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A B S T R A C T

The introduction of Machine Learning (ML) on the orbit of the resolution of problems
typically associated within the human behaviour has brought great expectations to
the future. In fact, the possible development of machines capable of learning, in a
similar way as of the humans, could bring grand perspectives to diverse areas like
healthcare, the banking sector, retail, and any other area in which we could avoid the
constant attention of a person dedicated to the solving of a problem; furthermore, there
are those problems that are still not at the hands of humans to solve - these are now
at the disposal of intelligent machines, bringing new possibilities to the humankind
development.

ML algorithms, specifically Deep Learning (DL) methods, lack a bigger acceptance by
part of the community, even though they are present in various systems in our daily
basis. This lack of confidence, mandatory to let systems make big, important decisions
with great impact in the everyday life is due to the difficulty on understanding the
learning mechanisms and previsions that result by the same - some algorithms represent
themselves as ”black boxes”, translating an input into an output, while not being totally
transparent to the outside. Another complication rises, when it is taken into account
that the same algorithms are trained to a specific task and in accordance to the training
cases found on their development, being more susceptible to error in a real environment
- one can argue that they do not constitute a true Artificial Intelligence (AI).

Following this line of thought, this dissertation aims at studying a new theory,
Hierarchical Temporal Memory (HTM), that can be placed in the area of Machine
Intelligence (MI), an area that studies the capacity of how the software systems can
learn, in an identical way to the learning of a human being. The HTM is still a fresh
theory, that lays on the present perception of the functioning of the human neocortex
and assumes itself as under constant development; at the moment, the theory dictates
that the neocortex zones are organized in an hierarchical structure, being a memory
system, capable of recognizing spatial and temporal patterns. In the course of this
project, an analysis was made to the functioning of the theory and its applicability
to the various tasks typically solved with ML algorithms, like image classification,
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sound recognition and time series forecasting. At the end of this dissertation, after the
evaluation of the different results obtained in various approaches, it was possible to
conclude that even though these results were positive, the theory still needs to mature,
not only in its theoretical basis but also in the development of libraries and frameworks
of software, to capture the attention of the AI community.

Keywords: Hierarchical Temporal Memory; Machine Intelligence; Neocortex;
Hebbian Learning; Image Classification; Sound Recognition; Time Series
Forecasting; Artificial Intelligence



R E S U M O

A introdução de ML na órbita da resolução de problemas tipicamente dedicados ao foro
humano trouxe grandes expectativas para o futuro. De facto, o possı́vel desenvolvimento
de máquinas capazes de aprender, de forma semelhante aos humanos, poderia trazer
grandes perspetivas para diversas áreas como a saúde, o setor bancário, retalho, e
qualquer outra área em que se poderia evitar o constante alerta de uma pessoa dedicada
a um problema; para além disso, problemas sem resolução humana passavam a estar
à mercê destas máquinas, levando a novas possibilidades no desenvolvimento da
humanidade.

Apesar de se encontrar em vários sistemas no nosso dia-a-dia, estes algoritmos de
ML, especificamente de DL, carecem ainda de maior aceitação por parte da comunidade,
devido à dificuldade de perceber as aprendizagens e previsões resultantes, feitas pelos
mesmos - alguns algoritmos apresentam-se como ”caixas negras”, traduzindo um input
num output, não sendo totalmente transparente para o exterior - é necessária confiança
nos sistemas que possam tomar decisões importantes e com grandes impactos no
quotidiano; por outro lado, os mesmos algoritmos encontram-se treinados para uma
tarefa especı́fica e de acordo com os casos encontrados no desenvolvimento do seu
treino, sendo mais susceptı́veis a erros em ambientes reais, podendo se discutir que não
constituem, por isso, uma verdadeira Inteligência Artificial.

Seguindo este segmento, a presente dissertação procura estudar uma nova teoria,
HTM, inserida na área de MI, que pretende dar a capacidade aos sistemas de software
de aprenderem de uma forma idêntica à do ser humano. Esta recente teoria, assenta
na atual percepção do funcionamento do neocórtex, estando por isso em constante
desenvolvimento; no momento, é assumida como uma teoria que dita a hierarquização
estrutural das zonas do neocórtex, sendo um sistema de memória, reconhecedor de
padrões espaciais e temporais. Ao longo deste projeto, foi feita uma análise ao fun-
cionamento da teoria, e a sua aplicabilidade a várias tarefas tipicamente resolvidas com
algoritmos de ML, como classificação de imagem, reconhecimento de som e previsão
de séries temporais. No final desta dissertação, após uma avaliação dos diferentes resul-
tados obtidos em várias abordagens, foi possı́vel concluir que apesar dos resultados
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positivos, a teoria precisa ainda de maturar, não só a nı́vel teórico como a nı́vel prático,
no desenvolvimento de bibliotecas e frameworks de software, de forma a capturar a
atenção da comunidade de Inteligência Artificial.

Palavras-chave: Hierarchical Temporal Memory; Machine Intelligence; Neocórtex;
Aprendizagem Hebbiana; Classificação de Imagem; Reconhecimento de Som;
Previsão de Séries Temporais; Inteligência Artificial
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1

I N T R O D U C T I O N

The following dissertation project describes the HTM theory and its connection to
the biological human neocortex, as well how it can be used in the resolution of tasks
commonly approached by ML algorithms; as the use of ML and more specifically
DL techniques is booming in the healthcare area, it is expected that any conclusions
taken from this theory can be used in medical environments. The work is framed in
the dissertation of the masters in Medical Informatics, of the Integrated Masters in
Biomedical Engineering in the University of Minho. In this chapter, it is presented the
contextualization of this project and its motivation; the objectives are also pointed as a
guide to the work proposed and the answers that are supposed to be obtained, with no
conflicts of interest. The last section of this chapter pretends to give an overall idea of
how the dissertation is structured.

1.1 contextualization and motivation

The XX century digital revolution brought some major perspectives of intelligent
machines capable of solving problems, otherwise, typically solved by humans; it was
the beginning of AI. AI is a branch of computer science that looks to mimic human
behaviours, in which learning is one of them [1]. For a system to learn a determined
task without being explicitly programmed to, meaning, learning by experience and
inference, the area of ML was developed and largely studied [2]. ML technics are used in
different areas such as computer vision, speech recognition, natural language processing,
recommendation of contents, amongst others [3, 4]. These technics brought some good
results, although not the ones expected, being limited when used on raw data, with no
feature extraction giving meaning to the data [5]; in the beginning of the second decade
of the XXI century and with the development of technology, introducing new and faster
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2 Chapter 1. Introduction

CPU’s and GPU’s [6], a branch of ML, denominated DL, emerged with significant
impact [3]. These ML methods allowed to transform the data representation, from its
most raw state to a more abstract [5]. However, this classic approach of AI ends up
trying to build an intelligence based on rules and structural data of human knowledge,
solving specific problems for which the system was built, being very limited in cases
not supported in its training environment; this learning does not offer a response to the
question: how to create a true artificial intelligence? With this goal to mind, it turns
imperative to first understand on how the human neocortex - part of the brain involved
in perception, cognition, motor skills and more - works. Only then it will be possible to
create machines that can learn and adapt similarly to the human brain.

