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Abstract — Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and
A a transitive Lie algebroid on M . A piecewise smooth form on A is a family ω = (ωΔ)Δ∈K such that
ωΔ is a smooth form on the Lie algebroid restriction of A to Δ, satisfying the compatibility condition
concerning the restrictions of ωΔ to the faces of Δ, that is, if Δ′ is a face of Δ, the restriction of the
form ωΔ to the simplex Δ′ coincides with the form ωΔ′ . The set Ω∗(A;K) of all piecewise smooth
forms on A is a cochain algebra. There exists a natural morphism

Ω∗(A;M) → Ω∗(A;K)

of cochain algebras given by restriction of a smooth form defined on A to a smooth form defined on
the Lie algebroid restriction of A to the simplex Δ, for all simplices Δ of K. In this paper, we prove
that, for triangulated compact manifolds, the cohomology of this construction is isomorphic to the
Lie algebroid cohomology of A, in which that isomorphism is induced by the restriction mapping.

DOI 10.1134/S106192082303007X

1. INTRODUCTION

D. Sullivan considered in [1] (1977) a new model for the underlying cochain complex of classical coho-
mologies with rational coefficients for arbitrary simplicial spaces which gives an isomorphism with classical
rational cohomologies (see also D. Sullivan [2, Theorem D]) (1975). This new model is determined by the de
Rham complex of all rational polynomial forms defined on the simplicial complex triangulating the space.
H. Whitney also presented in [3] (1957) other cell-like constructions of cochain complexes which induce iso-
morphisms in cohomology with classical cohomologies. One of those constructions presented in [1] and [3]
states that the de Rham cohomology of a smooth manifold, smoothly triangulated by a simplicial complex,
is isomorphic to piecewise smooth cohomology of the simplicial complex. This isomorphism is induced by
restriction of smooth forms to all simplices. That construction have led us to conjecture that, given a tran-
sitive Lie algebroid on a triangulated compact smooth manifold, the morphism given by restriction, which
takes smooth forms on the Lie algebroid into piecewise smooth forms on the same Lie algebroid, still remains
an isomorphism in cohomology.

The aim of the present paper is to prove that conjecture. For this purpose, we use the structure which
commences by fixing a smooth triangulation of the base of a transitive Lie algebroid by a simplicial complex
and taking the restriction of the Lie algebroid to all simplices of the triangulation. Since the Lie algebroid
is transitive, the restriction of the Lie algebroid to each simplex always exists. When this structure is given,
we define the notion of piecewise smooth form in a similar way to piecewise forms on a simplicial complex.
The set of all piecewise smooth forms defined on a transitive Lie algebroid over a triangulated base is
naturally equipped with a differential, yielding a commutative differential graded algebra. Its cohomology
is, by definition, the piecewise Lie algebroid cohomology of the Lie algebroid. Each smooth form defined
on the Lie algebroid gives a piecewise smooth form defined by taking the restriction of the form to each
simplex. This correspondence is a natural mapping from the usual algebra of the smooth forms on the Lie
algebroid to the algebra of the piecewise smooth forms on the same Lie algebroid. Based on three crucial
results, namely the triviality of a transitive Lie algebroid over a contractible smooth manifold ( Mackenzie,
[4, Theorem 7.3.18], 2005), the Künneth theorem for Lie algebroids (Kubarski, [5, Section 6], 2002) and
the de Rham-Sullivan theorem for smooth manifolds ([1, Theorem 7.1]), we show that mapping induces an
isomorphism in cohomology.
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The paper consists of three sections. In the first section, we shall summarize some definitions and proper-
ties on restrictions and cohomology of transitive Lie algebroids defined over smooth manifolds. Description of
definitions and results on Lie algebroids can be found in A. Cannas Silva, A. Weinstein, [6] (1999), Kubarski,
Mishchenko, [7], (2003), Mackenzie, [4] and Mackenzie, Higgins, [8], (1990). In the second section, we intro-
duce the notion of piecewise smooth form on a transitive Lie algebroid defined on a triangulated manifold
and we define its piecewise Lie algebroid cohomology. We still prove that the Mayer-Vietoris sequence and
the Künneth theorem remain true in this context. The goal of the third section is to prove that the restriction
mapping mentioned in the previous paragraph induces an isomorphism in cohomology.

Given a smooth manifold M and an integer p � 0, it is well known that the subset of M consisting of all
points x ∈ M such that the pairing (M,x) is locally diffeomorphic to a sectors of index p is a submanifold
of M , called the boundary of index p of M . Throughout this paper, we shall work on manifolds which are
smooth, finite-dimensional and possibly with boundaries of different indices.

2. PRELIMINARIES ON RESTRICTIONS AND COHOMOLOGY OF LIE ALGEBROIDS

Let M be a smooth manifold, possibly with boundaries of different indices, TM the tangent bundle to M
and Γ(TM) the Lie algebra of the vector fields on M .

A Lie algebroid on M is a vector bundle on M whose total space is denoted by A. So we have a total
space A and a projection πA,M : A M−→. For brevity, we will denote the bundle itself and its total space with
one letter, say A, if this does not lead to misunderstandings. The bundle A is equipped with a vector bundle
morphism γA,TM : A −→ TM , called anchor of A, in which the diagram

A
γA,TM ��

πA,M ���
��

��
��

� TM

πTM,M����
��
��
��

M

is commutative, and a structure of real Lie algebra on the vector space Γ(A) of the sections of A (denoted
by the Lie bracket {·, ·}A or simply {·, ·}) such that the induced mapping γΓ(A),Γ(TM) : Γ(A) −→ Γ(TM)
is a Lie algebra homomorphism and the action of the algebra C∞(M) of the smooth real functions on Γ(A)
satisfies the natural Leibniz condition:

{ξ, fη} = f{ξ, η}+ (γΓ(ξ)(f))η

for each ξ, η ∈ Γ(A) and f ∈ C∞(M). The Lie algebroid A is called transitive if the anchor γ is fiberwise
surjective. If B is another Lie algebroid on a smooth manifold N and δ : B −→ TN its anchor, a morphism of
Lie algebroids from B to A consists of a pair of mappings (ψ, ϕ) in which ψ : B −→ A and ϕ : N −→ M , such
that (ψ, ϕ) is a vector bundle morphism satisfying the equality δ◦ψ = T (ϕ)◦γ, in which T (ϕ) : TN −→ TM
denotes the tangent mapping of ϕ, and preserving the Lie bracket condition for ψ-decompositions (for details,
see [4, Section 4.3]). We list now three examples of Lie algebroids used in this work.

Example 1. (Lie algebras) Any real finite dimensional Lie algebra g over a one-point space M = {∗}
with anchor equal to zero is a Lie algebroid on M . Any Lie algebra morphism between two Lie algebras is a
Lie algebroid morphism for this structure of Lie algebroid.

