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The identification of the emotional states corresponding to the four quadrants of the valence/arousal

space has been widely analyzed in the scientific literature by means of multiple techniques. Nevertheless,

most of these methods were based on the assessment of each brain region separately, without considering

the possible interactions among different areas. In order to study these interconnections, the present

study computes for the first time the functional connectivity metric called cross-sample entropy for the

analysis of the brain synchronization in four groups of emotions from electroencephalographic signals.

Outcomes reported a strong synchronization in the interconnections among central, parietal and occipital

areas, while the interactions between left frontal and temporal structures with the rest of brain regions

presented the lowest coordination. These differences were statistically significant for the four groups

of emotions. All emotions were simultaneously classified with a 95.43% of accuracy, overcoming the

results reported in previous studies. Moreover, the differences between high and low levels of valence

and arousal, taking into account the state of the counterpart dimension, also provided notable findings

about the degree of synchronization in the brain within different emotional conditions and the possible
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implications of these outcomes from a psychophysiological point of view.

Keywords: Electroencephalography; Functional connectivity; Cross-sample entropy; Emotions recogni-
tion.

1. Introduction

The interest in the study of the brain has consider-

ably increased in the last decades with the purpose

of completely evaluating its functioning under a wide

variety of health and environmental circumstances.1

Traditional methods have been focused on the as-

sociation of a particular mental process or function

with a determined anatomical region, thus consider-

ing brain structures as independent and unconnected

systems.2 However, the existence of interconnections

between different structures has been demonstrated,

hence suggesting that the brain works as a network

in which the information is shared among separate

areas for the development of cognitive tasks.3

The connectivity in the brain can be anatom-

ical (given by the physical and structural links be-

tween distinct areas) and functional (referring to the

statistical dependencies among non-physically linked

regions).4 In the second case, the existence of func-

tional networks entails a synchronized behavior be-

tween separate brain structures for the development

of mental tasks.3 Therefore, it is crucial to evaluate

the regional interactions for a proper and complete

description of the information processing dynamics

of the brain.3

The assessment of brain functional connectiv-

ity has been addressed in the scientific literature

through different mathematical methodologies.5,6

Nonetheless, the interactions between neurons and

brain structures present a nonlinear and nonstation-

ary nature, thus the application of nonlinear met-

rics, like cross-mutual information, transfer entropy,

or permutation dissalignment index, among others,

could complement the information reported by linear

techniques and thus allow to completely characterize

connectivity and functional interactions among sep-

arate brain areas. Indeed, these nonlinear functional

connectivity techniques have provided relevant in-

formation for the diagnosis of mental disorders such

as Alzheimer,7,8 depression,9 Parkinson,10 mild cog-

nitive impairment11 or autism,12,13 among others.

In the same manner, some studies have also evalu-

ated the performance of these connectivity metrics

for emotions recognition.14,15

Another interesting functional connectivity in-

dex is the well-known cross-sample entropy (CSE).

This metric evaluates the coordination between dif-

ferent brain regions by means of the estimation of

the repetitiveness of patterns within two brain sig-

nals recorded at different brain areas, thus reveal-

ing the degree of similarity of the dynamics and the

synchronized performance of separate brain struc-

tures.16 The CSE index has already been computed

by our research group for the recognition of two

emotions, concretely calm and distress.17 Neverthe-

less, to the best of our knowledge, this metric has

never been used for the evaluation of more than

two emotional states. In the scientific literature,

the four groups of emotional states corresponding

to the four quadrants of the circumplex model of

emotions proposed by Russell have been typically

analyzed with various methodologies. According to

this scheme, all emotions can be distributed in a

bi-dimensional space in terms of their associated

level of valence (pleasantness or unpleasantness) and

arousal (activation or relaxation).18 Then, the four

quadrants of this emotional space are HAHV (high

arousal/high valence), HALV (high arousal/low va-

lence), LAHV (low arousal/high valence) and LALV

(low arousal/low valence), as can be observed in Fig-

ure 1.
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HALV
(stress, fear,

anger...)

LALV
(depression,
sadness...)

HAHV
(happiness,
delight...)

LAHV
(relaxation,
calmness...)

Figure 1. Representation of the circumplex model of
emotions proposed by Russell, including the four groups
of emotions studied in this work.

The present study computes CSE for the first
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time to discern between the four groups of emo-

tions corresponding with the four quadrants of the

valence/arousal space and reveal the degree of coor-

dination between brain areas under these emotional

conditions. The assessment will be firstly done by

means of a multiclass approach in which the four

groups of study are considered simultaneously. In

addition, the differences between the four groups of

emotions will also be studied by means of compar-

ing them two by two in four binary-class schemes for

the analysis of different levels of valence and arousal

separately. In fact, both emotional dimensions are

strongly interrelated, thus influencing one on the

other and being necessary to jointly consider valence

and arousal levels.19 For this reason, the evaluation

of high and low levels of one emotional dimension

will be carried out taking into account a fixed level

of the counterpart dimension, with the purpose of

evaluating the synergy between valence and arousal.

The results could report new insights about the re-

lationships between brain regions and the degree of

synchronized activity produced in the brain under

the different emotional conditions under study.

This manuscript is structured as follows. Sec-

tion 2 describes the database and the preprocessing

process, together with the mathematical definition

of CSE, the experimental procedure and the statis-

tical analyses and classification processes conducted.

Later, results are presented in Section 3 and sub-

sequently discussed in Section 4. Finally, the main

conclusions of this study are included in Section 5.

