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Abstract: Wastewaters are valuable sources of metals and metalloids and can serve as essential
resources for their recovery. Characterizing and understanding the occurrence of metals and other
compounds, along with identifying the most effective recovery methods, are key steps in unlocking
the potential for reusing these resources. The present study focused on analyzing waters from various
mining dams in the Iron Quadrangle (IQ) region of Brazil, which contained metals such as Au, Cu,
Ni, Zn, and sulfates resulting from the metallurgical treatment of Au. The results revealed a range
of metal concentrations in the neutral zone in three tailings. Additionally, a 3D map was created,
and a statistical analysis and an exploration of the processes governing mobility and partitioning
were conducted to assess the potential for reuse. Notably, the study identified a high potential for
Au recovery, particularly through the utilization of sustainable and cost-effective methods such as
nanofibers with biosorbents. Overall, this research contributes to the understanding and exploration
of potential reuse procedures for strategic metals in various industrial applications.

Keywords: circular economy; wastewater; mining tailings; Au recovery; hydrochemistry

1. Introduction

Water is a critical issue throughout the entire mining cycle and within mining opera-
tions. The proper management of mine tailings has become a global and urgent concern.
While the solid component of tailing dams is commonly studied, with several works
highlighting the presence of toxic elements and their impacts [1–3], current research is
increasingly focusing on transforming ore-extraction waste into valuable by-products [4–8],
aligning with the principles of the circular economy. However, it is often overlooked that
surface wastewater and groundwater are also present in these structures, and that they can
contain various hazardous and potentially harmful substances. Consequently, it is crucial
to monitor and manage these waters to prevent any adverse environmental impacts.

The characteristics of tailings wastewater vary depending on the type of mined ore
and the mining and metallurgic processes involved [9]. Typically, these wastewaters contain
high levels of suspended solids, including colloidal materials, that can increase concen-
trations of elements in free form and in various complexes (e.g., sulfates, carbonates, and
nitrates), many of which are potentially toxic elements (PTE) [1,3]. Additionally, con-
taminants present in colloidal phases (>20 µm) and/or in solution have a greater impact
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due to their higher reactivity and mobility [10–12]. Consequently, the characterization of
wastewater from mining tailings is a complex yet crucial issue.

Surface water and interstitial water associated with the solid part of tailings can con-
tain multiple elements that may pose environment and human health risks, including gold
(Au), silver (Ag), nickel (Ni), manganese (Mn), iron (Fe), and aluminum (Al), as well as
potentially hazardous substances such as mercury (Hg) and arsenic (As). Therefore, treat-
ment processes, including neutralization, are usually required to minimize environmental
impact [13]. Achieving knowledge about the environmental impact, risk assessment, and
potential reuse of all components of mining tailings necessitates a comprehensive character-
ization of both the solids and water fractions. This involves employing various techniques,
such as atomic absorption spectrometry (AAS) for trace metal concentration analysis,
along with parameters such as pH, electrical conductivity (EC), turbidity, and suspended
solids, associated with X-ray diffraction (XRD) to determine the mineralogy of suspended
solids [3,14–16].

Understanding the occurrence of elements and the associated physicochemical pa-
rameters within these water bodies is crucial for identifying volume and distribution
patterns [17–20]. Geostatistical and mathematical interpolation techniques, including krig-
ing, cokriging, and inverse distance weighted, are commonly employed for 3D modeling
groundwater parameters [19,21–24]. Additionally, understanding the hydrochemistry of
tailings wastewater and the partitioning of elements among colloidal fractions is vital for
assessing its potential for reuse [3,25,26].

To address this issue, governments and international organizations have implemented
several measures to reduce the impact of mining tailings wastewater, including increasing
public awareness [27,28]. As mining operations continue to grow in size and complexity,
the management of tailings wastewater becomes increasingly crucial. In this context,
reusing this wastewater can be an efficient and cost-effective approach to mitigating the
environmental impact of mining while ensuring a reliable water source [29,30].

