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ABSTRACT

Research in quantum computation has sharply increased in recent years, due to the promised
computational advantage with respect to classical computers. Nowadays there are several
proposals to encode quantum information. This dissertation discusses a particular type of
quantum computer, based on linear optics.

To support this approach, in this work we will investigate in detail the computational cost
and challenges of simulating Boson Sampling and Gaussian Boson Sampling models to try
to show quantum supremacy. The complexity of classical simulation is mainly due to the
calculation of a very particular function for each case but several aspects can be considered
to help minimize these costs; here we will discuss some of these aspects along with the most
efficient proposals in the literature. First we will review some of the basic theory about linear
and non-linear optics, a mature research topic. Thereafter, this theory will be applied to the
two sampling-based quantum computational models we will study, followed by verification
of computational complexity of them with some numerical experiments with our simulator.
We use Python code, as well as an implementation using the Strawberry Fields library made
available by Canadian company Xanadu, and which allows to use that code to run in an actual
device.

Besides demonstrations of quantum computational advantage, we also discuss useful appli-
cations of linear-optical quantum computation. These applications are diverse, ranging from
graph theory to quantum chemistry, and use different encodings which we will discuss.

K E Y W O R D S Linear optics, computational complexity, quantum information, simulation,
quantum computation
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RESUMO

Investigação em computação quântica aumentou consideravelmente nos últimos anos devido
à promessa de vantagem computacional relativamente a computadores clássicos. Atualmente
há várias propostas para codificar informação quântica. Esta dissertação foca-se num tipo de
computador quântico particular baseado em ótica linear.

Para suportar esta abordagem, neste trabalho será investigado em detalhe o custo computa-
cional de simular os modelos de Amostragem Bosónica e Amostragem Bosónica Gaussiana
e mostrar vantagem computacional quântica. A complexidade da simulação clássica deve-se
principalmente ao cálculo de uma função muito particular para cada caso mas vários aspetos
podem ser tomados em conta para ajudar a minimizar estes custos; serão discutidos alguns
juntamente com as propostas mais eficientes da literatura. Primeiramente faremos uma re-
visão teórica sobre ótica linear e não linear, um tópico bastante desenvolvido. Posteriormente,
será aplicada esta teoria aos dois modelos baseados em amostragem para computação, seguido
da verificação da complexidade computacional dos mesmos juntamente com alguns testes
numéricos com o nosso simulador. Nós usaremos código escrito em Python bem como uma
implementação pela biblioteca Strawberry Fields disponibilizada pela empresa Xanadu que
permite usar esse código para correr num dispositivo real.

Além de demonstrar vantagem computacional quântica, também discutiremos aplicações
úteis para computação quântica de ótica linear. Estas aplicações são diversas, desde teoria de
grafos a química quântica, que usam diferentes codificações que discutiremos.

PA L AV R A S - C H AV E Ótica linear, complexidade computacional, informação quântica, sim-
ulação, computação quântica
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1

I N T R O D U C T I O N

1.1 the context: quantum computation

Quantum computation is a topic that has been getting a lot of attention in the past decades
and a few quantum computers are already available. This technology has applications in
cryptography, as well as the efficient solution of otherwise intractable computational prob-
lems.become tractable with quantum programming and computation. The interest arose
mostly with the Deutsch-Jozsa algorithm introduced in 1992, for which classical solution take
at least 2n−1 + 1 iterations to know if the function is balanced or constant, while a quantum
solution takes impressively only one Nielsen and Chuang (2010). The technology promises
extreme advantage in runtime, as well as in memory use.

The applications for quantum computation are several: from database search, solving linear
equations to quantum simulation (for chemistry, nanotechnology...) and quantum cryptogra-
phy.

The basic unit in classical computation is the bit which can be either 0 or 1 but, in quantum
computation, quantum bits (qubits) are used which can be 0, 1 or a linear combination of them.
The physical implementation requires quantum systems with two (or more) distinguishable
states. Examples of implementations are superconducting circuits, using Josephson junctions
and nuclear magnetic resonance quantum computer (NMRQC) using nuclear spins.

All quantum computers must be able to do the next three fundamental processes:

1. Prepare input states: the computer must be capable of preparing the states - qubits - in
a relatively efficient way;

2. Evolution: the states pass through a series of operations and the computer must be able
implement this arbitrary temporal evolution - condition for universality;

3. Measurement: the only way to access the information after the process (temporal evo-
lution) is by measuring the quantum states created, for read-out or possibly as an inter-
mediate step in the computation.

More recently, in the article by S. Aaronson and A. Arkhipov Aaronson and Arkhipov (2013),
they showed a quantum advantage for solving a problem they defined, which became known

3



1.2. State of the art 4

as the Boson Sampling problem. Later other variations were proposed, such as Gaussian
Boson Sampling. In both models, special states of light are created over a certain number of
optical modes, so the encoding is not usually made in terms of qubits. However, using only
linear optical elements it is possible to create an universal quantum computer. But what is
the interest in using linear optics instead of the already existing techniques? Here are a few
reasons:

• Coherence and flexibility in designing error-correcting codes;

• Does not require extreme cryogenic temperatures;

• Scalability since the physical requirements are based on mature fabrication techniques;

• Photons are excellent information carriers.

Importantly, qubit computations can be incorporated into the optical quantum field picture,
so when taking the approaches in this thesis (continuous variable and Fock states) there is no
loss in computational power.

1.2 state of the art

Encoding quantum information in optical systems needs a strong theoretical background
and books by Barnett and Radmore (1997) and Mandel and Wolf (1995) have the complete
description of the theory and applications of quantum optics. Focused on mathematical con-
struction for the encoding of CV operations, Adesso et al. (2014) gives us the basic notions to
understand and introduce theory for the GBS.

The models reviewed in this dissertation were introduced by Aaronson and Arkhipov (2013)
that discussed the complexity and advantage of Boson Sampling and by Hamilton et al. (2017)
that discussed a different approach - Gaussian Boson Sampling - which offers an improvement
in physical implementation according to current technologies. After both these two models
were proposed, several teams presented projects implementing them. Current proposals that
demonstrated quantum advantage are by Wang et al. (2019) and Zhong et al. (2021) for BS
and GBS respectively; they executed tasks that are intractable to be calculated by a classical
algorithm but they lack interferometer reconfiguration, that is, flexibility of programming the
device for different applications.

The motivation to study them relies on demonstrating quantum supremacy so if a classical
algorithm is discovered that efficiently solves these problems, they should no longer be useful.
In some particular functioning regimes, such as when only distinguishable photons are used,
there are algorithms that run in a polynomial time and some of them are by Glynn (2013),
Aaronson and Hance (2014) and Valiant (1979) which makes it harder for the samplers since
it implies a requirement for better hardware, to ensure the experiment is run in a regime that
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is not efficiently classically simulable. As for algorithms to simulate a BS device, Clifford and
Clifford (2017) is the best algorithm at the time that does weak simulation without requiring
strong simulation first and as for GBS devices, Björklund et al. (2019) and Quesada and
Arrazola (2020) show algorithms for faster running time but which are still exponential-time
in a classical computer.

With a nanophotonic chip capable of GBS or BS, we need a programming language to
implement the computation. The Xanadu company and the Strawberry Fields library more
particularly introduced by Killoran et al. (2019b) are dedicated to simulating these models
and, more recently, it is possible to access quantum hardware to obtain real experimental
samples from cloud-based devices. Quantum algorithms depend on quantum system initial-
ization, quantum dynamics, followed by measurement and classical post-processing and each
of these needs to be efficient. To program the hardware, a fundamental problem is that of
finding specific decompositions of interferometer designs into small building blocks, in terms of
beam-splitters and phase shifters, or their integrated chip counterparts (directional waveguide
couplers). For interferometer decomposition, the best proposal at the moment runs in polyno-
mial time is by Clements et al. (2016). Bromley et al. (2020) also discusses other decomposition
methods for applications where Brádler et al. (2018) study it in detail. The programmable
chip mentioned was presented by Arrazola et al. (2021); although it is a small device and easy
to classically simulate, it can be scaled to a bigger size since it has all requirements of state
preparation, evolution and measurement with efficient implementation and lower associated
experimental error.

Applications are being studied for the two boson sampling models. Some are suggested by
Bromley et al. (2020) with graph algorithms and many others, even though a few of them
have efficient classical algorithms. The most promising applications focus on encoding qubits
into optical modes, using specific error-correction schemes initially described by Knill et al.
(2001) and Gottesman et al. (2001).

1.3 ob jectives and outline

In this thesis we will take quantum linear optics and study the quantum advantage of two
models proposed using this strategy - Boson Sampling and Gaussian Boson Sampling. The
goal will be to study state preparation, examine how to treat the evolution of these systems
and how to measure in order to calculate this computational behaviour to show advantage
using a quantum model.

We will show how to simulate a quantum system for both models mentioned which includes
the mathematical part, the computational processing and generation of samples in a classical
computer. To illustrate the quantum advantage, we proceed by showing the complexity of
solving the corresponding problem with a quantum device. A major concern about quantum
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computers is experimental challenges and for that reason, it is relevant to consider not only
computational complexity but implementation of quantum device with the characteristics the
model requires.

When experiments demonstrating quantum computational advantage are performed, using
these probabilistic models can be tricky because we have no way to verify the samples from
the device since we are not capable of simulating the quantum process on a classical computer.
We intend to demonstrate a few validation methods to indicate a way to gain confidence in
the device and observe if it outputs as predicted.

Last but not least, having devices capable of quantum supremacy, it is important to be
able to apply them to real life applications. So, to conclude the thesis, we review some of the
applications that have been proposed in the literature for these devices

This dissertation is structured as follows:
Chapter 2 - mainly divided in three parts: quantum states of light with respective prepara-

tion, operations/evolution of those states and measurement. It is easy to see a relation from
this theory to application in quantum computing fundamental processes. To do so we begin
by briefly explaining the quantum harmonic oscillator which has the central mathematical
foundation to analyse the electromagnetic field of light. The evolution is given by particular
physical elements that will be translated into a matrix formulation which facilitates calculat-
ing their action on quantum sates. Finally, we consider measurements and detection methods
in different bases.

Chapter 3 focuses on the Boson Sampling model; having the theory from the previous
chapter allows us to adapt it according to the specifications of the model, implement classical
programs to simulate a Boson Sampling device, implement a quantum program (run for simula-
tion and in actual devices) with Strawberry Fields library, calculate the complexity of classical
implementations, test validation of samples and finally make a few numerical experiments.

In chapter 4 we review the second quantum computational model of this dissertation, known
as Gaussian Boson Sampling. Here we will be focusing on the adjustments to previous pro-
grams to run this model; the code itself will be similar, adapting the necessary parts and we
also present the quantum algorithm. We have several chips to run the GBS model, there we
present some and discuss programmability and implementations. In this chapter we did not
discuss validation because the theory behind it is the same as for Boson Sampling; similarly,
the simulation functions are adapted from the previous chapter.

In chapter 5 we focus on applications of the GBS model. As many applications are in
graph theory, we review some of the basic graph-theoretic notions. In section 5.2 we describe
three different applications using graphs. The next section centers around the physical imple-
mentation and experiments for these problems. This is, according to the nanophotonic chips
available, check if the requirements to solve these problems can be implemented. To finish
this chapter, we discuss other applications and future perspectives; other problems are men-
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tioned that can be solved with qumodes and how to use these linear optical elements talked
throughout the thesis to encode the usual qubits. We conclude this dissertation in chapter 6
with some final remarks.



2

L I N E A R O P T I C S

Light consists of particles called photons which are elementary particles and as such they
exhibit a wave-particle duality. The classical description, in terms of waves, is given by the
electromagnetic field. These particles have zero mass and travel in vacuum at speed of light c0.
The orientation of the electric field characterizes the light’s polarization (a property of these
waves) that takes various forms like linear, circular and elliptical. Throughout the study of
optical phenomena, this relation between the induced polarization of matter and electric field
was thought to be linear (P ∝ E) but only until 1960 where the invention of laser showed a
behavior different of observed so far that required higher intensities. From that point forward,
it is known that light has nonlinear properties depending on the medium it passes through.
Explicitly, this means, for instance, that:

• Medium properties are not fixed (refractive index, absorption and others are affected by
light);

• Superposition principle for E is no longer valid and there is the need to consider inter-
action between photons.

However, these phenomena is not easily detected because linear terms usually are stronger
than non linear ones. In order to detect this it is required to have special conditions and/or
higher intensity of light (there are cases where a few or even one photon can provoke a nonlinear
effect) which not only can be very difficult to implement but, as said, hard to detect so in this
work, we will be considering linear-optical phenomena.

From a mathematical point of view, a classical monochromatic mode of the electromagnetic
field and a classical harmonic oscillator behave identically. Similarly, a quantum monochro-
matic electromagnetic mode and a one-dimensional quantum-mechanical harmonic oscillator
have identical behavior. With this, before we start, let us look for a (time-independent) solu-
tion of the quantum harmonic oscillator where we want to find the stationary states of energy
eigenvector Ohanian (1990) such that:(

p2
op

2m
+

1
2

mω2x2
op

)
|En⟩ = En |En⟩ (1)
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For the calculation it is convenient to define the dimensionless operators a and a† (creation
and annihilation operators, respectively) with x0 =

√
h̄/mω such that:

â =
1√
2

(
1
x0

xop +
ix0

h̄
pop

)
(2)

â† =
1√
2

(
1
x0

xop −
ix0

h̄
pop

)
(3)

and we can easily obtain the commutation relation [â, â†] = ââ† − â† â = 1 from the canonical
commutation relation of xop and pop. Rewriting the position and momentum operator in terms
of â and â†:

xop =
x0√

2
(â + â†) pop =

h̄
i
√

2x0
(â− â†)

Given by equation 1, it is then the same as:

Ĥ = h̄ω

(
â† â +

1
2

)
(4)

Having this formulation, one can prove that â and â† are operators where â† |En⟩ is eigen-
vector of Ĥ with eigenvalue En + h̄ω and â |En⟩ is eigenvector of Ĥ with eigenvalue En − h̄ω.
This should clarify why they are called creation and annihilation operators: when acting on
an energy eigenvector, they produce another with increased or decreased eigenvalue.

Following the previous point, to know the eigenvalue to each eigenvector, we only need to
know the eigenvalue of the ground state and apply â† as many times as necessary. Since the
expectation value of the energy in an eigenstate equals the eigenvalue we have:

⟨E0| Ĥ |E0⟩ = 0 +
h̄ω

2
→ E0 =

1
2

h̄ω

Finally, we can conclude that:

En = h̄ω

(
n̂ +

1
2

)
(5)

With this last result we can find out the explicit relation between |En⟩ and (a†)n |E0⟩. We
know that they are proportional so let us use c to denote the constant relating them. We also
have that

〈
Ei
∣∣Ej
〉
= δi,j so, doing the inner product and normalizing:

|En+1⟩ = cn+1 â† |En⟩ → cn+1 =
1√

n + 1

|En−1⟩ = cn−1 â |En⟩ → cn−1 =
1√
n
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Applying this result successively to n = 0, 1, 2..., the normalized eigenvector |En⟩ is reduced
to:

|En⟩ =
(â†)n
√

n!
|E0⟩ (6)

2.1 phase space representation

These states can be represented in phase space, as we will soon see. Even though a quan-
tum particle does not have simultaneously well-defined position and momentum, phase space
representations help in the visualization of quantum phenomena, and in the discussion of the
quantum/classical correspondence.

When deriving results from the Schrödinger picture, the states represented by a vector or
density matrix evolve in time and the operators are constant but when using the phase space,
the time evolution is given by transformations of a constant state and in the characterization
associated to it. Specifically, an optical phase space is a phase space in which all quantum
states of an optical system are described. For a classical state of an optical system, each point
in the optical phase space is described with definite values of x and p. In the case of the
harmonic oscillator, when position x is maximum, velocity p is minimum and over time it
is translated to a sinusoidal function and in phase space to an ellipse. For a quantum state,
the quadratures x and p are associated with a probability distribution for the uncertainty in
measurements and since the phase space can represent them, this function also describes the
state other than just the mean or a point value associated.

Contrary to classical systems, quantum systems have an uncertainty associated to the states
that can not violate Heisenberg’s uncertainty principle. The function for the probabilities in
this case is a quasi-probability distribution according to the wave function or density matrix
of the state that is called Wigner function or also a Characteristic Function that both fully
characterize a quantum state in phase space but the former will be the most used. So drawing
a parallel between the classical and quantum representation of the dynamics of a harmonic
oscillator, the former can be represented by a shape as in figure 1a where it is a simple circle
and the latter is in figure 1b where states have a minimum uncertainty (width), bounded below
by the uncertainly principle.

The Wigner function for arbitrary states given the density matrix ρ is W(x, p):

W(x, p) =
1

2πh̄

∫ +∞

−∞

〈
x +

y
2

∣∣∣ ρ
∣∣∣x− y

2

〉
exp(−ipy/h̄)dy

With properties of quantum mechanics, we can have the expectation value of an operator
Â via

〈
Â
〉
= Tr(ρÂ) and in this case, using W(x, p) we have:

⟨x⟩ =
∫ ∫

dxdpW(x, p)x
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(a) (b)

Figure 1: Representation of classical 1a and quantum 1b harmonic oscillator in phase space for arbitrary
values of intensity a (proportional value to energy) and uncertainty σp = σx in the case of a
quantum HO.

and a similar expression for p. The probability distribution for each parameter is obtained via
a single integral.

The Wigner function representation may help in identifying non-classical characteristics of
a quantum state. The Wigner function is not a simple probability distribution because it only
behaves like a probability: the sum or integral over the parameters is one, i.e. the function is
normalized but this probabilities have a peculiar aspect, they are not restricted to the interval
[0, 1] also allowing negative probabilities. Note that this doesn’t mean the probability to
find the state in a given value of x for instance is below zero! Only the combination of the
probability for value x and p might be unconventional, the probability over a single variable
is in the ordinary range and we will see a brief example in the next section. This is, the
marginal distributions for x, p and other quadratures (linear combinations of x and p) are all
the correct quantum-mechanical distributions. The feature of negative quasi-probabilities are
a quantum mechanical phenomenon, arising from fitting quantum mechanics into the classical
phase-space picture.

2.2 fock states

Using the association to the quantum harmonic oscillator, denoting states |En⟩ as simply |n⟩,
these are called number states of the harmonic oscillator or Fock states and are simultaneously
eigenstates of Ĥ and n̂ = â† â where n̂ |n⟩ = n |n⟩ since Ĥ = h̄ω

(
â† â + 1

2

)
. They have a well

defined number of particles (or quanta) and are characterized by a set of occupation numbers
for all modes.

Using equation 6 we have the next equation where m is the number of modes and ∑i ni = n:

|n⟩ = |n1, n2, ..., nm⟩ =
m

∏
i=1

(âi
†)ni

√
ni!
|0⟩ (7)
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In the radiation field, these quanta or discrete excitations, are the photons so the creation
and annihilation operators increase or decrease this number by one unit. The photon number
has no upper bounds and the degeneracy of the eigenvalues is infinite. Fock states form a
complete set which can serve as a basis for the representation of arbitrary states which will
come in handy for further analysis.

The Wigner function for Fock states is found to be:

W|n⟩(x, p) =
(−1)n

π
exp

(
−(x2 + p2)

)
Ln(2(x2 + p2))

where Ln(x) denotes the Laguerre polynomials Kenfack and Zyczkowski (2004). Here we only
wish to show an example of the distinctive aspect of quasi-probability distribution in phase
space. For better illustration, we used the Strawberry Fields library to represent selected
states (see Appendix B.1). In sub-figure 2a we see the Wigner function representation of the
vacuum state representing the initial state for any quantum optical mode. In figure 2 we can
see different Wigner functions for Fock states and conclude two things mainly:

• The vacuum state in this term is similar to classical states in that it is always positive
in the interval [0, 1];

• Fock states allow to observe nonclassicality; for x = p = 0 the amplitude is maximum
and it is somewhat intuitive since it is unlikely for the particle to be found with that
condition. Also, the more excited the state is, the less well behaved is the function:
according to Kenfack and Zyczkowski (2004), the number of zeros of Laguerre polyno-
mials increases monotonically with n hence the larger the number n, the more W can
be interpreted as a non-classical distribution.