In search for a true AI, the HTM theory, first tries to describe, biologically, how the
neocortex works; with this knowledge, it pretends to convert it into a way of creating
intelligent machines. Since the study of the neocortex is still incomplete, the theory
is itself in evolution. HTM is built in three main features of the neocortex: it is a
memory system, with temporal patterns and its regions are organized in an hierarchical
structure. There are many biological details that the theory simply does not aboard in
case it has no relevance for learning. In short, this approach includes Sparse Distributed
Representation (SDR)s, its semantical and mathematical operations, neurons along the
neocortex capable of learning sequences and enabling predictions [7, 8, 9]; these systems
learn in a continuous way, with new inputs through time and with flows of information
top-down and bottom-up between its hierarchical layers, making them efficient in
detecting temporal anomalies. The theory relies on the fact that by mimicking the
neocortex, through the encoding of data in a way that gives it a semantic meaning,
activating neurons sparsely in an SDR through time, will give these systems a power
to generalize and learn, not achieved to date on other classic approaches of AI; it is
expected to achieve better results and conclusions, while being an intelligence with
higher flexibility when put up against adverse contexts.

1.2 objectives

The idea of this thesis project was born from this scope, having the objective to study
applications of the HTM theory, still largely unknown to the pattern learning and
recognition community; the applications in study range from audio recognition, image
classification and time series forecasting with public datasets, that may someday help
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in anomaly detections in medicine, hospital management or to act in case of urgency
matters. In order to have the confidence to use these systems daily, there is the need
for the introduction of new technologies, supported by an AI system with an higher
generalization capacity to the ones already in place. Having this in mind, the objectives
for this dissertation are the following:

• Investigate and understand the Hierarchical Temporal Memory theory;

• Test and analyse the applications of the HTM theory;

• Compare the HTM theory results against traditional ML technics in terms of:

– Accuracy and other classification or regression metrics;

– Computing power/time required;

– Amount and type of data required;

– Noise robustness of the algorithms;

– Possibility to justify the obtained results.

1.3 dissertation’s structure

The dissertation is structured in five chapters: Introduction, State of the Art, Methodol-
ogy and Development Tools, Results and Discussion and Conclusions and Future Work.
The purpose of each chapter is described bellow.

CHAPTER 1 – INTRODUCTION: The first chapter of this dissertation pretends to contextual-
ize and show the motivations behind its writing as well as to define the objectives
and questions that it pretends to investigate and answer.

CHAPTER 2 – STATE OF THE ART: The State of the Art chapter gives a comprehension to the
reader of the ML domain and how it differs from the principles of the HTM, the
theory in study. Some of the concepts presented include how the human neocortex
works and what is Hebbian Learning and how they relate to the HTM theory. At
the end of this chapter some definitions, properties and real life applications of
this evolving theory are presented.

CHAPTER 3 – METHODOLOGY AND DEVELOPMENT TOOLS: After presenting the key perceptions
of the theory, the third chapter aims at describing how the theory is put into
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practice using the Python library, Numenta Platform for Intelligent Computing
(NuPIC); also, the networks developed for the three tasks proposed are described -
firstly, for the Image Classification task, that uses the MNIST dataset; then for the
Sound Recognition challenge, where it is used the Spoken Digit dataset; lastly, it
is described the network and methodology for the Time Series Forecasting task,
that uses a Stock Market dataset obtained through Yahoo Finance.

CHAPTER 4 – RESULTS AND DISCUSSION: The fourth chapter, Results and Discussion, shows
the results obtained in the tasks proposed in the previous chapter; these results
are also discussed, analyzed and compared to other methods.

CHAPTER 5 – CONCLUSIONS AND FUTURE WORK: The final chapter, summarizes the conclu-
sions taken from the study of the HTM theory and its applications in the various
tasks. It is also shown the prospects for future work and how the theory can still
evolve and help in the development of intelligent machines.



2

S TAT E O F T H E A RT

2.1 machine learning

Machine Learning may be described as the discipline focused on how to create computer
systems capable of learning and automatically improve through experience. These
systems differ from hard computing, making it tolerant to imprecision, uncertainty,
partial truth and approximations [10]. For the past two decades, ML became the
method of choice to develop AI systems for computer vision, speech recognition,
natural language processing and others [4]. These systems are trained by showing it
examples of desired input-output behaviours and not by anticipating and computing
the desired response for all possible inputs – soft computing against hard computing.
In these systems, the machine learns with experience, inferring plausible models to
explain the observed data [11]. The most widely used ML methods can be categorized
as supervised learning methods. The systems that use these methods are typically
applied in spam classifiers, image recognition, medical diagnostics or even in the
prediction of stock market prices [4, 5]. These methods form their predictions via a
learned mapping function, which produces an output (or a probability distribution) for
a given input – there are a variety of proposed learning algorithms to achieve the best
learning mapping. Each of these algorithms will provide different trade-offs between
visualization and explanation, computational complexity, amount of data or accuracy
of the learned mapping (in relation to a test dataset). Unsupervised learning methods
are part of another category, which involve the analysis of unlabeled data, giving it
some meaning through its structural properties. Examples of these methods include
dimension reduction, where the number of variables is reduced, or clustering, where
the observed data is partitioned into clusters formed by semantically identical data;
nowadays large amounts of data are generated on a daily basis in the health sector

5



6 Chapter 2. State of the Art

(amongst other sectors), mostly unlabeled data, but most of the time, this data is not
used, not translating into knowledge [12, 13, 14, 15] - unsupervised learning methods
can be useful for a data mining approach, like in a nutritional follow-up [16] or in
predicting early stages of chronic kidney disease [17]. The third paradigm category
is reinforcement learning, where in contrast to supervised learning, the training data
does not indicate the correct output for a given input but it will indicate if the action is
correct or not, reinforcing correct actions and penalizing incorrect ones.

These technics brought some good results, although not the ones expected, being
limited when used on raw data, with no feature extraction giving meaning to the data,
or even when fed with features extracted manually by experts from raw data [5].