In recent years, numerous case studies have been conducted worldwide to explore
the potential for water reuse from mining tailings, especially as water demand rises and
the environmental impacts of mining become more apparent. It is crucial to treat and
reuse mining tailings wastewater safely and sustainably. Such wastewater can be reused
for various purposes, including crop irrigation, livestock water supply, and human con-
sumption [31,32]. In some instances, artificial wetlands and lakes can be created, providing
habitats for diverse flora and fauna [33,34]. Moreover, these wastewaters can be utilized
for industrial processes such as cooling or energy generation [35,36].

In the case of Au tailings, previous studies have indicated a limited potential for
wastewater reuse due to its hazardous nature [9,37–39]. This wastewater typically exhibits
high concentrations of metal(loid)s such as copper (Cu), zinc (Zn), lead (Pb), and As, and
may also contain organic compounds. Treatment processes such as sedimentation, floccula-
tion, oxidation, and ion exchange are commonly employed to reduce the concentrations of
these contaminants. Advanced treatments, such as membrane filtration, can also be applied
to minimize associated risks.

Studies [40,41] have demonstrated the potential for metal recovery, including Au, in
the circular economy context. These studies explored three subgroups, targeting solubility,
size, charge, and reduction potential differences. In the same context, [42,43] also em-
ployed various technologies, including membrane technologies, adsorption, Fenton-based
processes, advanced oxidation processes (AOP), and hybrid systems such as electrically
enhanced membrane bioreactors (eMBRs) and integrated eMBR-adsorption systems. Other
studies are evaluating techniques such as the biological precipitation of sulfides and the
use of an aqueous solution of sodium alginate for direct gelation with metal ions [12,44,45].
Although these technologies represent significant advancements, further research is needed
to enhance their effectiveness and suitability for industrial applications.

Once treated, wastewater can be reused for various purposes, including agricultural
irrigation, industrial cooling water, and drinking water. However, before implementing
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reuse strategies, a thorough assessment of the potential environmental impacts must be
conducted [9,37,38,46,47].

In the case of Au tailings, reuse poses particular challenges. Au is often present in fine
particulate form, which makes it difficult to separate from other elements. Moreover, Au is
highly reactive and can form insoluble complexes with other elements, further complicating
its recovery. Understanding the partitioning of Au among colloidal fractions is essential for
evaluating its potential for reuse [26,48].

In the context described above, this study aims to characterize and compare the
physicochemical properties of water from three Au tailings dams in the Iron Quadrangle,
Brazil. The findings will provide valuable insights into the distribution of critical elements,
laying the foundation for assessing reuse potential and implementing effective management
strategies to minimize environmental impacts.

2. Study Area

The three tailing structures investigated in this study are located in the Iron Quadran-
gle (QF—Figure 1), Brazil’s primary mineral province. Specifically, two tailing dams are
situated in the city of Nova Lima and the third is in Santa Barbara, Minas Gerais. These
cities have a long history of Au exploitation, dating back to the early 19th century, and
remain important regions for Au production in Brazil. The gold deposits in these areas are
hosted within the Rio das Velhas metallogenic Greenstone Belt, recognized as Brazil’s most
significant Au district [49,50].
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A warm and temperate climate characterizes the QF region. The region experiences
less rainfall during the winter when compared to summer. According to Köppen and
Geiger’s climate classification, the climate falls under the Cwa category. The average
temperature in the region is 20.4 ◦C, with an annual rainfall of 1551 mm. Due to the
temperate climate, categorizing the seasons can be challenging [8,51,52].