(a) (b) (c)

Figure 2: Wigner function representations of several Fock states; colour is added only to aid visualiza-
tion. The vacuum state in 2a is for simple comparison with behavior of Fock states where in
figure 2b is drawn the state |1⟩ and in figure 2c is the state |2⟩.
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2.3 gaussian states

The annihilation and creation operators â and â† are not Hermitian but observable quantities
can be represented by Hermitian combinations of them.

An example was already used in last chapter - the number operator n̂ = â† â. Another exam-
ple are the quadrature operators which are linear combinations of position x̂ and momentum
p̂. Adopting natural units, they combine the previous operators in this way:

x̂ =
(â + â†)√

2
; p̂ =

(â− â†)

i
√

2
(8)

They satisfy the bosonic commutation relations [x̂i, p̂j] = iδij. We can group these in one
vector R̂ = (x̂1, p̂1, ..., x̂N , p̂N)

⊺ so the previous commutation relation becomes

[R̂k, R̂l ] = iΩkl where Ω =
N⊕

k=1

ω; ω =

[
0 1
−1 0

]
(9)

The quadrature operators (X̂ = x̂/
√

2 and P̂ = p̂/
√

2) represent the real and imaginary
parts of the complex amplitude of the electromagnetic field (the phasor α = |α| exp(iθ)) and
the reason for their name is because they are a quarter cycle (90°) out of phase with each
other, as we will see.

2.3.1 Coherent states

Suppose we have an eigenstate of annihilation operator â such that â |α⟩ = α |α⟩. Since the
set of Fock states form a basis for this Hilbert space, we can rewrite the previous equation as
a combination of number states

|α⟩ =
∞

∑
n=0

cn |n⟩

where cn ∈ C is the coefficient for occupation number n. Applying â on this expression (with
the aid of Eq. 6), we get:

â |α⟩ =
∞

∑
n=1

cn
√

n |n− 1⟩ = α
∞

∑
n=0

cn |n⟩

Since the Fock states are orthogonal (
〈
ni
∣∣nj
〉
= δi,j):

cn
√

n = α · cn−1 ⇔ cn =
α√
n

cn−1 → cn =
αn
√

n!
c0
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Substituting the result cn,

|α⟩ = c0

∞

∑
n=0

αn
√

n!
|n⟩

Similar to above, knowing that |α⟩ must be normalized (⟨α|α⟩ = 1), we can use the orthog-
onality of |n⟩ and Taylor series expansion to determine c0:

⟨α|α⟩ = 1⇔ |c0|2
∞

∑
n=0

∞

∑
m=0

α∗nαm
√

n!
√

m!
⟨n|m⟩ = |c0|2

∞

∑
n=0

|α|2n

n!
= |c0|2 · e|α|

2

1 = |c0|2 · exp
(
|α|2

)
→ c0 = exp(−|α|2/2)

To sum up, we write the state |α⟩ denominated coherent state as:

|α⟩ = exp
(
−|α|2/2

) ∞

∑
n=0

αn
√

n!
|n⟩ (10)

which is equivalent to
|α⟩ = exp

(
αâ† − α∗ â

)
|0⟩ = D̂(α) |0⟩ (11)

where D(α) is the coherent state Glauber displacement operator. In analogy to the harmonic
oscillator, the effect is similar to pulling the particle out of the equilibrium position by an
initial displacement Re(α) and initial velocity Im(α) leaving it then oscillating.

Because it has to be unitary, this operator must satisfy the following

D†(α)D(α) = D(α)D†(α) = 1

The fact that, from Barnett and Radmore (1997), for all operators Â we have exp
(

Â
)

exp
(
−Â

)
=

1 and along with its definition, we see D(α) is unitary:

D†(α) = exp
(
−αâ† + α∗ â

)
= D(−α) = D(α)−1 (12)

Now we can prove that this operator indeed displaces a state and prove that equation 11
is valid, this is, we obtain a state |α⟩ from applying D(α) to the vacuum. It is convenient to
have the same exponential relating |α⟩ to |0⟩ so we use a detail from Mandel and Wolf (1995)
- Given that not all operators commute, exp

(
Â + B̂

)
is not always exp Â exp B̂; The correct

equality given by the Baker–Campbell–Hausdorff formula where exp
(

Â + B̂
)

is translated into
a formula with infinite terms. Nevertheless, if [Â, B̂] = c for c some constant, this is, those
operators commute with their commutator, i.e. [Â, [Â, B̂]] = [[Â, B̂], B̂] then we only need the
first three terms of the series:

exp
(

Â + B̂
)
= exp Â exp B̂ exp

(
−[Â, B̂]/2

)
Using Â = αâ† and [Â, B̂] = |α|2, B̂ is then −α∗ â. Then, we can rewrite Eq. 11 as:
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exp
(

αâ† − α∗ â
)
|0⟩ = exp

(
−|α|2/2

)
exp

(
αâ†
)

exp(−α∗ â) |0⟩

Remembering again the Taylor series and exp(−α∗ â) |0⟩ = |0⟩ we can write |α⟩ as a sum
over the vacuum state |0⟩ where we use Eq.7, which leads to:

exp
(
−|α|2/2

)
exp

(
αâ†
)
|0⟩ = exp

(
−|α|2/2

) ∞

∑
n=0

αn
√

n!
(â†)n
√

n!
|0⟩ = |α⟩

These states form a over-complete basis for the harmonic oscillator and, as a consequence,
they are not mutually orthogonal, i.e. perfectly distinguishable. The overlap between them
can be determined by their Wigner functions or with two states |α⟩ and |α′⟩ where ⟨α|α′⟩ =
exp

[
−(|α|2 + |α′|2 − 2α′α∗)/2

]
.

Properties of the Displacement operator

The unitary transformation that represents the displacement operator acting on the vacuum
generates a coherent state. Now let us first see the transformation for the creation and
annihilation operators which can be verified with the following: consider the annihilation
operator acting on a state â |α⟩. Using equations 11 and 12, then

â |α⟩ = âD(α) |0⟩ = D(α)D(−α)âD(α) |0⟩

The operators D(−α)âD(α) can be simplified using the Hadamard lemma Barnett and
Radmore (1997):

exp
(

Â
)

B̂ exp
(
−Â

)
= B̂ + [Â, B̂] +

1
2!
[
Â, [Â, B̂]

]
+

1
3!
[
Â,
[
Â, [Â, B̂]

]]
+ ... (13)

Considering B̂ = â and Â = −αâ† + α∗ â, the mode evolution is:

D(−α)âD(α) = â + [−αâ† + α∗ â, â] + ...

= â + α(ââ† − â† â) + α∗(ââ− ââ)

= â + α

Substituting in the state considered above, we get:

D(α)D(−α)âD(α) |0⟩ = D(α)(â + α) |0⟩ = αD(α) |0⟩ = α |α⟩

The same can be done for creation operator obtaining: D(−α)â†D(α) = â† + α∗.
This can be generalized to any function f of the operators â and â†:

D(−α) f (â, â†)D(α) = f (â + α, â† + α∗)
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This confirms the analogy made earlier between QHO and the displacement operator for
construction of coherent states: acting on a coherent state (the vacuum or any other), it
creates another coherent state represented by the original coherence state parameter, added
to α. This is a complex value so D(α) dislocates the position by Re(α) and velocity by Im(α)

so in phase space it will be possible to observe this for different values such as for values with
same module of α but different angles as we will shortly see.

Before that, let us make two more steps into concluding analysis of coherent states. The
first is by generalizing this formulation for N modes.

The definition of Displacement operator in eq. 11 can be generalized for coherent states
for N different modes. In order to do so, we use the tensor product of D̂(α) for a N-mode of
vacuum state |0⟩. This general operator can have the following form:

D̂(ξ) = eiR̂⊺Ωξ such that |ξ⟩ = D̂(ξ) |0⟩ (14)

For one mode we know that ξ =
√

2

(
Re(α)
Im(α)

)
, in which case it is easy to demonstrate that

it corresponds to the displacement operator:

D̂(ξ) = exp (i(ξ2q̂k − ξ1 p̂k))

= exp

(
i
√

2 Im(α)
âk + â†

k√
2
−
√

2 Re(α)
âk − â†

k√
2

)
= exp

(
âk[i Im(α)− Re(α)]− â†

k [−Re(α)− i Im(α)]
)

= exp
(

â†
k α− âkα∗

)
The second step is the expectation value and uncertainty for these states. For a general

observable, they are given respectively by:

⟨A⟩ = ⟨Ψ|A|Ψ⟩ (∆A)2 =
〈

Â2〉− 〈Â
〉2

(15)

Calculating the uncertainty of x̂ knowing it is defined by Eq. 8, we have ∆x2 = ⟨α| x̂2 |α⟩ −
(⟨α| x̂ |α⟩)2 where:

⟨α| x̂ |α⟩ = α + α∗√
2

→ (⟨α| x̂ |α⟩)2 =
α2 + (α∗)2 + 2αα∗

2

⟨α| x̂2 |α⟩ = ⟨α| (ââ + â† â† + ââ† + â† â) |α⟩ /2
= ⟨α| (ââ + â† â† + 1 + 2â† â) |α⟩ /2
= (α2 + (α∗)2 + 1 + 2α∗α)/2.
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Combining the results into ∆x2,

∆x2 =
1
2

(16)

The same can be done to ∆p2 to also obtain ∆p2 = 1/2. According to Heisenberg’s uncer-
tainty principle, ∆x∆p ≥ h̄/2. As we see, coherent states are states of minimum uncertainty,
as they saturate the Heisenberg uncertainty bound for the variances of x and p.

As we have seen, Fock states can have arbitrarily high mode occupation numbers n so the
Hilbert Space has infinite dimension. In addition, coherent states are a continuous variables
system. So once more, we use the phase space formalism. In the book Barnett and Radmore
(1997) (section 4.4) is defined s-ordered characteristic function χ(ξ, s) relying on the operator
D̂(α):

χ(ξ, s) = Tr[ρD̂(ξ)] exp
(

s|ξ|2/2
)

where, for N modes, ρ is the density operator of the quantum state with dimension 2N, s the
order (s = 1, 0 or −1 for normal, symmetric or antinormal order) and ξ ∈ R2N was already
defined but only for N = 1 for equation 14.

We obtain the expectation value of an operator doing the differentiation of χ(ξ, s) to a given
order s over ξ as opposed to the double integral when using W(x, p). The mentioned quasi-
probability distribution is a function obtained by the Fourier Transform of the characteristic
function:

W(α, s) =
1

π2

∫ ∞

−∞
χ(ξ, s) exp(αξ∗ − α∗ξ)d2ξ

The density matrix is obtained then by:

ρ =
∫ +∞

−∞
W(α, s) |α⟩ ⟨α|d2α

Combining the displacement properties, the uncertainties and the Wigner function, these
states are displaced by a value α from the origin of the phase space, has uncertainties σx =

σp = 1/2 and the probability distribution for quadratures is given by marginals of W(α, s).
In figure 3 we can observe this for two different coherent states and compare with the vacuum
once more. Indeed the operation displaces the Gaussian corresponding to the vacuum state
from the center and the bigger the module of α, the bigger the displacement. It is also possible
to observe the action of a state with same module but different imaginary part.

2.3.2 Squeezed states

Coherent states are not the only states with the possible minimum uncertainty states and
here are introduced the squeezed states that can also behave at the minimum value of un-
certainty Saleh and Teich (1991). Although the product ∆x∆p can not be lower than 1/2,
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(a) (b) (c)

Figure 3: Representation of coherent states in phase space. In figure 3a we have the vacuum state
for contrast. In figure 3b we visualize the coherent state |α = 1.5 + 0j⟩ and in figure 3c
|α = 1.32 + 0.72j⟩ (state with same module but distinct angle).

the uncertainty of one of the quadrature components can be reduced at the cost of increased
uncertainty of other so that the product remains constant, i.e.

∆X̂2 =
1
4

γ ; ∆P̂2 =
1

4γ
(17)

Constructing once more the theory analogous for the coherent states, suppose we have a
new set of annihilation and creation operators in terms of x and p given by:

b =

√
mω′

2h̄

(
x + i

p
mω′

)

b† =

√
mω′

2h̄

(
x− i

p
mω′

)
such that the state |β⟩ is a right eigenstate of operator b, this is:

b |β⟩ = β |β⟩

One can easily rewrite them as b = λa + νa† and b† = λa† + νa where

λ =
1
2

(√
mω′

h̄
x0 +

1
x0

√
h̄

mω′

)
; ν =

1
2

(√
mω′

h̄
x0 −

1
x0

√
h̄

mω′

)

Similar to the annihilation and creation operators, these operators obey the commutation
relation [b, b†] = 1. Calculating the uncertainty for these states using again equations in 15 it
results in:

∆x2 =
h̄

2mω′
and ∆p2 =

h̄mω′

2
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So we indeed have uncertainties like equation 17 (up to reformulation of quadrature oper-
ators to position and momentum) and their product is constant has predicted in the limit
uncertainty.

The squeezed states can the obtained from an unsqueezed one with the squeeze operator
S(ζ):

S(ζ) = exp
(

1
2
[ζ∗ â2 − ζ(â†)2]

)
→ |ζ⟩ = S(ζ) |0⟩ (18)

where ζ ∈ C such that ζ = reiϕ and r is the squeezing parameter and θ the angle representing
the orientation of squeezing as should become clearer soon when we see some examples. It is
a unitary operator since:

S†(ζ) = S−1(ζ)

This state obtained by S(ζ) |0⟩ can too be written in the Fock basis which will come a handy
in the quantifying measurements. The state obtained when we apply the squeezing operator
on the vacuum state is Barnett and Radmore (1997):

|ζ⟩ =
√

sinh r
∞

∑
n=0

√
(2n)!

2nn!
(− exp(iϕ) tanh r)n |2n⟩ (19)

In terms of the phase space, the coherent states have a distribution that takes a circular
form as in figure 3, whereas the unbalance in uncertainties for squeezed states translates as
an elliptical shape, as illustrated in figure 4.

(a) (b) (c)

Figure 4: Representation of squeezed states in phase space. The three states illustrated have in common
that they are placed in the origin of plane xp. In figure 4a the state is |ζ = 1⟩ so it took a
vacuum state and squeezed the position quadrature by 1. In figure 4b is the same state with
increased squeezing in the same quadrature. We can observe the function being compressed
in x while in p had the opposite effect. Finally in figure 4c is the state |ζ = 0 + 1j⟩, is a state
with squeezing r = 1 but θ = π/2 where the rotation is quite visible.

Decibel (dB) is a common unit of squeezing in experiments. The amount of squeezing in
dB corresponds to 10 log10(2

〈
∆X2〉) if squeezed along the X quadrature.
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Properties of the Squeezing Operator

Using the lemma in Eq. 13 and definition in Eq. 18, the annihilation operator is transformed
by the squeezing operation as follows:

S(ζ)† âS(ζ) = â + ζ â† +
|ζ|2

2!
â +

ζ|ζ|2

3!
â† + ...

= â cosh r + â†eiϕ sinh r

= µâ + νâ†.

(20)

Once more, the transformation can be also for â† resulting in:

S†(ζ)â†S(ζ) = â† cosh r + âe−iϕ sinh r

= µâ† + ν∗ â.
(21)

These operators obtained for transformation of â and â† are quite similar to the operators b̂
and b̂† and in fact both work as ladder operators. The difference that leads to distinct results
is that before ν and λ were real numbers and now they may be complex-valued. To sum up,
squeezed state are eigenstates of the operator S(ζ)âS†(ζ).

Now the calculations for the uncertainty can be simplified using the previous operators.
First, the expectation value of x̂ is zero which will be an important characteristic for later in
the vacuum squeezed state.

⟨ζ|x̂|ζ⟩ = ⟨ζ|(â + â†)|ζ⟩ = ⟨0|S†(ζ)(â + â†)S(ζ)|0⟩
= cosh r ⟨0| â |0⟩+ eiϕ sinh r ⟨0| â† |0⟩+

+ cosh r ⟨0| â† |0⟩+ e−iϕ sinh r ⟨0| â |0⟩
= 0.

Second, the uncertainty itself is then:

⟨ζ|∆x̂2|ζ⟩ = 1
2

exp(−2r) and for momentum ⟨ζ|∆ p̂2|ζ⟩ = 1
2

exp(2r).

2.3.3 Generalizing and representation

The states analysed so far (except Fock states) obey to a general form: Gaussian States.
The Wigner functions that represent these states in phase space have a Gaussian form as will
be shown here.



2.3. Gaussian states 21

Let us prove that coherent states have Wigner functions that are Gaussian. Starting from
the characteristic function, we have:

χ(ξ) = Tr[ρD̂(ξ)]

= ∑ ⟨n| ρD̂(ξ) |n⟩
= ∑n ⟨n|α0⟩ ⟨α0| D̂(ξ) |n⟩
= ∑n ⟨α0| D̂(ξ) |n⟩ ⟨n|α0⟩
= ⟨α0| D̂(ξ) |α0⟩ .

First we used the cyclic property of trace and then used the identity over the Fock basis,
this is:

Tr(ABC) = Tr(BCA) ∑
n
|n⟩ ⟨n| = 1

Putting the result in the Wigner function we obtain

W(α) =
1

π2

∫
d2ξ eξ∗α−ξα∗ ⟨α0| D̂(ξ) |α0⟩

Unfolding the definition in the integral, we finally obtain that for a coherent state the
Wigner function is:

W(α) =
2
π

e−2|α−α0|2 (22)

We can take a general form of the function in this last equation 22 for N modes with a
similar approach as used in Eq. 14. It results in the next two equations:

χ(ξ) = exp
[
−1

2
ξ⊺(ΩσΩ⊺)ξ − i(Ωd)⊺ξ

]

W(X) =
exp

[
− 1

2 (X− d)⊺σ−1(X− d)
]

(2π)N
√

det σ

The functions have a particular general form: a constant multiplied by an exponential
composed with a quadratic function, i.e. Gaussian. Another interesting property in the
description of Gaussian states is that although for general states W can be negative, Gaussian
states are always positive as we confirm some examples in previous figures. We have already
seen Fock states with n ≥ 1 as examples of non-classical states where W < 0 for some region
in phase space.

On quantum phase space Γ Gaussian states are fully described by the first and second
moments which are respectively the mean values (denominated displacement vector in form
of a 2N vector d) and the variance (in form of a 2N× 2N matrix σ called covariance matrix).
Intuitively, the fist moment shows the displacement in the phase space that can be given by
the displacement operator previously introduced D(α) and the second moment encodes the
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uncertainty of the states giving not only the shape (circular, elliptical..) but the probability
distribution too. The explicit formulas for each element of d and σ using R as in equation 9
are given by:

di =
〈

R̂i
〉

ρ
; σi,j =

1
2
〈

R̂iR̂j + R̂jR̂i
〉

ρ
−
〈

R̂i
〉

ρ

〈
R̂j
〉

ρ
(23)

The covariance matrix is a real and symmetric matrix that, in correspondence to density
operator ρ, must satisfy two conditions: the commutation relations of xop and pop if using the
basis for R̂ and be positive semidefinite. Both are summarized in the following:

σ + iΩ ≥ 0 (24)

2.4 linear-optical, continuous-variable transformations

Now suppose we have a linear transformation over the N modes described by a unitary
matrix U = exp

(
−iĤ

)
where Ĥ is the Hamiltonian describing the dynamics.

The linear transformations adequate to this picture are also called Bogoliubov transforma-
tions and they act on a bosonic mode as the following:

U
(

â
â†

)
U† =

(
α β

β α

)(
â
â†

)
(25)

where the coefficients in the matrix are complex and x is the Hermitian conjugate of x. Since
these transformations must preserve the commutation relations, they are canonical if |α|2 +
|β|2 = 1 so instead of one bosonic mode, if we deal with N then α and β represent a matrix
that must obey the following equations:

αα† + ββ† = 1 and αβ⊺ = (αβ⊺)⊺ (26)

2.4.1 Beam splitters and phase shifters

Phase Shifter

The simplest linear-optical operation is the one obtained by a so-called phase shifter Pϕ = eiϕ.
It can be any material that slows down the wave in relation to others resulting in a phase shift
of eiϕ. Figure 5 shows a schematic of the representation.

