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_WorkGroupID.y);

int pingpong = 0;

for(int stage = 0; stage < LOG_SIZE; ++stage) {

int n = 1 << (LOG_SIZE - stage);

int m = n >> 1;

int s = 1 << stage;

int p = line / s;

int q = line % s;

vec2 wp = euler(fft_dir * 2 * (M_PI / n) * p);

if(pingpong == 0) {
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vec2 a = imageLoad(pingpong0, ivec2(q + s*(p + 0), column)).rg;

vec2 b = imageLoad(pingpong0, ivec2(q + s*(p + m), column)).rg;

vec2 res = (a + b);

imageStore(pingpong1, ivec2(q + s*(2*p + 0), column), vec4(res,0,0));

res = complex_mult(wp,(a - b));

imageStore(pingpong1, ivec2(q + s*(2*p + 1), column), vec4(res,0,0));

}

else {

vec2 a = imageLoad(pingpong1, ivec2(q + s*(p + 0), column)).rg;

vec2 b = imageLoad(pingpong1, ivec2(q + s*(p + m), column)).rg;

vec2 res = (a + b);

imageStore(pingpong0, ivec2(q + s*(2*p + 0), column), vec4(res,0,0));

res = complex_mult(wp,(a - b));

imageStore(pingpong0, ivec2(q + s*(2*p + 1), column), vec4(res,0,0));

}

pingpong = (pingpong + 1) % 2;

barrier();

}

}

Listing A.5: FFT Radix-2 Stockham Horizontal unique pass, see Section 3.2

#version 440

#define M_PI 3.1415926535897932384626433832795

#define FFT_SIZE 256

#define LOG_SIZE 8

layout (local_size_x = FFT_SIZE/2, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}
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void main() {

int line = int(gl_WorkGroupID.y);

int column = int(gl_GlobalInvocationID.x);

int pingpong = LOG_SIZE % 2;

for(int stage = 0; stage < LOG_SIZE; ++stage) {

int n = 1 << (LOG_SIZE - stage);

int m = n >> 1;

int s = 1 << stage;

float mult_factor = 1.0;

if ((stage == LOG_SIZE-1) && fft_dir == 1) {

mult_factor = 1.0 / (FFT_SIZE*FFT_SIZE) ;

}

int p = column / s;

int q = column % s;

vec2 wp = euler(fft_dir * 2 * (M_PI / n) * p);

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(line, q + s*(p + 0))).rg;

vec2 b = imageLoad(pingpong0, ivec2(line, q + s*(p + m))).rg;

vec2 res = (a + b) * mult_factor;

imageStore(pingpong1, ivec2(line, q + s*(2*p + 0)), vec4(res,0,0));

res = complex_mult(wp,(a - b)) * mult_factor;

imageStore(pingpong1, ivec2(line, q + s*(2*p + 1)), vec4(res,0,0));

}

else {

vec2 a = imageLoad(pingpong1, ivec2(line, q + s*(p + 0))).rg;

vec2 b = imageLoad(pingpong1, ivec2(line, q + s*(p + m))).rg;

vec2 res = (a + b) * mult_factor;

imageStore(pingpong0, ivec2(line, q + s*(2*p + 0)), vec4(res,0,0));

res = complex_mult(wp,(a - b)) * mult_factor;

imageStore(pingpong0, ivec2(line, q + s*(2*p + 1)), vec4(res,0,0));

}

pingpong = (pingpong + 1) % 2;

barrier();

}

}

Listing A.6: FFT Radix-2 Stockham Vertical unique pass, see Section 3.2

#version 440
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#define M_PI 3.1415926535897932384626433832795

#define FFT_SIZE 256

#define LOG_SIZE 8 // log2(FFT_SIZE)

#define HALF_LOG_SIZE 4 // log2(FFT_SIZE) / 2

layout (local_size_x = FFT_SIZE/4, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_GlobalInvocationID.x);

int column = int(gl_WorkGroupID.y);

int pingpong = 0;

for(int stage = 0; stage < HALF_LOG_SIZE; ++stage) {

int n = 1 << (HALF_LOG_SIZE - stage)*2;

int s = 1 << stage*2;

int n0 = 0;

int n1 = n/4;

int n2 = n/2;

int n3 = n1 + n2;

int p = line / s;

int q = line % s;

vec2 w1p = euler(2*(M_PI / n) * p * fft_dir);

vec2 w2p = complex_mult(w1p,w1p);

vec2 w3p = complex_mult(w1p,w2p);