2.2 deep learning

In the beginning of the second decade of the XXI century and with the develop-
ment of technology, introducing new and faster CPU’s and GPU’s [6], a branch of
ML, denominated DL emerged with significant impact [3]. These DL methods are
representation-learning methods allowing to transform the data representation, from its
most raw to a more abstract state [5]. A key aspect of DL is that these more abstract
layers are learnt from the data using a learning procedure, without human intervention,
needed for manual feature extraction. While some positive aspects can be taken from
this, DL systems struggle with how to explain its results to the engineer who built them,
delaying the use of these systems in a more general way. Nonetheless, Deep Learning is
making major advances in the artificial intelligence community, with great performances
in image recognition [18, 19], speech recognition [20], knowledge representation [21]
and natural language processing [22], clearly surpassing other ML methods.

2.3 the neocortex

The functioning of the neocortex is the foundation for the HTM theory. The human
neocortex is a tissue with a surface area of 2600 cm2 and a thickness of 3-4 mm,
containing up to 28 109 neurons and approximately the same number of glial cells
- non-neuronal cells that do not produce electrical impulse [23, 24]. The cortex is
organized horizontally into six laminae, and vertically into groups of cells linked by
synapses across the horizontal laminae; its basic unit is the minicolumn, a narrow chain
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of around 80-100 neurons. The bound of many minicolumns by short-range horizontal
connections makes the formation of the cortical columns. The most common excitatory
neuron in the neocortex is the pyramidal cell; a simple model of the cortical processing,
according to the review in [25], describes a patch of superficial pyramidal neurons
that receive feedforward excitatory input from subcortical, interareal and intra-areal
sources. Besides this feedforward mechanism with their close neighbours of the patch,
the pyramidal cells also receive feedback from deep pyramidal cells beneath their patch
and from other close patches in the superficial layers. All of these inputs seem to be
processed by the dendrites of the superficial pyramids; these participate in a selection
network, with a soft winner-take-all or soft MAX mechanism, important elements used
on many neuronal network models; the outputs will also feedback to adapt the pattern
of vertical smooth cell activation. Furthermore, in [26] it is purposed three zones of
synaptic integration on a neuron - proximal, basal and apical - the proximal zone
receives the feedforward input and it is defined as the basic receptive field response of
the neuron; the basal zone receives contextual input, mostly from nearby cells in the
same cortical region, learning transitions in sequences, representing the prediction that
the cell will become active shortly; the apical zone receives the feedback input, invoking
a top-down expectation, having a similar effect as a basal dendrite, by recognizing
patterns and forming predictions.

Our brains learn about the outside world by processing our sensory inputs and
movements, receiving a sensorimotor sequence. The cortical areas that are traditionally
viewed as sensory areas are known to integrate the motor stream into their processing;
proposed in [27], the neocortex processes a sensorimotor sequence by converting it into a
sequence of sensory feature at object-centric locations; it learns and recognizes objects as
sets of sensory features at locations in a specific reference frame of the object, predicting
sensory input by referring to these learned object models – this approach integrates
movement into object recognition, although, leaving open the neural mechanisms for
computing such a model. More recently, [28] extended this approach by using an
analogue to grid cells, proposing that every neocortical column contains a variant of the
model proposed; grid cells are present in the entorhinal cortex and represent locations
of a body in an environment [29, 30]; although there is still not a consensus on this
subject, some properties can be taken into account when speaking of grid cells: a set of
grid cell modules can unambiguously represent locations in an environment and these
locations can be path integrated via movement; in [28] it is proposed that equivalent
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grid cells exist in the neocortex defining a unique location space around each object; as
a sensor moves, populations of grid cells representing each sensory patch’s location will
integrate the path through unique relative locations, a potential cue for disambiguation
and recognition of objects.

The figure 1 represents the pyramidal neuron, the most typical neuron in the neocortex
and how it is translated into an HTM neuron, with the various inputs: feedforward,
context and feedback.

Figure 1: Pyramidal neuron and its relation to the HTM neuron; adapted from [31].

2.4 hebbian learning

As stated in the previous section, the Hierarchical Temporal Memory theory relies on
the understanding of how the neocortex works and its connection to the mechanism
of learning. The brain is constantly receiving signals from millions of receptor cells,
making sense of the objects in the environment - it is capable of transforming these high
dimensional patterns into symbolic representations; following the idea presented in [32],
objects/features/concepts are collections or conjunctions of highly correlated properties,
relatively independent from other such conjunctions. The process of translating or
mapping the signals received into symbolic representations is called learning. The
learning process is based on the correlation in the firing activity of the pre- and the
post-synaptic neurons [33] and it relies in two different mechanisms [34, 35]: activity-
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dependent synaptic modification along the lines proposed by Hebb (hence the named
Hebbian learning) and a mechanism that forces competition between different synapses.

The learning process present in the building blocks of the HTM theory involves the
establishment of connections between cells, synapses [7] - this process relies on Hebbian
Learning, which is an unsupervised learning method; fundamentally, the permanency
of synapses is measured by the rules similar to the Hebbian Learning, meaning that
synapses that are active, contributing to the cell being active, will have their permanence
value increased, while inactive synapses will have their permanence value decreased.

2.5 hierarchical temporal memory

2.5.1 Definitions and Network

Hierarchical Temporal Memory is a theory that was born from the idea of creating
a truly Machine Intelligence, machines capable of learning, supporting itself on the
way the human neocortex works [8]. The HTM theory is built based on three main
characteristics of the neocortex: it presents itself as a system with memory, organized
into regions following an hierarchical structure and generating temporal patterns with
the input given. All the nodes/neurons present in the regions implement the same
learning and inference algorithms, only differing in the information gained during the
learning phase [36].

The first region will be responsible for the sensory action of the algorithm – com-
parable to the human sensory organs; it is named the Encoder region, and its main
function is to receive the data in its raw form and to convert it into a binary vector.
Although this first region should not be assumed as part of the HTM algorithm, it
is an essential region, in order to create an SDR, a foundation representation for the
theory. An SDR corresponds, in biology terms, to the active neurons of the neocortex
and it is represented as an array of bits, with the bit 1 being an active neuron and the
0 an inactive neuron. The mechanism of transforming the raw data into a set of bits
must ensure that the semantic characteristics of the data are preserved in order to lead
to a successful learning process. This leads to a very important feature of the theory,
that says that similar data entries should create overlapping SDRs, when submitted to
the encoding process – the 1s and 0s should have a high percentage of overlapping,
when the input is similar. Another major feature related to the SDRs is their similar
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dimensionality and sparsity (ratio between the number of 1 bits and the total number
of bits) – a certain percentage of sparsity, typically around 2%, will result in a better
ability of the system to handle noise, undersampling and to reduce over-fitting. [37];
the encoding binary vector may be denser, since it represents our sensations, and it is
not a representation of the neocortex neurons.