We can see that it acts on a single mode. This transformation simply returns a phase-shifted
state |Ψ′⟩ depicted as: ∣∣Ψ′〉 = Pϕ |Ψ⟩ = eiϕ |Ψ⟩
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Figure 5: Representation of a phase shifter.

The phase shifter adds a phase to the state and its action on the annihilation operator is
eiϕ â. The unitary is then UP = exp

(
−iϕâ† â

)
where the Hamiltonian is HP = ϕâ† â. Given

the transformation, the matrix in form of Eq. 25 is:(
eiϕ 0
0 e−iϕ

)(
â
â†

)
(27)

In a different basis (more helpful/direct for phase space representation), this gate rotates
the position and momentum quadratures according to the next matrix which is called the
symplectic matrix (see following sections).(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)(
x̂
p̂

)

Beamsplitter

A beamsplitter is a central component in interferometers so it is useful to understand its
basic properties. Figure 6 shows a schematic representation of a beamsplitter. The role of the
device is to split a beam of light according to their reflection and transmission coefficients. As
a result, if r is real, an incident beam in input 1 will have a certain probability r2 of being
reflected, with a probability of transmission given by 1− r2.

Figure 6: Representation of a beamsplitter.
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Knowing light is defined by electric fields, one can translate the transformation of the
beamsplitter has into a matrix of dimension 2× 2 turning the input fields (Input 1 and 2 as
EI1 and EI2) into output fields (Outputs 1 and 2 as EO1 and EO2). From figure 6, EI1 can
either be reflected via EO1 or transmitted via E02 and the same for EI2 that can be reflected
to EO2 or transmitted to EO1. The matrix describing this is as follows:(

EO1

EO2

)
=

(
R1 T1

T2 R2

)(
EI1

EI2

)

As a result, each output is a linear combination of input. For a lossless beamsplitter, the
total intensity at the outputs is the same as in the inputs. The device might change the phase
of the beam as it passes through it and this is translated into a exp(iϕ) factor in transmitted
arguments T1 and T2. We can write the reflection and transmission coefficients as the sine and
cosine of an angle parameter θ that determines this role so cos2 θ + sin2 θ = 1.

All the above information combined leads to the final general matrix of the beamsplitter in
Eq. 28. Note that there is no standard way to describe this transformation; the arguments
are still θ and ϕ but they can be arranged differently in the matrix since the description of
phase is arbitrary.

BS(θ, ϕ) =

(
cos θ e−iϕ sin θ

−eiϕ sin θ cos θ

)
(28)

With the above elements (phase shifter and beam splitter), it is possible to implement an
arbitrary linear-optical evolution over two modes by choosing parameters θ and ϕ in equations
28 and 27 where the combination of them describes an interferometer represented by a matrix
for an arbitrary number of modes that we will also study soon.

Since the photon number is preserved using this operation, the device is said to be passive.
We now find the beam splitter dynamics on creation and annihilation operators, as done

previously with the phase shifter. Equation 28 is almost in the matrix form required in 25.
The calculations for two-mode associated with input operators a, a† and output operators b, b†

and unitary for beamsplitter UBS must result in:

UBS â†U†
BS = cos θ â† + e−iϕ sin θb̂†

UBSb̂†U†
BS = −eiϕ sin θ â† + cos θb̂†

Similar equations can be found for operators â and b̂. The operator that leads to this action
of creation and annihilation operator and respective Hamiltonian is then described by:

UBS = exp
[
θ(eiϕa†b− e−iϕab†)

]
; H = θ(eiϕa†b− e−iϕab†)) (29)
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The beamsplitter matrix is subsequently given from Eq. 28 by a 4× 4 matrix:
cos θ −e−iϕ sin θ 0 0

eiϕ sin θ cos θ 0 0
0 0 cos θ e−iϕ sin θ

0 0 −eiϕ sin θ cos θ




a
b
a†

b†

 (30)

2.4.2 Interferometer Decomposition

As seen in the last subsection, a linear-optical network can be described by phase shifters
and beamsplitters. The combination of them is the interferometer and in this section we
would like to discuss how to compose the action of many phase shifters and beam splitters to
represent the action of an arbitrary linear-optical transformation on any number of modes of
the electromagnetic field.

A beamsplitter is a 2× 2 matrix so given N modes to process, a beamsplitter operator acts
on two of them (n and m for example). Therefore, the matrix translating this operation is
formed by the identity matrix except on rows and columns n and m where we substitute the
diagonal over the beamsplitter matrix in Eq.28. For example, it has the following general form
acting on two consecutive modes n and m = n + 1:

Tn,m(θ, ϕ) =



1 0 . . . . . . . . . . . . 0
0 1 0
...

. . .
...

... cos θ e−iϕ sin θ
...

... −eiϕ sin θ cos θ
...

...
. . .

...
0 . . . . . . . . . . . . . . . 1


Arranging these variables (θ and ϕ), any unitary matrix can be described by a sequence of

beamsplitters in a specific order acting on the different modes as the matrix multiplication of
every Tn,m(θ, ϕ) for n and m in this arrangement. The mathematical description allowing this
decomposition can take more than one form. The two best known are a triangular shape by
Reck et al. (1994) and a rectangular shape by Clements et al. (2016) and both are represented
in the figure 7.

The choice of design is informed by the error that can be expected. On one hand, for a
photon entering the first qumode (upper mode) using for instance 9 modes, the Reck design
only has 1 beamsplitter meanwhile Clements design has 5 beamsplitters. On the other hand,
for the last mode (here mode number 9), Reck design has 8 beamsplitters but the number in
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(a) Reck Design (b) Clements Design

Figure 7: Two possible designs for interferometer decomposition.

Clements design remains constant (5). Both methods use N(N−1)/2 beamsplitters to implement
a N × N interferometer so the difference is exactly on how they are applied.

With this analysis the models work in different ways and depending on the application one
might be better than the other. However, Clements design has been the one most used because
although it induces more error in the first modes, the total error induced for all modes is the
same. For the Reck design it might work better for the first modes but overall it induces much
more errors in the last modes and they became disproportional in two senses: in asymmetric
losses and more error overall.

The approach chosen her will be the one by Clements for the reasons above. It is also the
one used in Strawberry Fields by default only using another if explicitly specified.

The rectangular description follows the next decomposition method which relies on two
properties:

1. Process nulling of an element of U: given any unitary matrix U, there are specific values
of θ and ϕ that turn any target element of in row n or m of matrix Tn,mU to become
zero;

2. Any element in column n or m of U can be also nulled by multiplying U on the right by
matrix T−1

n,m.

Then, by combining Tn,m and T−1
n,m sequentially to null elements of diagonals of U, it is

progressively turned into a lower triangular matrix. This is the basic point we need to reach
because of a simple detail about diagonal matrices and unitaries. About this point a lot can be
discussed however here we only need one proof: if a matrix A is both triangular and unitary,
then it is diagonal. Let us prove this. If the inverse A−1 of an lower triangular matrix A exists,
then it is lower triangular and, moreover, since A is unitary A∗ = A−1, so the transpose of A
is upper triangular too. The only way for this to work is if A is diagonal. Now this diagonal
matrix we found is a unitary D that can represent phase shifters in each mode of our circuit.

So, after all this we are left with a diagonal unitary matrix as a result of multiplication of
U and respective Tm,n and T−1

m,n for diagonal nulling:
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(
∏

(m,n)∈SL

Tm,n

)
U

(
∏

(m,n)∈SR

T−1
m,n

)
= D ⇒ U =

 ∏
(m,n)∈ST

L

T−1
m,n

D

 ∏
(m,n)∈ST

R

Tm,n


SL and SR are the orderings for matrices Tm,n and T−1

m,n respectively. D can be rearranged
since it represents phase shifters in order to work only with direct matrices instead of inverses
such that T−1

m,nD = D′Tm,n leading to the final equation of this construction:

U = D′
(

∏
(m,n)∈S

Tm,n

)
Using Strawberry Fields library to get results from this algorithm, we first generated an

arbitrary matrix and created the program (see in Appendices B.2, code B.5) and obtained the
following circuit in figure 8.

R
BS

R
BS

R

R
BS

R
BS

R

R
BS

R
BS

R

R

Figure 8: Decomposition of matrix U with function provided by Strawberry Fields based on Clements
design.

The Clements decomposition is the default in Strawberry Fields, however, it is possible to
add an argument and change the method. Now we can compare the physical implementation
a quantum computer would make for our arbitrary matrix U with the decomposition method
by Clements. Let us begin with the number of elements. Above we said it uses N(N−1)/2 beam
splitters so, for this case, N = 4 and 4(4−1)/2 = 6 which corresponds to the circuit. Then we
have a series of rotation gates. Each mode passes at least through one rotation gate and there
are 10 for 4 modes: 4 of them is related to our diagonal matrix D in decomposition and the
remaining 6 are associated to each beam splitter (the returned parameters for BS is only over
θ and the phase is implemented separately).

2.4.3 Symplectic transformations

Back to the evolution of the states, in the Gaussian form the states where described dif-
ferently so since we are using another approach, how do elements of d and σ change with
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Gaussian operations? In the Hilbert space notation, a linear optic network can be described
by a unitary matrix U applied to the states:

ρ→ UρU† ; |Ψ⟩ → U |Ψ⟩

In phase space i.e. the quadrature operators, this unitary U must be translated to operations
in d and σ that preserve the uncertainty principle and commutation relations in eqs. 9 and 24.
The matrices capable of such transformations for these conditions are symplectic: a 2N× 2N
matrix S with real entries performs this if:

SΩS⊺ = Ω

Note that these matrices only hold for unitaries corresponding to Hamiltonians whose expo-
nents are, at most, quadratic in creation and annihilation operators. The symplectic matrices
can be for different bases; nevertheless they must satisfy SΩS⊺ = Ω for the appropriate Ω
for each specific basis as we’ll soon see examples. Besides matrices, we can add an arbitrary
constant vector b to the mean that is related to the action of the displacement operators
D(α) performing d→ d + b. Representing this operation, it does not change the uncertainties
(either product for quadratures or each separately) so it has no effect in σ.

Summing up, the unitary corresponding to a symplectic transformation US,b = D(b)US in
d and σ is:

d = Sd + b ; σ = SσS⊺ (31)

Any symplectic transformation like equation 31 is generated by unitary transformation
induced by bosonic Hamiltonians of the form of equation 32 where h.c. stands for Hermitian
conjugate.

H = ∑
n

c(1)n a†
n + ∑

n>k
c(2)n,k a†

nak + ∑
n,k

c(3)n,k a†
na†

k + h.c. (32)

Corresponding to what was seen so far, the first term is linear to the field modes and the
unitary transformation seen like this is the displacement operator 11. The second term involves
two field modes so it mixes different modes and a operation in this context is beamsplitter 28.
The last term corresponds to the squeezing operator (either for one mode when n = k which
is the only case already seen or two modes when n ̸= k).

Let us recall the properties in the end of Gaussian States section, the operations on Gaussian
states we are looking for here have the following characteristics:

• They are unitary operators. They are associated to an Hamiltonian H in the unitary
matrix U : = exp(−itH). Usually the time dependency is already built in the Hamilto-
nian or not explicitly considered because the interest in the operation works as a step,
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this is, a discrete evolution obtained for example by a time-independent Hamiltonian
acting for a specified time step.

• In order to maintain working with Gaussian states, the operations must preserve the
Gaussian nature of them. This type of generators that lead to Gaussian operations are
functions of second-degree or lower to the quadrature components of the system exactly
of the form 32.

Now let us then review operations mentioned so far and find the appropriate symplectic
form for each.

Let us start with the rotation gate. Consider the Hamiltonian operator Ĥ = h̄ωâ† â, corre-
sponding to the unitary operator:

U(t) = exp
(
−itĤ/h̄

)
→ U(ϕ) = exp(iϕn̂)

Using equation 10, the application of U to a coherent state α is then:

|α⟩ = exp
(
−|α|2/2

) ∞

∑
n=0

exp(iϕn)αn
√

n!
|n⟩

which leads to
U(ϕ) |α⟩ =

∣∣∣αeiϕ
〉

(33)

So the effect of this gate in the state |α⟩ is a rotation in phase space also known as a phase
shifter (the change of names here is due to the nomenclature in library Strawberry Fields).
With this we have directly the symplectic form:

SR(ϕ) =

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
(34)

Our next element is beam splitter. The action on the annihilation operators with Eq. 13
confirms the results already from the first analysis:

U†
BS(θ, ϕ)â1UBS(θ, ϕ) = â1 cos θ − â2e−iϕ sin θ

U†
BS(θ, ϕ)â2UBS(θ, ϕ) = â2 cos θ + â1e+iϕ sin θ

However, the matrices we are looking for is in a different basis so the action on quadrature
operators is:

U†
BS(θ, ϕ)x̂1UBS(θ, ϕ) = x̂1 cos θ − sin θ(x̂2 cos ϕ + p̂2 sin ϕ)

U†
BS(θ, ϕ) p̂1UBS(θ, ϕ) = p̂1 cos θ − sin θ( p̂2 cos ϕ− x̂2 sin ϕ)
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U†
BS(θ, ϕ)x̂2UBS(θ, ϕ) = x̂2 cos θ + sin θ(x̂1 cos ϕ− p̂1 sin ϕ)

U†
BS(θ, ϕ) p̂2UBS(θ, ϕ) = p̂2 cos θ + sin θ( p̂1 cos ϕ + x̂1 sin ϕ)

which leads to the symplectic matrix of the form of Eq. 35 for the basis we are looking for in
Eq. 9.

SBS(θ, ϕ) =


cos θ 0 − sin θ cos ϕ − sin θ sin ϕ

0 cos θ + sin θ sin ϕ − sin θ cos ϕ

sin θ cos ϕ − sin θ sin ϕ cos θ 0
sin θ sin ϕ sin θ cos ϕ 0 cos θ


=

(
cos θ12 − sin θSR(−ϕ)

sin θSR(ϕ) cos θ12

)
.

(35)

To rearrange to the usual arrangement, we change to the same basis but another organiza-
tion: T̂ = (x̂1, ..., x̂N , p̂1, ..., p̂N)

⊺ and, as such, the symplectic condition uses

Ω =

(
0 1

−1 0

)

in this case, the symplectic matrix is:

SBS(θ, ϕ) =


cos θ − sin θ cos ϕ 0 − sin θ sin ϕ

sin θ cos ϕ cos θ − sin θ sin ϕ 0
0 + sin θ sin ϕ cos θ − sin θ cos ϕ

sin θ sin ϕ 0 sin θ cos ϕ cos θ

 (36)

Now let us take a look at squeezing which was introduced as an operator for state preparation
but it can be used in the middle of a circuit. A simpler way to determine the symplectic matrix
is to calculate the action on the creation and annihilation operators (let us call it Heisenberg
basis to distinguish) and make a change of basis from this to the quadrature operators. Let us
take the vector R̂ represented in equation 9 and make the necessary transformations to obtain
in the basis we intend to get. To do so, let us use two basis changing matrices T and L that
do the next two operations:



2.4. Linear-optical, continuous-variable transformations 31



x̂1
...

x̂N

p̂1
...

p̂N


= T



x̂1

p̂1
...
...

x̂N

p̂N


= TR̂ ;



â1
...

âN

â†
1
...

â†
N


= L



x̂1
...

x̂N

p̂1
...

p̂N


= L · TR̂

where each element of T is Ti,j = δj,2i−1 + δj+2N,2i and matrix L is defined as L = 1√
2

(
1 i1
1 −i1

)
.

The conditions for the matrix to be symplectic depends on the basis considered. In the
mathematical description for Fock states it was already shown the matrices and conditions on
the basis for the operators â and â† in equations 25 and 26 such that the matrix in this basis
Sâ satisfies

SâKS†
â = K where K =

(
1 0
0 −1

)
.

This comes a handy because sometimes it is easier to calculate the effect on â and â† and
just do a simple matrix multiplication on this to get the conditions over x̂ and p̂.

For squeezing it is usually implemented one and two mode physically and here we consider
these situations for the purpose of our work:

1. Single-mode squeezing

Here we have the squeezing operator in Eq.18 S(ζ) = exp
( 1

2 [ζ
∗ â2 − ζ(â†)2]

)
and using

Hadamard lemma of Eq. 13, it has already been calculated in equations 20 and 21 the
action on creation and annihilation operators respectively which leads to the matrix:

Sâ =

(
cosh r eiϕ sinh r

e−iϕ sinh r cosh r

)
(37)

To obtain the symplectic matrix in the basis of R̂ we then use T and L:

T =

(
1 0
0 1

)
; L =

(
1√
2

i√
2

1√
2
− i√

2

)
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SS(r, ϕ) = T⊺L†SâLT

=

(
1√
2

1√
2

− i√
2

i√
2

)(
cosh(r) eiϕ sinh(r)

e−iϕ sinh(r) cosh(r)

)(
1√
2

i√
2

1√
2
− i√

2

)

=

(
cosh(r) + sinh(r) cos ϕ sinh(r) sin ϕ

sinh(r) sin ϕ cosh(r)− sinh(r) cos ϕ

) (38)

If we take a look at what this operator does in phase space, it squeezes a quadrature by
an amount defined by r > 0 and an orientation given by ϕ ∈ [0, 2π[. So if we take the
particular case when this angle is ϕ = 0 this simplifies to

SS(r, 0) =

(
cosh(r) + sinh(r) 0

0 cosh(r)− sinh(r)

)

=

(
er 0
0 e−r

)
.

Applying this simple matrix followed by a rotation gate we don’t have a loss of generality
and we simplify the matrix representation. ϕ = 0 corresponds to squeezing the variance
of the position operator, while ϕ = π/2 corresponds to the squeezing of momentum
operator.

2. Two-mode squeezing

The two-mode squeezing operator acts on the vacuum like S2(ζ) |0⟩ and is defined as

S2(ζ) = exp
(

ζ∗ â2 â1 − ζ â1
† â†

2

)
(39)

This operator can not be decomposed into only two single-mode squeezing operators;
both operators in equations 18 and 39 arise from the third term of the Hamiltonian
in equation 32 but in the first the photons are generated by the action of â†2 and the
second by â†

1 â†
2. However, if we add beam splitters to the product of two S(ζ) then the

joint operation can be written as:

U†
BS(π/4, 0)[S(ζ)⊗ S(−ζ)]UBS(π/4, 0)

Using either way, calculating once more the action on the usual basis so far we get:

S†
2(ζ)â1S2(ζ) = â1 cosh r− â†

2eiϕ sinh r

S†
2(ζ)â2S2(ζ) = â2 cosh r− â†

1eiϕ sinh r
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and for their Hermitian conjugates:

S†
2(ζ)â†

1S2(ζ) = â†
1 cosh r− â2e−iϕ sinh r

S†
2(ζ)â†

2S2(ζ) = â†
2 cosh r− â1e−iϕ sinh r

Sâ =


cosh r 0 0 −eiϕ sinh r

0 cosh r −eiϕ sinh r 0
0 −e−iϕ sinh r cosh r 0

−e−iϕ sinh r 0 0 cosh r

 (40)

Changing basis, for ϕ = 0 we get:

S2S = T⊺L†SâLT =

(
cosh r12 sinh rD
sinh rD cosh r12

)
; D = diag(−1, 1)

In the case of single-mode squeezing, we already saw what the operation does to a state: it
squeezes one quadrature at the cost of increasing the other. For two-mode squeezing, it also
squeezes (this time two modes) and maintains zero mean but with some extra properties.

At first sight, something has to be different because we have the following inequality S2S ̸=
SS ⊗ SS. Two-mode squeezed states in Fock basis (Barnett and Radmore (1997)) are written
as:

|r⟩ =
√

1− tanh2 r
∞

∑
n=0

(− tanh r)n |n⟩a |n⟩b (41)

From such a state |r⟩ we can infer that occupation number of the two states are correlated:
the state is probabilistic in the space but if there are n photons in mode a, then there must
be n photons in mode b.

