
A verified VCGen based on Dynamic Logic: an exercise
in meta-verification with Why3

Maria João Fradea, Jorge Sousa Pintoa

aHASLab/INESC TEC & Universidade do Minho, Portugal

Abstract

With the incresasing importance of program verification, an issue that has been
receiving more attention is the certification of verification tools, addressing the
vernacular question: “Who verifies the verifier?”. In this paper we approach
this meta-verification problem by focusing on a fundamental component of pro-
gram verifiers: the “Verification Conditions Generator” (VCGen), responsible
for producing a set of proof obligations from a program and a specification.
The semantic foundations of VCGens lie in program logics, such as Hoare logic,
Dynamic logic, or Separation logic, and related predicate transformers.

Dynamic logic is the basis of the KeY system, one of the foremost deductive
verifiers, whose logic makes use of the notion of update, which is quite intricate
to formalize. In this paper we derive systematically, based on a KeY-style dy-
namic logic, a correct-by-construction VCGen for a toy programming language.
Our workflow covers the entire process, from the logic to the VCGen. It is
implemented in the Why3 tool, which is itself a program verifier. We prove the
soundness and (an appropriate notion of) completeness of the logic, then define
a VCGen for our language and establish its soundness.

Dynamic logic is one of a variety of research topics that our dear friend and
colleague Lúıs Soares Barbosa has, over the years, initiated and promoted at
the University of Minho. It is a pleasure for us to dedicate this work to him on
the occasion of his 60th birthday.

Keywords: Hoare logic, Verification Conditions, Program Verification,
Program Annotations, Weakest Preconditions, Updates

1. Introduction

KeY [1] is one of the major program verification tools that have, in the last
15 years, made deductive methods, based on the use of program logics, available
to a wide range of users. One distinct aspect of it is that, while most other tools
are based on Hoare logic [2] and the related weakest precondition calculus of

Email addresses: mjf@di.uminho.pt (Maria João Frade), jsp@di.uminho.pt (Jorge
Sousa Pinto)

Preprint submitted to Elsevier July 31, 2023

Dijkstra [3], or else on the more recent Separation logic [4], the underlying logic
of KeY is dynamic logic [5, 6].

Dynamic logic includes modalities. The logic we consider in this paper uses
the ‘box’ modality, which takes a program as argument. The formula [C]φ has
the following meaning: “every terminating execution of C results in a state that
satisfies φ” [5]. The properties involving this modality look extremely familiar
from the standpoint of the weakest precondition calculus and Hoare logic:

[x := e]φ = φ[e/x] [C1;C2]φ = [C1][C2]φ

[if b then C1 else C2]φ = (b→ [C1]φ) ∧ (¬b→ [C2]φ)

θ ∧ b → [C] θ

θ → [while b do C] (θ ∧ ¬b)
Initial work on dynamic logic had a theoretical focus on the problems created

by extending first-order logic with program formulas, including the decidability
of validity and completeness. A strong point of dynamic logic is that formulas
may contain more than one program, allowing for properties to be expressed,
such as program equivalence, that cannot be expressed in Hoare logic.

The notion of a state update was later introduced [7] in the context of work
on the KeY system. The paper studied a dynamic logic for object-oriented
programs that can be seen as the core of JavaDL, a program logic for Java pro-
grams. Updates are programs of a special form, essentially parallel assignments
in which the same variable (or other mutable entities) may occur as left-hand
side more than once. Application of an update to an expression or formula is
just (parallel) variable substitution, with a “rightmost wins” strategy whenever
a variable is assigned more than once. The system included rules that transform
update modalities into applications of updates to formulas:

U (ψ)

[U] ψ
[U]([U ′] ψ)
[U ; U ′] ψ

Crucially, a simplification rule is required to handle formulas like [U]([U ′] ψ):

[U] ([x1 := e1 || . . . || xn := en] ψ) � [U || x1 := U (e1) || . . . || xn := U (en)] ψ

Consider for example the formula x = K → [x := 2∗x; y := x] (x = 2∗K∧y = x)
Applying the rule shown above on the right will produce
x = K → [x := 2 ∗ x] ([y := x] (x = 2 ∗K ∧ y = x))
which can in turn be simplified as follows

• x = K → [x := 2 ∗ x || y := 2 ∗ x] (x = 2 ∗K ∧ y = x)

• x = K → (x = 2 ∗K ∧ y = x) [2 ∗ x/x, 2 ∗ x/y]
• x = K → 2 ∗ x = 2 ∗K ∧ 2 ∗ x = 2 ∗ x

2

In later work on JavaDL by the KeY team [8], updates are no longer seen as
programs, but rather as separate entities that can be applied to expressions, for-
mulas, and other updates. The inference system deals specifically with formulas
of the form φ → {U}[C]ψ, where the consequent is constructed by applying an
update to a formula containing a program (box modality).

Updates were introduced as a device to handle object aliasing (which we
do not consider in the present paper), but they additionally allow for the in-
troduction of a system with emphasis on symbolic execution: a forward view of
formula propagation which, unlike the strongest postcondition calculus, does not
introduce existential quantifiers. The system contains a specific set of rules for
the control-flow constructs. In particular the sequence rule is split into several
different rules according to the first statement, for instance:

φ ∧ {U}b → {U}[C1 ; C]ψ φ ∧ {U}(¬b) → {U}[C2 ; C]ψ

φ → {U}[(if b then C1 else C2) ; C]ψ

In this paper we consider a dynamic logic that we call WhileDL, which is
essentially a fragment of JavaDL for while programs (so we focus on the “sym-
bolic execution” aspect of JavaDL, rather than on object aliasing). Using the
Why3 tool [9], we do the following: (i) we define the syntax and semantics of
WhileDL and prove basic properties of the logic with the help of Why3 proof
transformations and (mostly) external SMT solvers; (ii) we formalize an infer-
ence system (a ‘calculus’) for this logic, and mechanically prove its soundness
and (a notion of) completeness; (iii) we introduce a Verification Conditions Gen-
erator (VCGen) that produces proof obligations in first-order logic, and prove
its soundness with respect to the calculus.

The VCGen is a novel contribution. We remark that, unlike other major
verifiers, KeY does not resort to external tools (in particular SMT solvers) to
discharge proof obligations; instead, it includes an internal proof engine, which
incorporates an update simplification mechanism. As will be seen in detail
below, update simplification is specified in the KeY documentation as a set of
rewrite rules, but no specific strategy is given for their application. Our VCGen
includes one such strategy; the overall result is that we show how dynamic logic
(and the update mechanism) can serve as the basis for an alternative verifier
based on the use of external first-order provers.

In addition to the previous point, the paper serves as a case study in meta-
verification, establishing a basis for VCGen certification using a deductive veri-
fier. It highlights distinctive aspects of Why3, in particular the rich relationship
between its logic and programming languages. The WhileDL VCGen is written
as a program in WhyML (the internal Why3 programming language), and can
be extracted as an OCaml program. With its specific logic and programming
languages and its ability to interface with external proof tools, Why3 stands in
a sweet spot, in terms of expressivity of logic language, degree of automation,
and proof management, for the purpose of formalizing the different notions in-
volved in this task. In particular, we reason about the (dynamic) program logic
in Why3’s logic language, but then use the programming language to actually
implement the VCGen.