Example 2. (Tangent Lie algebroids) If M is a smooth manifold then TM is a Lie algebroid on M .
The anchor mapping is the identity mapping of TM and the Lie bracket is the usual Lie bracket of vector
fields ({ξ, η} ≡ [ξ, η]). This Lie algebroid is called the tangent Lie algebroid of M . The anchor mapping
γ : A −→ TM is a Lie algebroid morphism.

Example 3. (Trivial Lie algebroids)
Let g be a real finite-dimensional Lie algebra and M a smooth manifold. Consider the trivial vector bundle

M × g of base M . The fibre product TM ⊕ (M × g) is a Lie algebroid on M in which the anchor mapping
is the projection γ : TM ⊕ (M × g) −→ TM on TM and the Lie bracket on Γ(TM ⊕ (M × g)) is defined by

{
(
X, u), (Y, v)} = ([X,Y ]TM , X(v)− Y (u)− [u, v]

)

for X,Y ∈ Γ(TM) and u, v : M −→ g smooth mappings. This Lie algebroid is called trivial Lie algebroid
on M with fibre g. The Lie algebroid product (compare with the paragraph preceding the proposition 1.11
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of [8]) TM × g, which is defined over M � M ×N , is isomorphic to the trivial Lie algebroid TM ⊕ (M × g)
defined over M . We will identify both Lie algebroids.

Restrictions of Lie algebroids to submanifolds of the base are given by inverse image of Lie algebroids
through the inclusion of submanifolds. In the following paragraph, we summarize the image inverse of Lie
algebroids.

Let A be a transitive Lie algebroid on a smooth manifold M and γ : A −→ TM its anchor. Let N be a
smooth submanifold and ϕ : N −→ M and the smooth inclusion.

We recall that the Lie algebroid inverse image of A by ϕ, denoted by ϕ!!A, is defined as follows. Consider
the differential Tϕ : TN −→ TM and the composition of the following two diagrams:

(Tϕ)∗A
̂Tϕ ��

γ̂

��

A
γ

��
TN

Tϕ ��

πTN,N

��

TM

πTM,M

��
N

ϕ �� M

the inverse image (of Tϕ) (or pullback of cospan Tϕ and γ) (or fiber-product of spaces TN and A) with the
differential diagram. The total space of the bundle ϕ!!A on the manifold N is defined as isomorphic to

ϕ!!A ≈ �� (Tϕ)∗A

(for further details, see [4] or [8]).
We notice that the vector bundle γ̂ : (Tϕ)∗A −→ TN exists because γ is surjective. The smooth mapping

ϕ!! : ϕ!!A −→ A defined by ϕ!!(X, a) = a will be called the canonical mapping induced by ϕ and the pair of
mappings (ϕ!!, ϕ) the canonical Lie algebroid morphism induced by ϕ.

In order to define a commutator Lie bracket on the set Γ(ϕ!!A, N) of the sections of ϕ!!A, consider the
Atiyah exact sequence of vector bundles (which are Lie algebroids, see [7] or [4]):

0 �� L
iL,A ��

πL,M ���
��

��
��

A
γA,TM��

πA,M

��

TM ��

πTM,M����
��
��
��

0

M

Consider the change of the base M for the submanifold N :

0 �� LN

iL,A ��

πL,M
���

��
��

��
�

AN

γA,TM��

πA,M

��

(TM)N ��

πTM,M

����
��
��
��
�

0

N

The bundle TN is the subbundle of (TM)N :

0 �� LN
i �� AN

γ �� (TM)N �� 0

0 �� LN
�� ϕ!!A = γ−1(TN)

� �

��

γ �� TN ��
� �

��

0

On the level of total spaces, there is a sequence of inclusions:

ϕ!!A �
� ��

��

AN
� � ��

��

A

��
N N

� � �� M
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Given two sections σ1, σ2 ∈ Γ(ϕ!!A, N) consider extensions of the sections σ1, σ2 to sections σ̃1, σ̃2 ∈ Γ(A,M).
Then, by definition,

{σ1, σ2}ϕ!!A = {σ̃1, σ̃2}|N
we obtain the Lie bracket on the space Γ(ϕ!!A, N). The definition of the Lie bracket {•, •}ϕ!!A does not
depend on the choice of the extension (σ̃1, σ̃2) of the sections (σ1, σ2).

Definition 1. Keeping these hypotheses and notation, the Lie algebroid ϕ!!A constructed as introduced
above is called the Lie algebroid restriction of A to the submanifold N and denoted by A!!

N .

We note that restrictions of transitive Lie algebroids enjoy the transitivity property and that (TM)!!N =
TN .

Let AN denote the restriction of the underlying vector bundle of A to the submanifold N . In the case in
which N is an open subset U of M , the Lie algebroid restriction A!!

U constructed according to the dentition 1
is naturally isomorphic to the Lie algebroid AU according to [4, Proposition 3.3.2]. In the general case,
the canonical mapping ϕ!! : ϕ!!A −→ A can be restricted to the injective N -morphism of vector bundles
ϕ!! : ϕ!!A −→ AN . Consequently, the vector bundle Im ϕ!! is a transitive Lie algebroid, which is identified
to the Lie algebroid A!!

N . In the proof of the proposition 4, the canonical mapping ϕ!! : A!!
N −→ A will be

denoted by (ϕA
M,N )!! in order to distinguish the canonical mappings corresponding to the restrictions of two

Lie algebroids defined over the same manifold.

We introduce now the cochain complex of the smooth forms on a Lie algebroid and its cohomology. Let
M be a smooth manifold and A a transitive Lie algebroid on M . Let M × R denote the trivial vector
bundle of base M and fibre R. A smooth form of degree p on A is a section of the exterior algebra bundle(∧p A∗)⊗

(
M×R

)
. The set of all smooth forms of degree p on A will be denoted by Ωp(A;M). For p = 0, we

have that Ω0(A;M) = C∞(M). The set Ωp(A;M) is a C∞(M)-module for each p � 0. Since the dimension
of the fibres of A is finite, the module Ωp(A;M) is also the module of the sections of the alternated vector
bundle Altp(A;M ×R). Hence, the exterior product of alternated multilinear mappings induces an exterior
product in

Ω∗(A;M) =
⊕

p�0

Ωp(A;M)

making Ω∗(A;M) into a skew-commutative graded algebra, in which the constant mapping M −→ R, x 
→ 1,
is the unit.