The next region, Spatial Pooler, is responsible for assigning mini-columns, where each
one of them corresponds to a dendritic segment of the neuron; this process is responsible
for creating the proximal dendritic connections mentioned on the previous section 2.3,
The Neocortex. A mini-column connects to a local area of the input vector created by
the Encoder region and has a set of synapses that can be initialized at random, with a
permanence value. Some of these columns will be active, when its synaptic permanence
value is higher than a stimulus threshold; when the mini-column is connected to a 1 bit
(overlapping), the synapses become active, increasing its permanence value. Inhibition
is introduced within the other columns in the vicinity, leading to only a small fraction
of the SP mini-columns being active in a local area (following the Hebbian Learning
where k-winners-take-all); active synapses will have their permanence value increased
and will inhibit inactive synapses, decreasing its permanence value. In the process
of learning, the mini-columns will learn to recognize the important features of the
spatial input, meaning that different columns will be more sensible to certain features
of the input space. A boost factor can also be applied differently to all columns, in
order to multiply the overlap score of a column before the inhibition phase; this allows
for less active columns to express themselves and increase the granularity of how
the SP region recognizes the input space. Another important feature is that a mini-
column is composed by many cells, where each one of them share the same proximal
dendritic connections to the input space. In the following figure, 2, is demonstrated
the connections between the Encoding and the Spatial Pooler regions, transforming the
input space into an SDR.

At the output of the SP region is presented an SDR of active columns, according to
the process explained previously. This representation will be the input for the next
region, Temporal Memory; this region is responsible for receiving and learning the
previous SDR and try to predict the next active columns – the next spatial pattern.
Prior to the learning, when the algorithm cannot predict the next time step, since no
cells are in a predictive state, all the cells of the active columns remain active (the
input is unexpected) – process denominated bursting; however a winner-cell is chosen
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Figure 2: Synaptic connections between the Encoding and the Spatial Pooler regions; adapted
from [31].

(randomly or by the lowest amount of distal connections). After learning, the algorithm
is capable of predicting only a cell within a mini-column – this allows that even if an
input has the same mini-columns active, the algorithm can understand the temporal
context of it [26]; if we take for an example the sequences ‘ABCD’ and ‘XBCY’ – when
presented with the sequence ‘ABC’ the algorithm should predict ‘D’ and not ‘Y’, even
though the last two letters of the sequence where ‘BC’. The predictive state of a cell
within this region is triggered by the amount of its distal connections with the other
cells that are active in the moment; if the cell is active in the next timestamp, then it was
correctly predicted. As the algorithm learns, it will forget sequences that are not seen in
a long time; the way it forgets can be tunable, so it retains more or less information over
time. In order to get the results predicted by the algorithm, a classifier region is used to
decode and calculate the overlap of the predicted cells of the SDR obtained by the TM
region, relatively to the actual input [38, 9]; in this way, this layer outputs a predicted
distribution of all classes.
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2.5.2 Properties and how it differs from ML

There are some obvious variations on how the HTM network presents itself when
comparing it to Machine Learning methods, more precisely Deep Learning models, like
the encoding of the raw input into an SDR, with no data preprocessing needed (e.g.
data normalization) or the use of sparse distributions instead of dense layers of neurons;
besides these variations, there are some other key differences that should be noted when
comparing both networks. The HTM theory is a sequence memory learning theory and
it relies on on-line learning – continuous learning - where the network is gradually and
continually adapting to the new input [26]. Typically, Machine Learning algorithms
rely on partitioning of the raw data, having a training dataset for learning, a validation
dataset for validate the learning and a test dataset for testing the algorithm; after this
process of learning, the algorithms stop learning new inputs and make predictions
only based on the cases in the training dataset - it needs batches of new inputs for
new training sessions, in order to keep up with new data. Another HTM feature is
that the learning rules are local to each neuron, in both space and time, without the
need for a global objective function – in DL all the neurons are trained to meet a global
objective function, while in HTM, we are in presence of an unsupervised learning.
Since data streams contain branching temporal sequences, the HTM network must be
capable of predicting multiple situations at the same time; in this way, the algorithm can
output a distribution of possible future outcomes. Another two key properties of the
HTM networks are their robustness to failure of network elements, noise and pattern
variation and its ability to use high-order (more historical data) temporal context to
make predictions. Lastly, there is no hyperparameter tuning in the HTM networks,
making it robust to a wide range of problems; in contrast, most ML algorithms require
this optimization for each specific task [38].

2.5.3 Current Applications of HTM

The current applications of HTM are typically centered in the area of Anomaly Detection,
useful for a vast range of applications like fraud detection, geospatial tracking, rogue
human behaviour, preventative maintenance, Internet of Things (IoT) sensors, traffic
patterns, natural language or network and servers monitoring.
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In the last few years, there has been an increase in the availability of streaming,
time-series data, bringing an opportunity to model streams in an unsupervised way
in order to detect anomalous behaviours in real-time. These early anomaly detection
algorithms require that the systems must process data in real-time, favoring algorithms
that learn continuously, like HTM.

Although there is not an abundance of investigation in the HTM theory, when
compared to DL algorithms, some of the works found in the literature include the
recognition of different people in a video, automatic license plate recognition, taxi
passenger count prevision and other time series tasks. In 2018, [39] compared an HTM
model against Artificial Neural Network (ANN) and Support Vector Machine (SVM)
networks in the recognition of people on a video, with a certain level of occlusion
- after some preprocessing of the data and taking Scale-Invariant Feature Transform
(SIFT) features, it claims the HTM model performed better than the ones compared
to - although, the time taken by the processing of the HTM model in this task was
higher than in the other models; no comparisons were made to Convolutional Neural
Network (CNN)s networks, that have been getting good performances in computer
vision. Another computer vision task, the automatic recognition of license plates, was
investigated in [40] - after the segmentation of license plates images, the inputs were fed
to an HTM model, with an Image Sensor encoder, a SP layer and a K-Nearest Neighbor
(kNN) classifier, obtaining an accuracy of 95.35%, slightly better than the ones compared
in the study, an ANN and a SVM network.