3

The paper is organized as follows: Section 2 introduces the syntax and se-
mantics of WhileDL, including updates and the update simplification mecha-
nism. Section 3 briefly presents the basics of the Why3 verifier. Sections 4, 5,
and 6 contain the Why3 formalization, presenting respectively the logic, update
simplification mechanism, and VCGen. Section 7 concludes the paper.

2. The WhileDL Logic

Syntax. WhileDL extends classical logic with two artifacts: a modal operator
with programs, and updates. Both programs and updates denote state changes,
but updates are simpler (in particular, they always terminate). We consider a
simple While language with data types for integer numbers and Booleans. State-
ments include a do-nothing command, assignment, composition, (two-branched)
conditional execution and while loop annotated with a loop invariant. The lan-
guage has two base types Int and Bool. Arithmetic expressions are formed from
constants and a set of variables x ∈ Var, together with operators on integers.

AExp a ::= . . . | −1 | 0 | 1 | . . . | x | a1 + a2 | a1 − a2 | a1 ∗ a2 | {U} a
Upd U ::= skip | x := a | U1‖U2 | {U1}U2

BExp b ::= true | false | a1 = a2 | a1 < a2 | a1 ≤ a2 | a1 > a2 | a1 ≥ a2 |
¬b | b1 ∧ b2 | b1 ∨ b2 | {U} b

Form φ ::= b | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 → φ2 | ∀x. φ | ∃x. φ | [C]φ | {U}φ
Stmt C ::= skip | x := a | C1 ; C2 | if b then C1 else C2 | while b do {φ}C

In addition to aritmetic expressions a ∈ AExp and Boolean expressions
b ∈ BExp, we have formulas φ ∈ Form that express properties of particular
states of the programs. Our formulas are formulas of a first-order language
(obtained as an expansion of Boolean expressions) with two new constructions:
[C]φ and {U}φ. The formula [C]φ expresses the fact that every terminating
execution of C leads to a state that satisfies φ. On the other hand, {U}φ denotes
the application of update U to formula φ (but note that updates can be applied
to other entities, including expressions and even other updates).

Updates denote state changes. skip denotes the empty update that does not
change anything. x := a is an elementary update that assigns the value of the
expression a to the variable x. U1‖U2 denotes a parallel update that executes the
updates U1 and U2 in parallel with a last-win semantics : if U1 and U2 attempt
to assign conflicting values to a variable, then the value written by U2 prevails.
{U1} a (resp. {U1} b, {U1}φ and {U1}U2) denotes the update aplication whose
meaning is that a (resp. b, φ and U2) will be evaluated in the state produced
by the update U1.

The usual notion of free variable is extended to include updates and formulas
of the form [C]φ in the following way:

FV(skip) = ∅ FV([C]φ) = FV(φ)
FV(x := a) = FV(a)
FV(U1‖U2) = FV(U1) ∪ FV(U2)
FV({U} t) = FV(U) ∪ FV(t) where t ∈ AExp ∪BExp ∪ Form ∪Upd

4

1. 〈skip, s〉⇓s
2. 〈x := a, s〉⇓s[x �→ [[a]](s)]

3. if 〈C1, s〉⇓s′ and 〈C2, s
′〉⇓s′′, then 〈C1 ; C2, s〉⇓s′′

4. if [[b]](s) = T and 〈C1, s〉⇓s′, then 〈if b then C1 else C2, s〉⇓s′
5. if [[b]](s) = F and 〈C2, s〉⇓s′, then 〈if b then C1 else C2, s〉⇓s′
6. if [[b]](s) = T, 〈C, s〉⇓s′ and 〈while b do {φ}C, s′〉⇓s′′,

then 〈while b do {φ}C, s〉⇓s′′
7. if [[b]](s) = F, then 〈while b do {φ}C, s〉⇓s

Figure 1: Natural semantics for While programs.

Semantics. Integer and Boolean expressions are interpreted as integer or Boolean
values that depend on the values of variables that may occur in the expressions.
In other words, they depend on a state, a function that maps each variable into
an integer value. We will write Σ = Var → Z for the set of states. For s ∈ Σ,
x ∈ Var and z ∈ Z, s[x �→ z] will denote the state that maps x to z and any
other variable y to s(y). The interpretation of a ∈ AExp and b ∈ BExp will be
given by functions [[a]] : Σ → Z and [[b]] : Σ → {F,T} respectively, reflecting our
assumptions that an expression has a value at every state (evaluation always
terminates without error) and expression evaluation never changes the state.

For the interpretation of formulas we take the usual interpretation of first-
order formulas, with additional cases for formulas of the form [C]φ and {U}φ
(presented below). Note that, since formulas build on the language of program
expressions their interpretation also depends on states, and states from Σ can
be used as variable assignments in the interpretation of formulas. The interpre-
tation of a formula φ ∈ Form is then given by [[φ]] : Σ → {F,T}.

For statements we consider a standard operational, natural style semantics,
based on a deterministic evaluation relation ⇓⊆ Stmt×Σ×Σ (building on an
implicit interpretation of expressions). We will write 〈C, s〉⇓s′ to denote the fact
that if C is executed in the initial state s, then its execution terminates in the
final state s′. The usual inductive definition of this relation is given in Figure 1.
Note that invariant annotations do not affect the operational semantics.

The semantics of updates also depends on states: the interpretation of an
update U ∈ Upd in a given state is a function from Σ to Σ, [[U]] : Σ → (Σ → Σ)
defined as follows:

[[skip]](s)(s′) = s′

[[x := a]](s)(s′) = s′[x �→ [[a]](s)]
[[U1‖U2]](s)(s

′) = [[U2]](s)([[U1]](s)(s
′))

[[{U1}U2]](s)(s
′) = [[U2]]([[U1]](s)(s))(s

′)

Observe that the first argument s is the state where the expressions that occur in
the update are evaluated. Therefore, [[U]](s) is a state transformation function,
and [[U]](s)(s′) is the state produced by this function when applied to state s′.