For the definition of exterior derivative on Ω∗(A;M), we first consider the algebra Ω0(A;M) = C∞(M).
Let f ∈ C∞(M) be a smooth mapping. The exterior derivative of f , denoted by d0Af , is the smooth form
belonging to Ω1(A;M) such that, on each X ∈ Γ(A), the equality

d0Af(X) = (γ ◦X) · f

holds. Now, for each p � 1 we define

dpA : Ωp(A;M) −→ Ωp+1(A;M)

dpAω(X1, X2, · · ·, Xp+1) =

p+1∑

j=1

(−1)j+1(γ ◦Xj) · (ω(X1, · · ·, X̂j , · · ·, Xp+1))

+
∑

i<k

(−1)i+kω({Xi, Xk}, X1, · · ·, X̂i, · · ·, X̂k, · · ·, Xp+1)

for ω ∈ Ωp(A;M) and X1, X2, · · ·, Xp+1 ∈ Γ(A). The family of differential operators d∗A = (dpA)p�0 satisfies
the properties

1. For each p � 0, dpA is linear;

2. For each p � 0, dp+1
A ◦ dpA = 0;

3. For each ξ ∈ Ωp(A;M) and η ∈ Ωq(A;M),

dp+q
A (ξ ∧ η) = dpA(ξ) ∧ η + (−1)pξ ∧ (dqAη).
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Hence, the family d∗A = (dpA)p�0 defines, on the algebra Ω∗(A;M), a structure of differential graded
algebra and so Ω∗(A;M) is a skew commutative cochain algebra defined over R.

Definition 2. The Lie algebroid cohomology of A is the cohomology space of the cochain algebra
Ω∗(A;M) equipped with the structures defined above. This cohomology space will be denoted by H∗(A;M).

Let B be another Lie algebroid defined on a smooth manifold N and λ = (ψ, ϕ) a morphism of Lie
algebroids defined by the smooth mappings ψ : A −→ B and ϕ : M −→ N . Let ω ∈ Ωp(B;N) be a smooth
form on B of degree p. The inverse image of ω by the morphism λ, denoted by λ∗ω, is the form defined by

(
λ∗ω

)
x
(v1, v2, · · ·, vp) = ωϕ(x)(ψ(v1), ψ(v2), · · ·, ψ(vp))

x ∈ M and v1, v2, . . . vp ∈ Ax. Thus, for each p � 0, there is a mapping

λ∗p : Ωp(B;N) −→ Ωp(A;M)

ω −→ λ∗ω.

The family λ∗ = (λ∗p)p�0 is a morphism of cochain algebras. In particular, if ϕ : N ↪→ M is a submanifold
and λ = (ϕ!!, ϕ) the canonical Lie algebroid morphism, in which ϕ!! : A!!

N −→ A is defined by ϕ!!(X, a) = a,
we can use the induced morphism λ∗ : Ω∗(A;M) −→ Ω∗(A!!

N ;N) for the definition of restriction of smooth
forms. We summarize it in our next definition.

Definition 3. For each form ω ∈ Ω∗(A;M), the form λ∗(ω) ∈ Ω∗(A!!
N ;N) is called the form restriction

of ω to N and denoted by ω!!
N or simply by ω/N

, if there is no danger of confusion with the restriction of ω
to N in the context of the restriction of the underlying vector bundle of A to N . In the subsequent sections,
the morphism λ∗ will be often denoted by ϕA

M,N .

If U is an open subset of M and ϕ : U ↪→ M the inclusion mapping then, for each p � 0, the spaces
Ωp(AU ;U) and Ωp(A!!

U ;U) are isomorphic. In the general case, if ϕ : N ↪→ M is a submanifold, we have
that the spaces Ωp(A!!

N ;N) and Ωp(Im ϕ!!;N) are isomorphic. Let us notice now a proposition concerning
extensions of smooth forms.

Proposition 1. Let M be a smooth manifold and ϕ : N ↪→ M a submanifold such that N is a closed
subset in M in the topological sense. Let A be a transitive Lie algebroid on M and consider the canonical Lie
algebroid morphism λ = (ϕ!!, ϕ) in which ϕ!! : A!!

N −→ A is defined by ϕ!!(X, a) = a. Then, the morphism of
cochain algebras

λ∗ : Ω∗(A;M) −→ Ω∗(A!!
N ;N)

is surjective.

Proof. Let γ : A −→ TM be the anchor of A and ω̃ ∈ Ωp(A!!
N ;N) a smooth form. We define the smooth

form ω̂ ∈ Ωp(Im ϕ!!;N) by
ω̂(ξ1, . . . , ξp) = ω̃((γ ◦ ξ1, ξ1), . . . , (γ ◦ ξ1, ξp))

Since N is closed, the form ω̂ extends to a smooth form ω ∈ Ω∗(A;M). We have that ω satisfies the equality
λ∗(ω) = ω̃.

We finalize this section by taking a theorem into consideration which will be used in the proof of the
proposition 7. Let A be a transitive Lie algebroid on a contractible smooth manifold M and g = kerγ, in
which γ denotes the anchor of A. Then, A is isomorphic to the trivial Lie algebroid TM × g.

This theorem is a direct consequence of [4, Theorem 7.3.18], and its proof follows the theory of non-Abelian
Lie algebra extensions. Alternatively, a proof of this theorem, based in integrability of Lie algebroids, is given
in [10, Corollary 5.6].

3. PIECEWISE SMOOTH FORMS AND COHOMOLOGY

For each simplicial complex K, its polytope will be denoted by |K|. In our context, simplex will always
mean closed simplex. A smooth manifold M is said to be smoothly triangulated by a simplicial complex
K if there exists a homeomorphism λ : |K| −→ M such that, for each simplex Δ ∈ K, the mapping
λ/Δ : Δ −→ M is a smooth embedding in all points including the boundary. As usually is done, we shall
not make no notational distinction between the manifold and the complex triangulating it. In what follows,
all simplicial complexes considered are geometric and finite. Each simplex can be represented as the convex
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body generated by its vertices and, if its vertices are the points a0, a1, . . . , ap, we eventually denote this
simplex by [a0, a1, . . . , ap]. We shall write Δ′ ≺ Δ, if Δ′ is a face of the simplex Δ.

The notation ϕ : Δ′ ↪→ Δ, in which ϕ is the inclusion mapping, will be also used when Δ′ is a face of Δ.
The open star of the simplex Δ in a simplicial complex K, denoted by St(Δ), is the union of the interiors
of all (closed) simplices of K having Δ as a face. The closed star of the simplex Δ in K is the union of all
(closed) simplices of K having Δ as a face. The star St(Δ) is an open subset in |K| for the weak topology
(which is the same as the topology of subspace induced by the topology of the ambient space since the
simplicial complex is finite).

Several variants of piecewise cohomology can be contemplated. What we consider in the present work
is the cohomology obtained from the cochain algebra of the piecewise smooth forms on a transitive Lie
algebroid which is defined over a smooth manifold triangulated by simplicial complex. It is in this context
that our theorem 1 arises.

Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and A a transitive Lie
algebroid on M . Let Δ be a simplex of K. Since A is transitive, the Lie algebroid restriction A!!

Δ on Δ
is well defined. Suppose that Δ′ is another simplex of K such that ϕΔ,Δ′ : Δ′ ↪→ Δ is a face of Δ. By
transitivity of restrictions, we have that A!!

Δ′ � (A!!
Δ)

!!
Δ′ . Consequently, the cochain algebras Ω∗(A!!

Δ′ ; Δ′) and
Ω∗((A!!