2.4.4 Entanglement

From the operations above, two-mode squeezing has some interesting properties particularly
for quantum computing that deserve some attention. The effect on the states is only similar
to single-mode squeezing and to see the difference let us return to the decomposition1 of the
gate:

S2(r) = U†
BS(π/4, 0)[S(r)⊗ S(−r)]UBS(π/4, 0) (42)

1 This decomposition is used theoretically but physically both can be implemented: single-mode squeezing can
be implemented by Spontaneous Parametric Down Conversion (SPDC) into one mode and two-mode squeeze
can be directly by SPDC where the pair generated is emitted to non degenerate modes
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With this expression we can see that the beam splitter is the key to entanglement (and is even
a prerequisite) and the action on mode a is squeezing by r and on mode b by −r.

First of all, the physical meaning of entanglement of states is either they can not be written
as a convex combination of tensor products of well-defined states of each subsystem. This is,
if the state is separable then it is a non-entangled state and otherwise it is also relevant to
see the correlation between them. This property described theoretically can be converted to
mathematical equalities for e.g. discrete systems, whose discussion is simpler. A state is said
to be non-separable if it can not be written as:

ρ = ∑
i

ωiρ
A
i ⊗ ρB

i

where ωi is a positive probability value and ρA and ρB are the density matrices for the
subsystems A and B to analyse. Other than that, there are many different ways to verify such
as with von Neumann entropy, measurements on the system and others.

This property of systems can be verified for different types of states; to do so, the only two
mode gate we have so far (other than 2-mode squeezing but we saw it can be decomposed) is
beam splitter so we can try to analyse the result of it applying to the three types of states
given: Fock, coherent and squeezed.

The most generic transformation on Fock states is for input state |n1, n2⟩. The output
is a sum over the possible states |N1, N2⟩ with some coefficient BN1,N2

n1,n2 associated to each.
This coefficients are in article Kim et al. (2002) where they make a complete analysis of
entanglement by beam splitters. BN1,N2

n1,n2 doesn’t show much restrictions other than n1 + n2 =

N1 + N2. However, the authors use the von Neumann entropy as a measure of entanglement
and it exhibits a interesting behavior where it is not necessarily maximized for a 50 : 50 beam
splitter but for other similar values too and the reason why will become clearer next.

Considering a balanced beam splitter with two input states with same number of photons
n each, it happens that:

UBS |n, n⟩ =
n

∑
m=0

e−i(n−2m)ϕ

(
1
2

)n n

∑
k=0

(−1)n−k
(

n
k

)(
n

2m− k

)√
2m!(2n− 2m)!

n!
|2m, 2n− 2m⟩

Despite all the coefficients associated to the possible states, one thing is for sure: the output
state somehow pairs the particles so measuring it only returns even outcomes (odd number of
photons have zero probability). Now we can conclude why a balanced BS does not maximize
entanglement for all cases; for n an odd number the output would be distributed with odd-
number states but these destructively interfere and do not appear according to our previous
formula.
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Another interesting case is the effect of a beam splitter acting on state |0, n⟩ which gives:

UBS |0, n⟩ =
n

∑
k=0

cn
k |k, n− k⟩ ; cn

k =

(
n
k

)1/2

rktn−keikϕ

In particular, if the beam splitter is balanced (t = r =
√

0.5), entanglement is maximized. For
n = 1 it gives the known result

UBS |0, 1⟩ = 1√
2
|0, 1⟩+ 1√

2
|1, 0⟩

The output state is maximally entangled for UBS(π/4, 0) according to the definition given
above either for n odd or even.

A related calculation can be done also for the coherent states. From the same article, we
have the following action:

ÛBSD̂a(α)D̂b(β) |0, 0⟩ = D̂a(tα + reiϕβ)D̂b(tβ− re−iϕα) |0, 0⟩

This is an important result: apliying a beam splitter to two coherent states is the same as
creating those states only with displacement operator changing each parameter according to
r and ϕ of the beam splitter.

Lastly, the effect on squeezed states. As seen above we already have an intuition that it
might create entanglement but to confirm via calculations, we have the next equality:

ÛBS

(π

4
, ϕ
)

Ŝa(ζ1)Ŝb(ζ2) = Ŝa

(
ζ1 + ζ2e2iϕ

2

)
Ŝb

(
ζ1e−2iϕ + ζ2

2

)
Ŝab

(
ζ1eiϕ − ζ2e−iϕ

)
(43)

In this last equation we can see that two mode squeezing leads to a state that can not be
written as separated operators and those created entanglement: Kim et al. (2002) studied the
von Neumann entropy for a measure of entanglement and they found that entanglement of the
output state depends on the degrees of squeezing for input fields and the reflection coefficient
which maximizes for θ = π/4. Also the phase parameter in the beam splitter and the phase in
squeezing parameters ζ1 and ζ2 plays an important role so ϕ in equation 43 must be restricted
to ϕ = kπ/2 with k ∈ Z. From this last analysis, only coherent states can not be entangled
with a beam splitter, independently of the parameters ϕ and θ since the entanglement property
in output states is strongly related to the nonclassicality of input states and coherent states
are considered the most classical-like states.

What is actually happening when applying this operator S2S to |0⟩a |0⟩b, it creates a two-
mode squeezed vacuum state, also known as an Einstein-Podolski-Rosen (EPR) state. En-
tanglement is an essential ingredient for quantum computation and was first introduced with
the EPR paradox by Einstein et al. (1935). In the particular case of continuous variable CV
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quantum information, it is crucial for quantum teleportation and quantum key distribution
QKD protocols2.

2.4.5 Detection and Measurements

Measurements are said to be Gaussian if, if acting on Gaussian states, they project onto
other Gaussian states (Weedbrook et al. (2012)). In this we have two types of measurements:
Homodyne and Heterodyne. They are defined respectively by the projectors as in eq. 44
where xθ = q̂ cos θ + p̂ sin θ.

∫
dxθ |xθ⟩ ⟨xθ | = 1 ;

1
π

∫
d2α |α⟩ ⟨α| = 1 (44)

For the case of Homodyne detection, the state is projected over a quadrature basis |xθ⟩ ⟨xθ |.
These are not discrete and as such a measurement returns a real value h ∈ R with a probability
distribution according to the Wigner function with an integral over xθ.

For Heterodyne measurements the projection is onto coherent states. This is an example
of positive operator-valued measure (POVM) Adesso et al. (2014) where the operators are
Hermitian but they do not need to be orthogonal as is the case for coherent states like we
saw before. These measurements are inherently still continuous with the particularity that
can be seen as a simultaneous measurement of both quadratures since α is related to position
and momentum by its real and imaginary parts. Both can not be measured at the same
time without some degree of uncertainty so intrinsically the detector combines the state to be
measure with a vacuum state into a beam splitter and measures each output with a homodyne
detector.

Both these measurements on one mode leave the remaining multimode state still Gaussian.
An example of a non-Gaussian measurement is photodetection. This projective measure-

ment reveals the particle-like nature (rather then wave-like) of the qumodes. Here the return-
ing value is non-negative h ∈N. Also within this type, it can be divided into two measures:

1. von Neumann measurement; This is in the number states basis projecting the state onto
|n⟩ ⟨n|.

2. Avalanche measurement; This distinguish between |0⟩ ⟨0| and 1− |0⟩ ⟨0|. It returns 0 if
no photon arrives and 1 (or another convention) if one or more photons are detected.

For a coherent state, the probability of measuring n photons using states in terms of Fock
basis 10 can be easily found to be:

Pr(n) = | ⟨n|a⟩ |2 = exp
(
−|α|2

)α2n

n!
2 QKD offers many advantages over classical methods and in particular CV-QKD can offer some over discrete

variable ones. This was already physically implemented by Zhang et al. (2019) over 50km.
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The expectation value is then:

⟨n̂|n̂⟩ =
∞

∑
n=0

n Pr(n) = exp
(
−|α|2

) ∞

∑
n=0

n
α2n

n!
= |α|2

For a simple squeezed state, the statistics are a bit different, as illustrated by the squeezed
vacuum state that we have already encountered: |ζ⟩ = S(ζ) |0⟩.

Since the expansion over the number basis contains only even numbers (equation 19), the
probability for Pr(n) for odd n is zero and for even is:

Pr(2n) = sech r
(2n)!

(n!)222n (tanh r)2n (45)

where sech denotes the hyperbolic secant. Then the mean photon number can be found
directly from this result and the outcome is:

n = sinh2 r (46)

In figure 9 we show the probability distribution over photon numbers for measurements on
squeezed vacuum states with different squeezing factors. The range of values in figure is only
to demonstrate the evolution; the amount of squeezing implemented and achieved in physical
experiments will be discussed later in chapters 4 and 5.

Figure 9: Probability for detecting different photon numbers as a function of the squeezing parameter,
for the squeezed vacuum state.

As we can see, the squeezing operation is an active linear-optical operation, which in general
increases the number of photons in the state.
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In the case of two-mode squeezing operation, the state of both modes |ζAB⟩ written in the
Fock basis is:

|ζAB⟩ = sech r
∞

∑
n=0

(− expiϕ tanh r)n |nAnB⟩

which should translate to a probability distribution of n given by the next equation 47.

P(n) = sech2 r(tanh r)2n (47)

Except for the outcome n = 0, performing photodetection on a single mode of a multimode
Gaussian system causes the resulting modes to become non-Gaussian. Thus, this measurement
can be used as an ingredient to implement non-Gaussian operations.

2.5 summary

Quantum states of light can be represented in the phase space formalism which is a space
that brings many advantages when dealing with continuous-variable states. The state in
quantum representation is defined by a quasi-probability distribution Wigner function (or
equivalently a Characteristic function) in such space that fulfill the requirements for minimum
uncertainty and for the quasi-probability. With this we can represent each state and study
properties such as classicality and many others.

Then we started introducing the states of light we will be using throughout this thesis and
started by Fock states. They have a well defined number of particles and this is expressed in
they ket representation in equation 7 which gives us:

|n⟩ = |n1, n2, ..., nm⟩ =
m

∏
i=1

(âi
†)ni

√
ni!
|0⟩

In phase space, these states can show negative values for the Wigner function which indicates
that they have a nonclassical behaviour.

Next we presented Gaussian states. The first in this group was Coherent states given by
equations 10 and 11:

|α⟩ = exp
(
−|α|2/2

) ∞

∑
n=0

αn
√

n!
|n⟩ = exp

(
αâ† − α∗ â

)
|0⟩ = D̂(α) |0⟩

Their properties can be summed up by their phase space representation (see figure 3);
generating coherent states from vacuum correspond to a displacement in phase space from the
origin and each D̂(α) is a displacement by Re(α) in x axis - position - and Im(α) in y axis -
momentum. They have equal uncertainty both in x and y axis (or any other rotated space)
and they saturate the Heisenberg bound for variances. A pertinent property is that they never
show negative values for the Wigner functions.
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Continuing Gaussian states analysis, we proceeded with Squeezed states. They are summa-
rized in equations 19 and 18:

|ζ⟩ =
√

sinh r
∞

∑
n=0

√
(2n)!

2nn!
(− exp(iϕ) tanh r)n |2n⟩ = S(ζ) |0⟩

Similar to coherent states, in phase space (see figure 4) they still do not present negative
parts in Wigner function and are states of minimum uncertainty but unlike the previous, this
uncertainty is not equally distributed. Here, the squeezing operation squeezes a quadrature
at cost of increasing the other in the same amount as Heisenberg’s principle demands.

These two states - coherent and squeezed - are called Gaussian states due to their special
characteristics in phase space, more precisely the uncertainty behaviour since it is translated
to a Gaussian function. As so, they are fully described by two entities: the displacement
vector d and covariance matrix σ, both in equation 23.

These are the three families of states we introduced and the ones we will be using to
initialize our qumodes in the two models of linear optical computation that we will discuss
next. With this complete we began introducing linear-optical transformations and started
with phase shifters and beam splitters that their actions on previous states are mathematically
translated to equations 27 and 30. These elements combined form an interferometer and for
computational purposes it is important to be able to decompose the interferometer given by
an arbitrary matrix U into a combination of basic elements. Two decomposition methods are
presented: Reck and Clements design. Both use the same number of elements but they are
arranged very differently and usually the chosen approach is the one by Clements due to the
symmetry it has from the point of view of losses and induced errors, as all input-output pairs
go through the same number of beam splitters.

Continuing the analysis of evolution of states, we introduced the symplectic transforma-
tions as a way to study how elements of Gaussian states - namely displacement vector and
covariance matrix - change with transformations. This alternative representation (as opposed
to Hilbert space and discrete valued states as Fock states) brings advantages when dealing
with continuous variable quantum states (as Gaussian ones that have an infinite-dimensional
Hilbert space) because we can deal only with two entities: d and σ. Applying interferometer
US,b = D(b)US their evolution is translated to equation 31, this is, a matrix multiplication.
Since Gaussian states will be essential for our case, we rewrote matrices found so far (displace-
ment, beam splitters etc) and took the opportunity to present two-mode squeezing. Two-mode
squeezing is an operation of the same type of one-mode squeezing when considering quadrature
squeezing but this type introduces an important mark: entanglement. These states can be
obtained by physical generation (SPDC for instance) of by unitary decomposition (separate
squeezing with parameters r1 = −r2 followed by a balanced beam splitter) and are of utmost
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importance for quantum computation. Both Fock states and squeezed can be entangled by a
beam splitter but coherent states can not.

Last but not least, we discussed detection and measurement. We divided measurements
essentially in Gaussian and non-Gaussian ones. The first preserves the Gaussian nature of
states and includes Homodyne and Heterodyne measurements that are defined by projectors
over the quadrature basis and onto coherent states respectively. The second is based on photo-
detection either for projection on number operator (counting n) or avalanche detection (also
called bucket detectors).



3

B O S O N S A M P L I N G

In this chapter we will study the Boson Sampling model which was originally introduced by
Aaronson and Arkhipov (2013). This is a model for quantum computation where the authors
explored the complexity of simulation of non-interacting bosons undergoing a linear-optical
evolution. The boson sampling model starts by initializing input qumodes as Fock states pass-
ing them through a linear interferometer and finally measuring the output with photodetection.
Such program for simulation in a classical computer requires calculating the permanent of ma-
trices which is hard to simulate and, opposed to this approach, a quantum computer would
solve the problem naturally. In fact, the complexity of doing even an approximate simulation
is exponential in the number of photons/modes, which motivated experiments as a way to
show quantum computational advantage in practice.

With the concepts of linear optics from last chapter, here we will start by giving a mathe-
matical description of the system for the particular conditions of boson sampling, then present
both analysis (classical simulator and quantum simulator with the code for an actual photonic
quantum computer), study and compare their complexity and finalize with some numerical
experiments.

3.1 mathematical description

Linear optical quantum computers (LOQC) use both active and passive elements however,
the Boson Sampling model only uses passive elements which can make the calculations easier:
since the input states are Fock states |n⟩ with n ∈ N, the operators describing them can be
restricted to creation operators a† (recall that â |0⟩ = 0 and applying â to |n⟩ n ̸= 0 would
only cancel out the â† used to increase n); the matrix for this transformation only requires
elements α in the form in Eq. 25 leaving β = 0 specifically for active operations which matches
the matrices for beamsplitter and phase shifter above. So the matrix for the transformation
for m modes is described by a m×m unitary instead of 2m× 2m.

41



3.1. Mathematical Description 42

A beamsplitter acts on two modes as:

UBS |n1, n2⟩ =
1√

n1!n2!
UBS â†n1

1 â†n2
2 |0, 0⟩

=
1√

n1!n2!
UBS â†n1

1 â†n2
2 U†

BSUBS |0, 0⟩

=
1√

n1!n2!
UBS â†n1

1 â†n2
2 U†

BS |0, 0⟩

As we can see Brod et al. (2019), the linear interferometer transforms creation operators so
that:

â†
i → Uâ†

i U† =
m

∑
j=1

Ui,j â†
j

Given two m-mode states in the form of Eq. 7, suppose the two input and output states
respectively |S⟩ and |T⟩:

|S⟩ = |s1, ..., sm⟩ |T⟩ = |t1, ..., tm⟩

The original matrix can be manipulated to obtain US,T, a sub-matrix of U. The entries of
US,T are constructed by taking si copies of row i and tj copies of column j. With this, in Scheel
(2005) it was shown that the probability of measuring in the output the state |T⟩ having state
|S⟩ as input is given by:

Pr(S→ T) =
|perm(US,T)|2

∏i si! ∏j tj!
(48)

where perm(US,T) is the permanent of US,T and is given by

perm(U) = ∑
σ∈Sn

n

∏
i=1

Ui,σi (49)

where Sn is the set of all permutations of the set {1..n}. The permanent is not a common
formula however most readers will be familiar with the determinant of matrices:

det(U) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

Ui,σi .

The only difference is the sign in the determinant that changes according to the permutation
(sgn(σ) = +1 is permutation is even and sgn(σ) = +1 otherwise). Although this is a small
difference in the formula and calculations, computationally it has a major impact. A naive
proposal to solve them implies the sum of the equal number of terms since the number of
permutations is one and the same however determinant shows some properties one can explore.
One is det(AB) =det(A)·det(B) where we obtain the determinant of a matrix by calculating
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determinant of two matrices that are more easily computed and add this to the method using
Gaussian elimination. This difference makes the determinant take only n3 steps to be complete
(with n the size of U) which is polynomial and considered easy to compute as we will expand
in later sections.

3.2 classical implementation

The classical code follows directly from the mathematical description given above; the reader
may find the full code in Appendix B.3 and the pseudo code associated is below in Algorithm
1.

Algorithm 1 Boson Sampling Classical Algorithm

function PROBC(U, S, T)
for j ∈ m do

if tj ̸= 0 then
US,T ← take tj copies of the jth row of U

end if
end for
for i ∈ m do

if si ̸= 0 then
US,T ← take si copies of the ith colunm of U

end if
end for
permanent← perm(US,T)
permanent← |permanent|2
factorial← fact(S)×fact(T)
return permanent/factorial

end function

To begin with, to realize the simulation according to the equation of the model Eq. 48 we
need the linear interferometer unitary matrix U that describes the evolution of the system,
the input state S and the output state T. Having this data as arguments of the main function,
we proceed to the calculation. Note that our function assumes the programmer enters valid
arguments to the physical circuit and description which means that input and output states
must be valid Fock representations with total number of photons in S equal to T and U is
an arbitrary unitary matrix. Boson sampling usually uses Haar-random matrices, to avoid
symmetries that could simplify the classical calculation, and to obtain evidence for hardness-
of-simulation based on a few well-understood complexity theoretic assumptions Aaronson and
Arkhipov (2013). There are several reasons for the choice of Haar-measure matrices over
arbitrary unitaries: uniformly distributed matrices for the free parameters of the random
unitary lead to clusters in the poles of the Block sphere (see appendix A.2) which leads to
a restricted or more constrained structure that classical simulation might exploit contrary
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to Haar-random unitary matrices; also, for these distributions, with high probability the
outcomes will not have two photons or more per mode.

The key part in this code is the calculation of the permanent. The perm function imple-
mented (see code B.6) is the basic one doing the calculation using the definition running for
all permutations (eq. 49). Analysing the complexity we see that it runs in time T(N):

T(N) =

{
1 if N ≤ 1
N × ((N − 1)2 + T(N − 1)) if N ̸= 1

which represented in a non-recursive way corresponds to O(N!N) operations, which represents
an intractable computation.

There are other algorithms that calculate the permanent more efficiently for some classes
of matrices or algorithms that implement an approximate evaluation of the permanent. The
most efficient known general algorithm was introduced by Ryser and has a run-time that scales
as O(N2N). It is still exponential but far better than the naive algorithm discussed above.

For m modes and n photons in input, the number of combinations is given by Bm,n:

Bm,n =
(m + n− 1)!
n!(m− 1)!

=

(
m + n− 1

n

)
Running the code for all input-output possibilities (combinations Bm,n), it takes:

O
((

m + n− 1
n

)
(N2N)

)
time steps. (50)

3.2.1 Simulation

Now we have a well defined model, the description of the system and the code to simulate
it on a classical computer. To study applications or make some experiments, we need to
do a simulation under certain/given conditions. Calculating the probabilities is a theoretical
prediction and the complete calculation corresponds to a task that not even the quantum
computer will do, as the quantum computer only outputs some sample of events, rather than
the exact probabilities given by permanents. Also, soon we will study the complexity of
computing Boson Sampling, which is a difficult problem (as Eq. 50 indicates). For these
reasons, here we aim to simulate Boson Sampling by generating samples to predict the results
from a photonic quantum computer.