Expressions are interpreted in the usual way. We state here only the case of

5

1. {...‖x := a1‖...‖x := a2‖...} t� {...‖skip‖...‖x := a2‖...} t
where t ∈ AExp ∪BExp ∪ Form ∪Upd

2. {...‖x := a‖...} t� {...‖skip‖...} t
where t ∈ AExp ∪BExp ∪ Form ∪Upd and x �∈ FV(t)

3. {U1} {U2} t� {U1‖ {U1}U2} t where t ∈ AExp ∪BExp ∪ Form ∪Upd

4. {U‖ skip} t� {U} t where t ∈ AExp ∪BExp ∪ Form ∪Upd

5. {skip‖U} t� {U} t where t ∈ AExp ∪BExp ∪ Form ∪Upd

6. {skip} t� t where t ∈ AExp ∪BExp ∪ Form ∪Upd

7. {U} t� t where t ∈ Var ∪ {true, false} ∪ {...,−1, 0, 1, ...}
8. {U} (a1 • a2)� ({U} a1) • ({U} a2) where • ∈ {+, ∗,−,=, <,>,≤,≥}
9. {U}¬b� ¬{U} b

10. {U} (b1 • b2)� ({U} b1) • ({U} b2) where • ∈ {∧,∨}
11. {U}¬φ� ¬{U}φ
12. {U} (φ1 • φ2)� ({U}φ1) • ({U}φ2) where • ∈ {∧,∨,→}
13. {U} ∀x. φ� ∀x. {U}φ where x �∈ FV(U)
14. {U} ∃x. φ� ∃x. {U}φ where x �∈ FV(U)
15. {U} (x := a)� x := {U} a
16. {U} skip� skip

17. {U} (U1‖U2)� ({U}U1)‖ ({U}U2)

18. {x := a}x� a

Figure 2: Simplification rules for updates.

update aplications:
[[{U} a]](s) = [[a]]([[U]](s)(s))
[[{U} b]](s) = [[b]]([[U]](s)(s))

For the interpretation of formulas we take the usual interpretation of first-
order formulas extended with the two following cases:

[[{U}φ]](s) = T iff [[φ]]([[U]](s)(s)) = T
[[[C]φ]](s) = T iff [[φ]](s′) = T for all s′ such that 〈C, s〉⇓s′

The remaining cases are interpreted as expected.
The intrinsic features and last-win semantics of updates make it possible to

perform some simplifications on them that preserve the semantics. Figure 2
shows a set of simplification rules for update application, following JavaDL [8].
Observe that, as parallel composition is associative, U1‖U2‖U3 can be written
instead of U1‖ (U2‖U3) or (U1‖U2)‖U3. The only case not covered by the sim-
plification rules is that of {U} [C]φ. In this case the statement C must be first
eliminated using the symbolic execution rules.

Calculus. The JavaDL calculus underlying the KeY tool is an inference sys-
tem covering the full spectrum of formulas of the logic (including FOL). Our
approach in this paper is quite different, and has more resemblances with the
system presented in [10]. Our goal is to produce a verification conditions genera-
tor that will produce a set of first-order proof obligations (free of the modalities

6

φ→ {U}ψ
φ =⇒ {U} [skip]ψ (skip)

φ→ {U} ({x := a}ψ)
φ =⇒ {U} [x := a]ψ (assign)

φ ∧ {U} b =⇒ {U} [C1]ψ φ ∧ {U}¬b =⇒ {U} [C2]ψ

φ =⇒ {U} [if b then C1 else C2]ψ (if)

φ→ {U} θ θ ∧ b =⇒ {skip} [C] θ θ ∧ ¬b→ ψ

φ =⇒ {U} [while b do {θ}C]ψ (while)

φ =⇒ {U} [C]ψ

φ =⇒ {U} [skip ; C]ψ (skip-seq)

φ =⇒ {U‖ {U} (x := a)} [C]φ

φ =⇒ {U} [x := a ; C]φ (assign-seq)

φ ∧ {U} b =⇒ {U} [C1 ; C3]ψ φ ∧ {U}¬b =⇒ {U} [C2 ; C3]ψ

φ =⇒ {U} [(if b then C1 else C2) ; C3]ψ (if-seq)

φ→ {U} θ θ ∧ b =⇒ {skip} [C1] θ θ ∧ ¬b =⇒ {skip} [C2]ψ

φ =⇒ {U} [(while b do {θ}C1) ; C2]ψ (while-seq)

φ =⇒ {U} [C1 ; (C2 ; C3)]ψ

φ =⇒ {U} [(C1 ; C2) ; C3]ψ (seq-seq)

Figure 3: Symbolic execution calculus for WhileDL update triples.

and updates that are present in WhileDL). For this purpose we introduce a
calculus that manipulates a specific form of judgment (not WhileDL formulas).
Similarly to Hoare logic, whose inference system contains rules that have FOL
formulas as premises (or side conditions, whose validity checking is externalized,
not included in the system), some rules in our calculus have WhileDL formulas
as premises that cannot be derived within the calculus.

We will consider judgements of the form φ =⇒ {U} [C]ψ which we will
call update triples. An update triple φ =⇒ {U} [C]ψ is valid iff for every
s ∈ Σ, [[φ→ {U} [C]ψ]](s) = T. Figure 3 presents a set of inference rules for
update triples, which play in this system a similar role to Hoare triples in Hoare
logic. This system can be seen as a symbolic execution calculus that follows the
program structure in a forward way, and produces WhileDL formulas as proof
obligations when atomic programs and while loops are reached.

As an example, we show the derivation tree for a program that swaps the

7

values of variables x and y. Bottom-up we sequentially apply rules (seq-seq),
(assign-seq), (assign-seq) and (assign).

(x = a ∧ y = b) → {skip‖ {skip} (x := x + y)‖ {skip‖ {skip} (x := x + y)} y := x − y} ({x := x − y} (x = b ∧ y = a))

(x = a ∧ y = b) =⇒ {skip‖ {skip} (x := x + y)‖ {skip‖ {skip} (x := x + y)} y := x − y} [x := x − y] (x = b ∧ y = a)

(x = a ∧ y = b) =⇒ {skip‖ {skip} (x := x + y)} [y := x − y ; x := x − y] (x = b ∧ y = a)

(x = a ∧ y = b) =⇒ {skip} [x := x + y ; (y := x − y ; x := x − y)] (x = b ∧ y = a)

(x = a ∧ y = b) =⇒ {skip} [(x := x + y ; y := x − y) ; x := x − y] (x = b ∧ y = a)

Applying the simplification rules for updates, we get

(x = a ∧ y = b) → {skip‖ {skip} (x := x + y)‖ {skip‖ {skip} (x := x + y)} y := x − y} ({x := x − y} (x = b ∧ y = a))
�∗ (x = a ∧ y = b) → {x := x + y‖ {x := x + y} y := x − y} ({x := x − y} (x = b ∧ y = a))
� (x = a ∧ y = b) → {x := x + y‖ y = x + y − y} ({x := x − y} (x = b ∧ y = a))
� (x = a ∧ y = b) → {x := x + y‖ y = x + y − y} (x − y = b ∧ y = a)
� (x = a ∧ y = b) → (x + y − (x + y − y) = b ∧ x + y − y = a)

which is obviously true.
In Section 6 this system will, together with the update simplification rules,

be used as a basis for defining (in WhyML) a VCGen that will produce as proof
obligations a set of FOL formulas, that can be checked with any standard proof
tool or SMT solver. The calculus, a strategy for update simplification, and
the VCGen will all be formalized in Why3, and their properties mechanically
proved, in sections 4, 5, and 6.