Relatively to time series datasets, some research was conducted, in the prediction of
New York city taxi passenger count. In [41], a comparison between an HTM model and
others like, Autoregressive integrated moving average (ARIMA) and Skyline was made,
using real and synthetic datasets; in the paper it was demonstrated that the HTM model
obtained good precision results as well as a significant decrease in processing time.
Also, in 2016, [42] predicted the New York City taxi passenger count with 2.5 hours in
advance, aggregating data in 30-minute intervals; after observing 10000 data records,
the HTM model achieved a Mean Average Percentage Error (MAPE) of 7.8%, lower than
the other DL model used in the study - a Long Short-Term Memory (LSTM) network.
In response to this study, in 2020, [43] used Recurrent Neural Network (RNN)s, such as
LSTM and Gated Recurrent Unit (GRU), to solve the same problem; in this approach,
a more careful hyperparameter tuning and data formatting was made, leading the
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authors to the conclusion that both models exceeded the HTM model by 30% in lower
runtime.

In [44], a wide set of anomaly detection problems were confronted in various datasets
from the Numenta Anomaly Benchmark (NAB), a Numenta repository for anomaly
detection with a variety of data sources, ranging from server network utilization to
temperature sensors to social media chatter. An HTM model was compared against
various ML models, demonstrating that it is capable of detecting spatial and temporal
anomalies, both in predictable and noisy domains, having better performances in
various tasks. Also, in [45] the HTM model was applied for the detection of anomalies,
in an unsupervised way, in stock market datasets and in a synthetic dataset; although,
there was a lack of conclusions about the efficacy of the method, partly because the
ground truth was unknown. It is possible to infer that the research in HTM is still
recent, with few experiments conducted, when compared to other methods.



3

M E T H O D O L O G Y A N D D E V E L O P M E N T T O O L S

3.1 nupic

On the course of this dissertation, an open-source Python library named NuPIC [46] was
used; it is a MI platform that implements HTM algorithms developed by Numenta, the
company behind HTM theory. These algorithms are best suited for anomaly detection
and prediction of streaming data sources problems. The NuPIC library is divided into
three APIs: OPF, Network and Algorithms; the Algorithms API is the most low-level
API, while the OPF is the higher-level one. For the Image Classification and Sound
Recognition studies it was used the Network API, while the OPF API was used for the
Time Series Forecasting task. This choice was purely based on how the datasets for each
task were more easily adapted to each API - a Comma-separated values (CSV) file for
the Time Series Forecasting and a collection of images/audio files for the other tasks.
The library is compatible with Python 2.7.

3.2 image classification

The first task was to investigate how well the HTM algorithms created to the date,
adjust to Image Classification, a task that has achieved promising results in the Deep
Learning community for the past years. It was used the widely known MNIST dataset,
containing centered images with handwritten numbers,

k ∈ {0, 1, ..., 9}

, each with an input space of 28 x 28 x 1 pixels. The training set contains 60 000 images
and the testing set contains 10 000 images.

15
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This approach is similar to the one typically used in Machine Learning technics, with
defined training and testing datasets. Also, this task does not involve temporal patterns,
meaning that this is not a typical HTM problem, but a spatial problem.

The network used is composed of an Encoder layer, which encodes the raw input of
the images into a binary vector - the encoding used is called Image Sensor, present in
the NuPIC library; this encoding translates the image to a vector of 1’s (black) and 0’s
(white); no more preprocessing was made to the input images. The next layer, Spatial
Pooler, is connected to the Encoder layer, receiving the binary vectors representing the
images and assigning mini-columns to the input space, that will learn to recognize the
important features of the spatial input; an SDR of active columns will be the output
of this layer, input to the last layer: the kNN classifier, responsible for outputting the
predicted distribution of classes. As stated before, no Temporal Pooler layer is used
nor needed for this task. On this task, two approaches were made: the first, using the
training and testing datasets proposed by the MNIST dataset; in the second approach,
the 10 000 images of the testing dataset were used as training dataset and the 60 000

images of the previous training dataset was used for testing. This second approach had
the goal to investigate how well the algorithm was going to perform with less spatial
patterns trained.

The following table, Table 1, illustrates the parameters necessary used in the SP
layer with the NuPIC library; the parameter inputWidth is required to be 784, since
its the result of the number of pixels in each image; the ratio between the number of
active columns and the number of columns is 2%, the recommended sparsity; the other
parameters come from the tuning in order to get better results. The network built is
shown on figure 3.

Figure 3: HTM network built for the Image Classification task.
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Table 1: SP region parameters for the Image Classification task
Parameter Value
inputWidth 784

numColumns 4096

numActiveColumnsPerInhArea 82

potentialPct 0.8
globalInhibition 1

localAreaDensity -1
stimulusThreshold 0

synPermActiveInc 0

synPermInactiveDec 0

synPermConnected 0.2
boostStrength 0

3.3 sound recognition

The second task proposed was to use a Sound Recognition dataset and analyse how the
HTM theory can help in the resolution of this learning exercise. The dataset used was
the Spoken Digit Dataset [47], available in a GitHub repository; it comprises of english
recordings of spoken digits in .wav files, with a record sampling at 8kHz, trimmed to
avoid noise at the beginning and end of the recordings; 1800 files were used for training,
with 45 files for each digit, from 0 to 9, for each speaker (4 speakers); for testing, 200

files were used, 5 of them for each pair digit + speaker.

Two approaches to this task could be pursued: to encode a single audio file (cor-
responding to a spoken digit) into one binary vector, making it a spatial problem -
with no temporal extraction of sound features; or to turn this problem into a spatial-
temporal one - by encoding the audio file into multiple vectors, where each one of
them represents a portion of the spoken digit. This second approach, although more
close to the HTM paradigm, represents a big challenge when it comes to the temporal
pooling of the information learnt: how can the algorithm know on which sequence,
the data presented is included? The Numenta researchers are still investigating how
this ”Temporal Classification” problem, where a sequence of inputs leads to a certain
class, being reset at the end, giving place to a new sequence, occurs in our brains - and
similarly how it can be transposed to the NuPIC library. Another complication surges
in this task: how to encode sound into an SDR while giving it the human perception of
sound - some preprocessing of the data is needed to take the power spectrum of the
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signal and discretizing it. Further processing can be applied to the signal, taking the
MFCC, a feature widely used in Speech Recognition. A Cochlea Encoder was produced
in the experiments related to the NuPIC library, to encode sound as perceived by the
human ear - although, the process takes too long and requires the input data to use a
minimum of 100 kHz sampling frequency; for this task, around 50 000 SDRs for each
spoken digit would be produced, leading to big implications on the computation time
it takes to train and test the algorithm, making this option impractical.