The Santa Barbara tailings dam is in the northern part of the QF, in Santa Barbara,
Minas Gerais, ca. 110 km from Belo Horizonte. Since 1986, waste from underground Au
metallurgical plants has been deposited in this structure. As the workflow reviewed by [8]
identified, the waste for these structures has different origins: (a) waste from a flotation
plant and (b) waste from the leaching stage, both derived from freshly underground mined
ores [53,54]. According to [55], solid tailings from this dam contain minerals such as quartz,
muscovite, and biotite, as well as phases formed during the processing stages, including
gypsum, jarosite, and iron antimonate. Arsenic (As) is also associated with phases such as
antimony oxide and is occasionally found in arsenopyrite. Chemically, elements such as
Fe, Au, antimony (Sb), sulfur (S), As, and Cu are present. The surface waters of this dam
were reported to be alkaline, with maximum pH values of ca. 10, and contained potentially
toxic elements such as Sb, As, and Cu. The average water volume of this dam during the
sampled period was 1766.25 m3 [51].
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The Nova Lima dams and tailings deposits are located in the northern part of the QF,
ca. 25 km from the capital Belo Horizonte, Minas Gerais. These dams are part of the Queiroz
metallurgical plant, which has been treating sulfide Au ores for over thirty years. The
materials processed in the plant are divided into two distinct circuits, as summarized by [8].
The Raposos circuit treats non-refractory sulfide ore (pyrite, pyrrhotite, and subordinate
arsenopyrite), mainly from the Raposos mines. The circuit involves grinding, gravity
concentration, conventional leaching, carbon-in-leach (CIL), elution, and electrowinning,
achieving 90% Au recovery. The tailings generated in this circuit were deposited in the
Cocoruto tailings impoundment (CO). This part of the plant was deactivated in 1998 with
the closure of the Raposos underground mine [48,51,56]. The Cocoruto dam (old circuit)
mainly consists of quartz, carbonates, iron oxides, and phyllosilicates such as muscovite
and chlorite [48]. Chemically, it contains Fe > calcium (Ca) > magnesium (Mg) > Al > Mn >
potassium (K), and sodium (Na).

Currently, the Queiroz plant circuit processes refractory Au ore, which requires a
calcination step after grinding and flotation. After calcination, Au is recovered through
conventional leaching, CIL, elution, and electrowinning [48,51,56]. The generated tailings
are deposited in the Calcination dam (CA). According to [8], this type of residue undergoes
significant mineralogical transformations between the source and the storage location. All
concentrated sulfides are subjected to high-temperature c and are thus calcined, which
explains the enrichment of iron oxides in elements such as As, Cu, Ni, Ag, and Au. Gypsum
is also observed, likely formed by adding reagents such as lime during the calcination
process. The water volumes of these dams are 142,000 m3 for Cocoruto and 23,792 m3 for
Calcinados [51].

3. Methodology

Figure 2 summarizes the workflow used in this study.
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Figure 2. Workflow of the methodological approach.

The sampling campaign took place during winter and early spring (May–September 2020).
During these months, the weather conditions are typically dry, with temperatures ranging
from 15 to 25 ◦C [57].



Water 2023, 15, 2714 5 of 17

The samples were collected using direct push drilling methods, with a maximum
depth of 20 m, resulting in 179 m of samples (Figure 1 and Figure S1). Each sample
represented a 1-m depth interval; during the probing process, a sample was collected for
every 1-m advance. The samples were filtered using 0.20 µm syringe filters to separate
the groundwater. Aliquots of the liquid phase (50–100 mL) were stored in polypropylene
bottles, acidified to pH < 2, and kept in the dark at 5 ◦C for chemical analysis. The solid
fraction (>0.20 µm) was placed in plastic bags and sent for chemical analysis. Evaluating
both fractions is essential for understanding the mobility of elements in groundwater from
these structures.

At each sampling site, parameters such as pH, temperature, and EC were measured
using methods described in the Standard Methods of Water and Wastewater [52]. Weak
Acid Dissociable Cyanide (CN Wad), which refers to a group of cyanide species defined
operationally that release free cyanide when refluxed under weakly acidic conditions
(pH 4.5–6), was also measured using the same standard methods [52]. Elements such
as Au, As, Fe, cadmium (Cd), Sb, Cu, Mn, Ni, Pb, Zn, Hg, and sulfates were analyzed
using inductively coupled plasma mass spectrometry (ICP-MS) for both fractions. Blanks,
replicates, and stock solutions were used to ensure quality control.

