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Abstract: A polymorph of glycyl-L-alanine HI.H2O is synthesized from chiral cyclo-glycyl-L-alanine
dipeptide. The dipeptide is known to show molecular flexibility in different environments, which
leads to polymorphism. The crystal structure of the glycyl-L-alanine HI.H2O polymorph is deter-
mined at room temperature and indicates that the space group is polar (P21), with two molecules
per unit cell and unit cell parameters a = 7.747 Å, b = 6.435 Å, c = 10.941 Å, α = 90◦, β = 107.53(3)◦,
γ = 90◦ and V = 520.1(7) Å3. Crystallization in the polar point group 2, with one polar axis parallel to
the b axis, allows pyroelectricity and optical second harmonic generation. Thermal melting of the
glycyl-L-alanine HI.H2O polymorph starts at 533 K, close to the melting temperature reported for
cyclo-glycyl-L-alanine (531 K) and 32 K lower than that reported for linear glycyl-L-alanine dipeptide
(563 K), suggesting that although the dipeptide, when crystallized in the polymorphic form, is not
anymore in its cyclic form, it keeps a memory of its initial closed chain and therefore shows a thermal
memory effect. Here, we report a pyroelectric coefficient as high as 45 µC/m2K occurring at 345 K,
one order of magnitude smaller than that of semi-organic ferroelectric triglycine sulphate (TGS)
crystal. Moreover, the glycyl-L-alanine HI.H2O polymorph displays a nonlinear optical effective
coefficient of 0.14 pm/V, around 14 times smaller than the value from a phase-matched inorganic
barium borate (BBO) single crystal. The new polymorph displays an effective piezoelectric coefficient
equal to deff = 280 pCN−1, when embedded into electrospun polymer fibers, indicating its suitability
as an active system for energy harvesting.

Keywords: glycyl-L-alanine iodide; polymorphism; crystal structure; cyclic dipeptides; optical
second harmonic generation; pyroelectricity

1. Introduction

Glycyl-L-alanine hydroiodide monohydrate (H2N-CH2-CO-NH-CH(CH3)-COOH·HI·H2O
is a dipeptide hydrohalide whose crystal structure was determined in 1989 and that is used
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as a model for the study of inter- and intramolecular hydrogen bonds in peptides. It is a non-
centrosymmetric polar compound that crystallizes in space group P21, with two molecules
in the unit cell [1]. The crystal possesses a polar 2-fold axis parallel to the crystallographic
b axis, and, consequently, piezoelectricity, pyroelectricity and optical second harmonic
generation are allowed by symmetry. Among these properties, pyroelectricity was reported
as a function of temperature in the range 100–300 K, indicating a pyroelectric coefficient
along the polar axis that varies between 2 µC·m−2K−1 at 100 K and 15.5 µC m−2K−1 at
357 K [2]. The compound was synthesized at room temperature from benzyoxycarbonyl-
glycyl-L-alanine methyl ester with an excess of iodine hydride (HI) [3,4]. Crystals obtained
through this synthetic route are hereafter identified as Gly-L-Ala.HI.H2O (Poly1).

Here, we report a polymorph of glycyl-L-alanine hydroiodide monohydrate (here-
after referred to as Gly-L-Ala.HI.H2O (Poly2)) obtained from the synthesis of the cyclic
dipeptide cyclo-glycyl-L-alanine with hydroiodic acid (HI) in an aqueous solution at room
temperature. The newly discovered polymorph has unit cell parameters very similar to
Poly1, but the atomic positions of the iodine and dipeptide within the unit cell are differ-
ent. Although we have started from the cyclic dipeptide, its conformation in the unit cell
of the Gly-L-Ala.HI.H2O (Poly2) is not cyclic as the initially closed dipeptide chain was
broken during the synthesis process and the dipeptide has crystallized with a linear chain
displaying a different conformation from that reported for Poly1.

In general, polymorphs differ either in the unit cell parameters, their space group or
both. The type of polymorphism now reported for Gly-L-Ala.HI.H2O is very unusual, as
both the unit cell parameters and the space group are the same, that is, Poly1 and Poly2,
both crystalize in space group P21. The difference between the two polymorphs results
from the dipeptide and water molecules’ positions, as well as iodine atomic positions
within the unit cell displaying directionally different hydrogen bonds as a result of different
atomic coordinates.

Cyclo-glycyl-l-alanine, one of the simplest dipeptides, is a chiral cyclic di-amino
peptide found in nature and synthesized by some microorganisms [5,6]. The dipeptide,
resulting from the bonding of glycine and l-alanine amino acids, can adapt its conformation
according to a certain functional structure. This dipeptide behavior was demonstrated
when used as a linker in metal–organic framework compounds [7–9]. We reason that the
polymorph now discovered (Gly-L-Ala.HI.H2O (Poly2)) starting from the cyclic dipeptide
in an acidic aqueous solution, results from the general property of the flexibility of dipep-
tides and protein that is primarily determined by the flexibility of the constituent amino
acids [10]. In particular, glycyl-L-alanine dipeptide experiences torsional, orientational and
displacive changes in different environments [7].