Having these concerns in mind, for the first approach, a community encoder, not
present in the NuPIC library, named Frequency Encoder, was used to take the power
spectrum from the signals and discretizing it - obtaining the Fast Fourier Transform
(FFT); a graphical represention of the encoding process is shown in figure 4. Some
parameters need to be set to adapt the resolution and robustness to noise of the encoding
process, like how many bins the signal is going to be discretized into, the size of the bin
and its resolution; in the course of this task, the signals were divided into 50 bins. The
tables 2, 3 and 4 show the parameters used.

Figure 4: Encoding process of the signal representing the ’five’ spoken digit, in the first approach
for the Sound Recognition task.

Table 2: Frequency Encoder region parameters for the Sound Recognition task, first approach
Parameter Value
numFrequencyBins 50

freqBinN 15

freqBinW 1

minval 0.0
maxval 15.0
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Table 3: SP region parameters for the Sound Recognition task, first approach
Parameter Value
inputWidth 750

numColumns 2048

numActiveColumnsPerInhArea 80

potentialPct 0.85

globalInhibition 1

localAreaDensity -1
stimulusThreshold 0

synPermActiveInc 0.04

synPermInactiveDec 0.005

synPermConnected 0.15

boostStrength 3

Table 4: Classifier region parameters for the Sound Recognition task, first approach
Parameter Value
Type SDRClassifier
alpha 0.25

steps 0

The network layout is similar to the one used for the Image Classification task, with
the encoding being fed to the SP layer and this one to a SDRClassifier. The training set
was fed ten times to the network.

Figure 5: HTM network built for the Sound Recognition task, first approach.

A second approach was taken, turning this task into a temporal problem. The process
of encoding created chunks of 100 ms from the signal, with a window step of 50 ms;
with these chunks, 16 MFCC cepstrums were taken and encoded to SDRs by a Scalar
Encoder; before the coefficients were encoded, a process of standardization was made to
ensure a mean of zero and a standard deviation of 1. To surpass the issue of temporal
pooling, explained previously, only the last 3/4 of the SDRs predicted in a sequence,
were taken into account to the classification - meaning the first quarter of the SDRs
were used as a context indication for the network to understand in which sequence it is
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presented with. Contrary to the first approach, a TM layer was used after the SP layer;
in the following tables, the parameters used for this approach are displayed.

On both approaches, the training set was fed ten times to the network. The image 6

represents the transformation associated with the second task, transforming the raw
signal into the MFCC features, used for the encoding. Similarly to the first approach
where the Frequency Encoder parameters were adjusted to represent the FFT spectrum,
here the Scalar Encoder parameters were tweaked to represent the range of values of
the MFCC features.

Figure 6: MFCCs features taken from the signal representing the ’five’ spoken digit, for the
Sound Recognition task, second approach.
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Table 5: Scalar Encoder region parameters for the Sound Recognition task, second approach
Parameter Value
minval -5
maxval 5

w 21

resolution 0.1

Table 6: SP region parameters for the Sound Recognition task, second approach
Parameter Value
inputWidth 1936

numColumns 4096

numActiveColumnsPerInhArea 160

potentialPct 0.85

globalInhibition 1

localAreaDensity -1
stimulusThreshold 0

synPermActiveInc 0.04

synPermInactiveDec 0.005

synPermConnected 0.15

boostStrength 3

Table 7: TM region parameters for the Sound Recognition task, second approach
Parameter Value
inputWidth 1936

columnCount 4096

cellsPerColumn 64

newSynapseCount 20

initialPerm 0.21

permanenceInc 0.1
permanenceDec 0.1
maxAge 0

globalDecay 0

maxSynapsesPerSegment 64

maxSegmentsPerCell 256

minThreshold 12

activationThreshold 16

outputType normal
pamLength 1
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Table 8: Classifier region parameters for the Sound Recognition task, second approach
Parameter Value
Type SDRClassifier
alpha 0.001

steps 1

The network built for this approach is detailed on image 7, starting at the process of
encoding, feeding the multiple SDRs from the input to the network sequentially, leading
to a prediction from the classifier.

Figure 7: HTM network built for the Sound Recognition task, second approach.
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3.4 time series forecasting

In this last task, the data used was obtained by a script, to get stock fluctuations for
various companies, pulling data from Yahoo Finance, ranging from 2006-01-03 until
2020-09-18. Seven datasets were created, each related to a S&P 500 company: Amazon,
Google, HCA Healthcare, Disney, McDonald’s, Johnson & Johnson and Visa; the HCA
Healthcare dataset only has data from 2011-03-10, and the Visa dataset from 2008-03-19.
These companies were chosen due to their familiar popularity and represent a wide
range of business areas. Another particularity taken into account, is the inclusion of
data after the declaration of the Covid-19 pandemic by the World Health Organization
(WHO) - declaration on march 11 2020. All seven datasets have the same fields: Date,
Open, High, Low, Close, Volume and Name. The Name field corresponds to the stock’s
ticker name, not of use for the forecasting.

In the following figures, 8 to 12, is shown the range of values that are present in the
seven different datasets. It is possible to observe that the values have high ranges and
are very different from dataset to dataset. Amazon demonstrates the widest ranges for
almost every attribute, except for the volume - Visa had a higher volume of transactions,
although at lower prices.

Figure 8: Open values range in the seven datasets.
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Figure 9: Close values range in the seven datasets.

Figure 10: Low values range in the seven datasets.
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Figure 11: High values range in the seven datasets.

Figure 12: Volume values range in the seven datasets.
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The goal is to predict the Close value of the companies’ stocks for the next day, only
using the historical values presented before. This forecasting represents a more HTM
focused approach, with a stream of data being fed to the network, with the possibility
of on-line learning, and with temporal and spatial patterns to be discovered.

By plotting the close values for the Amazon and Visa datasets, figures 13 and 14, it
is possible to observe that for both there has been an increase throughout the years.
Although, the Covid-19 pandemic appeared to have a bigger impact to the Visa stocks,
than it did for the Amazon stocks - possibly explained by its business area.

Figure 13: Amazon close value progression in the dataset.

For this task, a more traditional HTM network was used, with an Encoder layer,
SP layer, TM layer and a Classifier. The TM layer is justified by the fact that there
is a temporal axis in the data and temporal patterns must be gathered for a better
forecasting, contrary to the previous tasks. The following tables show the parameters
used in the various regions and in figure 15 the network built is presented.

Like for the previous tasks, some values set to the parameters are required, taken into
account the way the encoding process is made, like the ”inputWidth” of the regions.
Other values are usually standard, with little modifications, like the inhibtion and the
increase and decrease of the permanence of synaptic connections, that try to represent
the learning process in the neocortex; parameters like ”columnCount” and number
of active columns per inhibition area were tested to give more or less complexity and
memory to the network. For the encoding of the data in this task, most values are
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Figure 14: Visa close value progression in the dataset.