Δ)!!Δ′ ; Δ′) are isomorphic. The morphism of cochain algebras induced by the inclusion ϕΔ,Δ′ : Δ′ ↪→ Δ
is denoted by

ϕ
A!!

Δ

Δ,Δ′ : Ω
∗(A!!

Δ; Δ) −→ Ω∗(A!!
Δ′ ; Δ′)

and, for each smooth form ωΔ ∈ Ωp(A!!
Δ; Δ), the smooth form ϕ

A!!
Δ

Δ,Δ′(ωΔ) is denoted by (ωΔ)
!!
Δ′ or (ωΔ)/Δ′

(compare with the definition 3). Keeping these hypotheses and notations, we give below the definition of
piecewise smooth form. The idea of this definition is based both in the Whitney’s book [3] and in the
Sullivan’s paper [1]. Morgan and Griffiths has also presented in [9] the notion of piecewise smooth form on
an ambient space made up of a set of manifolds with transverse intersections.

Definition 4. Let p be a natural number � 0. A piecewise smooth form of degree p on A is a family
ω = (ωΔ)Δ∈K such that the subsequent conditions are satisfied.

1. For each Δ ∈ K, ωΔ ∈ Ωp(A!!
Δ; Δ) is a smooth form of degree p on A!!

Δ.

2. For each Δ, Δ′ ∈ K, if ϕΔ,Δ′ : Δ′ ↪→ Δ is a face of Δ,

ϕ
A!!

Δ

Δ,Δ′(ωΔ) = ωΔ′ .

By the paragraph preceding Proposition 1, the Lie algebroid A!!
Δ′ can be identified with the Lie algebroid

Im (ϕΔ,Δ′)!! and so, for each x ∈ Δ′, the fibre (A!!
Δ′)x is a vector subspace of the fibre (A!!

Δ)x. Moreover,
the cochain algebras Ω∗(A!!

Δ′ ; Δ′) and Ω∗(Im (ϕΔ,Δ′)!!; Δ′) are identified. Hence, the second condition of the
definition 4 can be stated in the following form: for each point x ∈ Δ′ and vectors u1, . . . , up ∈ (A!!

Δ′)x

ωΔ′(x)(u1, · · ·, up) = ωΔ(x)(u1, · · ·, up).

Thus, a piecewise smooth form on A is a collection of smooth forms, each one defined on the Lie algebroid
restriction of A to a simplex of K, which are compatible under restriction to faces. The set of all piecewise
smooth forms of degree p on A will be denoted by Ωp(A;K). When we need to emphasize the manifold
which we work on, we write Ωp

ps(A;M) instead of Ωp(A;K). We have then

Ωp(A;K) = {(ωΔ)Δ∈K : ωΔ ∈ Ωp(A!!
Δ; Δ), Δ′ ≺ Δ =⇒ (ωΔ)/Δ′ = ωΔ′}.

When p = 0, a piecewise smooth form of degree zero on the Lie algebroid A is a family (ϕΔ)Δ∈K ∈∏
Δ∈K C∞(Δ) such that ϕΔ : Δ −→ R is smooth function and the equality ϕΔ′ = ϕΔ/Δ′ holds for each

face Δ′ of Δ. The compatibility condition of restrictions to faces gives a mapping ϕ : |K| −→ R which is
piecewise smooth. Obviously, Ω0(A;K) has a structure of an unitary associative algebra over R (with respect
to pointwise multiplication).

Since the restrictions of smooth forms are compatible with sums and products, various operations on
Ωp(A;K) can be defined by the corresponding operations on Ωp(A!!

Δ; Δ), for each simplex Δ of K. The
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set Ωp(A;K), equipped with these operations, becomes a real vector subspace of
∏

Δ∈K Ωp(AΔ; Δ) and,
additionally, is a module over the algebra Ω0(A;K). Moreover, the direct sum

Ω∗(A;K) =
⊕

p�0

Ωp(A;K)

equipped with the exterior product defined by the corresponding exterior product on each algebra Ω∗(AΔ; Δ) =⊕
p�0 Ω

p(AΔ; Δ), is a skew-commutative graded algebra defined over R.

In order to obtain a complex of cochains, especially important is the analogue to the exterior derivative.
This operator is also obtained by the corresponding exterior derivative on Ωp(A!!

Δ; Δ), for each simplex Δ
of K. Such as in the case of smooth forms on a Lie algebroid, the space Ω∗(A;K), with the operations and
differentiation above, becomes a cochain algebra, which is defined over R with the structure of differential
graded algebra

dA,K : Ωp(A;K) −→ Ωp+1(A;K).

Keeping these hypotheses and notation, we give the definition of piecewise Lie algebroid cohomology.

Definition 5. The piecewise Lie algebroid cohomology of A is the cohomology space of the cochain
algebra (Ω∗(A;K), dA,K). Its cohomology, H(Ω∗(A;K), dA,K), will be denoted by H∗(A;K).

We shall formulate now the main problem of this paper. Let M be a compact smooth manifold, smoothly
triangulated by a simplicial complex K, and A a transitive Lie algebroid on M . Let ω ∈ Ωp(A;M) be a
smooth form on A of degree p. For each simplex Δ of K, let ϕM,Δ : Δ −→ M be the inclusion mapping.
We can restrict the form ω to the smooth form ω/Δ

= ϕA
M,Δ(ω) ∈ Ω∗(A!!

Δ; Δ). It is obvious that the family
ω = (ω/Δ

)Δ∈K is a piecewise smooth form on A. Hence, we have a linear mapping

Ψp
M,K : Ωp(A;M) −→ Ωp(A;K)

defined by

ω −→ (ω/Δ
)Δ∈K .

Since the exterior derivative dA commutes with the restrictions to any submanifold of M , the family
ΨM,K = (Ψp

M,K)p�0 defines a morphism of cochain algebras from the cochain algebra (Ω∗(A;M), dA,M ) to
the cochain algebra (Ω∗(A;K), dA,K). This mapping ΨM,K will be called the ps–restriction mapping. We
claim that the ps–restriction mapping ΨM,K induces an isomorphism in cohomology. This is our main result
whose the statement is indexed in the next section as Theorem 1.

There are some facts that we will need for the proof of this theorem such as the Mayer–Vietoris sequence
and the Künneth theorem, both in the smooth and piecewise smooth contexts, the triviality of Lie algebroids
over contractible manifolds and the de Rham–Sullivan theorem for cell manifolds. It should be remarked that,
for the statement of the Mayer–Vietoris sequence in the piecewise smooth context, we are going to deal with
a complex of piecewise smooth forms which may not be defined over a set of closed simplices of a simplicial
complex but over a set of submanifolds obtained by the intersection of closed simplices with unions of open
stars in the polytope of the simplicial complex. We specify now the generalization of this piecewise smooth
setting, by providing some definitions and notations. Once these ideas are established, we shall then turn
towards to the statement of the Mayer–Vietoris sequence in this setting.