We report here the crystal structure of a synthesized polymorph, referred to as Gly-
L-Ala.HI.H2O (Poly2), and its pyroelectric, piezoelectric and optical second harmonic
generation properties. All these properties are allowed by symmetry in polar point group
2. In fact, the existence of these properties is determined, for any crystalline material, by its
point group symmetry.

Second harmonic generation is a nonlinear optical property displayed by acentric
crystals that results from the nonlinear behavior of the molecular electronic system to an
intense external optical field. The property has revealed the non-centrosymmetric character
of biological structures, from amino acids to dipeptides, proteins and also viruses [11–13].

Piezoelectricity is the ability of a crystalline material to generate an output voltage
between two parallel faces as a response to an applied external force. Therefore, the
property allows conversion between mechanical deformation and electricity arising from
the absence of inversion symmetry in a crystalline structure. Consequently, mechanical
energy can be harvested through the piezoelectric effect [14].

Electromechanical coupling is a phenomenon exhibited by amino acids [15–17], dipep-
tides such as chiral diphenylalanine nanotubes [18] and its derivatives [19,20] and cyclic
dipeptides such as cyclo-L-phenylalanine-L-tryptophan [21], cyclo-glycine-L-tryptophan [22]
and cyclo-L-tryptophan-L-tryptophan [23].
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The piezoelectric behavior displayed by amino acids and dipeptides enables them
to be viewed as potential materials to be integrated into energy harvesting devices: it
has been reported that the metastable amino acid β-glycine embedded into electrospun
polymer fibers displays enhanced piezoelectric and nonlinear optical properties [24]. Chiral
diphenylalanine (PhePhe) nanotubes were reported to show a shear component of the
piezoelectric tensor of 60 pm/V, and fabricated energy harvesters were able to generate
voltage and power up to 2.8 V and 8.2 nW, respectively, with a 42 N force applied period-
ically [25,26]. Derivatives of PhePhe incorporated into electrospun fibers exhibit strong
piezoelectric properties [19,20].

2. Experimental Section
2.1. Synthesis

Cyclo-glycyl-L-alanine (1.29 g, 10 mmol) was dissolved in 5 mL HI (57%, stabilized
with H3PO3) and 10 mL of water. H3PO3 acted as a stabilizer for HI to avoid reduction to
elemental iodine. After two weeks of slow evaporation at room temperature, transparent,
hexagonal-shaped single crystals of Gly-L-Ala.HI.H2O (Poly2) were formed. The crystals
were collected and rinsed with acetone, dried and kept in a dissector. An example of
the crystals grown is shown in Figure 1. Cyclo-glycyl-L-alanine (cyclo-Gly-L-Ala) was
purchased from Bachem AG (Bubendorf, Switzerland). Hydriodic acid (HI) was purchased
from Merck (Darmstadt, Germany) and used as received.
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Figure 1. The glycyl-l-alanine hydroiodide monohydrate polymorph single crystal used for crystal
structure determination and further characterization.

The synthesis of Gly-L-Ala.HI.H2O (Poly2) started with the cyclic form of the dipep-
tide (cyclo-glycine-L-alanine) and therefore the crystal growth conditions are different from
those reported for Gly-L-Ala.HI.H2O (Poly1). We have also attempted the synthesis of linear
glycyl-L-alanine with HI in an aqueous solution as described for Gly-L-Ala.HI.H2O (Poly2)
using cyclo-glycyl-L-alanine; however, no crystals were ever formed. After complete evap-
oration of the solution, an oily residue was obtained. We conclude that Gly-L-Ala.HI.H2O
(Poly1) is only obtained following the procedure reported in reference [1].

2.2. X-ray Crystallography Experimental Conditions Description

A single crystal of Gly-L-Ala.HI.H2O (Poly2) was selected, covered with Fomblin
(polyfluoro ether oil) and mounted on a nylon loop. Data were collected at 293(2)K on
a Bruker D8 Venture diffractometer equipped with a Photon 100 CMOS detector, using
graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). The data was processed us-
ing the APEX3 suite software package, which includes integration and scaling (SAINT),
absorption corrections (SADABS 2016/2) [27] and space group determination (XPREP).
The structure solution and refinement were performed using direct methods with the pro-
grams SHELXT (version 2014/5) and SHELXL (version 2018/3) [28] contained in the APEX
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and WinGX-Version 2021.3 [29] software packages. All non-hydrogen atoms were refined
anisotropically. Except for NH, OH and water H-atoms, which were located on the differ-
ence Fourier map, the remaining hydrogen atoms were inserted in idealized positions and
allowed to refine riding on the parent carbon or oxygen atom with C–H distances of 0.96 Å,
0.97 Å and 0.98 Å for methyl, methylene and methine H atoms, respectively. The molecular
diagrams were drawn with Mercury [30]. Crystal data for Gly-L-Ala.HI.H2O (Poly2) are
presented in the Supplementary Information, Table S3. The data for Gly-L-Ala.HI.H2O
(Poly2) was deposited in the CCDC under deposit number 2247398.