3. Why3 in a Nutshell

The Why3 platform essentially offers the following: a logic language; a pro-
gramming language (called WhyML); a proof manager; and a graphical IDE.
The logic language extends first-order logic (FOL) with algebraic (inductive)
types, polymorphism, and inductive predicates. The programming language
is an ML functional language with mutable data structures supporting impera-
tive programming, and integrating specification features (programs may contain
contracts and other elements like loop invariants, written in the logic language).
Why3 proof obligations are created directly from lemmas and goals written in
the logic language, and also from WhyML programs, as verification conditions
for proving programs correct. The proof manager interacts with a plethora of
external proof tools, both automated (including all major SMT solvers) and in-
teractive, and also allows users to manage and store proof sessions. A collection
of internal proof transformations are also offered in Why3.

There are several important ways in which the two languages interact: first,
the logic language is used to write program specifications. Second, programs can
be used to construct proofs of logical results; in particular the contract-based
mechanism that is used to generate verification conditions for function calls, can
be used to realize induction principles required for non-trivial proofs. Third,
pure program functions may be defined to exist also in the logic namespace,
allowing for the same function to be used both in code and in logic.

As an example, consider the following Why3 fragment (part of a module
that first imports relevant list library modules, including the definition of the
sorted and permut predicates).

8

predicate is_a_sorting_algorithm (f: list int -> list int) =
forall l :list int. permut l (f l) /\ sorted (f l)

let rec function insert (i: int) (l: list int) : list int
requires { sorted l }
ensures { sorted result }
ensures { permut result (Cons i l) }

= match l with
| Nil -> Cons i Nil
| Cons h t -> if i <= h then Cons i l else Cons h (insert i t)
end

let rec function iSort (l: list int) : list int
ensures { sorted result /\ permut result l }

= match l with
| Nil -> Nil
| Cons h t -> insert h (iSort t)
end

goal insertion_sort_correct: is_a_sorting_algorithm iSort

The iSort WhyML function is the well-known insertion sort algorithm on lists,
which in turn uses an auxiliary function for sorted insertion. The behavior of
both functions is specified by means of contracts introduced by the requires

and ensures keywords. The verification conditions generated from this frag-
ment are all easily proved, and certify the correctness of this sorting algorithm;
no further annotations or inductive proof techniques are required – the VC
generation mechanism uses the contracts to formulate appropriate induction
hypotheses (both functions exhibit simple structural recursion, but the same
principle applies regardless of the number or arguments of the recursive calls).
Additionally, both functions are pure and can also be used in the logic language,
which allows for the insertion_sort_correct goal to be formulated.

In the following sections we make extensive use of pure program functions
(also known as let functions) in logic. Section 4 formalizes WhileDL in the
logic language of Why3, and let functions are sometimes used, in which the
contract can be seen as a lemma involving the function. lemma functions are
also used: these are pure functions that do not really exist as programs; they are
just used to prove results by induction on various entities. In Sections 5 and 6,
respectively, the update simplifier and VCGen are defined as let functions,
but we have also defined a program-only version of the VCGen, involving mu-
table types, that can be extracted to OCaml code.

The formalization described in the next sections was developed using Why3
release 1.4.0, and three SMT solvers: Alt-Ergo 2.4.0, CVC4 1.8, and Z3 4.8.6.
When we say that a verification condition has been proved automatically, we
mean that it has been proved by one of these solvers using Why3’s automated
strategies. These strategies perform some basic proof transformations (such as
splitting) and send simplified goals to the provers with some timeout limits,
possibly repeating these steps if any goals remain unproved.

4. Formalization of the Dynamic Logic

In the next sections “...” is often used to indicate parts of the modules that
are omited and can be found in the online respository.

9

theory Exprs_Updates. Our formalization starts with the mutually-recursive
definition of program expressions and updates. We also define (mutually-re-
cursive) logic functions sizeE and sizeU that calculate respectively the size of
expressions and updates, and give two recursive lemma functions that consti-
tute a (mutually inductive) proof of nonnegativity of the size of expressions and
updates. Note how their contracts correspond to the logic results being proved,
and the WhyML definitions capture the induction principles being used. Why3
generates verification conditions from these contracts, whose validity ensures
the validity of the logic results expressed as postconditions.
� �
type ident = | MkIdent int
type operator = Oplus | Ominus | Omult
type expr = | Econst int

| Evar ident
| Ebin expr operator expr
| Eupd upd expr

with upd = | Uskip
| Uassign ident expr
| Upar upd upd
| Uupd upd upd

function sizeE (e:expr) : int =
match e with | Econst _ -> 1 | Evar _ -> 1

| Ebin e1 _ e2 -> 1 + sizeE e1 + sizeE e2 | Eupd u e -> sizeU u + sizeE e
end with sizeU (u:upd) : int =
match u with | Uskip -> 1 | Uassign _ e -> 1 + sizeE e

| Upar u1 u2 -> 1 + sizeU u1 + sizeU u2 | Uupd u u’ -> 1 + sizeU u + sizeU u’
end

let rec lemma sizeU_pos (u:upd)
ensures { sizeU u >= 0 }

= match u with | Uskip -> () | Uassign _ e -> sizeE_pos e
| Upar u1 u2 -> sizeU_pos u1 ; sizeU_pos u2
| Uupd u u’ -> sizeU_pos u ; sizeU_pos u’

end
with lemma sizeE_pos (e:expr)

ensures { sizeE e >= 0 }
= match e with | Econst _ -> () | Evar _ -> ()

| Ebin e1 _ e2 -> sizeE_pos e1 ; sizeE_pos e2
| Eupd u e -> sizeU_pos u ; sizeE_pos e

end
� �

We also define (a straightforward recursive definition, not shown) a predicate
indom expressing when an identifier is in the domain of an update. Our next
step is to define evaluation of expressions and updates in a state (defined as a
mapping from identifiers to integers), and to write a lemma function describing
the effect of an update on variables in (resp. not in) its domain. We also define
Boolean expressions and their evaluation.
� �
type state = map ident int

function eval_bin (x:int) (op:operator) (y:int) : int =
match op with | Oplus -> x+y | Ominus -> x-y | Omult -> x*y end

function eval_expr (s:state) (e:expr) : int =
match e with | Econst n -> n | Evar x -> get s x

| Ebin e1 op e2 -> eval_bin (eval_expr s e1) op (eval_expr s e2)
| Eupd u e -> eval_expr (eval_upd s u s) e

end with eval_upd (s:state) (u:upd) : state -> state =
match u with | Uskip -> fun s’ -> s’ | Uassign x e -> fun s’ -> set s’ x (eval_expr s e)

| Upar u1 u2 -> fun s’ -> eval_upd s u2 (eval_upd s u1 s’)