Generalization of the piecewise setting. Let M be a smooth manifold, smoothly triangulated by a
simplicial complex K. Assume that s1, . . . , se are simplices of K and consider the open subsets

U1 = St(s1), . . . , Ue = St(se).

Denote the open subset U1 ∪ · · · ∪ Ue by U . Consider the set KU consisting of all submanifolds Δ ∩ U
such that Δ is a simplex of K in which sj is a face of Δ for some j ∈ {1, . . . , e}, that is,

KU =
{
U ∩Δ : Δ ∈ K, sj ≺ Δ, j ∈ {1, . . . , e}

}
.
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From now on, the submanifold Δ ∩ U will be denoted by ΔU . We have that U is equal to the union of all
submanifolds ΔU ∈ KU . Suppose that A is a transitive Lie algebroid on U . A piecewise smooth form of
degree p on A is a family

ω = (ωΔU )ΔU∈KU ∈
∏

ΔU∈KU

Ωp(A!!
ΔU

; ΔU )

such that, if Δ and Δ′ are simplices of K, with sj ≺ Δ′ ≺ Δ for some j ∈ {1, . . . , e}, and ϕΔU ,Δ′
U
: Δ′

U ↪→
ΔU the inclusion mapping, one has

ϕ
A!!

ΔU

ΔU ,Δ′
U
(ωΔU ) = ωΔ′

U

or simply (ωΔU )/Δ′
U
= ωΔ′

U
.

The set Ω∗
ps(A;U) of all piecewise smooth forms on A is a graded real vector space. A wedge product

and a differential can be defined on Ω∗
ps(A;U) by the corresponding operations on each cochain algebra

Ω∗(A!!
ΔU

; ΔU ), giving to Ω∗
ps(A;U) a structure of cochain algebra defined over R. The cohomology space of

this cochain algebra is denoted by H∗
ps(A;U). As done before, we can define a restriction mapping

Ψ : Ω∗(A;U) −→ Ω∗
ps(A;U)

by
ω −→ (ω/ΔU

)ΔU∈KU .

This mapping Ψ is a morphism of cochain algebras.

Next, we are concerned with the Mayer–Vietoris sequence under these hypotheses. As in the smooth case,
the Mayer–Vietoris sequence will be the long sequence induced from the canonical short exact sequence
corresponding to two open subsets with union equal to the space and mappings given by restriction and
difference of forms. We begin by stating this short exact sequence in this context.

Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and A a transitive
Lie algebroid on M . Let s1, . . . , se be simplices of K and consider the open subset Uj = St(sj) for each
j ∈ {1, . . . , e}. For l ∈ {1, . . . , e} fixed, consider the open subsets U and V , in which U = U1 ∪ · · · ∪ Ul and
V = Ul+1 ∪ · · · ∪ Ue, and assume that M = U ∪ V . Consider the following sets of manifolds:

1. KU is the set of all submanifolds U ∩Δ such that Δ ∈ K and sj is a face of Δ for some j ∈ {1, . . . , l};

2. KV is the set of all submanifolds V ∩Δ such that Δ ∈ K and si is a face of Δ for some i ∈ {l+1, . . . , e};

3. KU∩V is the set of all submanifolds U ∩ V ∩Δ such that Δ ∈ K and sj and si are faces of Δ for some
j ∈ {1, . . . , l} and for some i ∈ {l+ 1, . . . , e}.

As done above, the manifolds U ∩Δ, V ∩Δ and U ∩V ∩Δ are denoted by ΔU , ΔU and ΔU∩V , respectively.
Consider the following two mappings δ and π:

δ : Ωp(A;K) −→ Ωp
ps(AU ;U)× Ωp

ps(AV ;V ),

π : Ωp
ps(AU ;U)× Ωp

ps(AV ;V ) −→ Ωp
ps(AU∩V ;U ∩ V )

defined by

δ
(
(ωΔ)Δ∈K

)
=

((
ωΔ/ΔU

)
ΔU∈KU ,

(
ωΔ/ΔV

)
ΔV ∈KV

)
,

π
(
(ξΔU )ΔU∈KU , (ηΔV )ΔV ∈KV

)
=

(
(ηΔV )/ΔU∩V

− (ξΔU )/ΔU∩V

)

ΔU∩V ∈KU∩V
.

Keeping these hypotheses and notation, we present our next result.

Proposition 2. The sequence

{0} �� Ωp(A;K)
δ �� Ωp

ps(AU ;U)⊕Ωp
ps(AV ;V )

π �� Ωp
ps(AU∩V ;U ∩ V ) �� {0}

is a short exact sequence.
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Proof. Let Δ be a simplex of K and v the barycenter of this simplex. Since M = U ∪V , the set made up
of the stars {Uj : j ∈ {1, . . . , e}} is an open covering of M . Then, there exists an index j ∈ {1, . . . , e} and a
simplex Δ′ of K such that sj is a face of Δ′ and v belongs to the interior of Δ′. Since v also belongs to the
interior of Δ then, by uniqueness, Δ′ = Δ. Hence, the simplex sj is a face of the simplex Δ. Therefore, for
each simplex Δ of K, there exists an index j ∈ {1, . . . , e} such that sj is a face Δ. With this property, we
shall check now that the mapping δ is injective and that Im δ = Ker π. Let

ω = (ωΔ)Δ∈K ∈ Ωp(A;K)

be a piecewise smooth form such that δ(ω) = (0, 0). For each simplex Δ ∈ K, we can take an index
j ∈ {1, . . . , e} such that sj is a face of Δ. Without loss of generality, we may assume that j ∈ {1, . . . , l}. By
hypothesis, δ(ω) = 0 and this means that ωΔ/ΔU

= 0. Applying the same argument to all faces of Δ, we
obtain that ωΔ = 0. Consequently, we have that ω = 0 and so δ is injective. Since the forms

ωΔ/ΔU
and ωΔ/ΔV

have the same restriction to ΔU∩V , we conclude that Im δ ⊂ Ker π. For checking the reciprocal inclusion, if

π
(
(ξΔU )ΔU∈KU , (ηΔV )ΔV ∈KV

)
= (0, 0)

then
(ξΔU )/ΔU∩V

= (ηΔV )/ΔU∩V

and this equality allows to define the form ωΔ on each simplex Δ ∈ K by

ωΔ(x) =

⎧
⎨

⎩

ξΔU (x) if x ∈ ΔU

ηΔV (x) if x ∈ ΔV

The sets ΔU = Δ∩U and ΔV = Δ∩V are open in Δ with union equal to Δ. Hence, the form ωΔ is smooth.
We will check now that the form

(ωΔ)Δ∈K

is piecewise. If Δ′ is a face of Δ, in view of fact that

(
ΔU ∩Δ′

)
∪
(
ΔV ∩Δ′

)
= Δ′

the restriction of the form ωΔ to Δ′ is equal to

(
ωΔ

)

Δ′
=

⎧
⎪⎪⎨

⎪⎪⎩

(
ξΔU

)

ΔU∩Δ′
for x ∈ ΔU ∩Δ′

(
ηΔV

)

ΔV ∩Δ′
for x ∈ ΔV ∩Δ′

On the other hand,
ΔU ∩Δ′ = Δ ∩ U ∩Δ′ = Δ′ ∩ U = Δ′

U .