2.3. Dielectric Spectroscopy

The dielectric properties of the Gly-L-Ala.HI.H2
O (Poly2) crystals were characterized by impedance spectroscopy at temperatures of

288–383 K and in the frequency range 20 Hz–3 MHz. The complex permittivity, written as
ε = ε′ − iε′′, where ε and ε′′ are the real and imaginary parts, respectively, was calculated
from the measured capacitance (C) and loss tangent (tan δ), using the equations:

C = ε′ε0(A/d) and tan δ = ε′′/ε′ (1)

Here, A is the electric contact area and d is the crystal thickness. To form the capacitor,
the bottom and top electrodes were gold contacts sputtered onto the sample surfaces.
A Wayne Kerr 6440A (Wayne Kerr Electronics, London, UK) precision component ana-
lyzer was used, together with a dedicated computer and software, to acquire the data.
Shielded test leads were employed to avoid parasitic impedances due to connecting cables.
Temperature-dependent measurements were performed at a rate of 2 ◦C/min using a
Polymer Labs PL706 PID controller (Polymer Labs, Los Angeles, CA, USA) and furnace.

2.4. Pyroelectric Measurements

Pyroelectricity is a property of polar crystalline materials that results from the tem-
perature dependence of their spontaneous polarization. By changing the temperature, an
electric field originating from the changes in intrinsic dipoles is compensated for by the sur-
face layer of free charges [31]. The rate of change of the spontaneous polarization (Ps) with
the temperature (T) is the pyroelectric coefficient, Ps = dPs

dT . The change in polarization

was detected by measuring, at constant stress, the pyroelectric current, I = A
(

dPs
dT

)(
dT
dt

)
,

with a Keithley 617 electrometer (Keithley Instruments GmbH, Landsberg, Germany). In
the equation, A is the electrode area and dT

dt is the rate of temperature change with time ( t).
The measurements were performed on a capacitor geometry under short-circuit con-

ditions and the electrode area was 8.11 × 10−6 m. The temperature interval was between
290 K and 345 K at a heating rate of 2 K/min.

2.5. Second Harmonic Generation

The second harmonic measurements were carried out using a mode-locked Ti:sapphire
laser (model: Mira, Coherent Inc., Santa Clara, CA, USA) coupled into a Nikon (model: Eclipse
Ti2, Nikon Europe B.V., Amstelveen, The Netherlands) inverted microscope, as shown
in Figure 2. A calcite Glan–Taylor polarization followed by a zero-order half-wave plate
controlled the incident polarization. A Nikon CFI Plan Fluor ×10 objective focused the
beam onto the samples, while a Mad City Labs (Madison, WI, USA) xyz piezo-controlled
translation stage positioned the samples in the focal plane with sub-micrometer accuracy.
Incident powers ranged from 5 mW for the sample to approximately one hundred mi-
croWatts for the BBO crystal used for calibration of the system’s sensitivity. Although the
Fourier limit of the pulse duration is approximately 85 fs, we estimate that the duration
stretched to approximately 120 fs when incident on the sample because of the combined
effect of the calcite polarizer and the microscope objective. The detection arm along the
transillumination direction consisted of a 40 mm focal length best form lens (model:LBF254-
040-A, Thorlabs, Newton, NJ, USA) to collimate the second harmonic light followed by a
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zero-order half-wave plate polarizer combination to analyze the emitted second harmonic
light. A long-pass dichroic mirror (Thorlabs DMLP650) filters out most of the incident light
while reflecting 98% of the second harmonic light. A short focal length lens then focuses the
beam through a narrow band-pass filter (Thorlabs FBH400-40 nm) onto a fiber bundle cou-
pled to an Andor imaging spectrometer (model: Shamrock 300i, Andor Technology Belfast,
UKequipped with a cooled CCD array (model: Andor Technology Belfast, Newton, UK).
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Figure 2. Second harmonic microscope layout; PBS—Polarized beam splitter; λ/2—half-wave plate.
The transmission axes of both PBS are aligned vertically in this schematic.

A crystal plate taken from the crystal sample shown in Figure 1 was mounted perpen-
dicular to the laser beam and the surface was scanned for the most intense SHG signal. We
acquired the second harmonic signal using the following protocol. At each position of the
half-wave plate controlling the polarization of the incident beam, the analyzer half-wave
plate was scanned over 180◦. At each analyzer wave plate position, the CCD signal was
integrated for 1 s and the subsequent second harmonic light spectra were fitted to a Gaus-
sian profile as shown in Figure S8 in the supplementary information. The area under the
Gaussian fit was taken as the total number of second harmonic signal counts.

2.6. Piezoelectric Measurements

The piezoelectric properties of Gly-L-Ala.HI.H2O (Poly2) were analyzed by embed-
ding the crystals within fibers fabricated by a conventional electrospinning technique
described previously [32]. To produce the fibers, a clear and homogeneous 10 % polymer
solution was prepared by dissolving 0.5 g of poly (methyl methacrylate) (PMMA, Mw
996,000, Sigma-Aldrich, Schenlldorf, Germany) in 5 mL of chloroform. To this solution,
0.5 g of Gly-L-Ala.HI.H2O (Poly2) powder was added at a 1:1 weight ratio. The resulting
mixture was stirred for several hours under ambient conditions before the electrospinning
process. This precursor solution was loaded into a syringe and its needle was connected
to the anode of a high-voltage power supply (model: CZE2000 Spellmann, Broomers Hill
Park, UK). To produce in-plane fibers, the spinning voltage was set at 18 kV, with a distance
of 12 cm between the anode and the collector. The flow rate of 0.10 mL/h was controlled by
a syringe pump with an attached needle of 0.8 mm diameter. The fiber mat for piezoelectric
measurements was collected on high-purity aluminum foil, which served as the electrodes.

