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Abstract

In this paper we consider the so-called Vietoris se-
quence, a sequence of rational numbers of the form
ck = 1

2k

(
k

⌊ k
2 ⌋
)
, k = 0, 1, . . . . This sequence plays an

important role in many applications and has received a
lot of attention over the years. In this work we present
the main properties of the Vietoris sequence, having in
mind its role in the context of hypercomplex function
theory. Properties and patterns of the convolution tri-
angles associated with (ck)k are also presented.

1 The Vietoris Sequence

For our purpose here, we define the Vietoris sequence (ck)k in terms of the “complete central binomial coeffi-
cient” as

ck :=
1

2k

(
k

⌊k
2 ⌋

)
, k = 0, 1, . . . , (1)

where ⌊·⌋ is the floor function. The first terms of this sequence are

1,
1

2
,
1

2
,
3

8
,
3

8
,
5

16
,
5

16
,
35

128
,
35

128
, . . . .

Some years ago, authors of this paper noticed that the sequence (1) appeared in the construction of
sequences of multivariate generalized Appell polynomials [11, 22]. Since then, several studies on this sequence
have been carried out (see e.g. [6, 8, 9, 10] and the references therein) and the importance of this sequence
in hypercomplex context is unquestionable nowadays. For this reason, we thought it would be interesting to
collect the properties that have been obtained over the years, presenting them in a unifying way.

It is worth mentioning that a similar sequence appears in the work [25] of Vietoris in the context of positive
trigonometric sums. In fact, in his pioneer work, Vietoris considered the sequence (ak)k defined as

a2k = a2k+1 =
1

4k

(
2k

k

)
, k = 0, 1, . . . . (2)
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It follows at once that (1) is a subsequence of (2), since ck = ak+1; k = 0, 1, . . . . Despite this small difference,
we have coined (1) as the Vietoris number sequence.

This paper is organized as follows: in Sect. 2 we present equivalent definitions of the Vietoris sequence,
while in Sect. 3 we list other important properties of (ck)k. Finally, the paper ends with some new results on
the convolution triangles associated with (ck)k and (c2k)k.

2 Alternative Definitions

One can find in the literature several ways of writing the Vietoris sequence. Some of these representations were
obtained independently and using context-dependent arguments in the framework of hypercomplex analysis. In
other cases, the alternative definitions come from very well-known identities. In this section we list several ways
of defining the Vietoris sequence, being in most of the cases, trivial to prove the equivalence of the definitions.
For each case, we also include in the Appendix A, the Wolfram Mathematica code for defining the sequence.

2.1 Representation in Terms of the Generators of H
Let {e1, e2} be an orthonormal basis of the Euclidean vector space R2, with a product according to the
multiplication rules

e1e2 = −e2e1 and e21 = e22 = −1.

This non-commutative product generates the well-known algebra of real quaternions H (with the identification
i := e1, j := e2 and k := e1e2). The Vietoris sequence has the following representation in terms of e1 and e2:

ck =

[
k∑

s=0

(−1)s
(
k

s

)(
ek−s
1 × es2

)2]−1

(3)

where the so-called symmetric powers with respect to × are defined recursively as (see e.g. [20]):

em1 × en2 := e1 × · · · × e1︸ ︷︷ ︸
m

× e2 × · · · × e2︸ ︷︷ ︸
n

=
1

m+ n
[me1(e1

m−1 × e2
n) + ne2(e1

m × e2
n−1)], m, n ∈ N,

and for m = 0 or n = 0, the powers are understood in the ordinary way.
For an algebraic proof of the equivalence of the representations (1) and (3), we refer to [15] (see also [14]).

For more details on the properties of the symmetric powers, we mention [20].

2.2 Double Factorial Representation

The Vietoris sequence can also be written in terms of the double factorial [12, 23]. In fact, using the well-known
relations

(2k)!! = 2kk! and (2k + 1)!! =
(2k + 1)!