Figure 15: HTM network built for Time Series Forecasting task.

scalar, so a Random Distributed Scalar Encoder was used, with a resolution that reflects
the range of values of the attributes - the volume has a larger range, meaning a larger
resolution was used; for the date, a Date Encoder represents the days taken into account
if its a day of the week and the season it is included.

Table 9: Encoder region parameters for the Time Series Forecasting task
Input Type of Encoder Parameters
date DateEncoder season = dayOfWeek = 3

open RandomDistributedScalarEncoder Resolution = 0.5
high RandomDistributedScalarEncoder Resolution = 0.5
low RandomDistributedScalarEncoder Resolution = 0.5
close RandomDistributedScalarEncoder Resolution = 0.5
volume RandomDistributedScalarEncoder Resolution = 200

Since the HTM is a continuous learning theory, there is no training/validation/test
sets; the data is learnt and predicted in a continuous way. To access the learning, the
metrics Root Mean Square Error (RMSE), MAPE and Absolute Average Error (AAE),
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Table 10: SP region parameters for the Time Series Forecasting task
Parameter Value
inputWidth 2033

columnCount 4096

globalInhibition 1

localAreaDensity -1
numActiveColumnsPerInhArea 160

potentialPct 0.85

synPermConnected 0.1
synPermActiveInc 0.04

synPermInactiveDec 0.005

boostStrength 3

Table 11: TM region parameters for the Time Series Forecasting task
Parameter Value
inputWidth 2033

columnCount 4096

cellsPerColumn 64

newSynapseCount 20

initialPerm 0.21

permanenceInc 0.1
permanenceDec 0.1
maxAge 0

globalDecay 0

maxSynapsesPerSegment 64

maxSegmentsPerCell 256

minThreshold 12

activationThreshold 16

outputType normal
pamLength 1

Table 12: Classifier region parameters for the Time Series Forecasting task
Parameter Value
Type SDRClassifier
alpha 0.25

steps 1,5

were taken in three moments: to the entire dataset, 365 days before the declaration
of the Covid-19 pandemic by the WHO and after the declaration. With these three
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moments, it is possible to get a better understanding of how quick (in terms of input
data needed) the algorithm is to achieve good previsions, while infer how it adapts to
dramatic changes in the input data (in this case, a consequence of the pandemic). No
preprocessing of the data is made, meaning that some metrics may have higher values
than the ones usually seen in other studies, where the data values are standardized into
smaller intervals.
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R E S U LT S A N D D I S C U S S I O N

4.1 image classification

The HTM model used, with only a SP layer, classified 96.04% of the 10 000 images
correctly, which is not a great result comparing to state-of-the-art DL models that can
reach an accuracy greater than 99%. On the second approach, with less training data (10

000 images for training and 60 000 for testing), the model achieved 93.20% of accuracy,
demonstrating that the theory can get satisfying results with less data. It was possible
to observe that the library is not prepared for Computer Vision problems, when it is
taken into account the large amount of time required for the training - as the network
was being fed with new input data, it constantly performed significantly slower.

Although the results are not the best, they were expected since only a layer of the
HTM theory was used; this task does not provide a temporal problem, one of the
features of the theory; also, the NuPIC library does not provide efficient handling of
image encoding, leading to accuracy and power computing/time efficiency faults -
more research is being conducted for this matter, turning the encoding of images into
a sequence of images, as perceived by the human brain, with the help of the saccadic
eye movement; with this sequence of images, a perception of the environment can be
collected, turning the task into a temporal problem. Another issue with the encoding of
images in the library, is that the image is only read as a sequenced collection of pixels,
with no feature extraction; more work is underway in order to investigate grid cells and
how they can represent space, hopefully helping in the way images can be encoded to
an HTM network.

31
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4.2 sound recognition

The task of sound recognition was divided into two approaches: at first, the problem
was handled as simply a spatial problem; in the second approach, the problem was
adjusted into a spatial-temporal problem; the HTM model achieved an accuracy of 73%
for the testing dataset, in the first approach, and an accuracy of 82% for the second one.
A slight improvement in accuracy is observed when the network used is more close to
the HTM paradigm, with not only a spatial, but also a temporal layer. However, this
temporal approach led to a more time consuming training - approximately 10 hours
on an Intel Core i7-8550U CPU, 4 cores, with a Processor Base Frequency of 1.80 GHz.
This long training time is fruit of the use of the Network API used in the library, for
problems that are not solved using on-line training.

Similarly to the first task, the results were not satisfying in terms of accuracy, when
compared to state-of-the-art ML networks, that can achieve more than 90% accuracy
for this Spoken Digit dataset; it should be taken into account that the training data was
only fed to the network ten times, not the usual high number of epochs conducted by
other networks. The results can be justified by the reasons mentioned on the 3.3 section:
the NuPIC library does not support an official encoding mechanism for audio files,
meaning that more experiments must be conducted to achieve a good encoding of the
raw data, while maintaining its meaning; furthermore, the second approach, turning
the task into a Temporal Classification problem, requires a process of temporal pooling
that is not supported by the library.

4.3 time series forecasting

The results obtained for all seven datasets, related to the S&P 500 stock index, are shown
in the following table, including the MAPE, RMSE and AAE metrics for three periods
of time: metrics taken during the entire dataset, 365 days before the declaration of
Covid-19 pandemic by the WHO and after the declaration - until the 18th September
2020. The values were obtained by comparing the predicted close value of the next day
(one day in advance), to the actual value recorded. Comparisons with other methods
are hard and not reliable, since most use a partition of data for training and testing,
unlike the on-line learning process developed in this project.
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Table 13: Time Series Forecasting metrics results
Total 1 Year pre-pandemic Post-pandemic

MAPE RMSE AAE MAPE RMSE AAE MAPE RMSE AAE
Amazon 1.61 18.82 8.40 1.44 36.43 25.19 2.00 66.31 51.61

Google 1.25 11.99 6.73 1.24 21.82 14.70 1.91 35.36 25.38

HCA 1.45 1.75 1.03 1.39 2.63 1.81 3.10 4.53 3.19

Disney 1.13 1.22 0.72 1.13 2.19 1.42 2.31 3.58 2.52

McDonald’s 0.86 1.56 0.87 0.88 2.64 1.71 1.81 5.33 3.22

J&J 0.73 1.12 0.68 0.86 1.88 1.17 1.42 3.01 1.95

Visa 1.28 1.59 0.81 1.16 2.80 1.90 2.10 5.32 3.70

In the following graphics, the predicted and actual values are displayed along the
time axis, as well their difference. The algorithm kept a good performance, following
the trends of market close value through the time, for all datasets. As expected, the
algorithm suffered in its previsions around the time of the declared pandemic; although,
it was able to get some stability afterwards, in line with the possible stability that the
stock market can offer in such unstable period.