In what concerns simulating quantum algorithms by a classical computer there are two
different notions of simulation: strong and weak simulation. The most common is strong
simulation - given a set of parameters (describing the physical system) and possible output
events, it calculates the exact probabilities for each output which is equivalent to calculate the
corresponding permanent, as specified by Eq. 48 directly with algorithm 1. Weak simulation
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consists of an algorithm that produces samples from the output distribution of the ideal
quantum process. With strong simulation, we can obtain the probabilities associated with all
possible outcomes and use that for weak simulation. Sometimes, however, weak simulation
algorithms may exist that do not require strong simulation. Note also that weak simulation
can be used to estimate the probabilities via the relative frequencies of events, but only if
there are not too many possible output events. If the number of possible output events scales
exponentially with the size of the system (as in Boson Sampling, recall the number of possible
combinations Bm,n), we cannot hope to estimate all probabilities via weak sampling, as getting
enough data for a reasonable estimate would involve accumulating data for a time interval that
scales exponentially with the system size. The quantum computer itself only samples from
its output distribution, so strong simulation is a stronger concept than what the experiment
itself does.

We implemented two methods to generate samples; here are doing weak simulation after
strong simulation i.e. we calculate the probability distribution and then sample from this.
This is feasible here, as the size of the systems we are simulating are small. There is an
algorithm presented in Clifford and Clifford (2017) that does not require strong simulation
and for that reason it lowers the complexity of the algorithm but for now let us focus on the
two generators implemented.

randomGeneratorA focuses on the rejection sampling method. This function takes as argu-
ments the unitary U, the number of photons f for the input and number of samples times
to generate. f is sufficient to describe the input state since for m modes (taken from U)
and f photons, the input state will be S =

∣∣1 f , 0m− f
〉

(restriction of the occupation numbers
to only 0 and 1 in simulation will become clearer and is due to physical limitations). This
method starts by generating all possible output combinations and saving in a numpy array
states. Then, we pick a possible output state x using a uniform random distribution over the
output space and pick y uniformly distributed in the interval ∈ [0, 1]; each probability y[i]
corresponds to the state in x in the same position, this is x[i]. At last, we filter x accepting
the states fulfilling the inequality:

probC(U, S, x[i]) ≤ y[i]

Since the length of x is times and it is filtered to select a set of accepted output events, it is
extremely unlikely to accept them all so we run again the algorithm with an auxiliary function
so that we don’t require to make once more the initial calculations (the array states..).

Finally, the function returns the accepted states in a numpy array of the type:

numpy.array[numpy.array[m] ∗ times]
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To simplify the understanding, in figure 10 is represented the flowchart for this algorithm
showing each step.

Figure 10: Flowchart of radomGeneratorA algorithm.

Now let us explore the second method by function randomGeneratorB; this one has the same
arguments as randomGeneratorA and returns also an array of type numpy.array[numpy.array[m] ∗
times] since they are both sampling from identical conditions only with different methods.
Here, we start at the same point as before generating an array with all possible output combi-
nations but then calculate the probability for each possible state and save the cumulative sum
of the found values in a new array probs. This means that now we have an array in range 0 to
1 where each positional spacing corresponds to a probability of a state in array states. Next
we randomly select values in this range in y. The distribution is uniform but the difference
probs[i + 1]− probs[i] for 0 < i < len(states)− 1 is not. The last step is associating the values
in y to the corresponding state and save those in accepted.

Comparing the two approaches we have that:

• Both generate an array states of the possible output combinations for a given m and n;

• Both methods select random numbers from a uniform distribution: method A generates
that for two arrays (one discrete for x yielding integers and one continuous in [0, 1]) and
method B generates one for the probabilities;
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• Rejection sampling from method A can be represented as in sub-figure 11a where we
only need to calculate probC(U, S, x[i]) ≤ y[i] for the chosen values of x. This means
that we don’t need to do strong simulation for all (m+n−1

n ) states at the cost of possibly
having a high rejection rate;

• Method B requires calculating the probabilities for all output states before starting to
chose samples which implies calculating (m+n−1

n ) permanents of size n but each value in
probs corresponds to a sample so that rejection rate is null (all samples are used, see
sub-figure 11b).

(a) (b)

Figure 11: Methods for sampling with both processes: sub-figure 11a represents sampling with random-
GeneratorA and sub-figure 11b represents sampling with randomGeneratorB. Dashed line
in sub-figure 11a represents the theoretical probability evolution of given ordered states and
the vertical lines represents the separation of states (it is a discrete value to chose in algo-
rithm for x) but the same does not happen for the probabilities. Sub-figure 11b represents
the cumulative vector probs and separations are proportional to the value in each position
of probs. In both of them we represent arbitrary samples given by black dots.

3.3 quantum implementation

Now let us discuss the quantum implementation using the software Strawberry Fields in
Python. The code presented below is still a classical implementation internally but it can run
in a quantum computer by changing the engine from simulator to remote engine which will
allow access to quantum chips in the future (see Appendix section B.1). The code is not as
transparent to the mathematical description as the previous classical simulation was but it’s
quite intuitive and easy to understand in comparison with the physical implementation.

For example take the code in 3.1 This code has the same functionality as function probC
from the previous classical implementation, taking the same input parameters:

1 de f probQ(U, inputQ , s t a t e s ) :
m=len ( inputQ )
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3 boson_sampling = s f . Program(m)

5 with boson_sampling . context as q :
f o r i in range (m) :

7 i f inputQ [ i ]==0: Vac | q [ i ]
e l s e : Fock ( inputQ [ i ] ) | q [ i ]

9 I n t e r f e r ome t e r (U) | q

11 eng = s f . Engine ( backend=" fock " , backend_options={" cutoff_dim" : m+1})
r e s u l t s = eng . run ( boson_sampling )

13

re turn r e s u l t s . s t a t e . a l l_fock_probs ( )

Listing 3.1: Boson Sampling Quantum Algorithm

Recall that linear-optical quantum computation starts with state preparation, in this par-
ticular model, with input Fock states |n⟩ followed by linear interferometry and finally measure
in Fock basis. In resemblance with quantum computation with the usual model, i.e. using
qubits, we can easily see the commonalities and let us name them explaining the previous
code.

The first thing to do is start a program for the linear-optical circuit we want and that is
done in line 3 using the number of modes attributed to variable m. Then, according to the
steps of quantum computation, we need to specify the initialization of the input states. In
order to do that, we create a cycle to run the entries (with variable i) of our input inputQ
and initialize that mode with a well-defined number state ni = inputQ[i] in lines 7 and 8.

After this, once the states are prepared, line 9 applies to our program the circuit repre-
sented by matrix U for evolution of initial states with the help of operation Interferometer(U)
which we’ll soon examine. The decomposition (made by a classical computer always) returns
the parameters for each beam splitter and rotation operations that are the equivalent gates
constituting our circuit (see circuit in figure 8).

The next step is to create the engine with the appropriate backend and it is not only
important but necessary to put a limit in the dimension using backend_options because, as
we know, the number of photons in a Fock state has no bound so we put one to be possible
to simulate in computation terms.

In probQ the arguments are similar but not equal to probC and it is because of the function
in return, namely all_fock_probs() that automatically generates the probabilities for all com-
binations. So lastly, we take results from the engine and return the probabilities associated
with each of the possible outcomes ready to be used.
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3.4 complexity analysis

Now let us start the comparison between these two methods (classical versus quantum
implementation) by taking a look at the computational complexity classes first in order to be
properly classify the run time and then see for the particular case of Boson Sampling.

3.4.1 Complexity classes

The first class we introduce is P problems where P stands for polynomial where a classical
computer can run/solve the program/problem in a number of computational steps (time)
that increases polynomially with the input size. This quantification is obtained estimating
the number of basic computational steps and finding how it scales asymptotically, as we did
for example in equation 50. The second class introduced is NP-problems where NP stands
for non-deterministic polynomial. In this class, finding the solutions can be inefficient and
have a characteristic that if they have one, it can be verified in polynomial time, that is,
the computational problem of verifying a proposed solution to a NP problem can be done
efficiently. In particular, all P problems are also in the NP class. To better illustrate this
computational complexity class, there are several problems thought to be hard and which fall
in this class, for example:

• 3−coloring - the problem consists in attributing 3 different colors or labels to neighbours
in a given structure usually a graph (we will develop this later in applications) that might
represent a map, a social network or many others and see if one can color each neighbour
with different colors. In order to see if there is a solution we need to run all nodes and
its neighbours while attributing labels. Finding solutions for the worst case inputs is
hard, but verifying it falls into P;

• Prime factoring - decomposing a given integer into product of smaller prime numbers.
Once again, verifying a solution is a simple multiplication but finding the correct answer
does not have a shortcut;

• Travelling salesmen - another problem solved with graph theory but consider a map of
cities and distances between them and a salesmen; what is the shortest route for the
salesmen to run every city exactly once and return to the origin? To find a solution we
would have to run all cities and its neighbours similar to 3−coloring continuously.

No algorithm was found for these problems that does not require running all possible paths
i.e. where the number of steps does not scale exponentially with the problem size. Related
to this and part of this second class, there’s another (subclass) called NP-complete. The NP-
complete set of problems have the property that every other NP problem can be reduced to
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them, that is, any problem instance can be translated to a problem instance of the complete
problem. An example for such class is SAT problems (logical formula satisfiability) where we
attribute logical properties to the problem and exhaust all possible results to find the correct
one. It consists on creating a proper model (assignment for the logical variables) for a given
Boolean formula such that it evaluates as True. If this model is found, the formula is called
satisfiable and, if for all possible models (different assignments) it returns False, then the
formula is unsatisfiable. For instance, in 3−coloring problem, instead of running all nodes
and its neighbours, we attribute colors to nodes and verify if this configuration is a solution.
If not, we distribute the colors over the nodes differently. Later we will encounter a class even
higher in this category: NP-hard; a problem NP-complete class can be reduced to a problem
in this class in polynomial time playing these two a similar role as NP completeness to NP. A
NP-hard problem is not exclusively a decision problem.

For our analysis we still require another class and it is called #P. This class includes a set of
problems which returns the total number of possible solutions to a problem, this is, counting
problems not decision. An example is the permanent and in the next chapter we will introduce
the hafnian which has the same nature. One can look at this class in the following way: given
a P or NP problem, instead of finding a solution, count how many different solutions there
are. This implies that most probably problems in this class are harder to solve than P or NP.

For this part we don’t need to get in a lot of detail but as was mentioned in several pa-
pers including Brod (2021) that there’s also a #P-complete subclass of problems similar to
NP-complete to NP which every problem in this counting category can be reduced to and
it has been proved by Valiant (1979) that the permanent is a #P-complete problem. This is
particularly important, as an efficient algorithm for the permanent would entail efficient algo-
rithms for all other #P problems. In the same article by Brod (2021), the author compares the
calculation of determinant to permanent to see where their complexity stands. The conclusion
is that the determinant can be efficiently calculated because of Gaussian elimination and this
lowers the complexity from #P to P. The same can not be done with the permanent and this
is ultimately the reason why Boson Sampling devices, whose probability amplitudes are given
in terms of permanents, are hard to simulate classically.

A problem is considered easy to compute if it runs in time that is at most a polynomial
with the input (any structure coded in bits representing either vertices or nodes of graph or
arrays etc). Some different run times are presented and ordered in table 1.

3.4.2 Complexity for Boson Sampling

The analysis and model studied by Aaronson and Arkhipov (2013) showed the complexity
and quantum advantage for boson sampling and here we show how the two implementations
(quantum and classical) are related. We will study now the complexity of calculating all



3.4. Complexity Analysis 51

Class Name
O(1) Constant
O(log N) Logarithmic
O(N) Linear
O(N × log N) Quasi-linear
O(N2) Quadratic
O(Nc), c > 1 Polynomial
O(cN), c > 1 Exponential

Table 1: Run time for algorithms; a program with complexity O(g) limited by the function g.

probability amplitudes (eq. 50), each of which is given by a permanent (eq. 48). Depending
on the method to adopt, the complexity is very different for computing the permanent with
our direct naive algorithm or with Ryser formula but either way it is important to note that
the size of the input matrix US,T is the number of photons N = ∑m

i si and not the number of
modes of the system. In the case of quantum algorithm, the complexity falls mainly into the
interferometer decomposition. The algorithm for implementing this decomposition falls into
solving a linear system (translation for finding Tm,n that nulls certain elements) and a cycle
to run the diagonals. This leads to a complexity proportional to N3 which is polynomial and
as such can be efficiently done by a classical computer.

In the original paper for this model Aaronson and Arkhipov (2013), the authors consider a
"standard initial state" |1k⟩ that consists of one photon in the first k modes (the remaining
are all zero) without any loss of generality:

|1k⟩ := |1, ..., 1, 0⟩ .

For our main code of classical implementation via formula in Eq. 48, to test the complexity of
the program we test for an input state |1k⟩ as discussed followed by calculating the probability
of a single state. Since the complexity grows mainly with the permanent, calculating the
probability for all possible output combinations equals solving the permanent of a matrix
with same dimensions; so the time to solve in the latter is a multiplication of the one obtained
times Bm,n. In figure 12 are the plots for our complexity tests. All the tests and simulations
presented where processed in a computer with the following specifications:

Caption : Intel64 Family 6 Model 142 Stepping 10

Processor : Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz

Cores : 4

Logical Processors: 8

Max Clock Speed : 1992 Mhz

RAM : 8GB

L1 cache : 256KB
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L2 cache : 1.0MB

L3 cache : 8.0MB

(a) (b)

Figure 12: Study of complexity for boson sampling code; in sub-figure 12a was tested the function
probC for the same input and output states given by |1N⟩ with N equal to dimension of a
Haar-random matrix U which equals a state made out of 1’s in all input modes (a feasible
state in physical apparatus) and calculating the probability of the same state in the output.
In sub-figure 12b we altered our main function probC in the permanent to use the more
efficient algorithm mentioned by Ryser. Both sub-figures are in a logarithmic scale.

This evolution at an exponential increasing rate leads us to predict the permanent of higher
order matrices, for instance 60 lines/columns, would take over 3000 years to complete. To
obtain this estimative, we extrapolated results from calculating the permanent from sizes 1 to
27 with the function for the fit being the following given that we are using Ryser algorithm
from the library The Walrus:

de f fit_BS (n , c ) :
2 re turn c∗n∗2∗∗n

Listing 3.2: fit_BS function to extrapolate results.

The are several algorithms proposed to lower the complexity as already mentioned that take
in account properties of matrices. In Valiant (1979) was studied the computational complexity
of the permanent of matrices with only 0 or 1 entries and concluded it was still #P-complete.
Other two examples in this category are Gurvits’s algorithm Aaronson and Hance (2014)
that can solve the permanent efficiently (in polynomial time) for matrices with both real and
positive numbers and Glynn’s formula for repeated rows or columns Glynn (2013). Another
proposal was present in Clifford and Clifford (2017) that lowers the time complexity from Eq.
50 to:

O (poly(m, n) + (n2n))

Their algorithm does weak simulation without requiring strong simulation first (as opposed
to our proposal); to generate a sample (or event) we need approximately to calculate two
permanents and this follows the same theoretical probability distribution as it is required.
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This too small and simplified presentation of the algorithm is enough to see that the classical
approach is still exponential but at a much smaller rate forcing quantum implementation to
reach a much higher level to show quantum supremacy.

3.5 experimental challenges

Besides the computational complexity, there’s another part to consider: the physical imple-
mentation. As we all know, classical electronic computers are a mature technology. However,
for quantum computers there are several points like photon loss, decoherence and others that
make implementation difficult so let us consider them too. A first detail that is strongly
related to computational complexity is photon indistinguishability. Distinguishable particles
can be considered as classical ones: they can be distinguished by different times of arrival, po-
larizations, or frequency (spectrum). If this is the case, the system can efficiently be simulated
because the absence of superposition leads to the absence of the phases in unitary matrix U
because, in fact, the change on elements lead to a probability for those photons in input i and
output j to be related to |Ui,j|2, i.e positive number; the permanent is now of a positive real
matrix and we stated there is an efficient algorithm for matrices of this type by Aaronson and
Hance (2014). A second detail is state preparation; photon number states are relatively easy to
understand and they are the basic states of the quantum theory of light but they are less easy
to generate experimentally. This is an important point in which this model becomes difficult
to implement and control because it is physically hard to produce a single photon1 for scalable
solutions. Due to nonlinear optical processes being probabilistic, they cannot simultaneously
achieve a high probability of producing a photon and a high single-photon fidelity. Not only
producing |1⟩ is not deterministic, the typical source emit the zero-photon term with highest
probability and emit higher order terms with exponentially decreasing probability.

The major concerns about optical elements are focused on single photon preparation, photon
loss, network errors and detection imperfections. This increased the quantum complexity in
such way that this model did not offer advantage: computationally, classical computers run
Boson Sampling in the #P class and quantum computers with only in a polynomial complexity
but physical implementation for the first is almost automatic but for the latter increased a
lot. Fortunately, more recently in Wang et al. (2019) a Boson Sampling device was reported
with 20 input photons in a linear interferometer with 60 modes. The authors were able to
detect up to 14 output photons with single-photon detectors.2 Nevertheless, their computer
is non-reconfigurable so it is yet not ready for practical applications.

The difficulties and the non-universality of this model motivated to consider other similar
approaches such as Gaussian Boson Sampling due to deterministically preparation of input

1 Usually used spontaneous parametric down-conversion (SPDC) or quantum dots.
2 There are detectors that can count a few number photons, but they are based on superconductor wires. More

common are APDs that saturate a single photon, do not detect more than one photon per mode.
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states (that we will study in next chapter) and Scattershot Boson Sampling Bentivegna et al.
(2015).

One thing that we need to work with in all implementations of quantum computation is
that the outcome is probabilistic so it is not easy to interpret the samples. Another aspect
that already was mentioned is they have errors associated such as losses of coherence, particles
absorbed, preparation of states (either with a different value or gates with slightly different
parameters and many others). Besides, when analysing the complexity of programs in earlier
sections we considered classes where validation of a solution is efficiently verified but verifying
outputs from a quantum computer might not be efficient. A straightforward reason is that
we do not have previous access to how it should behave and, as we are well aware, strong
simulation via classical computer is not the way to do it. Some solutions might be verified
efficiently, for instance factoring, but that is not true for all problems. For all these reasons,
we need to find reasonable validation criteria for near-term experiments. This is, if we use the
intended model, how do we know if the outcome is as expected and a valid sample? There are
several methods for verification and validation of quantum samples.

A way to do this is with Bayesian analysis of results. There are several proposals for this, we
will describe one example next. Produce a number x of samples with the quantum computer;
if we can calculate the probability for these outputs, we do it and conclude the following: if
a quantum computer is working as predicted, the probability of returned events tend to be
higher than other distributions other than the one sampled from. This is, if there is too much
noise, it will generate outputs that are either uniform or weakly correlated with the output
we would have from an ideal device. Otherwise, it will output events with higher probability
leading to higher probability values of samples on average.

Let us translate this idea into a simple validation procedure, a statistical test called the
likelihood ratio test Cover and Thomas (2005), that we can apply to our simulated samples.
To process the results we can give for instance 3 hypotheses that may describe the process
generating the samples:

A It is generating samples according to the theoretical probability distribution as intended;

B The device is dominated by noise and output probability is uniformly distributed;

C Input photons are distinguishable .

To validate actual samples we need to generate data according to a distribution (here either
A, B or C), then calculate these three probability output given the method we are comparing
to and observe the likelihood ratio to see which hypothesis it approximates. Given samples
from a GBS device, if the answer is the first one (A), we can start to gain some trust in it. So
now we make some tests: generate samples as above in particular conditions and compare.