To understand possible sources of chemical element distribution in wastewater sam-
ples, a mineralogical study was conducted using X-ray diffraction (XRD) with a X’pert
Pro-MPD diffractometer (Philips PW 1710, APD) using CuKα radiation, equipped with an
automatic divergence slit and a graphite monochromator. Diffractograms were obtained
from powders of the <2 mm fraction, covering the 3 to 65 ◦2θ range, with a 2θ step size of
0.02◦ and a counting time of 1.25 s.

For interpretation, statistical analysis, such as correlations between parameters and de-
termination of enrichment factors (Efx), were performed using Minitab Statistical Software
version 21.1.0, as well as 3D modeling of parameters distributions in the liquid fraction
(<0.20 µm) using Leapfrog Geo and Edge 2021.1.

The Efx can be calculated to express the ratio between the concentration of elements in
the fraction smaller than 20 µm (aqueous phase—Xfraction) compared to the fraction above
0.20 µm (Xsolids). This factor is particularly relevant for elements of higher environmental
concern [46]. The Efx can be calculated using Equation (1) [58,59]:

Efx = Xfraction/Xsolids (1)

The construction of the 3D physical-chemical model involved three steps: (i) conduct-
ing a topographic survey of the dam and sampled points using a total station; (ii) organizing
the topographic and physical-chemical data, performing a statistical summary of variables,
eliminating the capping, and validating the data; and (iii) estimating and constructing the
3D model of the distribution of physical-chemical variables, and validating the models.

All the models are 3D block models with a discretization cell size of 30 m × 30 m × 5 m [8,
19,60]. For step 3, the geostatistical interpolation method, called Inverse Distance Weighting
(IDW), was employed. IDW is a commonly used technique in water resources manage-
ment [19,61,62]. It estimated values based on known nearby locations, and the assigned
weights to the interpolating points are inversely proportional to their distance from the inter-
polation point. In other words, closer points have higher weights when compared to distant
points, and vice versa [19,22]. In this study, a fifth power weight was utilized to limit the
influence of samples in distant regions and refine the estimation [59].

4. Results and Discussions
4.1. Groundwater Composition and Hydrochemical Relationships

The parameters measured in situ, along with others, serve as primary indicators of the
characteristics of each structure and their distinguishing factors [63].

Tables 1 and 2 present statistical summaries of the elements and physicochemical
parameters (pH and EC) for water samples from the three structures and their interre-
lationships. Overall, the water samples exhibit elevated concentrations of metals, and
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despite having pH levels close to neutral, attention must be paid to potential sources of
contamination, as certain elements exceed the maximum values according to Brazilian
regulations for Class II freshwater [64].

Table 1. Statistical summary of chemical variables of wastewater from CO, CA, and CDS2 tail-
ing deposits.

Structure pH
EC CN

Wad Au Cd Hg Mn Zn Pb Cu Fe Ni SO24− As Sb Co

µS/cm mg/L mg/L

C
oc

or
ut

o
(C

O
)

Mean 6.90 2585 0.025 0.0250 0.0005 0.001 1.72 0.0125 0.012 0.015 0.9 0.03 1270.8 0.006 0.001 0.0005
Max 8.67 4036 0.078 0.0250 0.0005 0.001 24.61 0.1000 0.061 0.224 6.1 0.42 5444.5 0.026 0.001 0.0005
Min 6.08 1390 0.025 0.0250 0.0005 0.001 0.03 0.0100 0.005 0.004 0.1 0.01 33.3 0.005 0.001 0.0005
SD 0.5867 877 0.0024 0.0000 0.0000 0.000 3.54 0.0133 0.016 0.034 1.2 0.06 892.3 0.004 0.000 0.0000