Therefore, (
ξΔU

)

ΔU∩Δ′
= ξΔ′

U
and

(
ηΔV

)

ΔV ∩Δ′
= ηΔ′

V
.

Hence, (ωΔ)/Δ′ = ωΔ′ and so (ωΔ)Δ∈K is piecewise smooth. By construction, we also have that

δ((ωΔ)Δ∈K) =
(
(ξΔU )ΔU∈KU , (ηΔV )ΔV ∈KV

)

which shows that
(
(ξΔU )ΔU∈KU , (ηΔV )ΔV ∈KV

)
belongs to the image of δ. Hence, we have that Ker π ⊂ Im δ.

We shall check now that the mapping π is surjective. Since the set {U, V } is an open covering of M , we
can fix two smooth mappings ϕ, ψ : M −→ [0, 1] such that supp ϕ ⊂ U , supp ψ ⊂ V and ϕ(x) + ψ(x) = 1
for each x in M . Let

(γΔU∩V )ΔU∩V ∈KU∩V ∈ Ωp
ps(AU∩V ;U ∩ V )

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 30 No. 3 2023



WHITNEY–SULLIVAN CONSTRUCTIONS FOR TRANSITIVE LIE ALGEBROIDS–SMOOTH CASE 369

be a piecewise smooth form on AU∩V . We shall define a differential form

(ξΔU )ΔU∈KU ∈ Ωp
ps(AU ;U)

as follows. For each ΔU ∈ KU , define

ξΔU (x) =

⎧
⎪⎨

⎪⎩

−ψ(x) γΔU∩V (x) if x ∈ Δ ∩ U ∩ V

0x ∈ (A!!
ΔU

)x if x ∈ Δ ∩ U ∩ (M \ supp ψ).

The sets ΔU ∩V and ΔU ∩ (M \ supp ψ) are open in ΔU with union equal to ΔU . Obviously, the restrictions
of ξΔU to ΔU ∩ V and to ΔU ∩ (M \ supp ψ) are smooth. Therefore, we conclude that ξΔU ∈ Ωp(A!!

ΔU
; ΔU ).

In order to obtain a piecewise smooth form belonging to Ωp
ps(AU ;U), it remains to check that (ξΔU )ΔU∈KU

is compatible with restrictions to faces. Let Δ and Δ′ be two simplices of K such that sj ≺ Δ′ ≺ Δ for some
j ∈ {1, . . . , e}. Then, Δ′

U ∩ V ⊂ ΔU ∩ V and, since γ is piecewise smooth, we have

γΔ′
U∩V

(x) = (γΔU∩V )/Δ′
U∩V

(x)

for each x ∈ Δ′
U∩V . Hence, if x ∈ Δ′

U∩V ,

ξΔ′
U
(x) = −ψ(x) γΔ′

U∩V
(x) = −ψ(x)(γΔU∩V )/Δ′

U∩V
(x) = (ξΔU )/Δ′

U
(x).

If x ∈ ΔU∩(M \supp ψ) we have that ξΔU (x) = (ξΔ′
U
)ΔU (x) = 0. Hence, the differential form (ξΔU )ΔU∈KU is

a piecewise smooth form on AU . Analogously, we define a piecewise smooth form (ηΔV )ΔV ∈KV ∈ Ωp
ps(AV ;V )

by

ηΔV (x) =

⎧
⎪⎨

⎪⎩

−ϕ(x) γΔU∩V (x) if x ∈ ΔV ∩ U

0x ∈ (A!!
ΔV

)x if x ∈ ΔV ∩ (M \ supp ϕ)

and we have that, for each x ∈ ΔU∩V ∈ KU∩V ,

(ηΔV )/ΔU∩V
(x)− (ξΔU )/ΔU∩V

(x) = γΔU∩V (x)

that is,
π
(
(ξΔU )ΔU∈KU , (ηΔV )ΔV ∈KV

)
= (γΔU∩V )ΔU∩V ∈KU∩V .

Hence, the result is proved.
The Mayer–Vietoris sequence in the piecewise context is the long sequence of cohomology corresponding

to the short sequence shown in the statement of the previous proposition. If we put that short sequence
together with the short exact sequence presented in the third section of [5] (smooth case), we obtain a
commutative diagram of short exact sequences, in which the vertical mappings are the restriction mappings
Ψ defined above. This is the statement of our next proposition.

Proposition 3. Keeping the same hypotheses and notation as above, the diagram

{0} �� Ωp(A;M)

Ψ

��

α �� Ωp(AU ;U)⊕ Ωp(AV ;V )

Ψ

��

β �� Ωp(AU∩V ;U ∩ V )

Ψ

��

�� {0}

{0} �� Ωp(A;K)
δ �� Ωp

ps(AU ;U)⊕ Ωp
ps(AV ; V )

π �� Ωp
ps(AU∩V ;U ∩ V ) �� {0}

is commutative.

We finalize this section with a proposition concerning the Künneth isomorphism in a particular case of
piecewise setting. Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and s a
simplex of K. Denote by U the open subset St(s). Assume that g is a real Lie algebra and consider the trivial
Lie algebroid A = TU × g.

Proposition 4. Keeping the same hypotheses and notation as above, one has

H∗
ps(A;U) � H∗

ps(U)⊗ (g).
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Proof. As done above, we denote the submanifold U ∩Δ by ΔU and KU the set of all submanifolds ΔU

for each simplex Δ ∈ K such that s is a face of Δ. Consider the Lie algebroids morphisms

γΔU : TΔU × g −→ TΔU

and

πΔU : TΔU × g −→ g

given by the projections on the first and second factors, respectively. The remaining proof will be split into
three parts.

Part 1. We will check now that

Ω∗
ps(U)⊗ Ω∗(g) � Ω∗

ps(A;U).