Figure 16: Amazon close value prediction through time.

It becomes possible to infer that the HTM algorithm run in this experiment learnt
the temporal and spatial patterns quickly, making valid predictions, close to the actual
values, with just few records fed to the network. The MAPE values were lower for
every dataset in the more stable period before the pandemic, with the exception of
the McDonald’s and J&J datasets, that got better results in the total period. All MAPE
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Figure 17: Disney close value prediction through time.

Figure 18: Google close value prediction through time.

values increased for the post-pandemic period, although, not as much for the Amazon
dataset - this can be explained by the more stable stock pricing in this company, fruit
of its business area. In general, the RMSE and AAE values increased through time;
since these are not percentage metrics, and the data is not normalized, this increase can
be explained by the higher close values in the stock market in the last years across all
datasets. However, the lower MAPE values means that the algorithm kept learning and
did not suffer from the inclusion of data through time.
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Figure 19: HCA close value prediction through time.

Figure 20: J&J close value prediction through time.

The results obtained on this experiment were very promising showing that the
HTM theory provides a solid framework for time series forecasting, achieving good
predictions with few data. Furthermore, the algorithm maintained a good performance
for all seven datasets, through time, being robust to spatial and temporal noise and
bigger complexity of data and anomalies in the input data caused by the pandemic;
another important fact taken from this task was the ability of the algorithm to have good
and similar performance for seven different datasets, with no need for hyperparameter
tuning.
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Figure 21: McDonald’s close value prediction through time.

Figure 22: Visa close value prediction through time.



5

C O N C L U S I O N S A N D F U T U R E W O R K

5.1 conclusions

The objectives proposed at the beginning of this dissertation were achieved; in a first
phase, it was conducted an investigation about how the HTM theory works, with its
explanation in the section 2.5; in summary, the theory relies on our knowledge of the
learning process in the neocortex - regions organized in an hierarchical structure, with
a high sparsity of active neurons, capable of storing and discerning temporal patterns.
HTM networks are usually built as continuous learning networks - they gradually and
continually adapt to the new input.

After this investigation, the theory was tested in three different scenarios: for an
image classification task, using the MNIST dataset; for a sound recognition task, using
the Spoken Digit dataset; and finally, for a time series forecasting task, using a stock
market dataset. The results obtained were compared in terms of accuracy, compute
efficiency, amount and type of data required and noise robustness; on one side, the
HTM model performed well on the time series task, a continuous learning approach,
with no need for a specific training dataset nor huge amount of data nor long training
processes; also, the model adjusts itself very well through time, being robust to spatial
and temporal noise, greatly because of the use of SDRs and their properties; on a more
negative side, the model failed in the image classification and sound recognition tasks,
mainly due to the encoding process and how it is not well supported in the Python
libraries up to dates. Another positive takeaway, is that the HTM theory provides a solid
understanding of the learning process, unlike the black box algorithms, characteristic in
DL methods; it is possible to infer the decisions taken by the algorithm and to check the
current state of the network.

37



38 Chapter 5. Conclusions and Future Work

Although the theory presents itself with good visions of how the neocortex works and
how this knowledge can be translated into an algorithm, it still needs a lot of research
not only in the theory domain, in pair with our current view of the learning process in
the neocortex, but also in the development of libraries that can help the data science
community to take advantage of it, for the resolution of complex problems, usually
confronted with the use of ML models.

5.2 prospects for future work

The HTM theory presents itself as an evolving theory, with a lot of ground still to
be discovered. In a first phase, the knowledge of how our neocortex works is still
expanding, with new discoveries of the learning process; with this building knowledge,
there should be an equal investment on the creation of libraries capable of translating it
into useful algorithms.

Some areas of research inside HTM include: a better understanding of how the
apical connections can be applied in the TM region; the use of grid cells modules, that
should be capable of representing objects with less ambiguity; the representation of
images using saccadic eye movement, consisting in multiple inferences on the same
pattern, while it is moved for a few pixels at a time, emulating fast eye movements
that focus attention in different parts of an object. These areas of interest are currently
being investigated, with some research code available in the ”htmresearch” repository
[48]. Besides the development of the theory itself, other future work may include the
combination of HTM with other methodologies; for instance, for a Computer Vision task,
a previous step of preprocessing and feature extraction can precede the representation
of the image into an SDR. This approach will result in a network that moves away from
the biological HTM theory, however it can bring good results to these tasks.
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Abstract: Over the years and with the technological innovations that have
appeared, the relevance of automatic learning methods has increased ex-
ponentially, playing a determining role in society. More specifically, Deep
Learning with the ability to recognize audio, image and time series pre-
diction, has helped to solve various types of problems. In this article, a
new theory is presented, called HTM. HTM is based on biological functions
of the brain as well as its learning mechanism. The theory that will be
later described has been applied to a time series forecast, with close values
in the stock market, for seven of the S&P500 index companies, Amazon,
Google, HCA Healthcare, Disney, McDonald”s, Johnson Johnson and Visa.
The results are of significant relevance, showing a low percentage of error
in forecasts made over time. It can be stated that the learning curve of
the algorithm is fast identifying trends in the stock market for the seven
data universes. Briefly, HTM presents itself as a good continuous learning
method for forecasting time series data sets, being robust for the tuning
of hyper-parameters between different data sets in the same problematic
sphere.

45



46 Appendix A. Publication

Keywords: Time Series Forecasting; Hierarchical Temporal Memory; Stock
Market; Regression; Machine Intelligence, Deep Learning

State: Submitted for publication






	1 Introduction
	1.1 Contextualization and Motivation
	1.2 Objectives
	1.3 Dissertation's structure

	2 State of the Art
	2.1 Machine Learning
	2.2 Deep Learning
	2.3 The Neocortex
	2.4 Hebbian Learning
	2.5 Hierarchical Temporal Memory
	2.5.1 Definitions and Network
	2.5.2 Properties and how it differs from ML
	2.5.3 Current Applications of HTM


	3 Methodology and Development Tools
	3.1 NuPIC
	3.2 Image Classification
	3.3 Sound Recognition
	3.4 Time Series Forecasting

	4 Results and Discussion
	4.1 Image Classification
	4.2 Sound Recognition
	4.3 Time Series Forecasting

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Prospects for Future Work

	A Publication