2kk!
,

the relation (1) can be written as

ck =
(2⌊k−1

2 ⌋+ 1)!!

(2⌊k−1
2 ⌋+ 2)!!

. (4)

2.3 Recursive Definition

It follows immediately from (4) that ck can be defined recursively as

ck =


k

k+1ck−1, if k odd

ck−1, if k > 1 even

1 if k = 0

.
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2.4 Pochhammer Symbol Representation

In the works [5, 11], the elements of the sequence (ck)k were obtained through

ck =

(
1
2

)⌊
k+1
2

⌋(
1
)⌊

k+1
2

⌋ ,
where (x)n denotes the Pochhammer symbol,

(x)n := x(x+ 1) . . . (x+ n− 1), n = 1, 2, . . . ; (x)0 := 1.

This is an immediate consequence of the fact that

(
1
2

)
k
=

(2k − 1)!!

2k
and (1)k = k!.

2.5 Alternating Sum of a Non-Symmetric Triangle

In the work [12], several arithmetic properties of the triangle

T k
s :=

1

k + 1

(
3
2

)
k−s

(
1
2

)
s

(k − s)!s!
, k = 0, 1, . . . , s = 0, 1, . . . , k. (5)

were derived. One of these properties allows to express the elements ck of the Vietoris sequence in terms of
the alternating row sum of T k

s :

ck =

k∑
s=0

(−1)sT k
s .

2.6 Gamma Function Representation

Recalling the well known identities

Γ( 12 ) =
√
π, Γ(n+ 1) = n!, and Γ(n+ 1

2 ) =
(2n)!

√
π

22nn!
,

we can write

ck =
Γ( 12 + ⌊k+1

2 ⌋)
Γ( 12 )Γ(1 + ⌊k+1

2 ⌋)
=

Γ( 12 + ⌊k+1
2 ⌋)

√
π⌊k+1

2 ⌋!
. (6)

2.7 Integral Representation

The Wallis integrals are the terms of the sequence (Ik)k defined by

Ik =

∫ π
2

0

cosk x dx,

which can be evaluated by using the well-known identity

Ik =
Γ(k+1

2 )Γ( 12 )

2Γ(k2 + 1)
.

Having in mind the Gamma-representation (6) of ck and the properties of the Gamma function, we obtain
easily

ck =
2

π
I
2
⌊

k+1
2

⌋.
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2.8 Representation in Terms of Catalan Numbers

The popular Catalan numbers,

Ck =
1

k + 1

(
2k

k

)
; k = 0, 1, . . . ,

appear in a number of binomial identities. For our purpose here we highlight the following one [1],

Ck =

k∑
s=0

(−1)s
(
k

s

)
2k−s

(
s

⌊ s
2⌋

)
= (−2)k

k∑
s=0

(−1)k−s

(
k

s

)
cs,

from where it is trivial to obtain the relation

ck =

k∑
s=0

(
k

s

)
(−2)−sCs,

since
( Ck

(−2)k

)
k
is the binomial transform of (ck)k.

2.9 Representation in Terms of Values of Legendre Polynomials

In the hypercomplex context, the following special holomorphic polynomial of degree k involving the Vietoris
coefficients (or their generalizations) have been constructed and its properties have been studied in a series of
papers by authors of this work ([4, 5, 6, 11, 14, 22]),

Pk(x0 + x1e1 + x2e2) =

k∑
s=0

cs

(
k

s

)
xk−s
0 (x1e1 + x2e2)

s, (7)

where e1 and e2 are the generators of H. We adopt the following notation in what follows: if x = x0 +x1e1 +
x2e2 ∈ H, then |x|2 = x2