2. Materials and Methods

2.1. Database

The EEG signals assessed in this study were con-

tained in the Database for Emotion Analysis using

Physiological Signals (DEAP).20 This publicly avail-

able dataset contains a total of 1,280 samples of dif-

ferent emotional states from 32 healthy participants

with ages ranging between 19 and 37 years old (mean

age 26.9, 50% male). More precisely, these subjects

visualized 40 videoclips with emotional content of

1-minute of duration, while EEG from 32 channels

and other physiological signals were acquired. Af-

ter each videoclip, participants rated their emotional

state indicating the level of valence (pleasantness-

unpleasantness) and arousal (activation-relaxation)

produced by the stimulus in a scale from 1 to 9.

The samples in the DEAP database included

all emotions contained in the valence/arousal space.

Nevertheless, only a subset of those samples was

chosen in this work and distributed in four groups:

HAHV (arousal and valence≥ 6), HALV (arousal≥ 6

and valence ≤ 4), LAHV (arousal ≤ 4 and va-

lence ≥ 6) and LALV (arousal and valence ≤ 4).

The samples in the borderline among two groups

were not considered, thus only the samples corre-

sponding with a strongly elicited emotion were fi-

nally analyzed in this study. Hence, the number of

samples included in each group was HAHV = 267,

HALV = 101, LAHV = 154 and LALV = 124. The

range of values and mean level of valence and arousal

for each group of emotions is shown in Table 1.

Table 1. Range, mean and standard deviation of va-
lence and arousal levels for each group of emotions.

Arousal Valence
Range Mean±Std Range Mean±Std

HAHV [6-9] 7.08±0.80 [6-9] 7.51±0.87
HALV [6-9] 7.08±0.90 [1-4] 2.37±0.97
LAHV [1-4] 2.92±0.81 [6-9] 7.08±0.74
LALV [1-4] 2.49±0.95 [1-4] 2.71±0.93

2.2. Preprocessing of EEG recordings

The EEG recordings included in DEAP database

were acquired with 32 channels located over the scalp

according to the international standard 10-20 scheme

for electrodes distribution.21 Prior to the application

of any kind of analysis, EEG signals were prepro-

cessed and filtered by means of EEGLAB, a tool-

box for Matlab specifically created for the assess-

ment of EEG recordings.22 Signals were firstly down-

sampled from 512 Hz to 128 Hz and re-referenced

to the average potential of all channels by remov-

ing this mean potential from each single EEG elec-

trode.23 This re-referencing technique is one of the

most used methods for EEG preprocessing because of

its computational simplicity and its ability to reduce

noise through the average process.23 Later, two for-

ward/backward high-pass and low-pass filters with

cutoff frequencies of 3 and 45 Hz, respectively, were

applied to eliminate the frequencies out of the bands

in the EEG spectrum containing emotional informa-

tion.24 These filtering approaches also removed base-

line and power line interferences. In addition, noise
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and other interferences that remained after the pre-

vious preprocessing steps were eliminated by means

of an independent component analysis (ICA). Con-

cretely, it was used for the rejection of artifacts de-

rived from both physical (such as eye blinks, facial

movements or heart bumps) and technical sources

(like bad contacts of the electrodes with the scalp, or

electrode-pops). The application of ICA consisted of

the computation of the independent components and

the posterior removal of those containing artifactual

information, thus only remaining the data related to

the brain activity. Finally, electrodes contaminated

with high-amplitude noise were removed and recon-

structed through the interpolation of adjacent chan-

nels.25

The videoclips used in the DEAP experiment

had a duration of 60 seconds.20 Nevertheless, only

the last 30 seconds of each trial were finally ana-

lyzed in this study with the purpose of ensuring that

the target emotion had been strongly elicited.20 The

original time series x were normalized and named as

y, such that the effect of amplitude in the comparison

between EEG electrodes was eliminated:

y =
x− x̄

σ
, (1)

being x̄ and σ the mean and standard deviation of

each signal x, respectively. Normalized signals y were

then divided into six equally-sized non-overlapped

segments of 5 seconds (N = 3840 samples per seg-

ment). Then, CSE was computed for each segment,

evaluating the similarity of patterns between each

channel and the rest of EEG electrodes. Finally, the

value of CSE for each pair of channels was computed

as the average of the outcomes obtained for the six

segments.

2.3. Cross-Sample Entropy (CSE)

CSE represents an improvement of cross-

approximate entropy in terms of its relative con-

sistency for different conditions.26 Precisely, CSE is

based on the comparison of signals from two different

yet intertwined variables for the assessment of their

level of asynchrony or dissimilarity.26,27 Hence, it is

possible to evaluate the evolution of feedback, con-

trol, and other characteristics of a system, without

the necessity of modeling the underlying system.27

In addition, as CSE analyzes both dominant and

secondary patterns in the time series, it allows to

quantify changes in the underlying dynamics that

cannot be reported by peak occurrences or ampli-

tudes.28 More concretely, having two signals x1(n)

and x2(n) of N samples of length, CSE evaluates

the conditional regularity or frequency of patterns

from x1(n) that are similar to patterns from x2(n) of

windows length m within a tolerance r. This can be

better observed in Figure 2, which shows the search

of patterns of length m = 3 along the time series

x2(n) that match with a reference pattern of the

same length from the signal x1(n) within a tolerance

r. Therefore, considering two brain signals x1(n) and

x2(n) from separate brain regions provides the de-

gree of synchronization among both areas. Larger

CSE values represent a greater level of asynchrony

between both time series, thus indicating less pattern

matches.26

x1(n)

x2(n)

Figure 2. Representation of the performance of CSE in-
dex for evaluating the degree of coordination among two
brain signals x1(n) and x2(n) from separate brain re-
gions.