C
al

ci
na

do
(C

A
)

Mean 9.07 4402 28.9 0.0280 0.0005 0.001 0.10 0.1018 0.005 1285 0.2 0.39 1989.1 0.005 0.001 0.0005
Max 10.44 6947 88.0 0.0800 0.0005 0.001 0.62 1.1000 0.028 46523 2.2 9.12 2820.4 0.005 0.001 0.0005
Min 2.92 2367 6.0 0.0250 0.0005 0.001 0.01 0.0100 0.005 0.0 0.1 0.01 1337.1 0.005 0.001 0.0005
SD 1.187 1065 14.50 0.0129 0.0000 0.000 0.14 0.2328 0.003 5698.7 0.4 1.32 355.7 0.000 0.000 0.0000

C
D

S2

Mean 7.32 3808 11.240 0.0408 0.0100 0.001 0.02 0.0104 0.107 19.3 0.1 1.94 2234.7 1.6 4.0 0.0100
Max 8.03 4460 7.920 0.3000 0.0100 0.001 0.02 0.0159 0.191 20.7 0.4 2.62 3500.0 25.6 23.8 0.0100
Min 6.66 3455 13.700 0.0250 0.0100 0.001 0.02 0.0050 0.040 14.1 0.0 0.01 1608.0 0.0 0.5 0.0100
SD 0.3592 229 1.000 0.0519 0.0000 0.000 0.00 0.0040 0.053 1.6 0.1 1.10 687.5 6.2 5.1 0.0000

Note: SD = standard deviation; Min—Minimum; Max—Maximum.

Table 2. Correlation between the collected parameters for the three dams using Pearson Coefficient.
Medium to strongest correlations (r2 > 0.25) are highlighted in green.

pH
EC Au Cd Mn Zn Pb Fe Cu Ni SO42− As Sb

µS/cm mg/L

pH 1.00
EC µS/cm 0.568 1.00
Au

mg/L

0.008 0.077 1.00
Cd −0.114 0.198 0.319 1.00
Mn −0.160 −0.125 −0.041 −0.140 1.00
Zn 0.315 0.214 −0.035 −0.130 −0.034 1.00
Pb −0.122 0.193 0.292 0.903 −0.030 −0.140 1.00
Fe −0.114 −0.232 −0.046 −0.191 0.385 −0.026 −0.086 1.00
Cu 0.275 0.099 −0.020 −0.068 −0.042 −0.021 −0.075 −0.061 1.00
Ni 0.137 0.160 0.172 0.417 −0.086 −0.063 0.377 −0.134 0.747 1.00

SO4
2− 0.376 0.401 0.066 0.131 0.336 0.042 0.088 −0.175 0.143 0.227 1.00

As −0.032 0.013 −0.007 0.263 −0.026 −0.022 0.047 −0.039 −0.013 0.133 0.055 1.00
Sb −0.066 0.093 0.334 0.761 −0.091 −0.080 0.389 −0.125 −0.044 0.271 0.154 0.256 1.00

In terms of physicochemical characteristics, it is observed that the waters from the
Cocoruto and CDS2 dams exhibit similar pH levels, ranging from 6 to 8. However, the sam-
pled waters from the Calcinados dam have a higher alkaline pH, with values above 8. The
average EC ranges from 2585 µS/cm to 4402 µS/cm, indicating distinct and higher values
for the Calcinados and CDS2 dams. In general, this variable (EC) may be directly linked to
sulfate concentrations, which are relatively high for all structures (1270 to 5444 mg/L) and
have a Pearson correlation coefficient of 0.4 (Table 2 and Figure S1a–c). Additionally, there
is a clear relationship (above 0.5) between pH and EC, indicating zones of mineral-effluent
interaction, mainly due to sulfides and sulfates.