0 + x2
1 + x2

2, Re(x) is the real part x0 of x, x designates the vector part of x, i.e.,
x = x1e1 + x2e2 and ω := ω(x) = x

|x| . Since ω2 = −1, the right-hand side of (7) can be written as

⌊ k
2 ⌋∑

s=0

(−1)s
(
k

2s

)
c2sx

k−2s
0 |x|2s + ω

⌊ k−1
2 ⌋∑

s=0

(−1)s
(

k

2s+ 1

)
c2s+1x

k−2s−1
0 |x|2s+1. (8)

This means that the polynomials (7) can easily be rewritten in terms of the real variable t = x0

|x| as

Pk(t, |x|) = |x|k (fk(t) + ω(x)gk(t)) , (9)

where t ∈ [−1, 1] and fk(t) and gk(t) are the real functions

fk(t) =

⌊ k
2 ⌋∑

s=0

(
k

2s

)
c2st

k−2s(t2 − 1)s

and

gk(t) =
√
1− t2

⌊ k+1
2 ⌋∑

s=1

(
k

2s− 1

)
c2s−1t

k−2s+1(t2 − 1)s−1.

For more details on the representation (9), we refer to [4]. If we recall the Legendre polynomials of degree k
written in the form (see e.g. [24])

Pk(t) = tk
⌊ k

2 ⌋∑
s=0

(
k

2s

)(
2s

s

)( t2 − 1

4t2

)s

, (10)
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it is easy to establish a relation between (10) and the real polynomial fk(t) in (9), concluding in this way that

Re(Pk(t, |x|)) = |x|kPk(t).

For the special case of x0 = 0 and |x| = 1, this last relation provides the following form of representing ck:

ck = (−1)

⌊
k+1
2

⌋
P
2
⌊

k+1
2

⌋(0). (11)

We point out that relation (11) can also be obtained directly by using the following well-known property
of the Legendre polynomials:

Pn(0) =

{
(−1)m

4m

(
2m
m

)
, for n = 2m

0, for n = 2m+ 1
.

2.10 Representation in Terms of Values of the Derivatives of the Bessel functions

Consider the Bessel functions of the first kind

J0(z) =

∞∑
k=0

(−1)k
z2k

22k(k!)2
and J1(z) =

∞∑
k=0

(−1)k
z2k+1

22k+1k!(k + 1)!
.

Differentiating m-times both Bessel functions we get

J
(m)
0 (z) =

∞∑
k=m

(−1)k
(2k)(2k − 1) · · · (2k − (m− 1))z2k−m

22k(k!)2

and

J
(m)
1 (z) =

∞∑
k=m

(−1)k
(2k + 1)(2k) · · · (2k + 1− (m− 1))z2k+1−m

22k+1k!(k + 1)!
.

Therefore

J
(m)
0 (0) =

{
(−1)

m
2 cm, if m even

0, if m odd
and J

(m)
1 (0) =

{
0, if m even

(−1)
m−1

2 cm, if m odd
.

These two last equalities, allows to write

ck = (−1)⌊
k
2 ⌋J

(k)
1−(−1)k

2

(0),

which, in turn, leads together with (8) to the following representation of the hypercomplex polynomial (7)

Pk(x0 + ω|x|) =
k∑

s=0

(
k

s

)
xk−s
0 |x|s

(
J
(s)
0 (0) + ω(x)J

(s)
1 (0)

)
.

For more details on this subject we mention the works [11, 23].

3 Other Properties of (ck)k

Without being exhaustive, we list now several properties of the Vietoris sequence that have been proved in the
last years.

1. Alternating series [8]
+∞∑
k=0

(−1)kck = 1.
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2. Combinatorial Identity [21]
k∑

s=0

(−1)k−s

(
− 3

2

k − s

)(
− 1

2

s

)
= (k + 1)ck.

3. Trigonometric Identities [6] For 0 < α < π,

∞∑
k=0

ck cosk α =
2

1− cosα+ sinα
and

∞∑
k=0

ck sink α =
2

1− sinα+ cosα
.