For the computation of CSE, N −m vectors of

length m samples are firstly formed from x1(n) and

x2(n),
26 thus

Xm
1,i = {x1(i), x1(i+ 1), . . . , x1(i+m− 1)}, (2)

Xm
2,j = {x2(j), x2(j + 1), . . . , x2(j +m− 1)}, (3)

where i and j are both in the range [1, N−m]. These

vectors are the representation of m consecutive x1

and x2 samples starting at i-th and j-th points, re-

spectively. Then, the maximum absolute difference

in the scalar components of Xm
1,i and Xm

2,j represents

the distance dmij between both vectors:

dmij = d[Xm
1,i,X

m
2,j ] =

= max
k∈(0,m−1)

|x1(i+ k)− x2(j + k)|. (4)

Hence, the probability of having patterns in x2

that are similar to a pattern in x1 of window length

m within a tolerance r is represented as
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ϕm(r)(x1||x2) =

=
1

N −m

N−m∑
i=1

( 1

N −m

N−m∑
j=1

Θ
(
r − dmij

))
, (5)

being Θ(x) the Heaviside function, with the following

mathematical definition:26

Θ(x) =

{
1, if x ≥ 0,

0, if x < 0.
(6)

In the same manner, the probability is also es-

timated for patterns of length m+ 1:

ϕm+1(r)(x1||x2) =

1

N −m

N−m∑
i=1

( 1

N −m

N−m∑
j=1

Θ
(
r − dm+1

ij

))
. (7)

CSE is then calculated as the negative natural

logarithm of the conditional probability ϕm+1/ϕm:26

CSE(m, r,N)(x1||x2) =

− lim
N→∞

(
ln

ϕm+1(r)(x1||x2)

ϕm(r)(x1||x2)

)
, (8)

As the length of the time series N is finite, CSE

is finally computed as26

CSE(m, r,N)(x1||x2) = − ln
ϕm+1(r)(x1||x2)

ϕm(r)(x1||x2)
. (9)

It is important to remark that this

metric is direction independent, which

means that CSE(m, r,N)(x1||x2) is equal to

CSE(m, r,N)(x2||x1). It is because ϕm simply con-

siders the number of pairs of vectors from the two

signals matching within r, independently of which

signal is the template and which is the target.26 As it

occurs in the case of sample entropy, the proper selec-

tion of parameters m and r is essential for correctly

determining the CSE value. Therefore, as there are

no guidelines for an optimization of those values, the

widely recommended parameters m = 2 and r = 0.2

were finally chosen in the present work.16

2.4. Experimental approaches and
statistical analysis

The normality and homoscedasticity of the distribu-

tion of samples was corroborated by Shapiro-Wilks

and Levene tests, respectively, thus it is possible

to represent the final results as mean±standard de-

viation for every pair of EEG channels. Precisely,

the mean and standard deviation of CSE was com-

puted for each pair of channels in each of the four

groups of emotions. In addition, an analysis of vari-

ance (ANOVA) was used to check the possible sta-

tistical differences among the interactions between

channels with the strongest and the weakest level of

coordination within each group of study separately.

It should be remarked that only statistical signifi-

cance results of ρ < 0.05 were considered as signifi-

cant.

The four quadrants of the emotional model were

also assessed together by means of two different anal-

yses. The first case consisted of a multiclass scheme

for the simultaneous assessment of the four groups of

emotions under study. For that purpose, an ANOVA

test was conducted for the quantification of the capa-

bility of CSE to statistically discern between the four

emotional classes corresponding to the four quad-

rants of the valence/arousal model. On the other

hand, a binary-class approach was developed for the

identification of the different groups of emotions two

by two, according to their values of valence and

arousal separately. However, the differences between

high and low levels of one emotional dimension were

evaluated also taking into account a fixed value of

the other dimension. As a result, the detection of

high and low levels of valence was conducted for a

fixed high arousal (HAXV; HAHV vs. HALV) and

for a fixed low arousal (LAXV; LAHV vs. LALV). In

the same manner, high and low levels of arousal were

discerned for a fixed high valence (XAHV; HAHV vs.

LAHV) and for a fixed low valence (XALV; HALV vs.

LALV). Therefore, the four quadrants were evaluated

two by two in a total of four binary schemes, accord-

ing to their levels of both emotional dimensions. For

the four cases, a one-way ANOVA test was also ap-

plied for the assessment of the statistical differences

between the CSE values of the groups of study in

each binary approach.

2.5. Classification procedure

With the aim of discerning among the four groups

of emotions, a support vector machine (SVM) clas-

sification scheme was developed. Firstly, all samples

in the dataset of study were firstly rearranged us-

ing a 10-fold cross-validation approach to avoid the

overfitting of the classifiers. Hence, samples were ran-
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domly redistributed in 10 equally-sized folds ensuring

the representativity of each group of emotions with

respect to the whole dataset. For each iteration of

the cross-validation process, nine folds were used to

train the classifier and the remaining one for testing

it, such that after the ten rounds all folds were used

for both training and testing. In each step, a sequen-

tial forward selection (SFS) was used. This features

reduction strategy sequentially selects the most rele-

vant observations for the prediction of data, includ-

ing one feature at each step of the algorithm until

there is no improvement in prediction, thus obtain-

ing the subset of features that provide the best in-

formation.29 In this case, SFS was applied for the

selection of the subset of pairs of EEG channels min-

imizing the misclassification rate of the SVM classi-

fier. The SVM model implemented in this study pre-

sented a Gaussian kernel with a scale factor of 0.35

and a box constraint of 1. Then, the pairs of channels

selected by the SFS approach were used as input fea-

tures to train the SVM classifier with the nine folds

reserved for training, and the resulting model was

finally tested with the remaining fold.