The metal concentrations (loids) are essential indicators for differentiating waters and
classifying these structures [3]. The Ficklin diagram (Figure 3), as described by [63], can
express this differentiation. In the studied structures, Co and Cd showed values close to
the detection limits of the method. At the same time, the concentrations of Zn, Pb, Ni, and
Cu were considerable and varied depending on the evaluated dam.
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The sampled waters in Cocoruto are essentially classified as near-neutral low-metal.
The waters from CDS2 belong to the near-neutral high-metal zones, while Calcinados
exhibited distinct classifications. In Calcinados, 70% of the sampled points fall under near-
neutral low-metal zones; the remaining 30% fall under near-neutral extreme-metal zones.
One point in Calcinados was classified as high-acid high-metal and will be disregarded.

The differences observed in Figure 3 for Calcinados are directly related to the Cu
content and are associated with the location within the specific dam. Points classified as
high-metal may be influenced by the discharge of effluents from the plant during a period
of low efficiency, changes in feed sources, or alterations in the beneficiation process, such
as the inclusion of other reagents that may contain this metal [48]. The maps in Figure 4
highlight zones with higher metal contents, particularly Cu, Zn, Ni, and sulfates.

In Figure 4, it is observed that in the Calcinados dam, water zones with higher
concentrations of Cu, Au, Ni, and sulfates are correlated at depths between 0–10 and
10–20 m. Figure S2 and Table 2 confirm this relationship. Additionally, some sulfate-rich
zones also show a correlation with Fe. Controversially, Zn, Mn, and, in some parts, Fe
indicate enrichment in other parts of the dam (Figures 4 and S2a), and their concentrations
increase with depth in the interstitial waters (Figure S3a). The relationship between the
concentration of these elements and depth may be due to variations in physical parameters
such as pH and EC (Figure S3a).

In the Cocoruto dam, Au concentrations were below the detection limit, preventing
the generation of a variability map. Cu shows higher concentrations in the NW portion,
up to depths of ca. 15 m, which may be related to the influences of reagents used in the
plant (Figure 4) [56]. Zn is also concentrated in this region but to a greater extent in the
SE part. Furthermore, in Figure S2b, these elements exhibit a high Pearson coefficient
(above 0.90). The other elements, although found in smaller zones of high concentration
alongside Cu, have a greater extent in the opposite portion near the dam spillway and
at lower elevations [51]. There is a clear relationship between Fe, Mn, and sulfates, also
observed in the Pearson correlation matrix in Figure S2b and Table 2. Only Fe shows an
enrichment relationship at greater depths (Figure S3b) regarding variation vs. depth. This
influence may be attributed to the treatment of ores rich in this element, particularly in
banded iron formations, which are abundant in Fe-carbonates such as siderite during the
early years of operation of the older mines that supplied the metallurgical circuit [48,65].
Furthermore, a clear variation is observed with decreasing pH and increasing EC in deeper
regions of this dam (Figure S3b).
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In the CDS2 dam, Mn concentrations remained below the detection limit. Among
the highest concentrations within the sampled region, there is a concentration relationship
among all elements except for Zn, which only shows an enrichment relationship with
As by region and depth (Figures 4 and S2c). A positive correlation is observed between
sulfates and elements such as As and Fe (Pearson coefficient of Figure S2c). The increase
in Au concentration is accompanied by enrichments, mainly with Sb and As (Table 2 and
Figure S2c). Differences in ore types and the types of reagents used in the processing plant
may contribute to these concentration variations [55]. The discharge of the plant effluent,
which is not fixed, may also result in spatial differences in the distribution pattern of some
soluble elements [51]. Regarding the variation of elements with depth, the mid-depth
portions (up to 8 m) generally exhibit higher enrichments than deeper regions (Figure S3c).
This pattern is not observed for Zn and Fe, which also increase in concentration near 15 m.
The availability of Fe sulfides and possibly Zn may be relatively high at depth, and the
environment is more prone to the dissolution of these elements, even with high pH and low
EC variation (Figure S3b). This can be supported by the fact that the processing plant in
this region initially received feed from pyrite, ankerite, siderite, and magnetite-rich bodies,
with subordinate sphalerite, arsenopyrite, and berthierite, which are the sources of the
current mineralization [53,55].