Let ξ = (ξΔU )ΔU∈KU be a form belonging to Ω∗
ps(U) and η belonging to Ω∗(g). Assume that Δ′ and Δ are

two simplices of K such that s ≺ Δ′ and ϕ : Δ′ ↪→ Δ the inclusion mapping. Denote by ϕΔ,Δ′ the inclusion
mapping U ∩Δ′ ↪→ U ∩Δ. Consider the canonical mappings

(ϕTΔU×g

Δ,Δ′ )!! : (TΔU × g)!!Δ′
U
−→ TΔU × g

and

(ϕTΔU

Δ,Δ′)
!! : (TΔU )

!!
Δ′

U
−→ TΔU

(see the paragraph soon after the definition 1). We have that

γΔU ◦ (ϕTΔU×g

Δ,Δ′ )!! = (ϕTΔU

Δ,Δ′)
!! ◦ γΔ′

U
and πΔU ◦ (ϕTΔU×g

Δ,Δ′ )!! = πΔ′
U

so the equalities

(γ∗
ΔU

ξΔU )/Δ′
U
= γ∗

Δ′
U
ξΔ′

U
and (π∗

ΔU
η)/Δ′

U
= π∗

Δ′
U
η

also hold. These equalities show that the differential form

(γ∗
ΔU

ξΔU ∧ π∗
ΔU

η)ΔU∈KU

belongs to Ω∗
ps(A;U). Hence, we can consider a mapping

kps : Ω
∗
ps(U)⊗ Ω∗(g) −→ Ω∗

ps(A;U)

such that

kps(ξ ⊗ η) = (γ∗
ΔU

ξΔU ∧ π∗
ΔU

η)ΔU∈KU

in which ξ = (ξΔU )ΔU∈KU ∈ Ω∗
ps(U) and η ∈ Ω∗(g). This mapping is well defined. Now, we shall see that the

mapping kps is an isomorphism of differential graded algebras. Obviously, the mapping kps is a morphism of
graded algebras. For each Δ ∈ K such that s ≺ Δ, let

kΔU : Ω∗(ΔU )⊗ Ω(g) −→ Ω∗(TΔU × g; ΔU )

be the Künneth isomorphism described in the sixth section of [5]. We have that,

(kps(ξ ⊗ η))ΔU = γ∗
ΔU

ξΔU ∧ π∗
ΔU

η = kΔU (ξΔU ⊗ η).

Therefore, if ω =
∑

ξ ⊗ η ∈ Ω∗
ps(U)⊗ Ω∗(g) and kps(ω) = 0, then (kps(ω))ΔU = 0 and so

0 =
(
kps(

∑
ξ ⊗ η)

)
ΔU

= kΔU

(∑
(ξΔU ⊗ η)

)
.

Hence ω =
∑

(ξΔU ⊗η) = 0 and, with this, we have checked that k is injective. Take now λ = (λΔU )ΔU∈KU ∈
Ω∗

ps(A;U). We want to find ω ∈ Ω∗
ps(U)⊗Ω∗(g) such that kps(ω) = λ. Since kΔU is surjective, we can consider

smooth forms ξjΔU
∈ Ω∗(ΔU ) and η ∈ Ω∗(g) such that

kΔU

(∑

j

(ξjΔU
⊗ η)

)
= λΔU .
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Take then the form ωΔU =
∑

j(ξjΔU
⊗ η). If Δ′ and Δ are simplices of K with s ≺ Δ′ ≺ Δ, we have the

equalities

kΔ′
U

(∑

j

(ξjΔU
)Δ′

U
⊗ η

)
=

∑

j

kΔ′
U
((ξjΔU

)Δ′
U
⊗ η

)
=

∑

j

(
γ∗
Δ′

U
(ξjΔU

)Δ′
U
∧ π∗

Δ′η
)
= (∗)

and

kΔ′
U

(∑

j

(ξjΔ′
U
⊗ η)

)
= λΔ′

U
= (λΔU )/Δ′

U
=

(
kΔU (

∑

j

(ξjΔU
⊗ η)

)
/Δ′

U

=
(∑

j

(γ∗
ΔU

(ξjΔU
) ∧ π∗

Δη)
)
/Δ′

U

=
∑

j

(γ∗
ΔU

(ξjΔ) ∧ π∗
Δη)

)
/Δ′

U

=
∑

j

(γ∗
ΔU

((ξjΔU
)/Δ′

U
)) ∧ π∗

Δ′η)) =
∑

j

(
γ∗
Δ′

U
(ξjΔU

)Δ′
U
∧ π∗

Δ′η
)
= (∗).

Hence,

kΔ′
U

(∑

j

(ξjΔU
)Δ′

U
⊗ η

)
= kΔ′

U

(∑

j

(ξjΔ′
U

⊗ η)
)

and, since kΔ′
U
is bijective,

∑
j(ξjΔU

)Δ′
U
⊗ η =

∑
j(ξjΔ′

U

⊗ η). Therefore, we can conclude that (ξjΔU
)/Δ′

U
=

ξjΔ′
U

. Then, the form ω = (ωΔU )ΔU∈KU , in which ωΔU =
∑

j(ξjΔU
⊗η), belongs to Ω∗

ps(U)⊗Ω∗(g). Obviously,

kps(ω) = λ and then it is checked that kps is an isomorphism of graded algebras.

Part 2. Next, we will check that kps commutes with the differential. For each Δ ∈ K such that s is a face
of Δ, the differentials on the complexes Ω∗

ps(A;U), Ω∗
ps(U) and Ω∗(ΔU ) will be denoted by dAps, d

U
ps and dΔU

respectively. Let ξ = (ξΔU )ΔU∈KU be a form belonging to Ω∗
ps(U) and η belonging to Ω∗(g). We have

(dAps ◦ kps)(ξ ⊗ η) = dAps((γ
∗
ΔU

ξΔU ∧ π∗
ΔU

η)ΔU∈KU )

= dAps
(
(γ∗

ΔU
ξΔU )ΔU∈KU

)
∧ π∗η + (−1)degξ(γ∗

ΔU
ξΔU )ΔU∈KU ∧ dAps(π

∗η)

=
(
γ∗
ΔU

(dΔU (ξΔU ))
)
ΔU∈KU ∧ π∗η + (−1)degωγ∗ξ ∧ π∗(dgη) =

= kps((d
U
psξ)⊗ η) + (−1)degξkps(ξ ⊗ dgη) = kps ◦ δ(ξ ⊗ η)

This proves that kps is an isomorphism of differential graded algebras.

Part 3. The isomorphism kps above induces an isomorphism in cohomology. By applying the Künneth
theorem, we obtain

H∗
ps(A;U) � H∗(Ω∗

ps(U)⊗ Ω∗(g)) � H∗
ps(U)⊗H∗(g)

and the result is proved.

4. MAIN THEOREM

Whitney in [3] and Sullivan in [1] have proved that cohomologies obtained by using the cell structure of a
space are isomorphic to the singular cohomology of the polytope (for further details, see [3, Theorem IV-29A
and Theorem VII-12A] and [1, Theorem 7.1]). Therefore, those piecewise cohomologies also are isomorphic
to the Rham cohomology, if the space is a cell smooth manifold. Based both in their work and in the work
presented by Mackenzie in [4] as well by Kubarski in [5], we have claimed in the previous section that the
Lie algebroid cohomology and the piecewise Lie algebroid cohomology of a transitive Lie algebroid over a
triangulated compact manifold are isomorphic. In the present section, we build the parts of the proof of this
assertion for all Lie algebroids under these hypotheses.

Let M be a smooth manifold, smoothly triangulated by a finite simplicial complex K, and A a transitive
Lie algebroid on M . Consider the ps–restriction mapping

ΨM,K : Ω∗(A;M) −→ Ω∗(A;K),

ω −→ (ω/Δ)Δ∈K .
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Theorem 1. The mapping ΨM,K induces an isomorphism in cohomology.