4. Recurrence Relations [7, 8]

(k + 2)ck+1 = ck + kck−1, k ≥ 1, c0 = 1, c1 = 1
2

and

∆ck = − 1
2

k∑
s=0

ck−s∆cs−1,

where ∆ck := ck+1 − ck denotes the forward difference with ∆c−1 := 1.

5. Generating Functions

In [6], an elementary procedure, based on the expansion of the binomial function (1 − t2)l was used to
derive the following generating function of the sequence (ck)k:

F (t) =

√
1 + t−

√
1− t

t
√
1− t

. (12)

Similarly, it can be proved that the even order-terms sequence (c2k)k is generated by the function

f(t) =
1√
1− t

.

More recently [7], an exponential generating function of the sequence (ck)k was obtained by using
methods of the calculus of holonomic differential equations, namely

F (t) = I0(t) + I1(t),

where I0 and I1 are the modified Bessel functions of the first kind. This function is closely related to
the hypercomplex exponential function that has been studied in the past,

Exp(x0 + ω|x|) = ex0 (J0(|x|) + ω(x)J1(|x|)) .

Finally, we mention that the even order-terms sequence (c2k)k has as exponential generating function

f(t) = e
t
2 I0

(
t
2

)
.

6. Relation to the central binomial coefficients sequence

The well-known properties of the central binomial coefficients (CBC) and their relation to the even-order
terms of the Vietoris sequence c2k, allows to write down immediately a number of useful relations. In the
literature there are a lot of combinatorial identities involving the CBC (see e.g. [19] and the unpublished
manuscripts of Gould [16, 17]).

In https://w3.math.uminho.pt/VietorisSequence a Mathematica notebook containing the proofs of sev-
eral well-known properties written in terms of the sequence (c2k)k was made available.

https://w3.math.uminho.pt/VietorisSequence
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4 Vietoris Convolution Triangles

We recall that the kth convolution of the sequence (an)n is the sequence (a
(k)
n )n, defined recursively as

a(k)n =

n∑
s=0

asa
(k−1)
n−s ,

a(0)n = an,

(see e.g. [3, 18]). As it is well known, the convolution of sequences corresponds to the multiplication of their
generating functions, i.e., if F (t) is the generating function of the sequence (an)n, then the generating function
Fk(t) of the kth convolution of the sequence (an)n is (F (t))k+1.

For example, in the case of the Vietoris sequence and taking into account (12) we obtain

F0(t) =

√
t+ 1−

√
1− t

t
√
1− t

=1 +
t

2
+

t2

2
+

3t3

8
+

3t4

8
+

5t5

16
+

5t6

16
+

35t7

128
+

35t8

128
+ . . .

F1(t) =
2
(√

1− t2 − 1
)

(t− 1)t2

=1 + t+
5t2

4
+

5t3

4
+

11t4

8
+

11t5

8
+

93t6

64
+

93t7

64
+

193t8

128
+ . . .

F2(t) =

(√
t+ 1−

√
1− t

)3
(1− t)3/2t3

=1 +
3t

2
+

9t2

4
+

11t3

4
+

27t4

8
+

123t5

32
+

281t6

64
+

309t7

64
+

681t8

128
+ . . .

The convolution triangle, written in rectangular form, of the sequence (an)n is an array whose kth column

is the sequence (a
(k−1)
n )n, k = 1, 2, . . . (see e.g. [3, 18]).

Tables 1-2 show the convolution triangles TV and TEV corresponding to the Vietoris sequence (cn)n and
the even order-term sequence (c2n)n. Tables 3-4 present the triangles TCC and TC associated to the related
sequences

un =

(
n

⌊n
2 ⌋

)
and vn =

(
2n

n

)
= u2n (13)

of the complete central binomial coefficients and of the central binomial coefficients.
For the sake of better visibility, we also write on the right side of each table, the corresponding left justified

triangle. The Mathematica code to produce the tables is presented in the Appendix B.
Denote by MV = (mij), MEV = (nij), MC = (ñij) and MCC = (m̃ij) the r × r matrices formed by

using as elements the first r rows of the triangles TV , TEV , TC and TCC in rectangular form, respectively. It
is easy to see that

m̃ij = 2i−1mij and ñij = 4i−1nij ; i = 1, 2, . . . , r, (14)

since c
(k)
n = 1

2nu
(k)
n and c

(k)
2n = 1

4n v
(k)
n , k = 0, 1, . . . . In other words,

MCC =



1

2

22

. . .