4.2. Mineral-Water Interaction and Enrichment Factors

The analysis of mineral-water interaction utilizes a set of physicochemical parameters
that are considered relevant due to their forms of occurrence, attributed toxicity, and
their role in the geochemical evolution of the system under study [66]. Furthermore,
understanding the interactions between solids and water is crucial for developing tools for
extracting and potentially reusing soluble elements in these types of waters [55].

Figure 5 illustrates the average Efx between the water and the accumulated solids
(<0.20 µm) in these dams. The characteristics of the solid waste are summarized in
Tables S1 and S2 and described in detail by [8,48,55]. Generally, the Efx for the solid fraction
is low, but the accumulation of elements such as Au and total S in the effluents should not
be disregarded. Specifically, the samples representing Cocoruto show enrichment in Mn
(Figure 5b), and the Calcinados samples and the CDS2 samples exhibit enrichment in Cu
(Figure 5a,c). The CDS2 samples also demonstrate higher Pb, Sb, and Ni enrichment.

Considering the mineral-water interaction model developed by [66], the chemical
composition of these effluents can be explained by two main factors: (i) the influence of
mineral solubility and (ii) the influence of surface interaction. Based on factor (i) and the pH
conditions measured in these dams, it can be inferred that the concentrations of S originated
from sulfides and sulfates (Table S1 and Equation (2)). Reagents such as Cu-sulfate, which
are used in Au processing, may also contribute to these interactions.

2S2− + 2O2 + H2O↔ S2O3
2− + 2OH−

S2O3
2− + 2OH− + 2O2 ↔ 2SO4

2− + H2O
(2)

Other metals, including Au, are also enriched in the three dams, although the process
of Au enrichment involves additional complexities that require complementary analyses
beyond the scope of this study. If Au is present in an aqueous medium as Au (III) or Au (I)
complexed with Cl in the form of AuCl4—(Equation (3)), for instance, it is possible that
the complexation is a result of the release of chloride ions from a source such as processing
reagents [66]. Furthermore, the presence of Au in a soluble form may be attributed to
beneficiation steps, as the effluents are discharged into the dam. This observation may be
related to the presence of residual cyanide (CN), as indicated in Table 1, and the alkaline
pH conditions (as shown in Equation (4)) [67]:

AuCl4−(aq) ↔ AuCl3−(ads) + Cl(aq)
− (3)
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2Au + 4HCN = 2 Au(CN)2 + 2H+ + 2 e− for (pH > 9.2)
2Au + 4CN− = 2 Au(CN)2 + 2 e− for (pH < 9.1)

(4)
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The environmental conditions of the three dams can facilitate such reactions if the
redox potential (eH) is above 1 V or in natural temperature and pressure conditions [53].
It is known that in some cases, the beneficiation of Au ores undergoes oxidation under
pressure and temperature environments that promote the formation of Au complexes with
Cl and CN, which remain stable in an aqueous medium under natural conditions [53].
However, further investigation is necessary to draw conclusive hypotheses regarding these
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processes. In addition, there may be a significant contribution of nano-sized Au particles
below 2 µm, either released or adsorbed onto other nanometric compounds.

In the Cocoruto dam, the Efx of Mn in the effluent is also noteworthy, and its primary
source is carbonates (Table S1). The availability of Mn ions can occur at a pH close to 8 when
the eH ranges from −0.2 to 0.4 v [68]. The contribution of Mn-containing nanoparticles
cannot be ruled out.