10

| Uupd u1 u2 -> fun s’ -> let si = eval_upd s u1 s in eval_upd si u2 s’
end

let rec lemma eval_upd_dom (u:upd)
ensures { forall s s’:state, x:ident. not (indom x u) -> eval_upd s u s’ x = s’ x }
ensures { forall s s’ s’’:state, x:ident. indom x u ->

eval_upd s u s’ x = eval_upd s u s’’ x }
= match u with | Uskip -> () | Uassign _ _ -> ()

| Upar u1 u2 -> eval_upd_dom u1 ; eval_upd_dom u2
| Uupd u u’ -> eval_upd_dom u ; eval_upd_dom u’

end

type boperator = BOeq | BOlt | BOlteq | BOgt | BOgteq
type bexpr = | Bcomp expr boperator expr | Btrue | Bfalse | Band bexpr bexpr| Bor bexpr bexpr

| Bnot bexpr | Bupd upd bexpr

predicate eval_bexpr (s:state) (b:bexpr) = ... (* similar to eval_expr *)
end
� �

Finally the equivalence predicates equivUpd, equivExp, and equivBexp are
defined, to express that the evaluation of two updates or expressions is the same
in all states.

theory Programs. The types of program statements and formulas must be de-
fined in a mutually recursive way, since formulas occur in programs (as loop
invariant annotations) and programs appear in box modality formulas. For
simplicity we consider only quantifier-free first-order formulas. Boolean ex-
pressions may be injected into formulas via the Fembed constructor. size is
a let function that calculates the size of a program; its definition is close
to a count of the number of nodes in the abstract syntax tree, except that in
the case of sequences the size of the first statement is given a higher weight.
This will be crucial to prove termination of functions whose recursive calls
do not always decrease the number of nodes, in particular when a sequence
Sseq (Sseq c1 c2) c is regrouped as (Sseq c1 (Sseq c2 c)). Note also
that instead of writing a lemma as done before for sizeE and sizeU, the function
is equipped with a postcondition stating that its result is non-negative.
� �
type fmla = | Fembed bexpr | Fsqb stmt fmla | Fupd upd fmla

| Fand fmla fmla | For fmla fmla | Fnot fmla | Fimplies fmla fmla
with stmt = | Sskip | Sassign ident expr | Sif bexpr stmt stmt

| Swhile bexpr fmla stmt | Sseq stmt stmt

let rec function size (c:stmt) : int
ensures { result >= 0 }

= match c with | Sskip -> 1 | Sassign _ _ -> 1 | Sif _ c1 c2 -> 1 + size c1 + size c2
| Sseq c1 c2 -> 1 + 2*size c1 + size c2 | Swhile _ _ c -> 1 + size c

end

predicate progInv (c:stmt) =
match c with | Sskip -> True | Sassign _ e -> upd_freeE e

| Sif b c1 c2 -> upd_freeB b /\ progInv c1 /\ progInv c2
| Swhile b inv c -> upd_freeB b /\ stmt_freeF inv /\ upd_freeF inv /\ progInv c
| Sseq c1 c2 -> progInv c1 /\ progInv c2

end
� �

The progInv predicate defines well-formed programs as those in which ex-
pressions do not contain updates, and loop invariants do not contain updates nor
box modalities (and thus statements). The predicates upd_freeE, upd_freeB,
stmt_freeF, upd_freeF are all defined structurally in the obvious way.

11

The big-step (natural) semantics of programs will be defined by means of an
inductive predicate, with each clause corresponding to an inference rule. The
definition captures the rules of Figure 1.
� �
inductive big_step state stmt state =
| big_step_skip: forall s:state. big_step s Sskip s
| big_step_assign: forall s:state, e:expr, x:ident.

big_step s (Sassign x e) (set s x (eval_expr s e))
| big_step_seq: forall s1 s2 s3:state, c1 c2:stmt.

big_step s1 c1 s2 -> big_step s2 c2 s3 -> big_step s1 (Sseq c1 c2) s3
| big_step_if_true: forall s s’:state, b:bexpr, c1 c2:stmt.

eval_bexpr s b -> big_step s c1 s’ -> big_step s (Sif b c1 c2) s’
| big_step_if_false: forall s s’:state, b:bexpr, c1 c2:stmt.

not (eval_bexpr s b) -> big_step s c2 s’ -> big_step s (Sif b c1 c2) s’
| big_step_while_true: forall s s’ s’’:state, b:bexpr, i:fmla, c:stmt.

eval_bexpr s b -> big_step s c s’ -> big_step s’ (Swhile b i c) s’’ ->
big_step s (Swhile b i c) s’’

| big_step_while_false: forall s:state, b:bexpr, i:fmla, c:stmt.
not (eval_bexpr s b) -> big_step s (Swhile b i c) s

� �

The following lemmas about the natural semantics are fairly obvious and proved
automatically. They will be useful for proving subsequent results.
� �
lemma IfSeqTrue: forall b :bexpr, c1 c2 c :stmt, s s’ :state.

big_step s (Sseq (Sif b c1 c2) c) s’ -> eval_bexpr s b -> big_step s (Sseq c1 c) s’

lemma IfSeqFalse: forall b :bexpr, c1 c2 c :stmt, s s’ :state.
big_step s (Sseq (Sif b c1 c2) c) s’ -> eval_bexpr s (Bnot b) -> big_step s (Sseq c2 c) s’

� �

theory Semantics. We define the interpretation of formulas following Sec-
tion 2 by means of predicate satisfies defined below; note that formulas may
contain both programs and updates, which must be evaluated. We also define
the notions of valid formula (and write a deduction lemma), equivalent formulas,
and validity of an update triple φ =⇒ {U} [C]ψ. Finally, we formulate a lemma
relating this interpretation of update triples with the usual interpretation of
Hoare triples. Both lemmas are proved automatically.
� �
predicate satisfies (s:state) (p:fmla) =
match p with | Fembed b -> (eval_bexpr s b)

| Fand p1 p2 -> (satisfies s p1) /\ (satisfies s p2)
... | Fsqb c p -> forall s’ :state. big_step s c s’ -> satisfies s’ p

| Fupd u p -> satisfies (eval_upd s u s) p
end

predicate valid_fmla (p:fmla) = forall s:state. satisfies s p
predicate equiv (p:fmla) (q:fmla) = forall s :state. satisfies s p <-> satisfies s q
lemma deduction: forall p q :fmla. (forall s: state. satisfies s p -> satisfies s q)

<-> valid_fmla (Fimplies p q)

predicate validUT (p:fmla)(u:upd)(c:stmt)(q:fmla) =
valid_fmla (Fimplies p (Fupd u (Fsqb c q)))

lemma validUT_triple : forall p:fmla, u:upd, c:stmt, q:fmla.
(validUT p u c q)

<->
(forall s s’:state. satisfies s p -> big_step (eval_upd s u s) c s’ -> satisfies s’ q)

� �

theory SystemDL. We now need to formulate a fundamental lemma, corre-
sponding to a semantic formulation of the classic Hoare logic rule for while

12

loops. Its proof is the only one in this first part of the formalization that
requires the use of a Why3 proof transformation, specifically for predicate in-
duction, available in Why3 through the induction_pr transformation:
� �
lemma core_while_rule: forall c:stmt, b:bexpr, inv ainv :fmla.