The assessment of the efficiency of the SVM

model obtained in each iteration of the cross-

validation approach was made with respect to the

true positive (TP, positive samples correctly labeled

as positive), true negative (TN, negative samples

properly identified as negative), false positive (FP,

negative samples incorrectly labeled as positive) and

false negative (FN, positive samples incorrectly de-

tected as negative) cases. In the multiclass approach,

different performance indices were applied consider-

ing these parameters. The first one was the preci-

sion (P), or positive predictive value, representing

the probability of properly making a correct positive

classification:

P =
TP

TP + FP
(10)

In addition, recall (R) represents the sensitive-

ness of the model to detect the class considered as

positive:

R =
TP

TP + FN
(11)

On the other hand, accuracy (Acc) considers all

the correctly detected cases assigning the same im-

portance to all of them:

Acc =
TP + TN

TP + TN + FP + FN
(12)

Nevertheless, in the case of an imbalanced num-

ber of samples among different groups, the F1-score

parameter gives a global measurement of accuracy

more precise than Acc for the evaluation of the mod-

els, using P and R values for its computation.

F1 = 2 ∗ P ∗R
P +R

=
2 ∗ TP

2 ∗ TP + FP + FN
(13)

On the other hand, the binary-class schemes

evaluated the performance of the classification model

according to its sensitivity (Se), specificity (Sp) and

Acc. Concretely, Se is the proportion of TP out of

all positives, and its mathematical expression is the

same as for R (eq. 11). On the other hand, Sp is the

percentage of TN out of all negatives:

Sp =
TN

TN + FP
(14)

3. Results

3.1. Average levels of CSE

As CSE is computed for each pair of EEG channels,

results obtained for each trial can be represented by

a 32 × 32 symmetric matrix that shows the rela-

tionship of each channel with the rest of electrodes.

According to the color scale used for the representa-

tion of CSE outcomes, blue-colored squares are those

with the lowest values, indicating a strongly coordi-

nated activity and highly similar dynamics between

the two corresponding brain areas. On the contrary,

red colors are used for the representation of the high-

est CSE results, thus depicting the most dissimilar

and asynchronized dynamics between brain regions.

In addition, the main diagonal represents the inter-

action of one channel with itself, which is not appli-

cable with CSE and, therefore, is represented with

white squares.

For each of the four groups of emotions, the av-

erage of CSE from all samples was computed and

represented in Figure 3. As can be seen, the strongest

synchronization (given by the lowest CSE values)

appeared in central, parietal and occipital regions

in all the cases. More precisely, this highly coordi-

nated activity was present in the interactions be-

tween those regions within the same hemisphere

(intra-hemispheric connections) and among the same
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areas from both hemispheres (inter-hemispheric con-

nections). On the contrary, the most asynchronized

behavior (represented by the highest CSE levels) ap-

peared in the connections between frontal and tem-

poral channels from left hemisphere with the rest of

brain regions. With respect to the standard devia-

tion of CSE values obtained for each group, results

ranged between 0.04 and 0.16, compared with mean

values, which ranged between 0.55 and 0.85, such as

Figure 3 shows. These results represent a reduced

dispersion of the samples within each group.

For a better understanding of the anatomical

implications of these coordination results, Figure 4

shows the interactions with (a) the strongest coordi-

nation (lowest CSE values) and (b) the weakest syn-

chronization (highest CSE results) in a brain model.

In general terms, the four groups of emotions pre-

sented similar synchronization tendencies aforemen-

tioned, therefore these two models are representative

of all the emotional conditions studied in this work.

In addition, an ANOVA analysis was applied for the

evaluation of the statistical differences among the in-

teractions with the strongest and the weakest level of

coordination in each group separately. This analysis

corroborated the similarities among the four groups,

reporting statistically significant outcomes for the

comparison among interactions including left frontal

and temporal regions (weakest coordination levels)

with interconnections between other brain areas, es-

pecially those involving regions from the posterior

half of the brain from both hemispheres (strongest

coordination levels). This reinforces the existence of

notable differences in the coordination level among

the pairs of brain regions with the weakest and the

strongest synchronization.

Although in general terms the four groups of

emotions presented similar synchronization tenden-

cies aforementioned, the level of synchronization

slightly varied for each group. More concretely, the

groups of HALV (Figure 3(a)) and LAHV (Fig-

ure 3(d)) presented a generalized decrease of CSE

levels, especially in the intra- and inter-hemispheric

interactions between posterior areas of the brain,

represented by a higher presence of blue colors in

these regions. Therefore, the brain showed a more

self-coordinated functioning and more similar dy-

namics among all areas under the corresponding

emotional states, which are fear, distress or anger

in the group of HALV, and calmness or relaxation in

the group of LAHV.

(a) (b)

LP RP

LO RO

LC RC

LF

LT

RF

RT

LP RP

LO RO

LC RC

LF

LT

RF

RT

Figure 4. Representation of interactions with (a) the
strongest synchronization (lowest CSE values) and (b)
the weakest synchronization (highest CSE results) for the
general tendency of the four groups of emotions.

3.2. Multiclass analysis

The statistical analysis for the simultaneous assess-

ment of the four groups of emotions revealed statis-

tically significant results for 14 out of 496 possible

pairs of channels, including the intra-hemispheric in-

teractions between left frontal region with itself and

with parieto-occipital channels, and the interactions

among fronto-central and centro-parietal regions in

right hemisphere. The inter-hemispheric interactions

among left and right frontal areas also reported sta-

tistically significant outcomes. On the other hand,

the SFS approach selected a total of 42 interactions

in the 10 iterations of the cross-validation process.

The brain regions involved in these interactions cho-

sen were also those with statistically significant re-

sults in ANOVA analysis, i.e., left frontal with left

frontal and parieto-occipital, left frontal with right

frontal, and right fronto-central and centro-parietal

regions.