The crystallinity and crystallographic orientation of Gly-L-Ala.HI.H2O (Poly2) inside
the fibers were studied by XRD. The diffraction pattern was recorded between 5◦ and 50◦

using θ–2θ scans on a Philips (Amsterdam, The Netherlands) PW-1710 X-ray diffractome-
ter with Cu-Kα radiation of wavelength 1.5406 Å. The morphology and fiber thickness
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were determined using a Nova NanoSEM scanning electron microscope operated at an
accelerating voltage of 10 kV. The Gly-L-Ala.HI.H2O (Poly2)@PMMA microfibers were
deposited on a silica surface previously covered with a thin film (10 nm thick) of Au–Pd
(80–20 weight%) using a high-resolution sputter cover, 208 HR Cressington Company,
coupled to an MTM-20 Cressington high-resolution thickness controller.

The piezoelectric output voltage and current were measured across a 100 MΩ load
resistance connected to a low-pass filter, followed by a low-noise preamplifier (SR560,
Stanford Research Systems, Stanford, CA, USA), before being recorded with a digital
storage oscilloscope (Agilent Technologies DS0-X-3012A, Waldbronn, Germany). The fiber
array sample with a (30 × 40) mm2 area (200 µm thickness) was subjected to applied
periodic mechanical forces imposed by a vibration generator (model: SF2185, Frederiksen
Scientific, Olgod, Denmark), with a frequency of 3 Hz determined by a signal generator
(model: 33120A, Hewlett Packard, Palo Alto, CA, USA). The applied forces were calibrated
using a force-sensing resistor (FSR402, Interlink Electronics Sensor Technology, Graefelfing,
Germany). The sample was fixed on a stage, and the forces were applied uniformly and
perpendicularly over the surface area.

3. Results and Discussion
3.1. Crystal Structure

Gly-L-Ala.HI.H2O (Poly2) crystallizes as yellowish prisms in the monoclinic system,
space group P21, as a glycine-L-alanine hydroiodide salt with one water molecule. Its
molecular structure is depicted in Figure 3, and the most relevant bond distances and
angles are given in the caption of the corresponding Figure and in Tables S1 and S2
(Supplementary Information).
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Figure 3. ORTEP representation of Gly-L-Ala.HI.H2O (Poly2), using 50% level ellipsoids. Selected
bond distances (Å): C1-N1 1.481(4), C2-O1 1.243(6), C5-O2 1.221(7), C5-O3 1.316(7). Selected bond
angles (◦): C1-C2-N2 114.6(4), C2-N2-C3 124.4(4), N2-C3-C5 109.7(5), O2-C5-O3 123.9(5). Selected
torsion angles (◦): N1-C1-C2-N2 167.9(5), C1-C2-N2-C3 177.7(5).
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As referred to above, Gly-L-Ala.HI.H2O (Poly2) is a polymorph of Gly-L-Ala.HI.H2O
(Poly1) that was reported by Kehrer et al. in 1989 [1]. However, no crystal data could
be found in the Cambridge Crystallographic Data Centre (CCDC) [33] for graphical
comparison. Both structures have comparable unit cells (a = 7.747(6) Å, b = 6.435(5) Å,
c = 10.941(9) Å, α = 90◦, β = 107.53(3)◦, γ = 90◦ for Gly-L-Ala.HI.H2O (Poly2) vs. a = 10.933(3) Å,
b = 6.371(2) Å, c = 7.709(1) Å, α = 90◦, β = 107.29(1)◦, γ = 90◦ for Gly-L-Ala.HI.H2O (Poly1)
but with axis a and c interchanged. The unit cell atomic coordinates are different in both
crystals, the more evident being the location of the iodide anion, which in Gly-L-Ala.HI.H2O
(Poly1) has y fixed at 0.5

b and in Gly-L-Ala.HI.H2O (Poly2) is at 0.6538
b .

In Figure 4a,b, projections of the crystal structure down the crystallographic axes a and
c are shown for Gly-L-Ala.HI.H2O (Poly2). Comparing these figures with those depicted in
ref. (1), one can see that although the unit cell parameters are similar, the atom positions are
different. The 21 polar axis is parallel to the crystallographic b axis, as shown in Figure S1.
If we consider a partial electrical dipole formed by C5-C3-C4, this dipole points in the 21
polar axis direction with an inclination of around 30◦, Figure 4a. Moreover, the dipeptide
backbone N1-C1-C2-N2-C3 also forms a partial electrical dipole inclined also ca. 45◦ to the
21 polar axis, Figure 4b.
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Figure 4. The unit cell of Gly-L-Ala.HI.H2O (Poly2) viewed down (a) the crystallographic a axis and
showing the partial electrical dipole formed by C5-C3-C4, and (b) the crystallographic c axis showing
the dipeptide backbone N1-C1-C2-N2-C3. Here a, b and c indicate the crystallographic axes.