The probability distribution for uniform samples is simply 1/number of possible states for each
state. Now we need to calculate the probabilities for distinguishable photons. From Moylett
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et al. (2019) we have that for this case the same arguments (input S, output T and unitary
U) but the formula 48 is rearranged to:

Pr(S→ T) =
perm(|US,T|2)

∏i si! ∏j tj!
(51)

This is, the probability for our arguments instead of being the permanent of the amplitudes
for the photonic many-particle paths, we make the permanent of the squared absolute values
of amplitudes. As consequence of distinguishability for input photons, the system can be
efficiently simulated as referred in complexity section with Gurvits’s algorithm since |Ui,j|2

for each i and j leads to a positive real number (the corresponding probability). This is
implemented in the following function probCdisting.

de f probCdist ing (U, S , T) :
2 f a c t o r i a l=1

f o r i in T: f a c t o r i a l=f a c t o r i a l ∗math . f a c t o r i a l ( i )
4

rows = [ i f o r s u b l i s t in [ [ idx ] ∗ j f o r idx , j in enumerate (T) ]
6 f o r i in s u b l i s t ]

columns = [ i f o r s u b l i s t in [ [ idx ] ∗ j f o r idx , j in enumerate (S) ]
8 f o r i in s u b l i s t ]

prob = perm(np . abs (U[ : , columns ] [ rows ] ) ∗∗2) / f a c t o r i a l
10 re turn prob

Listing 3.3: Function to calculate the probability of a BS device with distinguishable input photons.

The function in code B.14 returns the probabilities for BS samples for theoretical prediction
and for the uniformly distributed outcomes [probBSampler, probUniSelec] in order to compare
which of A or B from our hypothesis is more likely. This comparison that we are about to
make is called the likelihood ratio test; it compares two statistical models based on their
likelihoods. To perform this test we do the following: with the results for the two probabilities
returned we divide these factors (probBSampler/probUniSelec) and take the product of each
fraction obtained. In analogy with this function, we have the next function distingVal()
that returns probabilities for BS model with indistinguishable and distinguishable photons in
[distBS, distDisting] respectively given samples from BS distribution in Eq.48.

de f d i s t i ngVa l (U, f , t imes ) :
2 m=len (U) ; s t a t e I n=s ta t e s_g ive r In (m, f )

samplesBS=randomGeneratorB (U, f , t imes )
4

distBS=np . array ( [ probC (U, s ta t e In , T) f o r T in samplesBS ] )
6 d i s tD i s t i n g=np . array ( [ probCdist ing (U, s ta t e In ,T) f o r T in samplesBS ] )

re turn [ distBS , d i s tD i s t i n g ]
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Listing 3.4: Generation of samples from BS distribution to test validation; returns probabilities for
distinguishable and indistinguishable distributions.

In figure 13 we have the resulting values for these two comparisons: hypothesis A vs B in
sub-figure 13a and hypothesis A vs C in sub-figure 13b.

(a) (b)

Figure 13: Validation of Boson Sampling samples in comparison to uniform sampler in sub-figure 13a
and the model with distinguishable input photons in sub-figure 13b. Both plots show the
evolution of probability of success in a logarithmic scale for number of samples in range 1
to 500 for a Haar-random unitary of size 4 and input state |1, 1, 1, 1⟩.

From this figure we can conclude that if our device samples like the ideal model, we can trust
it is sampling correctly since the increase in the fraction product is exponential and for only
500 samples we have a result in order of 10113 in the comparison against a device that outputs
uniform noise, and 10182 against a device whose input photons are perfectly distinguishable.

On the same note, we can generate samples from a device dominated by noise i.e. where
samples are uniformly distributed and test validation once more. In this case, instead of gener-
ating samples with our generators (rejection sampling or brute force) we simply generate the
possible states and randomly chose from this array a given number of times for the sample size.
The function unifGenVal in code B.15 does this selection and returns [probUniSelec, probBS].
In sub-figure 14a we can trust that those samples are much more likely to be from a uniform
sampler than a BS device reaching a product of probability fraction in order of 10122. We see
that validation is in the same order as tested previously with BS generator in sub-figure 13a.
Also, in the same figure, in sub-figure 14b we compare once more BS model with distinguish-
able photon (similar to sub-figure 13b) but for more modes and observe that the confidence
in our model grows - the ratio is of order 10220 as opposed to previous 10182.

The three hypotheses here considered are extremes: ideal boson sampling and a all-noise
device but we have a considerable difference between them, the rate at which the trust in our
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(a) (b)

(c) (d)

Figure 14: Testing samples for a uniform sampler testing hypothesis A versus B in sub-figure 14a once
again for a Haar-random unitary of size 4 and input state |1, 1, 1, 1⟩; in sub-figure 14b we
tested samples from BS distribution for higher modes (a Haar-random unitary of size 5 and
input state |1, 1, 1, 1, 1⟩) to test distinguishability. Last two sub-figures show the likelihood
ratio test from a BS sampler with distinguishable input photons compared to uniform dis-
tribution probUniSelec/probDisting in 14c and to an ideal BS probBS/probDisting in 14d.

samples goes is exponential and we only tested for a small device; for 4 mode interferometer
we detected exponential rate quite visible and for 5 mode interferometer we saw an evolution
with even less noise. To complete these validation experiments, we also generated samples
according to distinguishable photons distribution; it was compared hypothesis C to A and
B calculating the likelihood ratio of probabilities prob(B)/prob(C) and prob(A)/prob(C).
We can observe the opposite of what was seen so far: tested from a probability distribution
and the product of their probability values was in the denominator. The resulting plots (in
sub-figures 14d and 14c) is still in logarithmic scale having a mirror effect compared to tests
above.

All quantum circuits that show quantum supremacy used some form of validation to gain
trust in their samples and all of them require some probability calculation via a classical
computer. As we are well aware now, this has a clear limitation due to the size that it is
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possible to simulate and, in order to limit the size, a possible trick is to prepare a system
arbitrarily as before and change some settings afterwards; these changes are in this case the
two mode gates connecting the middle part of the circuit where now the particles in the first
half do not interact with the second and a classical computer can simulate them separately,
i.e., calculate permanents with half the size which is a huge difference considering exponential
growth of complexity.

A last consideration we should reflect on is then the rate of sample generation by an actual
BS device since for each test we need more than a single sample. Sampling rates decrease
with the depth of the interferometers, due to photon losses, and the quality of the output
is directly affected by less-than-perfect photonic indistinguishability. For the experiment by
Wang et al. (2019) in generation of 20 photons and detection of 14 they generated samples at
rate ∼ 6 per hour. Other proposals detect at different rates and for Gaussian Boson Sampling
by Arrazola et al. (2021) (next chapter: the experiment is similar with linear interferometry
and photon detection), photon number event rates were: for detection of 4-photon events, an
average event rate of 10000 events per second; 10-photon events at 270 events per second;
and 19-photon events at 0.3 events per second. There is a variant of Boson Sampling called
Scattershot Boson Sampling that increases the speed of quantum devices and Bentivegna et al.
(2015) made this experiment and estimated a runtime of ∼ 107 to 108 seconds for a 2000-event
with Boson Sampling that with their experiment, under same conditions, is about 50 seconds.

3.6 numerical experiments

Having only results for classical simulation, we can process those samples and compare one
another (rejection sampling and brute force) and with the theoretical prediction. To do so,
we first implemented a function in Appendix B.16 to treat this data: it generates samples
from randomGeneratorA and randomGeneratorB mentioned in the Simulation section and
calculates the three distributions. Distribution from samples is a simple fraction of samples
for a given state divided by the total number of samples. To better visualization we eliminate
states whose probability in all three distributions are equal to zero (or near zero around a
value ϵ = 0.00001). It returns the following list:

dists = [statesp, distT, distA, distB, occurrencesA, occurrencesB]

where statesp are the remaining states with non-zero probability, distT, distA and distB are
the three distributions and occurrencesA and occurrencesB are the occurrences from sampling
methods. Last but not least, we organize and plot the results. To do a complete plot, we
calculate the error bars for the samples using this last two (occurrencesA and occurrencesB)
that are not essential for plotting distributions alone but are important factor for sampling
the error associated. In Appendix code B.17 is the function that plots the error graphics
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from previous function and the next two lines of code represent the calculation of error for
each sampling distribution computing the standard deviation for binomial distribution i.e. the
error is given by:

error =
√

Np(1− p)
N

1 yerrA=np . sq r t ( d i s t s [4 ]∗(1 − d i s t s [ 2 ] ) ) / samples
yerrB=np . sq r t ( d i s t s [5 ]∗(1 − d i s t s [ 3 ] ) ) / samples

Listing 3.5: Error bar calculation for methods A and B.

Now, running the code from both implementations (classical and quantum), it is expected
to run according to the model and this allows to simultaneously show properties of the physical
construction, i.e. show how the elements of the interferometer behave with different inputs
since the model is based on physical elements. The number of samples to test from is chosen
to obtain a reasonable error bar where our simulation can be compared to theory. Also, from
rates mentioned in implemented experiments, they seem likely to allow them. Since for now
we have restrictions to use Xanadu’s quantum computer, in this section we will only proceed
with our code instead of Strawberry Field’s simulators.

A property to easily observe is bosonic coalescence which for the case of two indistinguishable
photons incident on a balanced beam splitter interferometer, they stick together in the output
of the device. This is predicted by quantum theory as a consequence of the bosonic nature of
light as we saw in previous chapter the so-called Hong-Ou-Mandel effect Hong et al. (1987)
and can be generalized to several photon numbers on the input and multiple modes. To verify
these properties let us consider two different types of matrices that describe interferometers
having some degree of symmetry and which have recently been implemented experimentally:
Sylvester in Viggianiello et al. (2018) and Fourier.

To begin with, let us define Sylvester matrices: for dimension N = 2p with p an integer are
defined as:

H(2p) =

(
H(2p−1) H(2p−1)

H(2p−1) −H(2p−1)

)
where H(20) = H(1) = 1

Fourier matrices (in accordance to Discrete Fourier Transform DFT) is defined as:

Fi,j =

(
ω jk
√

N

)
where ω = exp

(
−2πi

N

)
and {j, k} = 0, ..., N − 1
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The unitaries associated to each Sylvester matrix are obtained by the simple rescaling factor
1/
√

N. For matrices with dimension 2× 2 and 4× 4 we have Eqs. 52 and 53 respectively for
Fourier and Sylvester constructions:

UH =
1√
2

(
1 1
1 −1

)
UF =

1√
2

(
exp(−πi0 · 0) exp(−πi0 · 1)
exp(−πi1 · 0) exp(−πi1 · 1)

)
=

1√
2

(
1 1
1 −1

)
(52)

UH =
1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 UF =
1√
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 (53)

For a two mode system, these two constructions are the same and the output probability
distribution is the same for both however, for higher dimensions they differ - the modulus
of each matrix element is always constant, but the phases differ in the two constructions;
in particular, H only has ±1 phases, contrary to the Fourier in d dimensions, where the
phases are dth roots of identity. This seemingly small difference leads to a distinct pattern in
the output where we verify a suppression of states: combinations of input and output Fock
states which result in zero transition probability due to destructive interference are considered
suppressed. Sylvester matrices present more suppression then Fourier ones (the fraction of
suppressed states is higher) and this can and will be verified with our code. Consider the
states to test (output) for each example with the following construction: for N photons, the
sum of number of photons per mode is N and each ni is less or equal to N (∑i ni = N and
ni ≤ N where i = 0, ..., m).

For two modes, matrices above are equivalent to the balanced beam splitter which is defined
with θ = π/4 and ϕ = 0 in our previous characterization. In figure 15 we have the probability
distribution from theoretical model and sampling from two methods for this case (m = 2) for
two different matrices: random and DFT/Sylvester.

There are several points to note from the figure. First of all, the sampling distributions
and theoretical ones are similar and the error bars shows us a good measure of error for our
samples. In the case of random matrix in sub-figure 15a probability of |0, 2⟩ and |2, 0⟩ are
equal and the same can be observed in the following. Sub-figure 15b shows a zero probability
for output |1, 1⟩, with one photon per output mode. This last property was introduced and
developed in last chapter discussing entanglement, in section 2.4.4.

For three modes there is no Sylvester matrix, as it is only defined for dimension which are
powers of 2. On the contrary, the Fourier matrix in dimension 3 is:

Ut =
1√
3

1 1 1
1 ei2π/3 ei4π/3

1 ei4π/3 ei8π/3


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(a) (b)

Figure 15: Distributions obtained for random matrix for the uniform Haar ensemble in 15a and DFT/-
Sylvester matrix in 15b. Grey bars represent the theoretical distribution obtained from the
model equation in 48, blue squares represent a distribution from samples via randomGener-
atorA and green triangles represent a distribution from samples via randomGeneratorB. For
each test, 300 samples were generated.

Making the calculations for this matrix and denoting |{n, 0, 0}⟩ as the superposition state
of n photons distributed with equal probability in each mode, for input |1, 1, 1⟩ the output
state is:

|1, 1, 1⟩ Ut−→
√

1
3
|1, 1, 1⟩+

√
2
3
|{3, 0, 0}⟩

This matrix is called a tritter which is the equivalent of balanced beam splitter for 3 modes.
Now, we draw a Haar-random unitary of 3 modes, and compute the exact probabilities for

different outputs, using a |1, 1, 1⟩ input. Again, we perform a sampling of a fixed number of
events, using the two previous generators. The results are presented in figure 16.

(a) (b)

Figure 16: Distributions of 3-mode systems for the uniform Haar ensemble in 16a and DFT matrix in
16b. Grey bars represent the theoretical distribution obtained from the model equation in
48, blue squares represent a distribution from samples via randomGeneratorA and green
triangles represent a distribution from samples via randomGeneratorB. For each test, it was
generated 500 samples.

Here comparing the two sub-figures 16a and 16b we can see the number of states without zero
probability decreased noticeably as expected. For sub-figure 16a the distribution is random
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and for sub-figure 16b follows the prediction above: output |1, 1, 1⟩ had probability around
1/3 ≈ 0.33 and each |{3, 0, 0}⟩ state had probability around 2/3/3 ≈ 0.22.

For four modes we can repeat the simulation of distributions for Haar-random, DFT and
Sylvester matrices where now we expect to see a difference between the last two as in Eqs. 52
and 53 as opposed to two modes where they were the same and the sampling corresponded.
So what do we expect this difference in matrices to be translated to? For two modes we
have a matrix composed with only 1’s but for four modes we have the imaginary number i
substituting some of those 1’s. The implication is the phase in these modes which will lead
to distinct interference of particles. In figure 17 we show the probabilities of different outputs,
again for an input of one photon per mode.

(a) (b) (c)

Figure 17: Distribution plots for 4-mode matrices. Distributions obtained for random Haar-generated
matrix in 17a, DFT matrix in 17b and Hadamard matrix in 17c. Grey bars represent the
theoretical distribution obtained from the model equation in 48, blue squares represent a
distribution from samples via randomGeneratorA and green triangles represent a distribution
from samples via randomGeneratorB. For each test, it was generated 10000 samples.

Recall that for better visualization, states with zero probability (both theoretical or from
sampling) or a value close by a small error where discarded. This allows to see a significant
difference between sub-figure 17a and sub-figures 17b and 17c. Between all these sub-figures
we can observe in sequence the suppression for the three matrices as interferometers: the first
has little or no suppression (using coefficient Bm,n for the number of output combinations we
have 35 which is the exact number of states in sub-figure of Haar-random matrix so there is
no suppression), the second has a substantial difference visible directly from the number of
states and in the last one the number of states allowed are similar to DFT-matrix but has a
state with a significantly higher probability. One can observe this last difference for the same
number of particles but more modes which we have an example in figure 18 for m = 8 and
n = 4. There we can clearly see that many more input/outputs are suppressed for the case
of Sylvester, than for the case of Fourier. In this particular simulation, the number of states
with non-zero probability for Fourier matrix was 264 states and for Sylvester matrix was only
90. We can see once more the steps in the evolution of probabilities but suppression leads to
smaller error bars in Sylvester matrices.
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(a)

(b)

Figure 18: Output probability distributions for 8 modes with 4 input photons for DFT matrix in 18a
and Sylvester matrix in 18b. Each sampling distribution was calculated with 10000 samples.

At last, we realized a simulation closer to the ones mentioned for physical experiments where
number of photons was related to modes via n2 ≤ m. The results for 3 photons in 9 modes are
plotted in figure 19. For such simulation, we expect arbitrary Haar-random interferometers
to have distribution that is uniform just like in figure 19a where the ordered probabilities for
each output form kind of a continuum. In contrast, in figure 19b the ordered probabilities
have steps due to the symmetry present in Fourier interferometers.

3.7 summary

In this chapter our goal was to describe a model for quantum computation based on a
linear-optical network with input Fock states called Boson Sampling. To achieve that goal we
started by describing the model mathematically; we saw how an interferometer acts on our
input, simplified some formulas for the particular case we consider. We concluded that such
network followed by photo-detection is given by equation 48 that gives us the next probability
equation:

Pr(S→ T) =
|perm(US,T)|2

∏i si! ∏j tj!

From here we know that the probability prediction is intimately related to the calculation
of the permanent so for our next step we implemented a code to solve this problem - used
classical function probBS - can took a more careful look at this new function by analysing
the complexity. Our code (transparent to the formula) corresponds to O(N!N) operations
which is intractable. However, there are other algorithms to perform this and a good example
is Ryser’s that has a run-time O(N2N), still exponential but at a much lower rate. To fully
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(a)

(b)

Figure 19: Output probability distributions for theoretical results and two sets of samples with ran-
domGeneratorA and randomGeneratorB for 9 modes with 3 input photons for random
Haar-measured matrix in 19a and DFT matrix in 19b. Each sampling distribution was
calculated with 10000 samples.

simulate the model we have to consider all possible output states for a given input so the code
for this probabilities has time steps defined in equation 50.

In order to generate samples and predict this model behaviour we pursued two approaches.
The first consists on rejection sampling method where we generate samples and exclude those
outside our interest (see sub-figure 11a) and in the latter we generate random numbers where
each corresponds to a sample (see sub-figure 11b) that follows our model probability function.
Note that both are based on strong simulation. Then we took advantage of code writing to
implement a quantum algorithm by Strawberry Fields language, a code that also simulates the
quantum system but can be used to code actual quantum chips by a small change of backend
to a Boson Sampling device when access is provided. With our code complete, it is time to
analyse its complexity in more detail. For the model, we showed that running this code is a
complex problem belonging to a classic of counting problems #P-complete. This started to
be a good starting point to demonstrate quantum supremacy since this is a hard problem to
solve with a classical computer but a quantum approach would to it naturally which leads us
to discuss the experimental challenges.

Since there are many algorithms to solve the permanent, some are considered efficient (poly-
nomial run time) for particular conditions such as for a real, positive-valued matrices in the
argument of the permanent function as a consequence of photon distinguishability. Other
challenge is state preparation where single photon generation proved to be hard for scalable
solutions. Detection of photons is also hard if we intended to return von Neumann measure-
ment instead of avalanche. Along with these there is also photon loss, network errors and
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detection imperfections that we expect to improve in a near future. Concerning validation of
quantum outputs, i.e. actual samples, we made some tests to show how to validate samples
from a quantum device. We compared samples from a Boson Sampling distribution to a sys-
tem with distinguished input photons and also to a uniform sampler (device fully made out of
error). For validation proposes it was also generated samples for a system with distinguishable
input photons to compare to BS and dominated by noise systems.

Finally, we made some numerical experiments for Haar-random, Sylvester and DFT matrices
where the last two have some symmetries. Here we were able to see some aspects previously
mentioned for instance entanglement and quantum suppression.

Given this model, a Boson Sampling device is an amazing choice to show quantum supremacy
but their applications are still limited due to physical implementations and theoretical devel-
opment.



4

G A U S S I A N B O S O N S A M P L I N G

Following the analysis in chapter 2, we can conclude that Gaussian states are states whose
phase-space description is simple and that is precisely why one can easily simulate them in
a classical computer; initialization is based on describing the displacement vector and covari-
ance matrix. Taking those states and applying transformations that preserve their Gaussian
nature (Gaussian transformations), it is possible to track the evolution efficiently on a classi-
cal computer because it is given by matrix multiplication, and the dimension of the matrices
D scale as 2 · N with N number of qumodes (Bartlett et al. (2002)). However, if one in-
troduces a non-Gaussian element either to the input states, the operations in the middle or
in measurements, the computation is no longer simple/trivial. That is what was introduced
in last chapter 3 where the non-Gaussian elements were the state initialization (Fock states)
and measurements. Gaussian Boson Sampling (GBS) is a linear-optical computation model
where the non-Gaussian ingredient appears only at the final measurement step. This model
uses Gaussian states with photodetection which is the best proposal for computation advan-
tage. Besides demonstrations of quantum computational advantage, GBS also serves as a
building block for non-Gaussian approaches such as GKP states with efficient non-Guassian
input preparation (with subtraction of photons in state prepartion) that we will mention in
Applications chapter.