The 42 pairs of channels selected by the SFS

were used as input features in the SVM classifica-

tion model in each iteration of the cross-validation

scheme. Final performance results were obtained as

the average of the ten iterations and are shown in

Table 2. As can be observed, the global accuracy for

the simultaneous classification of the four groups of

emotions is 95.43%. The two groups with low va-

lence (i.e., HALV and LALV) present the highest

precision (97.89 and 98.32%, respectively), whereas

the groups with high valence (HAHV and LAHV)

provide the highest recall values (98.95 and 93.51%,

respectively). Finally, the average F1 was 94.43%,
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Figure 3. Average CSE levels from all pairs of EEG channels in the four groups of emotions under study.

being HAHV and LALV the groups with the best

results, over 95% in both cases.

Table 2. Performance of CSE in multiclass analysis.

Group Acc P R F1

HAHV 95.60% 92.15% 98.95% 95.33%
HALV 95.40% 97.89% 88.12% 92.59%
LAHV 95.14% 95.70% 93.51% 94.56%
LALV 95.60% 98.32% 92.66% 95.26%

Average 95.43% 96.01% 93.31% 94.43%

3.3. Binary-class analysis

The differences of CSE values between two groups

of emotions can be depicted using a similar repre-

sentation as in the case of mean CSE levels. In this

case, each element of the 32 × matrix is the rep-

resentation of the difference of CSE among the two

emotions under study for the corresponding pair of

channels. With this respect, the interpretation of the

color scale is different. In this case, if the difference

of CSE between two emotions A and B is obtained

as CSE(A)-CSE(B), then the map of differences in-

dicates with red colors those pairs of channels with

greater CSE in emotion A than in emotion B (i.e.,
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positive difference), whereas blue colors are used for

marking the pairs of electrodes with a higher value of

CSE in emotion B than in emotion A (i.e., negative

difference). Finally, green squares represent the pairs

of EEG channels with negligible differences between

both emotional states.

The differences of average levels of CSE between

pairs of emotional groups are represented in Figure 5.

Precisely, Figures 5(a) and (b) are the CSE level of

high valence minus low valence when having a fixed

high and low arousal, namely HAXV and LAXV, re-

spectively. In the same manner, Figures 5(c) and (d)

represent XAHV and XALV schemes, which corre-

spond with the result of CSE in high arousal minus

CSE in low arousal when the valence is fixed to low

and high level, respectively. Therefore, each differ-

ence map has been obtained as the high minus the

low level of the variable emotional dimension (either

valence or arousal) when the other dimension has a

fixed level.

In the cases of HAXV and LAXV schemes,

represented in Figures 5(a) HAHV-HALV and (b)

LAHV-LALV, it can be observed that the highest

differences appear in the interactions between the

right hemisphere with all the brain regions within

the same hemisphere and also with the counterpart.

However, the CSE value is higher (more dissimilar-

ity) in those interactions for high valence than for low

valence when having a fixed high arousal, which is

represented by red colors in Figure 5(a). On the con-

trary, the same interactions are represented in color

blue when the arousal is fixed to a low level (Fig-

ure 5(b)), thus being CSE higher (and the coordina-

tion lower) for low valence than for high valence in

these interconnections. In the latter case, the differ-

ences in the interactions between left and right pre-

frontal channels with left parieto-occipital areas are

also relevant, but colored with red and orange, thus

depicting a higher level of CSE (lower coordination)

for high valence than for low valence.

With respect to the statistical analyses, in

HAXV scheme only the interaction among C4 and

P4 from right central and parietal regions was sta-

tistically significant. This pair of electrodes reported

the strongest difference between HAHV and HALV

groups. In the case of LAXV, 14 out of 496 pairs

of channels were statistically significant, mainly in-

cluding the interactions among right frontal region

with all areas in the same hemisphere, in line with

the strongest differences between LAHV and LALV

depicted in Figure 5(b).

On the other hand, the maps representing

XAHV and XALV approaches, Figures 5(c) HAHV-

LAHV and (d) HALV-LALV, present different char-

acteristics. If valence is fixed to a high level (Fig-

ure 5(c)), the CSE outcomes are higher (and thus

the dissimilarities) for high than for low arousal in

the intra- and inter-hemispheric interactions between

central, temporal and parietal areas, which is repre-

sented with red colors. Differently, the relationship

between left prefrontal region with all brain areas is

colored with blue, which represents a more coordi-

nated activity (lower CSE values) for high than for

low arousal with a fixed high valence. In the case

of a fixed low valence (Figure 5(d)), the interactions

between central and temporal channels from both

hemispheres, especially from the left one, with all the

brain regions are colored with red, which represents a

higher CSE (or higher dissimilarity) for high than for

low arousal. On the contrary, the interconnections of

left and right prefrontal channels and the right pari-

etal region with all brain areas present blue colors,

thus being CSE higher (lower coordination) for low

than for high arousal when having a fixed low va-

lence. This difference in the interactions between left

prefrontal and all brain regions is the same as the

obtained with a fixed high level of valence. In gen-

eral, the differences between high and low arousal are

bigger for a fixed high valence than for a fixed low

valence.

In terms of the statistically significance out-

comes, XAHV scheme reported 55 out of 496 sta-

tistically significant pairs of channels, with the best

results in the interactions between left frontal elec-

trodes with themselves and also with left parieto-

occipital and right frontal areas. These were precisely

the interactions with the strongest negative differ-

ence between HAHV and LAHV. In addition, the

intra-hemispheric interactions among right fronto-

central and centro-parietal channels, and the inter-

hemispheric interconnections among the same areas,

also presented statistically significant results, being

those the regions with the highest positive differences

among these two groups of emotions. With respect

to XALV approach, 11 out of 496 pairs of channels

were statistically significant, mainly related to the

interactions among right frontal and parietal areas.