The ammonium group (N1) displays a slightly distorted tetrahedral geometry, with
the N–H distances within the group varying between 0.885(3) and 0.880(3) Å. On the other
hand, the carboxylate group shows two distinct C–O bond lengths (C4-O2 1.221(7) and
C4-O3 1.316(7) Å), clearly indicating that the group is in the carboxylic acid form and
allowing the assignment of the carbonyl and O–H substituents.

The main chain of the molecule presents an almost planar trans conformation between
atoms N1 and C3 (Figure S3), with torsion angles of 167.9(5)◦ for N1-C1-C2-N2 and 177.7(5)◦

for C1-C2-N2-C3. In Poly2, the angle for C4-C3-N2-C2 is 111.0(6)◦. The torsion angle of
−77.12◦ in C4-N1-C2-C1 from [9] indicates a gauche conformation.

The supramolecular arrangement observed in the crystal structure of Gly-L-Ala.HI.H2O
(Poly2), when viewed along the b axis (ac plane), shows consecutive layers of iodide anions
and peptide cations parallel to the b axis (Figure 5), with the peptide cations antiparallel.
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This 3D arrangement is further stabilized by the presence of water molecules that
interact with the peptide moieties through intermolecular hydrogen bonds within the
asymmetric unit and with other symmetry-generated cations. Furthermore, all remaining
hydrogen atoms bonded to electronegative O or N atoms participate in either classical
(N–H . . . O and O–H . . . O) or nonclassical hydrogen bonds (N–H . . . I and C–H . . . I), as
presented in Table 1.

Table 1. Hydrogen bonds for Gly-L-Ala.HI.H2O (Poly2) (Å and ◦).

D-H...A d(H...A) d(D...A) <(DHA) Symmetry Operation

C(1)-H(1B)...I(1) 3.26 3.953(3) 129.5 −x + 1, y − 1/2, −z + 2
N(1)-H(10B)...O(2) 2.30(6) 2.902(6) 128(6) x − 1, y, z
N(1)-H(10B)...O(4) 2.47(6) 3.110(8) 133(6) x, y − 1, z
N(1)-H(10A)...I(1) 2.77(4) 3.570(9) 152(6) x, y − 1, z
N(1)-H(10C)...I(1) 3.13(11) 3.642(4) 119(10) −x, y − 1/2, −z + 2
N(1)-H(10C)...I(1) 2.96(11) 3.598(9) 130(11)
N(2)-H(20)...I(1) 2.76(10) 3.637(5) 169(7) −x + 1, y − 1/2, −z + 2
O(3)-H(30)...O(4) 1.77(10) 2.662(6) 167(9) −x + 1, y − 1/2, −z + 1
O(4)-H(41)...O(1) 2.026 2.824(4) 161.29(15) −x, y + 1/2, −z + 1
O(4)-H(40)...O(1) 2.233 2.982(6) 152.86

The iodide anion is involved in three H-bonds, one of them within the asymmetric unit.
The same applies to the three ammonium H-atoms, which are involved in two N–H . . . I
nonclassical H-bonds (H10A and H10C), whereas H10B participates in two classical H-
bonds, with the water molecule (O4) and with the carbonyl (O2) of the carboxylate group.
On the other hand, oxygen O1 simultaneously accepts two H-bonds from H40 and H41 of
two water molecules.

The ammonium group (N1) displays a slightly distorted tetrahedral geometry, with
the N–H distances within the group varying between 0.885(3) and 0.880(3) Å.

The faces of Gly-L-Ala.HI.H2O (Poly2) used for characterization studies and crystal
structure determination, with the assigned Miller indices, are indicated in Figure 6a. The
complete crystal morphology is depicted in Figure S2.
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Figure 6. Morphology and face indexing of Gly-L-Ala.HI.H2O (Poly2) with axes a (red), b (green)
and c (blue) and overlaid assigned Miller indices.

3.2. Pyroelectric Properties

The pyroelectric coefficient is a vector quantity with three components (p1, p2, p3
)
.

For space group P21, with the 2-fold screw axis along the b-axis, the vector has only one
component along that crystallographic axis. The pyroelectric coefficient reported in this
work was measured on a (010) orientated Gly-L-Ala.HI.H2O (Poly2) crystal plate. Its value
reached a maximum of p = 45 µC/m2K at 345 K, as shown in Figure 7. The pyroelectric
coefficient along the polar 2-fold axis reported for the Gly-L-Ala.HI.H2O (Poly1) polymorph
varied between p = 2 µC/m2K at 100 K and p = 15.5 µC/m2K at 357 K [2]. Therefore, the
pyroelectric coefficient of Poly2 is roughly three times bigger than that reported for Poly1.
This is due to the different crystal structure arrangements inside the crystalline unit cell.
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alanine hydroiodide polymorph (Gly-L-Ala.HI.H2O (Poly2)) crystal from room temperature to 345 
K. A maximum modulus of 45 µC/m2K occurs at 345 K. 