(forall s s’:state. satisfies s (Fand inv (Fembed b)) ->
big_step s c s’-> satisfies s’ inv) ->

forall s s’:state. satisfies s inv ->
big_step s (Swhile b ainvc) s’ -> satisfies s’ (Fand inv (Fnot (Fembed b)))

� �

We could now formulate as lemmas the inference rules of the WhileDL sym-
bolic execution calculus (Figure 3), and prove them automatically. For instance:

lemma seq_while_rule: forall p q inv ainv:fmla, c cc:stmt, b:bexpr, u:upd.
valid_fmla (Fimplies p (Fupd u inv)) ->
validUT (Fand inv (Fembed b)) Uskip c inv ->
validUT (Fand inv (Fnot (Fembed b))) Uskip cc q ->
validUT p u (Sseq (Swhile b ainv c) cc) q

We will however take a different approach and define the calculus using an
inductive predicate as follows.
� �
inductive infUT fmla upd stmt fmla =
| infUT_skip: forall p q:fmla, u:upd.

valid_fmla (Fimplies p (Fupd u q)) -> infUT p u Sskip q
| infUT_assign: forall p:fmla, q:fmla, x:ident, e:expr, u:upd.

valid_fmla (Fimplies p (Fupd u (Fupd (Uassign x e) q))) -> infUT p u (Sassign x e) q
| infUT_if: forall p q:fmla, c1 c2 :stmt, b:bexpr, u:upd.

infUT (Fand p (Fupd u (Fembed b))) u c1 q ->
infUT (Fand p (Fupd u (Fnot (Fembed b)))) u c2 q ->
infUT p u (Sif b c1 c2) q

| infUT_while: forall p q:fmla, c :stmt, b:bexpr, inv ainv:fmla, u:upd.
valid_fmla (Fimplies p (Fupd u inv)) ->
infUT (Fand inv (Fembed b)) Uskip c inv ->
valid_fmla (Fimplies (Fand inv (Fnot (Fembed b))) q) ->
infUT p u (Swhile b ainv c) q

| infUT_skipseq: forall p q:fmla, u:upd, c :stmt.
infUT p u c q -> infUT p u (Sseq Sskip c) q

| infUT_assignseq: forall p:fmla, q:fmla, x:ident, e:expr, c:stmt, u:upd.
infUT p (Upar u (Uupd u (Uassign x e))) c q -> infUT p u (Sseq (Sassign x e) c) q

| infUT_ifseq: forall p q:fmla, c1 c2 c:stmt, b:bexpr, u:upd.
infUT (Fand p (Fupd u (Fembed b))) u (Sseq c1 c) q ->
infUT (Fand p (Fupd u (Fnot (Fembed b)))) u (Sseq c2 c) q ->
infUT p u (Sseq (Sif b c1 c2) c) q

| infUT_whileseq: forall p q:fmla, c cc:stmt, b:bexpr, inv ainv :fmla, u:upd.
valid_fmla (Fimplies p (Fupd u inv)) -> infUT (Fand inv (Fembed b)) Uskip c inv ->
infUT (Fand inv (Fnot (Fembed b))) Uskip cc q ->
infUT p u (Sseq (Swhile b ainv c) cc) q

| infUT_seqseq: forall p q:fmla, c1 c2 c:stmt, u:upd.
infUT p u (Sseq c1 (Sseq c2 c)) q -> infUT p u (Sseq (Sseq c1 c2) c) q

� �

Formulas that are checked for validity using the above system are general
WhileDL formulas. Later when we formulate a VCGen we will see that under
some restrictions on the conclusion update triple, those formulas will be pure
FOL formulas (i.e. formulas not containing updates or statements).

theory ReverseRules. Before we can formulate and prove a soundness and
completeness result we need a few additional lemmas. First we note that, con-
trary to Hoare logic, expressiveness in dynamic logic is “built in”, simply because
the Fsqb operator allows for weakest preconditions to be expressed. We express
this as a lemma using a weakest precondition state predicate pre. Lemmas

13

while_rule_revFsqb and seq_while_rule_rev_Fsqb, on the other hand, are
“reverse rules” of WhileDL, required to prove completeness.
� �
predicate pre (s:state) (c:stmt) (q:fmla) =

forall s’ :state. big_step s c s’ -> satisfies s’ q

lemma expressiveness : forall c :stmt, q :fmla. forall s :state.
(satisfies s (Fsqb c q)) <-> pre s c q

lemma while_rule_revFsqb: forall c:stmt, u:upd, b:bexpr, ainv p q :fmla.
validUT p u (Swhile b ainv c) q ->
let inv = Fsqb (Swhile b ainv c) q in
valid_fmla (Fimplies p (Fupd u inv)) /\
validUT (Fand inv (Fembed b)) Uskip c inv /\
valid_fmla (Fimplies (Fand inv (Fnot (Fembed b))) q)

lemma seq_while_rule_rev_Fsqb: forall p q ainv:fmla, c cc:stmt, b:bexpr, u:upd.
validUT p u (Sseq (Swhile b ainv c) cc) q ->
let inv = Fsqb (Sseq (Swhile b ainv c) cc) q in
valid_fmla (Fimplies p (Fupd u inv)) /\
validUT (Fand inv (Fembed b)) Uskip c inv /\
validUT (Fand inv (Fnot (Fembed b))) Uskip cc q

� �

theory DLSoundnessCompleteness. Soundness and completeness (the specific
relative notion known as “box-completeness”) of the WhileDL calculus can be
expressed as an equivalence result between validity and derivability of an update
triple. We will write a lemma function having this equivalence as postcondi-
tion. The definition of the function will follow the “symbolic execution” struc-
ture of the rules, regrouping statements in the case of the sequence constructor.
Termination is proved by providing a variant using the size let function,
which assigns a higher weight to the first statement in the sequence. The VCs
generated by Why3 are all proved automatically after some splitting, using one
of the tool’s automated strategies.
� �
let rec lemma infUT_sound_complete (c:stmt) =

ensures { forall p q :fmla, u :upd. validUT p u c q <-> infUT p u c q }
variant { size c }

match c with
| Sskip -> ()
| Sassign _ _ -> ()
| Sif _ c1 c2 -> infUT_sound_complete c1 ; infUT_sound_complete c2
| Swhile _ _ c -> infUT_sound_complete c
| Sseq Sskip c -> infUT_sound_complete c
| Sseq (Sassign _ _) c -> infUT_sound_complete c
| Sseq (Sif _ c1 c2) c -> infUT_sound_complete (Sseq c1 c) ; infUT_sound_complete (Sseq c2 c)
| Sseq (Swhile _ _ c1) c -> infUT_sound_complete c1 ; infUT_sound_complete c
| Sseq (Sseq c1 c2) c -> infUT_sound_complete (Sseq c1 (Sseq c2 c))
end
� �

5. Update Simplification

In this section we start constructing a VCGen for WhileDL update triples:
an algorithm that generates a set of first-order proof obligations, sufficient to
ensure the validity of the triple. For this we will apply the rules of the calculus of
Figure 3; note however that this is not sufficient, since rules (skip), (assign), and
(while) have premises that are general formulas of WhileDL, possibly containing

14

updates. So the first step is to write a formula simplifier, a function with the
following contract:

val function simplF (p: fmla) : fmla =
requires { stmt_freeF p }
ensures { stmt_freeF result /\ upd_freeF result /\ equiv p result }

Note that the simplifier only works with formulas not containing box modalities
(which is the case in pre- and post-conditions in WhileDL update triples). It
will produce an equivalent formula that is free of updates.