With respect to the interconnections among
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Figure 5. Difference of average levels of CSE between groups two by two in binary-class scheme. Each map represents
the difference between two groups as the high level minus the low level of the variable emotional dimension (valence or
arousal), having the other dimension a fixed level.

channels selected by the SFS approach for the four

binary-class schemes, in the case of HAXV only the

interactions among left frontal channels Fp1-AF3

and right central and parietal electrodes C4-P4 were

selected by the SFS approach. The 36 pairs of elec-

trodes selected in LAXV scheme were mainly those

representing the interactions among right frontal

area with central, parietal and occipital channels in

the same hemisphere, in line with the statistical re-

sults reported by ANOVA. Interconnections among

channels in left frontal area, on the one hand, and

left parieto-occipital region, on the other hand, were

also widely selected by the SFS approach. A total of

41 combinations of channels were selected in XAHV

scheme, including interactions among right centro-

parietal region with right fronto-central and left pari-

etal areas, and the relations between left frontal

channels with left parieto-occipital and right frontal

regions. Finally, the 41 interactions selected in XALV

included the connections between right frontal area

with itself and with central and parietal regions from

both brain hemispheres.
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For each binary-class scheme, a SVM was imple-

mented using the pairs of channels selected by the

SFS approach as input features. The results of per-

formance obtained for each binary-class approach are

depicted in Table 3. As can be observed, the high-

est accuracy values were obtained for the schemes in

which the fixed emotional dimension presented a low

level, i.e., LAXV and XALV (98.20% and 97.38%,

respectively). These two schemes also reported bal-

anced results of sensitivity and specificity, thus show-

ing similar capabilities to detect the two groups of

emotions included in those binary-class schemes. The

lowest classification accuracy was reported by the

HAXV approach (75.54%). Precisely, this binary-

class scheme presented imbalanced results of sensi-

tivity and specificity, thus representing a good per-

formance for the detection of only one of the two

groups in this approach. Finally, XAHV scheme pre-

sented a global accuracy of 95.70%, with a difference

between sensitivity and specificity of more than 80%.

Table 3. Performance of CSE in the
four schemes of binary-class analysis.

Scheme Se Sp Acc

HAXV 98.88% 13.86% 75.54%

LAXV 99.03% 97.18% 98.20%

XAHV 98.80% 90.32% 95.70%

XALV 95.94% 98.55% 97.38%

4. Discussion

The analysis of EEG signals with functional connec-

tivity metrics provides interesting information about

the synchronization between separate brain regions

under different cognitive tasks and mental processes.

In the present study, CSE has been applied for the

first time to describe connectivity characteristics of

the brain under emotional conditions corresponding

to the four quadrants of the valence/arousal emo-

tional space, reporting new discoveries about the co-

ordinated activity in the emotions contained in those

groups. Interestingly, CSE has already demonstrated

its ability to discern between calm and distress, re-

vealing notable insights about the synchronization of

the brain under these emotional states.17 Hence, the

present manuscript reinforces the capability of CSE

to identify different emotional states from EEG sig-

nals.

The computation of CSE in the present work

revealed that the strongest coordinated activity ap-

peared in the intra- and inter-hemispheric connec-

tions of parietal lobes and other posterior regions.

Interestingly, the essential role of the parietal areas

in emotional processes has already been highlighted.

Indeed, parietal activity is related to both emotional

dimensions, arousal and valence, thus providing rel-

evant information for emotions detection.30 Further-

more, the complementary performance of this brain

region among both hemispheres has also been de-

scribed under various emotional conditions.31 On the

other hand, the possible interaction among parietal

and frontal areas in emotional processes has been

proposed in some previous studies, suggesting the

existence of both physical and functional links be-

tween those regions.32,33 Nevertheless, the results

obtained in the present study indicate that the inter-

actions between frontal and parietal areas reported

the weakest coordinated activity under the different

emotional conditions studied, whereas the synchro-

nization between other regions was higher in emo-

tional processes.

Precisely, the interactions among parietal areas

from both hemispheres with other brain regions, to-

gether with the interconnections among left and right

frontal areas, reported statistically significant results

when discerning between the four groups of emotions

in the multiclass scheme. The CSE values of these rel-

evant interactions were used as input features of the

SVM classification model, which reported a global

classification accuracy of 95.43%. This outcomes can

be directly compared with other similar studies in-

cluded in Table 4 in which the same database has

been assessed for the detection of the four quadrants

of the valence/arousal space simultaneously. As can

be observed, the classification accuracy reported by

the multiclass scheme in the present work is compa-

rable with the outcomes of other studies, even over-

coming these results in some cases.34–37 Moreover,

this work is focused on the assessment of a single non-

linear metric called CSE, whereas the studies with

similar classification results were based on the com-

bination of different nonlinear indices for the detec-

tion of the emotions in the four quadrants of the va-

lence/arousal space.38–40 In addition, it is interesting

to remark that the classification process presented in
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this study is based on the reduction of input features

in the classifier by means of an SFS scheme. This pro-

cedure presents valuable advantages with respect to

other studies given the simplification of the classifica-

tion model. In addition, the preselection of the most

relevant features allows to give a clinical interpreta-

tion of the classification results, since it is possible

to know which are brain regions making the greatest

contributions to the enhancement of the performance

outcomes. Furthermore, the metric analyzed in the

present study evaluates the functional connectivity

and synchronization among different brain regions,

thus revealing new insights about the brain behavior

in emotional processes that cannot be reported by

the metrics computed in the rest of works, based on

the assessment of each brain area separately.