2r−1

MV and MC =



1

4

42

. . .

4r−1

MEV .

Therefore

detMCC =

r∏
i=1

2i−1 detMV = 2
r(r−1)

2 detMV
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Table 1: The Vietoris convolution triangle TV

1 1 1 1 1 1 1 . . .

1
2 1 3

2 2 5
2 3 7

2 . . .

1
2

5
4

9
4

7
2 5 27

4
35
4 . . .

3
8

5
4

11
4 5 65

8
49
4

35
2 . . .

3
8

11
8

27
8

109
16

195
16

321
16

497
16 . . .

5
16

11
8

123
32

69
8

541
32

483
16

805
16 . . .

5
16

93
64

281
64

341
32

45
2

689
16

1225
16 . . .

...
...

...
...

...
...

...

1

1
2 1

1
2 1 1

3
8

5
4

3
2 1

3
8

5
4

9
4 2 1

5
16

11
8

11
4

7
2

5
2 1

5
16

11
8

27
8 5 5 3 1

...
...

...
...

...
...

. . .

Table 2: The even order-terms Vietoris convolution triangle TEV

1 1 1 1 1 1 1 . . .

1
2 1 3

2 2 5
2 3 7

2 . . .

3
8 1 15

8 3 35
8 6 63

8 . . .

5
16 1 35

16 4 105
8 10 231

16 . . .

35
128 1 315

128 5 1155
128 15 3003

128 . . .

63
256 1 693

256 6 3003
256 21 9009

256 . . .
...

...
...

...
...

...
...

1

1
2 1

3
8 1 1

5
16 1 3

2 1

35
128 1 15

8 2 1

63
256 1 35

16 3 5
2 1

...
...

...
...

...
...

. . .
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Table 3: The complete central binomial coefficients convolution triangle TCC

1 1 1 1 1 1 . . .

1 2 3 4 5 6 . . .

2 5 9 14 20 27 . . .

3 10 22 40 65 98 . . .

6 22 54 109 195 321 . . .

10 44 123 276 541 966 . . .
...

...
...

...
...

...

1

1 1

2 2 1

3 5 3 1

6 10 9 4 1

10 22 22 14 5 1
...

...
...

...
...

...
. . .

and
detMC = 4

r(r−1)
2 detMEV .

The determinant of the matrices MC and MCC can be easily computed (see e.g. [2]),

detMC = 2
r(r−1)

2 and detMCC = 1,

and this leads to the interesting equality

detMV = detMEV = 2−
r(r−1)

2 .

For example, for r = 4 we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

1
2 1 3

2 2

3
8 1 15

8 3

5
16 1 35

16 4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

1
2 1 3

2 2

1
2

5
4

9
4

7
2

3
8

5
4

11
4 5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

64
.

It is worthwhile to recall that the sequences (un)n and (vn)n in (13) have as generating functions,

G(t) =
−1 + 2t+

√
1− 4t2

2t− 4t2
and g(t) =

1√
1− 4t

,

respectively, being, as expected, related to the generating functions F and f of (cn)n and (c2n)n, respectively,
through

G(t) = F (2t) and g(t) = f(4t).

This last relation could also have been used to obtain (14).

The Table 2 also reveals another pattern related to the kth convolution of sequence (c̃n)n = (c2n)n, when
k = 2m− 1 is odd, as we next point out.