  

Figure 7. The pyroelectric coefficient versus temperature, measured during heating of the glycyl-L-
alanine hydroiodide polymorph (Gly-L-Ala.HI.H2O (Poly2)) crystal from room temperature to 345 K.
A maximum modulus of 45 µC/m2K occurs at 345 K.
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There are in the crystal unit cell of Gly-L-Ala.HI.H2O (Poly2) four dipole moments:
two from the water molecules and another two formed by NH+

3 . . . I−, as shown in Figure 8.
The first two dipoles form an angle of approximately 30◦ with the polar b-axis, whereas the
other two dipoles (NH+

3 . . . I−) form an angle of approximately 20◦. For Gly-L-Ala.HI.H2O
(Poly1), similar dipoles are identified from the reported structure. However, the water
dipoles are inclined to the b-axis by 45◦ [2]. Additionally, for NH+

3 . . . I−, the bond length
in Poly1 (2.64Å) is shorter than the corresponding bond length in Gly-L-Ala.HI.H2O (Poly 2)
(2.97Å

)
. As a consequence, the overall net dipole moment contribution is higher for Poly2

than for Poly1, which explains the higher value for the pyroelectric coefficient reported in
this work.
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CsH(C4H4O5)·H2O 11.2 2.5 (245 K) [34]
LiH3(C4H4O5)2 8.1 6.6 (320K) [35]

(NH2CH2COOH)3H2SO4 25 306 (319 K) [36]
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3.3. Thermal Properties

TGA measurement results indicate that the crystal mass is stable up to 380 K. A small
initial mass loss of 2% happens at 388 K that results from water molecule evaporation (SI,
Figure S4), which is also visible in the DSC at 386 K (SI Figure S5). At around 393–413 K,
the iodine hydrogen bonds break, visible at the sharp enthalpy peak of the DSC (393 K),
alongside some mass loss. Above 473 K, there is a considerable loss of mass (about
50%), which corresponds to the decomposition of the crystalline compound. The peak at
533 K corresponds to the degradation temperature of the dipeptide glycyl-L-alanine. It is
interesting to note that this temperature, 533 K, is very close to the melting temperature
reported for cyclo-glycyl-L-alanine, which is 531 K, 32 K lower than that for the linear
glycyl-L-alanine dipeptide (563 K) [39]. This suggests that although the dipeptide in Poly2
is not in its cyclic form when crystallized as the present hydroiodide salt, it keeps a memory
of its initial cyclic closed chain, therefore showing a thermal memory effect (one should
remember that the crystal synthesis started from the cyclic dipeptide form and after reacting
with the iodide acid the cyclic chain opened up).

3.4. Dielectric Spectroscopy

Figures 9 and 10 show the temperature dependence of the real (ε′) and imaginary
(ε′′) parts of the dielectric permittivity measured in the range 287 K–370 K for different
frequencies from 100 Hz to 100 kHz. Two regimes are identified in both the real and
imaginary parts of the dielectric permittivity, with different dependences below and above
350 K. The real part of the electric permittivity is approximately constant and less than 100
from room temperature until 343 K, both for low and high frequencies. However, beyond
350 K it increases very steeply, reaching the value of 1100 for 100 Hz, as shown in Figure 9.
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Similarly, the imaginary part of the electric permittivity, ε′′, is also approximately
constant until 350 K and smaller than 25 for all frequencies, as seen in Figure 10. Again, it
increases steeply beyond 350 K, reaching 160 000 at T ~ 375 K and a frequency of 100 Hz.
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Figure 10. The imaginary part of the electric permittivity, ε′′, as a function of temperature for
frequencies up to 10 kHz.

Figures 11 and 12 show the frequency dependence of the real and imaginary electric
permittivity at different temperatures. Both ε′ and ε′′ present an initial sharp drop in the
low-frequency region and afterwards attain a slower decrease at high frequencies. The
initial, low-frequency drop in the imaginary part reveals a contribution from a conductivity
term, as the samples are non-ideal capacitors.
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For purely electronic conductivity, the permittivity is imaginary and given by
ε′′ = σDC/(ε0ω) [40], where ε0 is the vacuum dielectric permittivity, ω is the angular fre-
quency and σDC is the DC conductivity. For ionic charge carriers that cause electrode
or Maxwell–Wagner polarization effects, this equation can be generalized, so that the
conductivity contribution can be described by the equation ε′′ = σDC/(ε0ω

s), where s is
an exponent and s ≤ 1. As such, since the logarithm of the imaginary component of the
permittivity as a function of the logarithm of the frequency gives a linear dependence, it
was fitted with a straight line to determine the conductivity according to:

ln(ε′′ ) = ln
(

σDC

ε0(2π)
s

)
− s ln(f) (2)

The inset of Figure 12 shows the linear fit to ln(ε′′ ) as a function of the logarithm of
the frequency for different temperatures in the low-frequency region. From the fits, the
corresponding calculated DC conductivity (σDC) values and their temperature dependence
are shown in Figure 13. Again, a small variation in the DC conductivity is observed until
350 K, above which the conductivity rises sharply. The σDC behavior as a function of
temperature in both regions shows characteristic Arrhenius-like processes, with activation
energies (Eat) given by the equation [40,41]:

σ =
σ0

T
e−

Eat
kBT (3)

where T is the temperature, kB is the Boltzmann constant and σ0 is a constant. The
activation energy can be determined from the slopes of the fittings to the curves of ln(σT)
as a function of the inverse of T for the different temperature regions, as shown in the
inset of Figure 13. The two temperature regions with different conductivities and the
corresponding activation energy (Eat) values are shown in the figure. Eat = 0.07 eV
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corresponds to the low-temperature region and is characteristic of electrical conduction
through the polaron transport behavior [42]. At higher temperatures, the activation energy
increases to Eat = 3.6 eV, which is characteristic of ionic conduction in the samples [40]. As
such, the two observed regimes are due to the change from the low-temperature, polaronic
transport behavior to the high-temperature ionic conductivity dependence. This region
is associated with the onset of temperature-induced changes in the samples (e.g., loss of
water as observed from the TGA results, which starts just above 350 K).
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3.5. Second Harmonic Response

Data for the second harmonic response of an approximately 3 mm-thick Gly-L-
Ala.HI.H2O (Poly2) dipeptide crystal (taken from that shown in Figure 1) were acquired
using incident fundamental pulses with an average incident power of 5 mW, corresponding
to roughly 66 pJ of energy per pulse. The beam was incident normal to the as-grown crystal
surface, and the crystal was scanned over the laboratory x, y and z directions, with z taken
to be the direction of the laser beam propagation. The maximum signal values as a function
of the polarization of the fundamental beam direction are presented in Figure 14.

Second harmonic signals were observable only for a narrow range of z positions
when the fundamental beam waist was within a few tens of µms from the crystal surface.
Furthermore, the orientation of the analyzer that resulted in the maximum detected signal
was very nearly parallel to the direction of the incident polarization. We believe this to be
an indication that the normal of the as-grown crystal is close to the crystallographic b axis.
As explained in the supplementary information, for this orientation, the second harmonic
light will be generated with nearly the same polarization as the fundamental beam and will
suffer from strong phase mismatch, limiting the generation to close to the crystal surface.

We have carried out a study of the second harmonic response as a function of the fun-
damental beam’s waist position by translating the crystal in 10 µm steps along the beam’s
propagation direction using the MadCity’s piezoelectric translation stage. Representative
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data are shown in Figure 15, along with a theoretical fit as described in the supplementary
information (Figure S8).
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Figure 15. The second harmonic response (blue dots) as the crystal was translated in 10 µm steps
along the propagation direction of the fundamental beam. Also shown is a theoretical fit (solid line)
assuming Gaussian spatial and temporal profiles for the two beams. The 0 position was chosen to be
close to the maximum SHG signal. We estimate that the coherence length due to phase mismatch is
approximately 1.7 µm, whereas the Rayleigh range for the fundamental beam is roughly an order of
magnitude larger at 16.4 µm.
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By calibrating the efficiency of our second harmonic microscope using a 2 mm-thick
BBO crystal cut, the phase matching angle for 800 nm incident light, we can estimate a
lower bound for the effective nonlinear susceptibility of the dipeptide crystal. Applying
the results described in the supplementary information, we estimate that a lower bound
for the effective second-order nonlinear coefficient of Gly-L-Ala.HI.H2O (Poly2) crystals is
deff ≥0.14 pm/V.

3.6. Piezoelectric Response

Any pyroelectric material is, by symmetry, also a piezoelectric and nonlinear opti-
cal material. Additionally, the tensor describing piezoelectricity and SHG properties of
crystalline materials are the same (in this case, that for point group 2), as presented in
S6. Therefore, the suitability of Gly-L-Ala.HI.H2O (Poly2) crystals to be used as piezo-
electric nanogenerators for energy harvestings was investigated by embedding them into
electrospun nanofibers as described before.

An interconversion between a mechanical and an electrical stimulus arising due to
applied uniform stress, which generates electric polarization inside a dielectric material,
is the origin of the piezoelectric effect. For a crystalline solid to display this phenomenon,
it must have a crystal structure without inversion symmetry. Gly-L-Ala.HI.H2O (Poly2)
crystallizes in the polar point group 2, which is acentric. The tensor relationship between
the polarization Pj and stress σk, Pj = djkσk is given by the piezoelectric coefficient djk [43].
There is no preferential crystallographic orientation of the compound inside the electrospun
fibers (see SI7). Therefore, a polarization develops under forces applied repeatedly at
regular times perpendicularly to the fiber array, and an effective piezoelectric modulus deff
is measured along the same direction.

The applied stress (force per unit area) ranged between 1.5× 102 Nm−2 and 8.0× 102 Nm−2.
For Gly-L-Ala.HI.H2O (Poly2)@PMMA fiber mats, a 1.0 N applied periodical force gave
rise to a maximum instantaneous output piezoelectric voltage and current of 28 V and
280 nA, respectively, as shown in Figure 16a. Here, the two opposite peaks correspond
to the press and release of the fiber mat. A plot of the output voltage as a function of
several applied periodic forces shows an output voltage increasing linearly with the force
magnitude as expected (Figure 16b). The PMMA polymer matrix is not piezoelectric
and does not contribute to the measured piezoelectric voltage. Taking into account a
response time of 1 ms, the magnitude of deff is obtained from the integration of the induced
piezoelectric current over that period of time, Q =

∫
Idt, resulting in Q = 280 pC for

Gly-L-Ala.HI.H2O (Poly2)@PMMA fiber mats. This induced charge, which is related to the
applied force by the equation Q = F deff, allows us to calculate an effective piezoelectric
coefficient equal to deff = 280 pCN−1. This value is of the same order of magnitude as
that obtained for organic–inorganic ferroelectric perovskite trimethylchloromethyl ammo-
nium trichloromanganese ((TMCM)MnCl3), where d33 = 185 pCN−1, and barium titanate
(BaTiO3), with d33 = 190 pCN−1 [44,45]. It is also important to compare the present result,
deff = 280 pCN−1, with that obtained for lead-free organic–inorganic perovskite (N-methyl-
N′-diazabicyclo [2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3) embedded into
PMMA electrospun fibers (MDABCO-NH4I3@PMMA in a 1:5 ratio), which was reported to
be deff = 64 pCN−1 [46], (Table 3).