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(q + s*(p + n0), column)).rg;

vec2 b = imageLoad(pingpong0, ivec2(q + s*(p + n1), column)).rg;

vec2 c = imageLoad(pingpong0, ivec2(q + s*(p + n2), column)).rg;

vec2 d = imageLoad(pingpong0, ivec2(q + s*(p + n3), column)).rg;
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vec2 apc = a + c;

vec2 amc = a - c;

vec2 bpd = b + d;

vec2 jbmd = complex_mult(vec2(0,1), b - d);

imageStore(pingpong1, ivec2(q + s*(4*p + 0), column), vec4(apc + bpd,

0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 1), column), vec4(

complex_mult(w1p, amc + jbmd*fft_dir), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 2), column), vec4(

complex_mult(w2p, apc - bpd ), 0,0));

imageStore(pingpong1, ivec2(q + s*(4*p + 3), column), vec4(

complex_mult(w3p, amc - jbmd*fft_dir), 0,0));

}

else {

vec2 a = imageLoad(pingpong1, ivec2(q + s*(p + n0), column)).rg;

vec2 b = imageLoad(pingpong1, ivec2(q + s*(p + n1), column)).rg;

vec2 c = imageLoad(pingpong1, ivec2(q + s*(p + n2), column)).rg;

vec2 d = imageLoad(pingpong1, ivec2(q + s*(p + n3), column)).rg;

vec2 apc = a + c;

vec2 amc = a - c;

vec2 bpd = b + d;

vec2 jbmd = complex_mult(vec2(0,1), b - d);

imageStore(pingpong0, ivec2(q + s*(4*p + 0), column), vec4(apc + bpd,

0,0));

imageStore(pingpong0, ivec2(q + s*(4*p + 1), column), vec4(

complex_mult(w1p, amc + jbmd*fft_dir), 0,0));

imageStore(pingpong0, ivec2(q + s*(4*p + 2), column), vec4(

complex_mult(w2p, apc - bpd ), 0,0));

imageStore(pingpong0, ivec2(q + s*(4*p + 3), column), vec4(

complex_mult(w3p, amc - jbmd*fft_dir), 0,0));

}

pingpong = (pingpong + 1) % 2;

barrier();

}

}

Listing A.7: FFT Radix-4 Stockham Horizontal unique pass, see Section 3.3

#version 440

#define M_PI 3.1415926535897932384626433832795
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#define FFT_SIZE 256

#define LOG_SIZE 8 // log2(FFT_SIZE)

#define HALF_LOG_SIZE 4 // log2(FFT_SIZE) / 2

layout (local_size_x = (FFT_SIZE/4)/NUM_BUTTERFLIES, local_size_y = 1) in;

layout (binding = 0, rg32f) uniform image2D pingpong0;

layout (binding = 1, rg32f) uniform image2D pingpong1;

uniform int fft_dir;

vec2 complex_mult(vec2 v0, vec2 v1) {

return vec2(v0.x * v1.x - v0.y * v1.y,

v0.x * v1.y + v0.y * v1.x);

}

vec2 euler(float angle) {

return vec2(cos(angle), sin(angle));

}

void main() {

int line = int(gl_WorkGroupID.y);

int column = int(gl_GlobalInvocationID.x);

int pingpong = HALF_LOG_SIZE % 2;

for(int stage = 0; stage < HALF_LOG_SIZE; ++stage) {

int group_size = 2 << stage;

int shift = 1 << stage;

int n = 1 << ((HALF_LOG_SIZE - stage)*2);

int s = 1 << (stage*2);

int n0 = 0;

int n1 = n/4;

int n2 = n/2;

int n3 = n1 + n2;

float mult_factor = 1.0;

if((stage == HALF_LOG_SIZE - 1) && fft_dir == 1) {

mult_factor = 1.0 / (FFT_SIZE*FFT_SIZE) ;

}

int p = column / s;

int q = column % s;

vec2 w1p = euler(2*(M_PI / n) * p * fft_dir);

vec2 w2p = complex_mult(w1p,w1p);
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vec2 w3p = complex_mult(w1p,w2p);

if(pingpong == 0) {

vec2 a = imageLoad(pingpong0, ivec2(line, q + s*(p + n0))).rg;

vec2 b = imageLoad(pingpong0, ivec2(line, q + s*(p + n1))).rg;

vec2 c = imageLoad(pingpong0, ivec2(line, q + s*(p + n2))).rg;

vec2 d = imageLoad(pingpong0, ivec2(line, q + s*(p + n3))).rg;

vec2 apc = a + c;

vec2 amc = a - c;

vec2 bpd = b + d;

vec2 jbmd = complex_mult(vec2(0,1), b - d);

imageStore(pingpong1, ivec2(line, q + s*(4*p + 0)), vec4(mult_factor

* (apc + bpd), 0,0));

imageStore(pingpong1, ivec2(line, q + s*(4*p + 1)), vec4(mult_factor

* (complex_mult(w1p, amc + jbmd*fft_dir)), 0,0));

imageStore(pingpong1, ivec2(line, q + s*(4*p + 2)), vec4(mult_factor

* (complex_mult(w2p, apc - bpd )), 0,0));

imageStore(pingpong1, ivec2(line, q + s*(4*p + 3)), vec4(mult_factor

* (complex_mult(w3p, amc - jbmd*fft_dir)), 0,0));