4.1 gbs model

Up to now we have reviewed different quantum states of light and their representation, and
used Fock states and linear-optical evolution to describe the Boson Sampling model. The next
step in constructing our GBS model is equivalent to what was studied with boson sampling:
with the previous background on Gaussian states and using the phase space methods as above,
it was shown in Hamilton et al. (2017) that if we generate N single mode squeezed states and
input them in a N-mode linear interferometer (built out of beam splitters and phase-shifters as
described previously), the probability of measuring a photon in each mode (Fock measurement
with nj = {0, 1}) is given by:

66
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Pr(n) =
1

n!
√
|σQ|

Haf(AS) (54)

In this equation we have the following elements:

• |σQ| = det(σQ) is the determinant of σQ;

• σQ is defined has

σQ = σ +
12N

2

where σ is the covariance matrix of the system to be measured/observed and 2N indicates
the dimension of the identity;

• Haf(AS) is the hafnian of the matrix AS and the explicit formula is given by:

Haf(AS) = ∑
µ′∈PMP

N

∏
j=1

ASµ′(2j−1),µ′(2j)

where PMP stands for perfect matching permutations for a general graph Björklund
et al. (2019);

• AS arises from a matrix A that is given by:

A =

(
0 1N

1N 0

)
(12N − σ−1

Q ) (55)

Similar to the matrix US,T in Boson Sampling, AS is also a sub-matrix obtained from
A (AS ⊆ A) where the choice for the terms are according to the detected photons
S = (S1, ..., Sm) in the measurement: the rows and columns i and i + m are repeated si

times (if si = 0, the corresponding rows and columns are deleted).

Note that the initialization is using only squeezed input states - a continuous variable state as
opposed to Boson Sampling that used photon number states - and for physical implementation
both squeezed and coherent are created from lasers but squeezing requires an extra effort so
why use this instead? There is a simple reason why this is the case: this model (along with
Boson Sampling) was developed to show quantum supremacy and coherent states alone can be
simulated efficiently, that is, in polynomial time, on a classical computer. Moreover, coherent
states are described by a displacement in the phase space, one that can easily be added to the
calculations and has no effect on the covariance matrix which plays a major role in the model.
Also, these states do not contribute to entanglement and any other informationally relevant
properties. Schuld et al. (2020) studied the effect of coherent states in the output since they
change the mean of the states while leaving the covariance matrix intact. For this reasons
and considering that states can be displaced at any time in the system without changing the



4.1. GBS Model 68

fundamental properties along with the fact that squeezed states already result in a difficult
simulation using photodetection, the model needs only use squeezed states as inputs. Another
consideration is the occupation number nj; the authors created that model for nj = {0, 1} but
developed for n ≥ 2 in Kruse et al. (2019). Repeating the calculations done for 0 or 1 output
photon per mode but for this case, we need to repeat the row and column for that mode j as
many times as nj (similarly to Boson Sampling). The resulting matrix AS does not correspond
to a valid covariance matrix so it is only used to determine the probability of higher order
events in the hafnian expression. This combination of state preparation with squeezed gates
to Gaussian operations and measurement with photo-detection is represented schematically
in figure 20.

Figure 20: GBS arbitrary circuit; according to description, the preparation is obtained with single mode
squeezing in each mode, then linear interferometry to process our states (here we have phase
gates R and beam splitters BS according to interferometer decomposition as described in
chapter 2), followed by photo-detection measurement of each mode.

Since this model in the original work (and the one we are using) is with specific initialization
and interferometry, together with the characterization on previous chapters about Gaussian
quantum information we can rewrite equation 54 in order to still have a generic one and make
it more transparent to use considering the specific generation/creation of modes and the CV
gates. Specifically, we want to use the code more easily to specify squeezing parameters and
unitaries, as directly as possible.

First, all the states start in vacuum state so the covariance matrix is σ = 1/212N and the
initialization relies on squeezing each mode by a value r (generic squeezing can be decomposed
as we saw in squeezing with r and phase rotation by ϕ that the latter can be incorporated
in the interferometer for simplification) which, based on equation 37, in the quadrature basis
corresponds to the evolution:

SSσS†
S with SS =

(⊕N
i=1 cosh ri

⊕N
i=1 sinh ri⊕N

i=1 sinh ri
⊕N

i=1 cosh ri

)
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The interferometer is made out of passive elements so the matrix describing it in quadrature
basis is a diagonal one with the unitaries U and U† just like what we saw in the boson sampling
model. Here we use directly the equations for phase rotation 27 and beam splitter 30 for
describing the evolution where the symplectic matrix for a general interferometer U is then

SI =

(
U 0
0 U∗

)
. The covariance matrix is then:

σ =
1
2

SISS1S†
SS†

I =
1
2

(
U 0
0 U∗

)
SSS†

S

(
U† 0
0 U⊺

)
(56)

We can start by calculating |σQ| for one mode: one squeezed with parameter r and identity
for the interferometer U = 1. Then σQ becomes:

σQ =
1
2

(1 0
0 1

)(
cosh r sinh r
sinh r cosh r

)2(
1 0
0 1

)
+

(
1 0
0 1

)
where we used SS = S†

S clearly obtained from the above. The identities multiplying are trivial,
then proceed with the square S2

S and finally sum the last identity. Now, with the property of
determinants of multiplication for constants (|c · A| = ck|A| with k the dimension of A) we
have the following:

|σQ| =
(

1
2

)2
∣∣∣∣∣
(

cosh2 r + sinh2 r + 1 2 cosh r sinh r
2 cosh r sinh r cosh2 r + sinh2 r + 1

)∣∣∣∣∣
To finalise, use the next two hyperbolic relations:

cosh2 x + sinh2 x = 2 cosh2 x− 1 ; cosh2 r− sinh2 r = 1

Then comes the simple result: |σQ| = cosh2 r. Generalizing this result, the phases for
example would be canceled since the elements multiply on the right by a phase and on the left
by the corresponding conjugated term; the phases that pass this direct calculation, are canceled
when calculating the determinant. As the matrix is unitary, it preserves the modulus, so for
m modes, |σQ| = cosh2m r if all modes are squeezed with the same parameter. For different
squeezing parameters,

√
|σQ| in formula equals to:

√
|σQ| =

m

∏
i=1

cosh ri (57)

Now, instead of calculating the covariance matrix, by matrix multiplication from function
arguments and calculating the determinant we can simply apply the previous equation. This
equality is also used in Strawberry Fields tutorials.

https://strawberryfields.ai/photonics/demos/run_gaussian_boson_sampling.html
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In the original paper of GBS, Hamilton et al. (2017) showed another equivalence. Given a
covariance matrix as defined in equation 56 above, we can rewrite 55 as:

A = B⊕ B∗ where B = U(⊕m
j=1 tanh rj)U⊺ (58)

turning equation 54 with these considerations into:

Pr(n) =
1

n! ∏m
i=1 cosh ri

∣∣∣Haf
(
[U(⊕m

j=1 tanh rj)U⊺]S
)∣∣∣2 (59)

4.2 code implementations

To study the behaviour of GBS, we first write the code translating eq. 54. Similar to boson
sampling, here we will first see the classical code implementation and then quantum code via
Strawberry Fields platform.

4.2.1 Classical and quantum algorithms

Let us begin with the classical code then defining function probGBS() in algorithm 4.1 where
the arguments (similar to probBS() in algorithm 1) are U and r that describe our system -
interferometer and initialization with squeezing, respectively - and T is the output state to
measure.

de f probGBS(U, r , T) :
2 N=len (U)

rows=[ i f o r s u b l i s t in [ [ idx ] ∗ j f o r idx , j in enumerate (T) ] f o r i in
s u b l i s t ]

4 f a c t o r i a l=1
f o r i in T: f a c t o r i a l=f a c t o r i a l ∗math . f a c t o r i a l ( i )

6

i f type ( r ) i s not type (0 ) and N>1:
8 e lements=[np . tanh ( i ) f o r i in r ]

tanhR=np . diag ( e lements )
10 A=multi_dot ( [ U, tanhR , np . t ranspose (U) ] )

numerator=np . abs ( thewalrus . ha fn ian (A[ : , rows ] [ rows ] ) ) ∗∗2
12 coshR=np . cosh ( r [ 0 ] )

f o r i in range (1 ,N) :
14 coshR=coshR∗np . cosh ( r [ i ] )

r e turn numerator /( f a c t o r i a l ∗coshR )
16

A=np . dot (U, np . t ranspose (U) ) ∗np . tanh ( r )
18 numerator=np . abs ( thewalrus . ha fn ian (A[ : , rows ] [ rows ] ) ) ∗∗2
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re turn numerator /( f a c t o r i a l ∗np . cosh ( r ) ∗∗N)

Listing 4.1: GBS Python Algorithm

From eq. 54 there are a few aspects we always need to calculate and those appear in the
first lines of code (from line 2 to 6): in rows there are the selected rows and columns to
chose from A to obtain AS calculated with two lists comprehension and then is calculated
the factorial of the output (n!). Now we go into specifics; r is a parameter describing the
squeezing parameters for each mode thus an array and the function enters the if condition if
r is an array as opposed to a single integer value applied to all of them. In this first case, we
calculate the matrix A = U · tanh r ·U⊺ in line 10 and calculate the hafnian of this matrix
with selected rows and columns all in line 11. Lines 12 to 14 correspond to calculation of eq.
57 and finally return the probability value in line 15. Alternatively, when r is a number, that
same value is applied to all qumodes and the last 3 lines of code do the simplified equivalent
work for this case.

Next we write the quantum algorithm with the help of function probGBSQ() which takes
similar arguments as probGBS() (equivalent to probBSQ()). The difference is that it does
not require a particular output state to measure so default is none and otherwise the function
returns a specific value to state in that argument. This difference is due to the intrinsic and
generic functions that run the program.

1 de f probGBSQ(U, squeeze , measure_states=’None ’ ) :
modes=len ( squeeze )

3 gbs = s f . Program(modes )

5 with gbs . context as q :
f o r i in range (modes ) :

7 i f squeeze [ i ]==0: cont inue
e l s e : Sgate ( squeeze [ i ] ) | q [ i ]

9 I n t e r f e r ome t e r (U) | q

11 eng = s f . Engine ( backend=" gauss ian " )
r e s u l t s = eng . run ( gbs )

13

i f measure_states==’None ’ : r e turn r e s u l t s . s t a t e
15 f o r i in measure_states :

prob = r e s u l t s . s t a t e . fock_prob ( i )
17 pr in t ( " |{} >: {}" . format ( "" . j o i n ( s t r ( j ) f o r j in i ) , prob ) )

19 re turn r e s u l t s . s t a t e

Listing 4.2: GBS Strawberry Fields Algorithm.
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Once more, we would like to have the program clearly allow both for calling a classical
simulation routine, or a real quantum device. This appears in the code as: state preparation
in lines 6 to 8 right after the program initialization in lines 2 and 3; then we call the Gaussian
backend to run this code and output the results in case that measure_states is ’None’. If not,
we use the fock_prob function to print the specific result(s). As we know, this language is
for quantum algorithms and implementation which can be achieved by changing the engine in
line 12 to obtain actual real samples.

4.3 quantum advantage

When analyzing Boson Sampling in section 3.4.2, we investigated the computational com-
plexity of classical simulation - in that case, it was due to the calculation of permanents. We
can easily spot a correspondence between equations 48 for BS and 54 for GBS; both calculate
the factorial of output and/or input distribution and then evaluate matrix functions whose
computation scales exponentially with matrix size - the permanent in the case of Boson Sam-
pling, and the hafnian in the case of Gaussian Boson Sampling. Some aspects remain the same,
for instance, interferometer decomposition which means the quantum program complexity does
not increase so let us analyse the parts were they are distinct.

In computational terms, we can assume that GBS is at least as hard to simulate as BS
because we have the following equality:

Haf

(
0 H

H⊺ 0

)
= Perm(H)

which means that the hafnian is a particular case of calculating the permanent and hence one
can always compute the permanent of a n× n matrix computing the hafnian of a symmetric
2n× 2n matrix. Put simply, if the hafnian could be computed efficiently, so could the perma-
nent. Thus, the computational cost of simulating a GBS model of interference of k photons
is the same (up to a polynomial factor) as simulating a k-photon boson sampler. In figure 21
we have a plot of the run time of the Hafnian and we can see that it is exponential, which
demonstrates resemblance with figure 12 for the permanent.

In paper by Gupt et al. (2020), GBS was benchmarked by running a classical code for
threshold detectors on the Titan supercomputer. Many algorithms were proposed to lower the
complexity of the programs by using threshold detectors instead of photon-number resolving
ones which is a good approximation for the case where the probability of photon collision is
low, i.e. particles distribute over different modes (for Boson Sampling it was sufficient to work
with n2 < N and use Haar-random matrices). The time-complexity for their algorithm under
these conditions is O(N22n) where N stands for number of modes and n number of clicks in
detectors. This algorithm lowers the time complexity comparing to algorithms with photon-
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Figure 21: Run time of Hafnian for GBS complexity study using hafnian() function by The Walrus
library (see code B.18). Hardware is the same as previous chapter. The figure represents
the time it took to calculate the Hafnian for matrices with increasing size from 2 to 40 in a
logarithmic scale for time.

number resolving detectors but, once more, it continues exponential and, as such, inefficient.
They treat each measurement as a linear combination of Gaussian operators and this requires
storing twice as many covariance matrices for each click detected hence the 2n part associated
to memory resources; thus, to compute all these matrices, run time also escalates exponentially.

4.3.1 Programmable nanophotonic chip

An important aspect to explore better is the physical implementation of such system; we
studied the computational hardness, now we will address more closely the physical require-
ments. For boson sampling this was the motivation to focus in a slightly different model
since state preparation was hard due to generation of single photons with high probability
and fidelity leading to a huge problem specially for scalable solutions. Here, the only different
feature in physical implementations is instead of Fock states we use squeezing gates to prepare
squeezed states from vacuum. Before advancing, note that although state preparation was the
main concern, switching these does not solve other problems not related to it directly such
as photon losses in interferometer (absorption), photon distinguishability and detector errors.
Exploring the covariance matrix σ or matrix A is the same since they are related as seen
before. Starting from all states in vacuum followed by squeezing and linear interferometry,
the matrix A can be decomposed as equation 58 where U is the unitary of the linear elements
and λi = tanh ri determines the squeezing parameters.

A = Udiag(λ1, λ2, ..., λn)U⊺
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In next section we will study the requirement of squeezing parameters for specific appli-
cations but for our purposes of quantum advantage in this chapter’s numerical experiments
we will use similar values to an implementation made by Zhong et al. (2021) and for the
interferometer U we will use a random Haar-matrix. To do so, we created a function that
generates random Gaussian values around a given mean value from function arguments that
it is expected to be in a range of squeezing parameters to implement in experiments:

1 de f squeezeDi s t (m, meanV) :
randVals=np . random . normal (meanV, 0 . 0 1 ,m)

3 i f meanV−0.01<np . mean( randVals )<meanV+0.01:
p r i n t (np . mean( randVals ) )

5 re turn randVals
e l s e :

7 re turn squeezeDi s t (m, meanV)

Listing 4.3: Generation of random squeezing values from a normal distribution around a value in
function argument.

A valid use for this function is for example squeezeDist(9, 0.45) where 9 stands for the number
of modes for our system and 0.45 the mean for the 9 squeezing parameters. This mean value
will be the one used in the experiment by Zhong et al. (2021) and from the Xanadu’s chip by
Arrazola et al. (2021) we see they are reasonable values to work with. If we have m = 9 and
meanV = 0.55, calculating the expected mean photon in output using equation 46 we have
that n = sinh(0.55)2 × 9 ≈ 3.01 hence we have a similar relation to n2 = m which was one of
the conditions in Boson Sampling for low collision of photons (this can also be deduced from
statistical analysis) and consequently allowing calculations/simulation with 0 or 1 photons or
the use of threshold detectors in physical implementations. For classical experiments this will
become important to permit larger simulations.

The recent most robust GBS experiment is by the previously cited article by Zhong et al.
(2021) - they prepared two-mode squeezed state as input states with 25 power sources and
inject them into a 144-mode interferometer finalizing with 144 single-photon detectors. They
detected up to 113 photon detection events and for these values, their quantum computer
produces samples in a sampling rate approximately 1024 times faster than a brute-force classical
supercomputer. The experiment here (similar to proposal by Wang et al. (2019)) is not able to
program the interferometer leaving the controlled portion to the emission of squeezed photons.
This work followed the implementation by Zhong et al. (2020) which performed experiments
with 50 highly distinguishable input single-mode squeezed states, which were fed into a 100-
mode ultralow-loss interferometer and finally sampled using 100 high-efficiency single-photon
detectors. They observed up to 76 output photon-clicks, which yield an output state space
dimension of ∼ 1030 and a sampling rate that is ∼ 1014 faster than using the state-of-the-art
simulation strategy and supercomputers. The authors could sample from the GBS distribution
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in 200 seconds that they estimate these would take 2.5 billion years to calculate on China’s
TaihuLight supercomputer.

The paper by Arrazola et al. (2021) introduced is a small device with eight modes (states
are initialized with four two-mode squeezing sources forwarded to two interferometers of size
4, one for each four-mode subspace). However, it is the first device based on GBS that is
programmable, and open for use on the cloud. Also, in chapter 3 we referred to this device
because of the sample rate that is higher than other proposals.

4.4 simulation

In the previous model with Boson Sampling, for each configuration, we could choose an input
state - usually with the relation of number of photons n being much smaller than number of
modes m - and then generate all possible output combinations for the number n, calculating
the probability associated with each possible output state. Now, with a Gaussian Boson
sampler, we will still make strong simulation with methods A and B (rejection sampling and
brute force) but we have an extra consideration; the input is not defined by a fixed number n
but rather squeezed states associated with a mean photon number n and a probability P(2n)
already predicted and given by:

n = sinh2(r); P(2n) = sech r
(2n)!

(n!)222n (tanh r)2n

With this, we need to introduce an upper bound on the number of output photon numbers
for which we will calculate the distribution since it is not possible to simulate all possible output
states, as strictly speaking there is no upper bound on the number of photons generated. This
is a consequence of using continuous-variable squeezed states, which are a superposition of
Fock states with arbitrarily high occupation number, as can be seen in Eq. 19. In order
to have a sensible choice for the cutoff photon number for simulation purposes, we observe
how P(2n) behaves and test the truncation number for different choices for this cutoff Fock
state. Function P(2n) was already shown in figure 9 when we introduced squeezed states. As
we can see from the figure, the vacuum state is always the state corresponding to maximum
probability, but the probability of higher occupation numbers increases as we increase the
squeezing parameter. To see explicitly the effect of simulation with a truncation number it
can be simply calculated with the function below sum_trunc():

1 de f sum_trunc (U, r , f ) :
inputs=s ta t e s_g ive r ( l en (U) , f )

3 re turn sum ( [ probGBS(U, r , T) f o r T in inputs ] )

Listing 4.4: Function sum_trunc to test the Cumulative Distribution Function for specific input
arguments.
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As before, we have a linear interferometer with passive optical elements which does not
change the total number of photons. This means the analysis of how the truncation affects
the fraction of events detected is independent of the choice of interferometer, so for figure
22 we picked a Haar-random one to plot the cumulative distribution function for different
truncation numbers; we chose to represent three different values for the squeezing parameter
(r = 1,2,3). This implies verifying the behaviour of the Cumulative Distribution Function
(CDF), defined as the total probability associated with the calculated events up to the chosen
photon truncation. As expected, the CDF increases monotonically as we increase the photon
number truncation. It is expected to approach 1 as the total photon number goes to infinity.
As we can see, the most significant increments are in the lower photon numbers so if we
increase the detection number for simulation we improve our results but at some point we do
not gain any significant improvement while making the calculations unnecessarily harder.