The simplification procedure is based on a strategy for the rules of Figure 2:
updates are first simplified to equivalent parallel updates that are propagated
through the structure of the formulas; when a parallel update is applied to a
variable, a substitution is performed by looking up the variable in the update.

module UpdateApplication. We first define the notion of normalized parallel
update (a right spline of Uassign constructors with no occurrences of updates
in expressions, with the same left-hand side possibly occuring more than once),
a function for composing parallel updates, and another for looking up a variable
in a parallel update (with a “righmtost wins” semantics). Since they will be
used by the VCGen to be defined later, the latter two are defined as program
functions, and equipped with appropriate contracts; the VCs pertaining to these
contracts are automatically proved.
� �
predicate parUpd (u:upd) =
match u with | Uskip -> true | Uassign _ e -> upd_freeE e

| Upar (Uassign _ e) u -> upd_freeE e /\ parUpd u | _ -> False
end

let rec function concat (u1:upd) (u2:upd) : upd
requires { parUpd u1 /\ parUpd u2 }
ensures { parUpd result /\ equivUpd result (Upar u1 u2) }
variant { u1, u2 }

= match u1 with | Uskip -> u | Uassign _ _ -> Upar u1 u2
| Upar u1a u1b -> concat u1a (concat u1b u2) | _ -> absurd

end

let rec lookup (u:upd) (x:ident) : expr
requires { parUpd u }
ensures { equivExp result (Eupd u (Evar x)) /\ upd_freeE result }
variant { u }

= match u with | Uskip -> Evar x | Uassign y e’ -> if eq x y then e’ else Evar x
| Upar (Uassign y e) ub -> if eq x y && not (indom_exec x ub) then e

else lookup ub x
| _ -> absurd

end
� �

The next set of functions apply a parallel update to expressions, updates
(of any kind), and formulas, resulting in entities that are free from updates and
equivalent to an update constructor application.
� �
let rec function applyE (u:upd) (e:expr) : expr

requires { parUpd u }
ensures { equivExp result (Eupd u e) /\ upd_freeE result }
variant { sizeE e }

= match e with | Econst n -> Econst n | Evar x -> lookup u x
| Ebin e1 op e2 -> Ebin (applyE u e1) op (applyE u e2)
| Eupd u’ e’ -> applyE (concat u (applyU u u’)) e’

end

15

with function applyU (u:upd) (u’:upd) : upd
requires { parUpd u }
ensures { parUpd result /\ equivUpd result (Uupd u u’) }
variant { sizeU u’ }

= match u’ with | Uskip -> Uskip | Uassign x e -> Uassign x (applyE u e)
| Upar ua ub -> concat (applyU u ua) (applyU u ub)
| Uupd ua ub -> applyU (concat u (applyU u ua)) ub

end

let rec function applyB (u: upd) (b: bexpr) : bexpr
(...)

let rec function applyF (u: upd) (p: fmla) : fmla
requires { parUpd u /\ stmt_freeF p }
ensures { stmt_freeF result /\ upd_freeF result /\ equiv result (Fupd u p) }
variant { p }

= match p with | Fcomp e1 bop e2 -> Fcomp (applyE u e1) bop (applyE u e2)
| Fembed b -> Fembed (applyB u b)
| Fand p1 p2 -> Fand (applyF u p1) (applyF u p2)

... | Fsqb _ _ -> absurd
| Fupd u’ p -> applyF (concat u (applyU u u’)) p

end
� �

module Simplification. We may now define the simplification function for
formulas, together with auxiliary simplification functions for expressions and
updates. Simplified expressions and formulas do not contain updates, and the
simplification of updates produces parallel updates. In the case of update appli-
cations, all three functions first simplify updates to parallel form before invoking
an apply_ function to proceed with the simplification. Integer expressions and
updates are, as expected, simplified in a mutually recursive way. All functions
are automatically proved to be correct.
� �
let rec function simplE (e:expr) : expr

ensures { upd_freeE result /\ equivExp e result }
variant { e }

= match e with | Econst n -> Econst n | Evar x -> Evar x
| Ebin e1 op e2 -> Ebin (simplE e1) op (simplE e2)
| Eupd u e’ -> applyE (simplU u) e’

end with function simplU (u:upd) : upd
ensures { parUpd result /\ equivUpd u result }
variant { u }

= match u with | Uskip -> Uskip
| Uassign x e -> Uassign x (simplE e)
| Upar u1 u2 -> let u1s = simplU u1 in let u2s = simplU u2 in concat u1s u2s
| Uupd u1 u2 -> let u1s = simplU u1 in applyU u1s u2

end

let rec function simplB (b: bexpr) : bexpr (...)

let rec function simplF (p: fmla) : fmla
requires { stmt_freeF p }
ensures { stmt_freeF result /\ upd_freeF result /\ equiv p result }
variant { p }

= match p with | Fcomp e1 bop e2 -> Fcomp (simplE e1) bop (simplE e2)
| Fembed b -> Fembed (simplB b) | Ftrue -> Ftrue | Ffalse -> Ffalse

| Fand p1 p2 -> Fand (simplF p1) (simplF p2)
... | Fsqb _ _ -> absurd | Fupd u’ p -> applyF (simplU u’) p

end
� �

16

6. Verification Conditions

The VCGen is not meant for general update triples, but specifically for
update triples φ =⇒ {U} [C]ψ satisfying the following restrictions:

• φ and ψ do not contain statements;

• φ does not contain updates;

• the update U is in parallel normalized form (i.e. it is a sequence of ele-
mentary updates x1 := a1‖ . . . ‖xn := an);

• C is well-formed in the sense of predicate progInv.

The Hoare triple {φ}C {ψ} can be seen as a particular case of the update triple
φ =⇒ {U} [C]ψ where the update is skip, and thus the above restrictions are
met (and preserved by recursive calls of the VCGen).