Regarding Cu and Ni, mechanisms similar to those observed for Au can occur in these
environments. The presence of residual CN in the dams or during the beneficiation process
can lead to the formation of stable complexes in aqueous media, such as Cu (CN)3

2− and
Ni(CN)4 [53]. The oxidation of sulfides in the tailings can also result in the formation of
complexes containing Cu and Ni in water, as sulfides containing these elements are present,
especially in the CDS2 dam. These sulfides can react with cyanide or other lixiviating
agents, such as Cl and F, leading to reactions and the stability of these complexes in the
aqueous environment [53].

In the case of the CDS2 dam, the influence of Sb in the groundwater samples was also
observed. Specifically, the solids in this dam originate from a sulfide called berthieritie
(Table S1). The presence of this sulfide in an environment with a high pH (above 9) and
leachability, such as CN, contributed to its stability in the soluble form [53]. Therefore, the
presence of Sb is likely due to this mechanism.

4.3. Metal Concentrations in Tailing Waters and the Key to Reuse

Based on the discussed characteristics and understanding of possible mechanisms, a
strategy for metal extraction and water reuse in industrial environments is proposed in this
study.

The water contained in these three dams is present in active industrial settings. There-
fore, besides the potential for extracting metal(loid)s in high concentrations, the water can
also be reused within metallurgical plants or for non-industrial purposes, such as supplying
administrative areas of the facility.

In this regard, sustainable alternatives for metal extraction, such as the use of biosor-
bents, are presented. Among various suggested techniques [40–42,44,45,69], using biosor-
bents, specifically nanofibers with chelating properties, was the most viable and sustainable
method for this study. The work conducted by [43] used water samples from these dams,
as described in previous sections, and aimed to recover Au (III), Cu (II), Ni (II), and other
metals using nanofibers made from Bixa orellana Linnaeus (URU), a native Brazilian plant
known for its chelating properties. The nanofibers were prepared by combining URU seed
powder with a polycaprolactone polymer (PCL). The recovery tests were carried out using
a pure solution at pH 2, room temperature (25 ◦C), and a contact time of 24 h [70].

The results from the water samples collected from these dams, as presented in Table 3
(adapted from [70]), demonstrate a significant potential for sustainable extraction, particu-
larly for Au.

Table 3. Recovery results of Au and other metals using nanofiber containing URU—Adapted from
[43,70].

Element
Mean Min Max

SD
%

Au (III) 75.898 84.35 58.726 6.043
Cu (II) 2.726 6.647 0.354 1.983
Ni (II) 2.099 4.614 0.045 1.419
Pb (II) 28.488 43.835 21.77 7.029
Zn (II) 4.274 7.09 2.294 1.447
Co (II) 4.299 7.889 1.083 2.252

The obtained results indicate that PCL nanofibers containing Urucum have the po-
tential to be applied in the recovery of strategic metals for the sustainability of these
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wastewaters. This approach opens numerous possibilities for use, such as effluents treat-
ment and other technological initiatives that can be developed, driven by its low cost.
Furthermore, this system offers the opportunity for metal extraction and the reuse of two
types of valuable resources: metals and water.

5. Conclusions

Despite being located in the same region (QF), the characterized waters showed distinct
properties, with varying projections ranging from neutral with high to low metal availability,
as classified in the Ficklin Diagram. However, even in samples of low availability, the
concentration of certain elements, including Au, Ni, Cu, and S (mainly in the form of
sulfates), was not negligible. The characterization steps guided the selection of a technique
that demonstrated potential for the recovery of metals, mainly Au.

The distribution of these elements across the three structures and the governing
mechanisms of their mobility are crucial factors for their potential recovery. In a specific
case study using water samples from the CDS2 dam, nanomembranes containing Bixa
orellana Linnaeus seeds successfully recovered these elements, especially Au. This work
serves as an example of sustainable recovery and purification of these waters at a low cost
when compared to other options.

Therefore, this research contributes to the potential reuse of strategic metals in the
industry. Furthermore, it demonstrates the possibility of obtaining water free of toxic
elements or within permissible limits set by environmental regulations, enabling more
sustainable management of water resources by using water from the mining tailings.
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