}

else {

vec2 a = imageLoad(pingpong1, ivec2(line, q + s*(p + n0))).rg;

vec2 b = imageLoad(pingpong1, ivec2(line, q + s*(p + n1))).rg;

vec2 c = imageLoad(pingpong1, ivec2(line, q + s*(p + n2))).rg;

vec2 d = imageLoad(pingpong1, ivec2(line, q + s*(p + n3))).rg;

vec2 apc = a + c;

vec2 amc = a - c;

vec2 bpd = b + d;

vec2 jbmd = complex_mult(vec2(0,1), b - d);

imageStore(pingpong0, ivec2(line, q + s*(4*p + 0)), vec4(mult_factor

* (apc + bpd), 0,0));

imageStore(pingpong0, ivec2(line, q + s*(4*p + 1)), vec4(mult_factor

* (complex_mult(w1p, amc + jbmd*fft_dir)), 0,0));

imageStore(pingpong0, ivec2(line, q + s*(4*p + 2)), vec4(mult_factor

* (complex_mult(w2p, apc - bpd )), 0,0));

imageStore(pingpong0, ivec2(line, q + s*(4*p + 3)), vec4(mult_factor

* (complex_mult(w3p, amc - jbmd*fft_dir)), 0,0));

}

pingpong = (pingpong + 1) % 2;

barrier();

}

}
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Listing A.8: FFT Radix-4 Stockham Vertical unique pass, see Section 3.3



B
C U F F T

#include <cstdio>

#include <cufft.h>

#include <cuda.h>

#define FFT_SIZE 256

#define CU_ERR_CHECK_MSG(err, msg) { \

if(err != cudaSuccess) { \

fprintf(stderr, msg); \

exit(1); \

} \

}

#define CU_CHECK_MSG(res, msg) { \

if(res != CUFFT_SUCCESS) { \

fprintf(stderr, msg); \

exit(1); \

} \

}

int main() {

const size_t data_size = sizeof(cufftComplex)*FFT_SIZE*FFT_SIZE;

cufftComplex* data = reinterpret_cast<cufftComplex*>(malloc(data_size));

cufftComplex* gpu_data_in;

cufftComplex* gpu_data_out;

cudaError_t err;

// Initializing input sequence

for(size_t i = 0; i < FFT_SIZE*FFT_SIZE; ++i) {

data[i].x = i;

data[i].y = 0.00;

}

// Allocate Input GPU buffer

err = cudaMalloc(&gpu_data_in, data_size);
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CU_ERR_CHECK_MSG(err, "Cuda error: Failed to allocate\n");

// Allocate Output GPU buffer

err = cudaMalloc(&gpu_data_out, data_size);

CU_ERR_CHECK_MSG(err, "Cuda error: Failed to allocate\n");

// Copy data to GPU buffer

err = cudaMemcpy(gpu_data_in, data, data_size, cudaMemcpyHostToDevice);

CU_ERR_CHECK_MSG(err, "Cuda error: Failed to copy buffer to GPU\n");

// Setup cufft plan

cufftHandle plan;

cufftResult_t res;

res = cufftPlan2d(&plan, FFT_SIZE, FFT_SIZE, CUFFT_C2C);

CU_CHECK_MSG(res, "cuFFT error: Plan creation failed\n");

// Execute Forward 2D FFT

res = cufftExecC2C(plan, gpu_data_in, gpu_data_out, CUFFT_FORWARD);

CU_CHECK_MSG(res, "cuFFT error: ExecC2C Forward failed\n");

// Await end of execution

err = cudaDeviceSynchronize();

CU_ERR_CHECK_MSG(err, "Cuda error: Failed to synchronize\n");

// Execute Inverse 2D FFT

res = cufftExecC2C(plan, gpu_data_in, gpu_data_out, CUFFT_FORWARD);

CU_CHECK_MSG(res, "cuFFT error: ExecC2C Forward failed\n");

// Await end of execution

err = cudaDeviceSynchronize();

CU_ERR_CHECK_MSG(err, "Cuda error: Failed to synchronize\n");

// Retrieve computed FFT buffer

err = cudaMemcpy(data, gpu_data_in, data_size, cudaMemcpyDeviceToHost);

CU_ERR_CHECK_MSG(err, "Cuda error: Failed to copy buffer to GPU\n");

// Destroy Cuda and cuFFT resources

cufftDestroy(plan);

cudaFree(gpu_data_in);

return 0;

}

Listing B.1: cuFFT, see Section 4.1
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