The proof of Theorem 1 involves, beyond theorems already mentioned before, the Steenrod five lemma
applied to the commutative diagram shown in the Proposition 3 of the previous section. In fact, we shall
be able to apply the Steenrod five lemma to that diagram as long as we know that the mapping Ψ is a
quasi-isomorphism for trivial Lie algebroids over stars. Therefore, our first step is to show that the theorem
1 holds for these trivial Lie algebroids.

Proposition 5. Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and s a
simplex of K. Denote the open subset St(s) by U and the submanifold U ∩Δ by ΔU . Let K

U be the set of
all submanifolds ΔU such that Δ ∈ K and s is a face of Δ. Assume that g is a real Lie algebra and consider
the trivial Lie algebroid A = TU × g. Then, the ps–restriction mapping

Ψ : Ω∗(A;U) −→ Ω∗
ps(A;U),

ω −→ (ω/ΔU
)ΔU∈KU

induces an isomorphism in cohomology.

Proof. By the Künneth theorem for trivial Lie algebroids stated in [5, Corollary 6.2], we have that

H(A;U) � HdR(U)⊗H(g)

We shall check now that Ψ induces an isomorphism in cohomology. Take the diagram

Ω∗(U)⊗ Ω∗(g)

k

��

Φ⊗Id �� Ω∗
ps(U)⊗ Ω∗(g)

kps

��
Ω∗(A;U)

Ψ �� Ω∗
ps(A;U)

in which kps : Ω∗
ps(U) ⊗ Ω∗(g) −→ Ω∗

ps(A;U) is the isomorphism defined in the proof of the proposition
4, k is the Künneth isomorphism described in [5, Lemma 6.1] and Φ is the restriction mapping induced
from the Rham–Sullivan theorem for cell manifolds (see the diagram preceding the proposition 8.7 of [9]).
Obviously, the diagram is commutative and, by the de Rham–Sullivan theorem ([1, Theorem 7.1] or section
VIII-F of [9]), the mapping Φ induces an isomorphism in cohomology. Therefore, in cohomology, we have
the commutative diagram

H∗
dR(U)⊗H∗(g)

	
��

H(Φ⊗Id) �� H∗
ps(U)⊗H∗(g)

	
��

H∗(A;U)
H(Ψ) �� H∗

ps(A;U)

Hence, H(Ψ) is an isomorphism.
Next, we will show that Ψ induces an isomorphism in cohomology, not only for trivial Lie algebroids

defined over open stars, but for any arbitrary transitive Lie algebroid defined over an open star. For that,
we begin by stating a basic result which is a direct consequence from the functor homology.

Proposition 6. Let M be a smooth manifold, smoothly triangulated by a simplicial complex K and s a
simplex of K. Denote the open subset St(s) by U . Let A and B be two transitive Lie algebroids on M and
suppose there exists an isomorphism of Lie algebroids between them. Then, the cohomology spaces Hps(A;U)
and Hps(B;U) are isomorphic.

Proposition 7. Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and s a
simplex of K. Denote the open subset St(s) by U and the submanifold U ∩Δ by ΔU . Let K

U be the set of
all submanifolds ΔU such that Δ ∈ K and s is a face of Δ. Assume that A is a transitive Lie algebroid on
U . Then, the morphism

Ψ : Ω∗(A;U) −→ Ω∗
ps(A;U)

ω −→ (ω/ΔU
)ΔU∈KU

induces an isomorphism in cohomology.
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Proof. Let γ : A −→ TU be the anchor of A and g = ker γ. The set U is contractible. Consequently, as
noted at the end of the first section, the Lie algebroid A is isomorphic to the trivial Lie algebroid TU × g

defined over U . We achieve the result by the commutativity of the diagram

Ωp(A;U) ��

��

Ωp
ps(A;U)

��
Ωp(TU × g)

Ψ �� Ωp
ps(TU × g)

and by applying the proposition 6 to the vertical mappings and the Proposition 5 to the mapping Ψ displayed
on the diagram.

Proof of Theorem 1. We shall prove the result by induction on the number of vertices of the simplicial
complex K. Suppose then that {v0, . . . , vn} is the family of all vertices of K. If K has only one vertex, the
result is trivial. Suppose we have proved the result for each set {v0, . . . , vl} in which l < n. It is known that
the family {St(vj) : j ∈ {0, . . . , n}} is an open covering of M . Consider the open subsets of M

U =
n−1⋃

j=0

St(vj) and V = St(vn)

We have that

U ∩ V =
( n−1⋃

j=0

St(vj)
)
∩ St(vn) =

n−1⋃

j=0

(
St(vj) ∩ St(vn)

)
=

⋃

j

St([vj , vn])

in which the union is taken over all indexes j such that the vertices vj and vn generate a simplex of K
(otherwise the intersection St(vj) ∩ St(vn) is empty) and

[
vj , vn

]
denotes the closed simplex generated by

the vertices vj and vn. The Proposition 3 sates that

{0} �� Ωp(A;M)

Ψ

��

α �� Ωp(AU ;U)⊕ Ωp(AV ;V )

Ψ

��

β �� Ωp(AU∩V ;U ∩ V )

Ψ

��

�� {0}

{0} �� Ωp(A;K)
δ �� Ωp

ps(AU ;U)⊕ Ωp
ps(AV ; V )

π �� Ωp
ps(AU∩V ;U ∩ V ) �� {0}

is a commutative diagram of short exact sequences. The mapping Ψ on the right hand side of the diagram
is a quasi-isomorphism by induction. The mapping Ψ in the middle of the diagram is a quasi-isomorphism
by induction and by the Proposition 7. By the Steenrod five lemma, the mapping Ψ on the left hand side of
the diagram is also a quasi-isomorphism. The Theorem 1 is proved.

From Theorem 1, we infer that the piecewise Lie algebroid cohomology of a compact triangulated manifold
does not depend on the triangulation used, that is, for any simplicial division of the simplicial complex, the
piecewise Lie algebroid cohomology spaces of both triangulated manifolds are isomorphic. This statement is
the substance of our next proposition.

Corollary 1. Let M be a smooth manifold, smoothly triangulated by a simplicial complex K, and A
a transitive Lie algebroid on M . Let L be another simplicial complex and assume that L is a subdivision
of K. Then, the piecewise Lie algebroid cohomology H(A;K) is isomorphic to the piecewise Lie algebroid
cohomology H(A;L). Furthermore, the morphism from Ω∗(A;K) to Ω∗(A;L) which induces that isomorphism
in cohomology is also given by restriction of forms.

Proof. The result follows from the commutativity of the next diagram

Ω∗(A;M)

ΨM,K

�����
��
��
��
�

ΨM,L

		��
��

��
��

��

Ω∗(A;K)
ΦK,L �� Ω∗(A;L)

in which ΦK,L is also given by restriction.
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