The output of the VCGen will be a set of FOL formulas. We first define
a type for these formulas, which are basically WhileDL formulas without oc-
currences of modalities or updates. We define predicates for satisfaction and
validity of FOL formulas, together with a predicate expressing equivalence be-
tween FOL and WhileDL formulas, and a conversion function from statement-
and update-free WhileDL formulas to FOL formulas.
� �
type fmlaFOL = | FOLcomp expr boperator expr | FOLembed bexpr | FOLtrue | FOLfalse

| FOLand fmlaFOL fmlaFOL | FOLor fmlaFOL fmlaFOL
| FOLnot fmlaFOL | FOLimplies fmlaFOL fmlaFOL

predicate satisfiesFOL (s:state) (p:fmlaFOL) =
match p with | FOLembed b -> (eval_bexpr s b)

... | FOLand p1 p2 -> (satisfiesFOL s p1) /\ (satisfiesFOL s p2)
end

predicate valid_fmlaFOL (p:fmlaFOL) = forall s:state. satisfiesFOL s p

predicate equivFOL (p:fmlaFOL) (q:fmla) = forall s :state. satisfiesFOL s p <-> satisfies s q

let rec function toFOL (p:fmla) : fmlaFOL
requires { stmt_freeF p /\ upd_freeF p }
ensures { equivFOL result p }
variant { p }

= match p with | Fembed b -> FOLembed b | Fand p1 p2 -> FOLand (toFOL p1) (toFOL p2)
... | Fsqb _ _ -> absurd | Fupd _ _ -> absurd

end
� �

We use the fset polymorphic type for finite sets from the Why3 library,
which makes available in particular the functions singleton, union, and add

with the obvious meanings.
The vcgen function follows the rules of Figure 3, collecting (after simplfi-

cation) the formulas in the leaves of the derivation. Whenever an update is
applied in a rule, its application is immediately simplified. The function’s con-
tract expresses the correctness of the VCGen: if the generated FOL formulas
are all valid, then the input WhileDL update triple is indeed valid.
� �
predicate valid_fmlas (g: fset fmlaFOL) = forall p :fmlaFOL. mem p g -> valid_fmlaFOL p

17

let ghost function singletonFOL (p:fmla) : fset fmlaFOL = singleton (toFOL p)

let ghost function addFOL (p:fmla) (v:fset fmlaFOL) : fset fmlaFOL = add (toFOL p) v

let rec ghost function vcgen (p:fmla) (u:upd) (c:stmt) (q:fmla) : fset fmlaFOL
requires { stmt_freeF p /\ upd_freeF p /\ parUpd u /\ progInv c /\ stmt_freeF q }
ensures { valid_fmlas result -> validUT p u c q }
variant { size c }

= match c with
| Sskip -> singletonFOL (Fimplies p (applyF u q))
| Sassign x e -> singletonFOL (Fimplies p (applyF u (applyF (Uassign x e) q)))
| Sif b c1 c2 -> union (vcgen (Fand p (applyF u (Fembed b))) u c1 q)

(vcgen (Fand p (applyF u (Fnot (Fembed b)))) u c2 q)
| Swhile b inv c1 -> addFOL (Fimplies p (applyF u inv))

(addFOL (Fimplies (Fand inv (Fnot (Fembed b))) (simplF q))
(vcgen (Fand inv (Fembed b)) Uskip c1 inv))

| (Sseq (Sskip) c) -> vcgen p u c q
| (Sseq (Sassign x e) c) -> vcgen p (concat u (applyU u (Uassign x e))) c q
| (Sseq (Sif b c1 c2) c) -> union (vcgen (Fand p (applyF u (Fembed b))) u (Sseq c1 c) q)

(vcgen (Fand p (applyF u (Fnot (Fembed b)))) u (Sseq c2 c) q)
| (Sseq (Swhile b inv c1) c) -> addFOL (Fimplies p (applyF u inv))

(union (vcgen (Fand inv (Fembed b)) Uskip c1 inv)
(vcgen (Fand inv (Fnot (Fembed b))) Uskip c q))

| (Sseq (Sseq c1 c2) c) -> vcgen p u (Sseq c1 (Sseq c2 c)) q
end
� �

7. Conclusion

This paper can be seen from two different perspectives, with different con-
tributions. The first contribution is a non-trivial case study in program verifi-
cation with Why3. In this light, we verify a functional program, consisting of
the VCGen in Section 6 and the simplification functions of Section 5, with a
complex specification described in Section 4. In the online repository the reader
can find a final step of the development, not included here for lack of space:
we write an execution version of the VCGen, replacing the abstract fset type
of polymorphic sets with the concrete Why3 library type SetImp for mutable
sets. Because it uses a mutable type, this alternative VCGen can no longer be
used as a logic function; it can, however, be extracted to OCaml code using
Why3’s program extraction facility, resulting in an actual executable, correct-
by-construction VCGen.

A second contribution of the paper, at the program logic level, is the design
of the VCGen itself, which produces first-order verification conditions for a
Hoare triple in a forward way, semantically justified by the underlying dynamic
logic. Although the language considered here does not make use of updates for
handling reference aliasing, this is still a sufficient proof of concept of how a
dynamic logic-based verifier can be constructed making used of standard first-
order proof tools. It will be interesting to compare the generated VCs with
those that are obtained by other methods (for instance in terms of size), but
an immediate observation is that, unlike the traditional forward propagation
method based on a strongest postcondition predicate transformer, no existential
quantifiers are introduced. On the other hand, no multiple version variables
need to be introduced, as in methods based on the use of single-assignment
intermediate forms [11].

18

The Why3 files containing the above modules are available from the repos-
itory https://github.com/jspdium/dlKeY, which also includes proof session
folders and html proof summaries.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Men-
zel, W. Mostowski, A. Roth, S. Schlager, P. H. Schmitt, The KeY tool,
Software and System Modeling 4 (1) (2005) 32–54.

[2] C. A. R. Hoare, An axiomatic basis for computer programming, Commu-
nications of the ACM 12 (1969) 576–580.

[3] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

[4] J. C. Reynolds, Separation logic: A logic for shared mutable data struc-
tures, in: LICS, IEEE Computer Society, 2002, pp. 55–74.

[5] D. Harel, First Order Dynamic Logic, Vol. 68 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1979.

[6] D. Harel, D. Kozen, J. Tiuryn, Dynamic logic, in: Handbook of Philosoph-
ical Logic, MIT Press, 1984, pp. 497–604.

[7] B. Beckert, A. Platzer, Dynamic logic with non-rigid functions, in: U. Fur-
bach, N. Shankar (Eds.), Automated Reasoning, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006, pp. 266–280.

[8] B. Beckert, V. Klebanov, B. Weiß, Dynamic Logic for Java, Springer Inter-
national Publishing, Cham, 2016, pp. 49–106.

[9] J.-C. Filliâtre, A. Paskevich, Why3 — where programs meet provers, in:
M. Felleisen, P. Gardner (Eds.), Proceedings of the 22nd European Sym-
posium on Programming, Vol. 7792 of Lecture Notes in Computer Science,
Springer, 2013, pp. 125–128.

[10] R. Hähnle, R. Bubel, A Hoare-style calculus with explicit state updates,
department of Computer Science, Chalmers University of Technology.

[11] C. B. Lourenço, M. J. Frade, J. S. Pinto, Formalizing single-assignment
program verification: an adaptation-complete approach, in: P. Thiemann
(Ed.), Proceedings of the 25th European Symposium on Programming
(ESOP 2016), Vol. 9632 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Heidelberg, 2016, pp. 41–67.

19