It is remarkable that this new organic–inorganic Gly-L-Ala.HI.H2O (Poly2) crystalline
compound exhibits, when embedded into electrospun fibers, a very highly effective piezoelec-
tric coefficient that is similar in magnitude to an organic–inorganic perovskite also containing
the iodide ion. In the present work, we demonstrate that Gly-L-Ala.HI.H2O (Poly2)@PMMA
fibers may be incorporated into nanogenerators as active piezoelectric materials.
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Table 3. Piezoelectric nanogenerator parameters for some cyclic dipeptides and a semi-organic
perovskite crystal.

Active Compound Force/Area
(N/m2)

Vout
(V)

deff
(pC/N)

Power Density
(µWcm−2) Ref.

Gly-L-Ala.HI.H2O (Poly2)@PMMA(1:1)
(Fiber mat) 8 × 102 28 280 0.65 This work

Cyclo(L-Trp-L-Trp)@PCL (1:5)
(Fiber mat) 5 × 103 9.6 30 0.13 [23]

Cyclo(GW)
(Crystal powder) 7 × 105 1.2 5.6 * 0.002 [22]

Cyclo(FW)
(Crystal powder) 6 × 105 1.4 16 ** 0.003 [21]

MDABCO-NH4I3@PMMA (1:5)
(Fiber mat) 11 × 103 6.1 64 0.09 [46]

* Calculated average piezoelectric coefficient from [22]. ** Calculated from data available in [21], assuming a
nanogenerator time response of 0.5 s.

4. Conclusions

A polymorph (Gly-L-Ala.HI.H2O (Poly2)) of a previously reported glycyl-L-alanine
HI.H2O salt was synthesized from the chiral cyclo-glycyl-L-alanine dipeptide. The dipep-
tide is known to show molecular flexibility in different environments, which originated the
polymorphism. The crystal structure of the glycyl-L-alanine HI.H2O polymorph is deter-
mined at room temperature in space group P21; therefore, it is a pyroelectric, piezoelectric
and nonlinear optical material.

The pyroelectric coefficient reported in this work on a (010)-orientated Gly-L-Ala.HI.H2O
(Poly2) crystal plate showed an increase with temperature with no significant abnormalities
in the range 300–345 K, reaching a maximum of p = 45 µC/m2K at 345 K. Therefore,
the pyroelectric coefficient of Poly2 is roughly three times higher than that reported for
the Gly-L-Ala.HI.H2O (Poly1) polymorph, which was p = 15.5 µC/m2K at 357 K. The
different orders of magnitude of the measured values for the two polymorphs results from
the different atomic coordinates of the dipeptide, water molecules and the iodine ions
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within the unit cells of both compounds, which creates differences in some bond lengths
and the directionality of hydrogen bonds.

Thermal studies showed that Gly-L-Ala.HI.H2O (Poly2) begins degradation at 533 K,
close to the melting temperature reported for cyclo-glycyl-L-alanine, which is 531 K. That
temperature (533 K) is 30 K lower than that reported for linear glycyl-L-alanine dipeptide
(563 K), suggesting that although the dipeptide when crystallized in Poly2 is not in its cyclic
form anymore, it keeps a memory of its initial closed chain, therefore showing a thermal
memory effect.

The DC conductivity behavior as a function of temperature in the regions below and
above 350 K indicates characteristics of electrical conduction through the polaron transport
behavior in the low-temperature region and at higher temperatures, which is characteristic
of ionic conduction in the samples.

The second harmonic generation efficiency of Gly-L-Ala.HI.H2O (Poly2) was measured
against a state-of-the-art nonlinear optical barium borate (BBO) crystal. A lower bound for
the effective second-order nonlinear coefficient of Gly-L-Ala.HI.H2O (Poly2) crystals was
estimated deff ≥ 0.14 pm/V.

Finally, an effective piezoelectric coefficient equal to deff = 280 pCN−1 was measured
on an electrospun polymer fiber mat, Gly-L-Ala.HI.H2O (Poly2)@PMMA, demonstrating
that the fibers are piezoelectrically active systems with great potential to be incorporated
into energy harvesting devices.
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https://www.mdpi.com/article/10.3390/ma16103690/s1, Tables S1–S3: Crystal data; Figure S1: Unit
cell of Gly-L-Ala.HI.H2O (Poly2); Figure S2: Gly-L-Ala.HI.H2O (Poly2) morphology; Figure S3: Molecule
conformation; Figure S4: TGA spectra; Figure S5: DSC spectra; Figure S6: FTIR-ATR spectra;
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