In addition, the differences between high and

low levels of arousal and valence have been evalu-

ated separately but taking into account the level of

the other emotional dimension in four binary-class

approaches. This scheme is different from the typical

analyses for arousal and valence detection tradition-

ally made in the scientific literature, since in most

of the cases the distinction between high and low

levels of one emotional dimension does not consider

the state of the counterpart dimension. Nevertheless,

it is known that both valence and arousal present

a strong intercorrelation, hence the differentiating

characteristics among high and low arousal could

change depending on the level of valence, and vice

versa. Therefore, the influence of one on the other

makes necessary to take into account the state of

both emotional dimensions even if only one of them

is being evaluated.19 Indeed, a similar scheme has

already corroborated that the distinction between

high and low levels of one emotional dimension is

not equal when the counterpart dimension is either

fixed to a high or a low level.40

In the case of having a fixed level of arousal, i.e.,

HAXV and LAXV schemes, the major differences

between high and low valence were observed in the

interconnections among posterior areas of the brain

for both high and low fixed arousal. Nevertheless, for

high arousal the synchronization in these areas was

higher for low than for high valence, i.e., these re-

gions were more coordinated for emotions in HALV

(anger, fear, distress) than for HAHV (happiness, de-

light). This increase of synchronization could be in-

terpreted as a mechanism of self-protection based on

the enhancement of alertness for the processing of the

perceived external information, preparing the body

for a possible response against the negative stimuli

that threaten the self-integrity of the individual.41

However, despite visually observing differences in the

maps representing the mean level of CSE for both

groups of emotions, the statistical analysis and clas-

sification approach reported the lowest results, thus

demonstrating more difficulties to discern between

the emotional states sharing a high level of arousal,

independently on their level of valence.

On the contrary, if the arousal was fixed to a

low level, the interactions among these posterior ar-

eas was more coordinated for high than for low va-

lence, hence the synchronization in these areas was

higher for LAHV (relaxation, calmness) than for

LALV (sadness, depression). This increase of coordi-

nation in calmness has been related to an enhance-

ment of self-consciousness for the improvement of at-

tention and better development of cognitive control

processes.42

With respect to the detection of high and low

arousal with a fixed valence, i.e., XAHV and XALV

approaches, the synchronization in the interactions

between prefrontal channels, especially in the left

hemisphere, with all brain regions was greater for

high than for low arousal, regardless of the fixed

level of valence. In other words, these areas were

more coordinated for HALV (fear, anger, distress)

and HAHV (happiness, delight) than for LALV

(sadness, depression) and LAHV (relaxation, calm-

ness). Similar outcomes have been reported by pre-

vious studies also focused on the evaluation of func-

tional connectivity in the brain under high and low

levels of arousal and valence, suggesting that the

brain increases the coordinated activity and coher-

ence among prefrontal and posterior regions in high

arousal situations.43

On the other hand, the contrary outcomes were

obtained for the interactions between left temporal

locations and all brain areas with fixed low valence,

thus the synchronization was higher for LALV (sad-

ness, depression) than for HALV (fear, anger, dis-

tress). The key role of the left temporal structures

in depressive conditions has been already proved,

highlighting an increased activation of this area and

its interactions with other brain regions under nega-

tive and ruminative tendencies.44 Another study sug-

gested the increased inter-hemispheric coordination
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Table 4. Comparison of multiclass outcomes obtained in the present work with similar previous studies
for recognition of the four quadrants of valence/arousal emotional space with DEAP database.

Study Features Classifier Accuracy

Zhang et al. (2016)38 EMD1, SE2 SVM 93.20%

Bagherzadeh et al. (2018)39 CD3, SE PSA4 93.60%

Cai et al. (2019)34 ShEn5, SpEn6 LS-SVM7 65.13%

Gao et al. (2019)35 MSE8, REn9, FuzzEn10, EMD SVM 62.01%

Soroush et al. (2019)36 Poincare planes and sections SVM 81.67%

Garćıa-Mart́ınez et al. (2021)(a)40 QSE11, AAPE12, PME13 SVM 93.75% / 96.39%

Garćıa-Mart́ınez et al. (2021)(b)37 DispEn14 SVM 89.54%

Present study CSE SVM 95.43%

1 EMD: Empirical mode decomposition
2 SE: Sample entropy
3 CD: Correlation dimension
4 PSA: Parallel stacked autoencoder
5 ShEn: Shannon entropy
6 SpEn: Spectral entropy
7 LS-SVM: Least square SVM
8 MSE: Multiscale sample entropy
9 REn: Rényi entropy
10 FuzzEn: Fuzzy entropy
11 QSE: Quadratic sample entropy
12 AAPE: Amplitude-aware permutation entropy
13 PME: Permutation min-entropy
14 DispEn: Dispersion entropy

between temporal and frontal lobes during the pro-

cessing of unpleasant stimuli.45 Finally, the intra-

and inter-hemispheric relations in frontal, central

and parietal regions were more synchronized for

high than for low arousal with a fixed high valence,

i.e., higher for LAHV (calmness, relaxation) than

for HAHV (happiness, delight). As previously men-

tioned, the increased coordination in a relaxed emo-

tional state, and even during meditation processes,

could be related to an improvement of the attention

for the enhancement of the self-consciousness, reach-

ing an optimum mental state for the development of

cognitive tasks.42

However, the high level of synchronization

among some areas in certain emotional states does

not imply a lack of coordination between the rest of

brain regions. Indeed, it is considered that there is

always a minimum degree of synchronized activity

among areas, although its strength and the regions

involved are different depending on the requirements

of the mental task that is being developed.46 In other

words, the performance of cognitive mechanisms gen-

erates a series of fluctuating patterns of synchroniza-

tion among separate brain regions.47 These coordi-

nation patterns are also present in the brain activity

of an idle subject, but with a lower relevance than

under the development of cognitive tasks.48,49 Con-

sequently, the “default system” of the brain is defined

as a subset of brain areas with a stronger degree of

activity under resting conditions and without paying

attention to external stimuli.50 Therefore, the brain

is always synchronized, even if no relevant tasks are

being executed.51

Notwithstanding, it is possible to find some dif-

ficulties when trying to give a physiological inter-

pretation of the outcomes reported by metrics based

on the evaluation of synchronization and coordina-

tion among brain areas. Precisely, the sensory input
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of a received stimulus is firstly processed in a cer-