Observe that the columns 2m of TEV contain the Taylor series coefficients of the functions (1− t)−m (cf.
(12)), which as it is well known is, for each fixed m, the generating function of the sequence (bn)n, where

bn =

(
n+m− 1

m− 1

)
, n = 0, 1, . . . .
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Table 4: The central binomial coefficients convolution triangle TC

1 1 1 1 1 1 . . .

2 4 6 8 10 12 . . .

6 16 30 48 70 96 . . .

20 64 140 256 420 649 . . .

70 256 630 1280 2310 3840 . . .

252 1024 2772 6144 12012 21504 . . .
...

...
...

...
...

...

1

2 1

6 4 1

20 16 6 1

70 64 30 8 1

252 256 140 48 10 1
...

...
...

...
...

...
. . .

In other words, the triangle formed by the even columns of the triangle TEV , is the rectangular Pascal
triangle.

For the particular case of k = 1 (i.e., m = 1) we find the convolution formula

c̃(1)n =

n∑
s=0

c̃sc̃n−s =

(
n

0

)
= 1,

which is just a rewrite of the well-known identity for convolution of central binomial coefficients:

n∑
s=0

(
2s

s

)(
2(n− s)

n− s

)
= 4n.
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[25] Vietoris, L.: Über das Vorzeichen gewisser trigonometrischer Summen. Sitzungsber. Österr. Akad. Wiss
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A Alternative definitions

Vietoris sequence

c[k_Integer?NonNegative] := 1/2^k Binomial[k, Floor[k/2]]

Definition in terms of the generators of H

The implementation of (3) requires the use of the free Mathematica package QuaternionAnalysis[13].

e1=Quaternion[0,1,0,0];e2=Quaternion[0,0,1,0];

c1[k_]:=(-1)^k

Sum[Binomial[k,s]QPower[SymmetricPower[e1,k-s,e2,s],2],{s,0,k}]^-1;

The function Quaternion defines a quaternion object, while QPower implements the usual quaternions
powers. Both functions are included in the Mathematica package QuaternionAnalysis, where the arithmetic
operations are also defined. The code of the function SymmetricPower is presented below. For more details
on the use of the package we refer to the user guide included in the package documentation.

SymmetricPower[q1_, k_, q2_, s_] := SymmetricPower[q1, k, q2, s] =

1/(k + s) (k q1 ** SymmetricPower[q1, k - 1, q2, s] +

s q2 ** SymmetricPower[q1, k, q2, s - 1])

SymmetricPower[q1_, 0, q2_, s_] := QPower[q2, s];

SymmetricPower[q1_, k_, q2_, 0] := QPower[q1, k];

Double Factorial representation

c2[k_Integer?NonNegative] := (2 Floor[(k-1)/2]+1)!!/(2Floor[(k-1)/2]+2)!!

Recursive definition

c3[k_?((OddQ[#] && Positive[#]) &)] := c3[k] = k/(k + 1) c3[k - 1]

c3[k_?((EvenQ[#] && Positive[#]) &)] := c3[k] = c3[k - 1]

c3[0] = 1;

Pochhammer symbol representation

c4[k_Integer?NonNegative] :=

Pochhammer[1/2, Floor[(k + 1)/2]]/Floor[(k + 1)/2]!;

Alternating sum of a non-symmetric triangle

c5[k_Integer?NonNegative] := Sum[(-1)^s (Pochhammer[3/2, k - s]

Pochhammer[1/2, s])/((k - s)! s!), {s, 0, k}]/(k + 1);

We point out that the function Ck[k,n] included in QuaternionAnalysis defines, for the choice n = 2, the
Vietoris sequence, using the form (5).
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Gamma function representation

c6[k_Integer?NonNegative] := Gamma[1/2 + Floor[(k + 1)/2]]/

(Gamma[1/2] Gamma[1 + Floor[(k + 1)/2]]);

Integral representation

c7[k_Integer?NonNegative] :=

2/Pi Integrate[Cos[x]^(2 Floor[(k + 1)/2]), {x, 0, Pi/2}]