tain brain region, and subsequently spread to other

non-connected areas for the particular treatment of

the sensory information. In this sense, these regions

would report a strong coordination among them.

Nevertheless, it is not possible to discern whether

these outcomes represent an actual synaptical asso-

ciation between areas or if the dynamics of both re-

gions are similar just because of being involved in the

same cognitive process originated in a common brain

area. Therefore, the functional and direct connection

among two areas cannot be confirmed, although it is

possible to corroborate the involvement of separate

brain regions in the same mental task.48

Finally, it is important to remark some limita-

tions of this study. For instance, the audiovisual stim-

uli used in the experiment of DEAP database pre-

sented 1 minute of duration, which could be too much

time for the elicitation of only one emotion, thus hin-

dering the process of self-assessment of the individ-

ual’s emotional state. On the other hand, there is no

consensus about the optimal type of stimulus (e.g.,

images, music, videoclips...) for emotions elicitation,

and the response of the brain against different op-

tions may also change. Consequently, in future works

it would be interesting to analyze and compare func-

tional connectivity of different brain regions using

other types of emotional stimuli, in order to define an

optimal experimental procedure for emotions elicita-

tion. In addition, the computation in future studies

of other synchronization metrics, like entropy-based

symbolic indices or graph theory, could report new

and complementary information to that provided by

CSE. Finally, the application of advanced classifica-

tion approaches based on deep learning techniques

could provide valuable information about the dis-

criminatory power of CSE and other functional con-

nectivity metrics for the identification of different

emotional states.52,53 However, as the number of

samples included in DEAP database is scarce, fu-

ture experiments will also consider the necessity of

including a wide number of participants and samples

to allow the possibility to implement deep learning

algorithms for emotions classification.

5. Conclusions

The present study has computed the CSE index for

the assessment of the functional connectivity charac-

teristics of the brain under the emotional states in-

cluded in the four quadrants of the valence/arousal

space. Results obtained for the four groups of emo-

tions under study have shown a more synchronized

intra- and inter-hemispheric interactions in central,

parietal and occipital regions, and a lower coordi-

nation between left frontal and temporal sites with

all brain structures. An ANOVA analysis for each

group of emotions separately confirmed the notable

difference in the level of synchronization among the

aforementioned regions. Furthermore, the multiclass

approach for the simultaneous assessment of the four

groups of emotions under study reported a global

classification accuracy of 95.43%, which overcomes

the outcomes obtained in similar previous works. The

differences between pairs of emotional groups were

also computed in four binary-class schemes to discern

between high and low levels of valence and arousal

separately, but considering the state of the counter-

part dimension. In this sense, outcomes have demon-

strated a strong interrelation between valence and

arousal, since the differences between high and low

levels of one dimension changed depending on the

state of the other. Concretely, the highest differences

of coordination between high and low valence with

fixed arousal appeared in the interactions of the right

hemisphere, but with a distinct tendency depending

on the fixed level of arousal. On the other hand, the

prefrontal areas, especially from the left hemisphere,

always presented a higher synchronization for high

than for low arousal, regardless of the level of va-

lence, although different results were obtained from

the rest of brain interconnections in terms of the fixed

level of valence.
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21. G. H. Klem, H. O. Lüders, H. Jasper, C. Elger et al.,
The ten-twenty electrode system of the International
Federation, Electroencephalogr. Clin. Neurophysiol.
52 (1999) 3–6.

22. A. Delorme and S. Makeig, EEGLAB: An open
source toolbox for analysis of single-trial EEG dy-
namics including independent component analysis,
J. Neurosci. Methods 134(1) (2004) 9–21.

23. S. Tsuchimoto, S. Shibusawa, S. Iwama, M. Hayashi,
K. Okuyama, N. Mizuguchi, K. Kato and J. Ushiba,
Use of common average reference and large-
Laplacian spatial-filters enhances EEG signal-to-
noise ratios in intrinsic sensorimotor activity, J. Neu-
rosci. Methods 353 (2021) p. 109089.

24. W. W. Ismail, M. Hanif, S. Mohamed, N. Hamzah
and Z. I. Rizman, Human emotion detection via
brain waves study by using electroencephalogram
(EEG), Int. J. Adv. Sci. Eng. Inf. Technol. 6(6)
(2016) 1005–1011.

25. A. Pedroni, A. Bahreini and N. Langer, Automagic:
Standardized preprocessing of big EEG data, Neu-
roImage 200 (2019) 460–473.

26. J. S. Richman and J. R. Moorman, Physiological
time-series analysis using approximate entropy and
sample entropy, Am. J. Physiol. - Heart Circ. Phys-
iol. 278(6) (2000) H2039–H2049.

27. S. M. Pincus, Irregularity and asynchrony in biologic
network signals, Methods Enzymol. 321 (2000) 149–
82.



March 11, 2022 17:58 bgarcia-xqsamp-4esq-20211011˙rev2˙v1
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