Catalan Numbers

c8[k_Integer?NonNegative] := Sum[(-2)^-s Binomial[k, s] CatalanNumber[s],

{s, 0, k}]

Legendre Polynomials

c9[k_Integer?NonNegative] := (-1)^Floor[(k+1)/2]

LegendreP[2 Floor[(k+1)/2], 0]

Bessel functions

c10[k_Integer?NonNegative] := Limit[(-1)^Floor[k/2]

D[BesselJ[1/2 (1 - (-1)^k), x], {x, k}], x -> 0]

Bessel functions of the first kind with integer order are entire functions; here we have use the limit to avoid
the indetermine form provided by a direct evaluation of the derivatives in Mathematica.

B Convolution triangles

To produce the convolution triangle of a sequence in its rectangular form, one can use the function TriangleRect,
in one of the following forms:

1. TriangleRect[{a0,a1,...,an},k]
gives the (n+ 1)× (k + 1) matrix corresponding to the first k convolutions of the sequence whose first
n+ 1 terms are a0,...,an;

2. TriangleRect[exp,n,k]
gives the (n+1)×(k+1) matrix corresponding to the first k convolutions of the sequence whose general
term is given by the expression expr.

SeqConv[list1_List, list2_List] :=

Module[{dim1 = Length[list1], dim2 = Length[list2]},

If[dim1 == dim2,

Table[Sum[list1[[k]] list2[[n - k + 1]], {k, 1, n}], {n, 1, dim1}],

Message[SeqConv::dim]]];

SeqConv::dim = "Lists in the argument must have the same lenght.";

SeqConv[list_List, k_Integer] := NestList[SeqConv[list, #] &, list, k]

SeqConv[a_, b_, n_] :=

SeqConv[Table[a[k], {k, 0, n}], Table[b[k], {k, 0, n}]]

SeqConv[a_, n_Integer, k_Integer] :=

Module[{list = Table[a[j], {j, 0, n}]}, SeqConv[list, k]]

TriangleRect[list_List, k_Integer] := Transpose[SeqConv[list, k]];

TriangleRect[a_, n_Integer, k_Integer] := Transpose[SeqConv[a, n, k]];

For example, the code

c[k_] := 1/2^k Binomial[k, Floor[k/2]]

TriangleRect[c, 6, 6] // TableForm
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produces the matrix in the left hand side of Table 1. This result can also be obtained by using

TriangleRect[{1, 1/2, 1/2, 3/8, 3/8, 5/16, 5/16}, 6] // TableForm

The left justified form of the convolution triangle can be obtained by the use of the function TriangleLeft
whose syntax is analogous to that of the function TriangleRect.

Matrix2Triangle[matrix_?MatrixQ] :=

Module[{dim = Dimensions[matrix], m, n}, {m, n} = dim;

If[n >= m, (Cases[#1, Except[Null]] & ) /@

Transpose[MapThread[PadLeft[Drop[#1, -#2], m, Null] & ,

{Take[Transpose[matrix], m], Range[m] - 1}]],

(Cases[#1, Except[Null]] & ) /@

Transpose[MapThread[PadLeft[Drop[#1, -#2],

m, Null] & , {Transpose[matrix], Range[n] - 1}]]]]

TriangleLeft[list_List, k_Integer] :=

Module[{n = Length[list]},

If[n < k + 1, Message[TriangleLeft::order, n - 1]];

Matrix2Triangle[Transpose[SeqConv[list, k]]]];

TriangleLeft[a_, k_Integer] := Matrix2Triangle[SeqConv[a, k, k]];

TriangleLeft::order = "Showing only the triangle of order ‘1‘.";

To obtain the table in the right hand side of Table 1 we just have to use:

TriangleLeft[c, 6] // TableForm

or

TriangleLeft[{1, 1/2, 1/2, 3/8, 3/8, 5/16, 5/16}, 6] // TableForm
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