(a) (b)

Figure 22: Cumulative Distribution Function (CDF) for different squeezing parameters (U Haar-
random matrix, r = 2 and equal in every mode) for two modes in sub-figure 22a and
for four modes is in sub-figure 22b for all output events corresponding to each choice of total
photon number. Note that photons are emitted in pairs as seen theoretically in equation 19
so the CDF does not increase from any even integer to the following odd integer.

If we simulate GBS for a Haar-random matrix with all input squeezing parameters with r = 1
in a 9-mode interferometer the mean photon number is higher relative to the previous test
(with mean squeezing value according to an actual physical experiment) in a programmable
nanophotonic chip and, as consequence, the CDF is much smaller. The run time for detection
of 6 output photons was ≈ 63.11 seconds and for 8 output photons was ≈ 159.87 seconds
and the truncated CDF value was ≈ 0.19979 and ≈ 0.21067 respectively. We can conclude
that the state with higher values for probability are simulated but there is a huge cut due to
truncation. However, this is not much improved by increasing the cut-off value; the run time
grows exponentially, with a slow-growing CDF. Since there is low collision in output samples,
we now add another limit in truncation by imposing another restriction in output samples;
after all, the complexity is mainly focused on the Hafnian but increasing exponentially the
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number of states to detect also has a major impact not only in time but also memory resources.
We then write a different function using geraMF() to simplify and allow larger experiments:

1 de f geraMF(m, f ) :
s e t t = [ [ x ] f o r x in range (2+1) ]

3 a=aux (m, f , s e t t ) ; a . s o r t ( key=lambda s t : sum( s t ) )
re turn a

5

de f aux (m, f , s e t t ) :
7 i f l en ( s e t t [ 0 ] )==m:

return [ l f o r l in s e t t i f sum( l )<=m ]
9 new = [ ]

f o r l in s e t t :
11 f o r i in range (2+1) :

i f sum( l )+i<=f :
13 new = new + [ l + [ i ] ]

r e turn aux (m, f , new)

Listing 4.5: Second truncation method we propose to lower run time of output state generation.

m denotes the number of modes, f the total number of photons (summed over each qumode)
and for here, each mode, we impose a maximum photon number of 2, a value defined in the
second line of code 4.5. Comparing to previous state generation, given any m and f ≥ 0, they
can coincide (the returning array is the same) if we change this restriction presented but this
function is more efficient. For m = 16 and f = 2, previous method took ≈ 53.557 seconds
and geraMF() took ≈ 0.501 seconds. The difference in possible states is photons per mode
where for m = 6 and f = 6 states such as [0, 0, 1, 0, 3, 1], [4, 0, 0, 2, 0, 0] and [4, 0, 1, 1, 0, 0] are
not generated now. For m = 10 and f = 4, first method generates an array with length
1001 and takes ≈ 3.735 seconds to do it while this generates 891 states in ≈ 0.0160 seconds.
For the purposes of this chapter - for small simulations and to show a quantum advantage -
we will continue with the first and more complete state generation; in the next chapter this
motivation will become clearer/more explicit and even necessary to run some codes.

In figure 23 we have the CDF as before but now with a goal to see the effect of the second
truncation where we compare CDF for (1) a constant input squeezing parameter and (2) a
lower mean value that approaches values from physical implementations. In sub-figure 23a we
use arbitrary conditions with r = 1 and U Haar-random and comparing to sub-figure 23b we
have a squeezing distribution around a fixed mean value and the same interferometer U; the
first not only has higher cut in output samples i.e. lower CDF but the two state generation
have a more significant difference. With this we can infer that when conditions permit it -
mean photon number can be related to an approximate relation n2 = m and interferometer
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does not have a particular symmetry that favours collision - the second technique should be
used to allow computational simulation.

(a) (b)

Figure 23: CDF for the two processes of state output generation (codes B.19 and B.20). In sub-figure
23a we have this function for a constant input of r = 1 in every qumode where in sub-figure
23b we have the plot for a system with the same interferometer but the squeezing parameters
are the return from squeezeDist(9, 0.5). It was also tested with a constant squeezing in every
mode with the mean value r = 0.5 and the result was equal (by inspection) to sub-figure
23b.

Note that the CDF is independent of the interferometer so we could think of discarding it for
this test or use identity. It is correct to assume this but for the second truncation we can not
use this tactic since the output occupation numbers do depend on the interferometer design,
photons will not distribute and it leads to huge truncation by limiting ni to 2 for qumodes
with higher squeezing parameters.

These two aspects impose changes in our simulators from Boson Sampling. Recall method A
that uses the rejection sampling method; to choose random values of probability we randomly
selected values in range [0, 1] while selecting corresponding states to attribute those values.
This led to a high rejection rate because we could not lower the upper limit because we did
not have a clue of how much we could cut but most probabilities had small values. Here, from
the analysis of function P(2n) we know that the the lowest occupation number corresponds
to the maximum value for probability. The method is subsequently adjusted to this new
characteristic lowering the rejection rate. The code is mainly altered with the next lines of
code where line 1 calculates the maximum value and this is used as upper bound in uniform
selection in line 4 for variable y.

l imit_prob=probGBS( U, squeeze , np . z e r o s ( l en ( squeeze ) , dtype=in t ) )
2 photonOutput=states_giverOut ( l en (U) , l imit_photons )

x=np . random . rand int (0 , l en ( photonOutput ) , t imes )
4 y=np . random . uniform (0 , l imit_prob , t imes )

Listing 4.6: Adjustments in rejection sampling method to GBS simulator.



4.4. Simulation 79

For method B each random value corresponded to a valid sample so to include all possibilities
we also randomly selected values in range [0, 1]. The limitation in photon number detector
for computational purposes leads to a truncation (as we saw with function sum_trunc()) so
our interval now is [0, limit_prob] too where limit_prob is equivalent to returned value from
sum_trunc() which leads to next changes in code:

d i s t=np . array ( [ probGBS(U, squeeze , T) f o r T in photonOutput ] ) ;
2 l imit_prob=sum( d i s t )

probs=np . cumsum( d i s t )
4 y=np . random . uniform (0 , l imit_prob , s i z e=times ) ; y=np . s o r t ( y )

Listing 4.7: Main code of method B for sampling by adjusting to the correct probability interval.

As we see, both methods needed to be adapted to these conditions, and we did this by
including a new default argument corresponding to maximum n to detect called limit_photons
and the value assigned is 10. In this chapter we are missing numerical experiments and in
this case for small experiments with squeezing operator in the limit we expect collision of
photons in detection so the truncation number should be higher. However, for more realistic
simulations (for applications as we will see) and many others, we do not expect collision and
can even consider algorithms of single-photon detection as mentioned by Gupt et al. (2020)
for instance.

4.4.1 Numerical Experiments

Now we are ready to simulate and test some numerical experiments for Gaussian Boson
Sampling devices.

Returned samples from methods above have one small issue yet not solved. As we saw, the
sum of probabilities with a truncation number have a limit (< 1) and we can not simulate in
the full range so comparing the theoretical distribution to the sampling distribution one can
not expect them to correspond. In order to have matching values and have them on equal
footing, we will divide the theoretical distribution by the truncation from sum_trunc().

For two modes we can do a similar approach or a parallel as in Boson Sampling generat-
ing samples for a Haar-random matrix and with a balanced beam splitter both with same
input squeezing parameter. Also for a two-mode interferometer, we can implement two-mode
squeezed gate which given the decomposition in equation 42 corresponds to using once more
the balanced beam splitter but opposite squeezing parameters, i.e. r1 = −r2. In figure 24 we
have the distributions for different conditions over two modes. See codes B.23, B.24 and B.25.

A first aspect we observe is the reduction of states with an associated, non-null probability
and even that in all three sub-figures we have the highest probability state associated with
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(a)

(b) (c)

Figure 24: Distributions obtained for 2 modes with the uniform Haar ensemble in 24a, DFT matrix in
24b and two-mode squeezed gate in 24c. Vertical axis represent the normalized probabili-
ties with rescaling of theoretical values. Input squeezing parameters for the first two cases
were [2, 2] and for the latter was [2,−2]. Grey bars represent the theoretical distribution
obtained from the model equation in 54, blue squares represent a distribution from samples
via sampleGeneratorA and green triangles represent a distribution from samples via sample-
GeneratorB. For each test, it was generated 1000 samples with limit_photons = 15. It was
calculated the truncation number for each returning approximately 0.4435 and the number
of states represented (with non-null probability) was 62, 36 and 8 respectively.

the vacuum [0, 0]. From input states with r1 = r2 = 2 followed by a balanced beam splitter
we notice a reduction in diversity of states comparing to Haar-random matrix as should be
expected in light of previous conclusions of interference in DFT matrices. Even so, the major
difference was observed in the data presented in the last sub-figure 24c where we only got 8
states. Notice that the mean photon number for the two qumodes according to equation 46
is 2 · sinh2 2 ≈ 26.308. The first sub-figure 24a is a random distribution and even though the
limit is 15 photons, the times we ran the simulation the state [15, 0] or [0, 15] hardly appeared
which shows the low necessity for these extreme truncation values. Also, experimentally it
is used many modes with only a few photons per mode to simplify the detection process
because we are simulating a subset with computational boundaries but physical experiments
have some too. In the second sub-figure 24b it is easier to verify that the states are emitted in
pairs as envisaged by equation 19 and for the third sub-figure 24c we can observe the impact
of switching to two-mode squeezed vacuum states as predicted in equation 41.
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Another important aspect is that considering these constraints of two modes and upper
bound 15, the cardinality of possible outcomes is 136. However, for the random Haar-generated
matrix we only have 62 represented and running the code several times we did not obtain
simulations with more than 70 which means that even though we are restricting the system
to allow computational simulation, we did not obtain outputs with significant probability for
the highest occupation states.

For a more realistic case to study impact of truncation, allow us to consider an arbitrary
example for the conditions described in section 4.3.1 and Haar-random unitaries for interfer-
ometer once more. Here we are interested in studying the output truncation for simulation
since number of possible states increases considerably with the upper bound. We are simu-
lating a system with m = 16 modes, mean squeezing value 0.47 and total maximum number
of output photons 4 which is a reasonable value since 16 · sinh2 0.47 ≈ 16× 3.8024 ≈ 4. In
figure 25 we can see the resulting plots for a constant squeezing parameter versus the above
mean value. The plot itself is not very informative other than the clear step to vacuum with
highest value and the last two states represented are the same which indicates that even with
different inputs, the states with higher probability are focused in the same ones eliminating
states with zero probability those with more collision and higher total occupation.

(a)

(b)

Figure 25: GBS simulation of 16 modes with output generation with function states_giver() with limit
of output photon number 4. Vertical axis represent normalized probabilities. In sub-figure
25a the input is r = 1 and constant for all qumodes. For 25b the input has a mean squeezing
value meanVal = 0.47. Both were tested for an Haar-random interferometer.
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An important aspect to note is the effect of truncation in our tests using function sum_trunc():
for the case of sub-figure 25a we obtained ≈ 0.0164998, for sub-figure 25b ≈ 0.5619297 and for
a last test using similar conditions as sub-figure 25b but with the second truncation (geraMF())
we obtained ≈ 0.5611493. The abrupt difference between the first two is due to mean photon
number since we tested with limit 4 and the former has n = sinh2(1)× 16 ≈ 22.098 and the
latter around 4 photons. The difference the last two is only in the fourth decimal place which
leads us to conclude that we have motivation enough to use this latter truncation over the
original one.

From these tests, we have the vacuum state with highest probability value by far in all of
them but this is a state that usually is not the most relevant one for many applications and
often we will be looking for outcomes in a certain range. To select this it is implemented the
function postselect() that given samples and bounds for upper and lower limit, it returnes the
filtered samples:

de f p o s t s e l e c t ( samples , min_count , max_count ) :
2 re turn [ s f o r s in samples i f min_count <= sum( s ) <= max_count ]

With the numerical experiments above we can conclude that for Haar-random matrices the
output state displays reduced collisions and we do not need to simulate for much higher values
than 2 photons per mode and for real cases we can limit the upperbound for some applications
since they stand outside of our interest area.

4.5 summary

Motivated by the experimental challenges of Boson Sampling, in this chapter we studied
the Gaussian Boson Sampling problem by Hamilton et al. (2017). With squeezed vacuum
states as inputs, for a linear interferometer with photon detection in the end in each mode,
the output probability of pattern n is given by equation 54 where we have:

Pr(n) =
1

n!
√
|σQ|

Haf(AS) where σQ = σ +
12N

2
and A =

(
0 1N

1N 0

)
(12N − σ−1

Q )

where Haf is the Hafnian, a mathematical function is the same family as the permanent and
the determinant. S indicates the output where for each Si and m the number of modes, the
rows and columns i and i + m of A are repeated si times. The implementation is represented
schematically in figure 20. In order to a clearer code given the conditions of the interferometer
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and input being restricted to squeezed states, it was made a mathematical adjustment to
simplify the code. We rewrote equation 54 as:

Pr(n) =
1

n! ∏N
i=1 cosh ri

Haf(AS)

With theory presented we proceeded to writing the algorithms: first we dealt with the
classical approach, making use of Strawberry Fields function to optimize the calculation of
the Hafnian and then present the quantum algorithm that can be used to simulate as the
classical one or to run in the device by Xanadu company Arrazola et al. (2021). There we
were ready to analyse the complexity of GBS. The relation between Hafnian and permanent
is useful since if an efficient algorithm could be found to compute the first, the later could be
too and the complexity of current formula by Strawberry Fields was verified (figure 21). In
what concerns experimental challenges, for interferometer and detection the implementation
is the same as Boson Sampling but state preparation is easier (our initial motivation). To
study current implementations and be conscious of the limitations, we explored two proposals
of photonic chips constructed by the groups Zhong et al. (2021) and Arrazola et al. (2021).
Considering squeezing values from a normal distribution around a mean value ≈ 0.5 and are
shown to be doable but higher values can also be achieved.

With the algorithm to calculate equation 54 and the physical implementation discussed,
we then made a few adjustments to randomGeneratorA and randomGeneratorB; here we
must consider truncation since squeezed states have no upper bound on the possible observed
number of photons. A good estimate can be done by studying the mean photon value and
probability of detection to limit the output states to generate and test. This limitation is
required since classical algorithms can not test up to infinity and this helps making classical
simulation more productive. To improve this we created two functions for output generation;
both have the same arguments (number of modes m and total number of photons f ) but
return different arrays. The first is states_giver() that returns an array where each position
represents a state of size m, each mode is in range 0 to f and the sum over all modes is equal
or lower to f . The second called geraMF() is motivated by low collision events; it also returns
an array for a system of m modes and total photon number equal to f but each mode is limited
to 0, 1 and 2 photons. For higher dimensions this shows an enormous impact.

Finally, we made some numerical experiments and tested the previous assumptions for
several modes.



5

A P P L I C AT I O N S

The first model presented, Boson Sampling, is a non-universal model and although it was
important for the development of the field, here we will be mainly focusing on GBS since the
physical implementation is more doable. It has been shown that Gaussian Boson Sampling
has applications in quantum chemistry, graph theory and optimization Bromley et al. (2020).
The applications and problems by a programmable GBS device should start by analysing the
matrix A in equation 54.

An important property about this matrix is being symmetric because many important and
computationally-hard problems are described by graphs that can be represented by symmetric
matrices. Graphs are particularly important since so many things can be represented by them.
This indicates that some applications can take advantage of this property and those are the
first ones we will review here.

5.1 graph theory

Before jumping to applications to graphs, let us review what graphs are, and some basic
properties.

First, graph theory is the study of graphs which are mathematical structures composed with
two sets: nodes and edges. The nodes (or vertices) work as points and the edges (or links)
connect them. So a graph G is a pair G = (V, E) where V is the set of nodes and E the set
of edges. They are defined by the nodes they connect:

E ⊆ {{x, y}|x, y ∈ V and x ̸= y}

Secondly, an important feature in the edges make a clear distinction on the type of graph:
directed where edges have a direction and undirected where edges are undirected links. This
has an impact in their description and hence in the matrix A as will become clearer soon.
More precisely, the illustration of this difference is in figure 26; edges in directed graphs are
represented by arrows and, in the undirected case, a line or a two-way arrow.

84
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(a) Undirected Graph (b) Directed Graph

Figure 26

Both nodes and edges can be weighted and the interpretation of this weight depends on the
problem. For instance, for a graph representing a map, weighted edges can translate the time,
distance or cost to go from one city (node) to another.

Having this basic definition of graphs, allow us to conclude with two concepts important
for the next applications; Bipartite Graphs and Perfect Matchings:

• In a bipartite graph one can divide the nodes into two separated and independent groups,
U and V for example, knowing that all edges connect nodes in U with nodes in V. These
graphs enable the coloring of the graph with two colors without the same color in two
adjacent nodes. Graphs in figure 26 are not bipartite graphs but in Fig. 27 we see two
examples of bipartite graphs.

• A matching in a graph is a set of edges without common vertices. Take, for instance, the
undirected graph from figure 26: two possible matchings are the sets {{1, 2}, {0, 3}} and
{{0, 1}}. Many computational problems in graph theory consider finding the maximal
matching: when no other matching has as many elements as that matching, it is called
maximum. For perfect matchings we consider matching nodes two by two in a subset
M ⊆ E such that if the cardinality of M equals cardinality of V/2, i.e. if |M| = |V|/2

then it is called perfect. In figure 27 we have one example. Note that we gave an
example in a bipartite graph but it can be found in any random graph always noticing
that perfect matching can only occur in a graph with even number of vertices.

(a) Arbitrary graph G (b) Perfect matching of graph G

Figure 27
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Lastly, graphs can be stored or represented in different ways and, taking figure 26 as an
example, the most popular ones are the following:

1. Edge lists: lists/arrays with cardinality |V| where the index is a node of the graph and
to each is associated the set of nodes connected to the index node. Figure 28 has the
two representations for our example.

(a) Edge list for undirected graph (b) Edge list for directed graph

Figure 28

2. Adjacency matrix: GraphMati,j = |V| × |V| Boolean matrix (i.e., entries ∈ {0, 1}) for
unweighted graphs where:

GraphMat =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E

For an undirected graph, the adjacency matrix is symmetric and for a weighted graph
each matrix entry represents the corresponding edge weight.

Undirected graph:


0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

; Directed graph:


0 0 0 0
1 0 0 1
0 1 0 0
1 0 0 0


Counting perfect matchings

We will be interested in counting the number of perfect matchings of a graph, this is, the
number of perfect matchings a graph can have. For an undirected bipartite graph G with 2n
nodes, sides of partition U and V such that |V| = |U| = n and the correspondent adjacency
matrix AG ∈ {0, 1}n×n then the number of perfect matchings, i.e., the number of different
ways to make perfect matchings can be calculated via Per(AG), this is this number is given
by the permanent of the bipartite adjacency matrix.

A more general problem is to calculate the number of perfect matchings for a graph with
even number of nodes and this can be computed by the introduced function, the Hafnian that,
as we can see, is strongly related to the permanent. The Hafnian and the computation of
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the number of perfect matchings will then be of most importance to study applications since
they define the probability amplitudes associated with boson sampling experiments. Also, the
hafnian of an odd sized matrix is defined to be zero, which reflects the fact that there are no
perfect matchings for graphs with odd number of vertices.

Now that we have some basic facts about graphs, we can encode them in a GBS device
using the adjacency matrices GraphMat as matrix A in equation 54. A Strawberry Fields
implemented function will decompose the matrix for the graph along with the mean photon
number n to the elements in equation 58 as we will see soon in more detail.

5.1.1 Coding an adjacency matrix into GBS

Now we intend to make a strong relation from the aspects described for graphs with the
GBS model. Here we want to design a GBS experiment by choosing the interferometer unitary
and squeezing parameters as presented in chapter 4, so that the output probabilities, as given
by equation 54, are proportional to the hafnian of any adjacency matrix we may want to test.
Sampling events with a probability that is proportional to the hafnian can be helpful since
it translates some graph properties; for instance, counting perfect matchings (computing the
hafnian) is related to finding dense subgraphs which is useful in graph-theoretical applications
that we will study.

So let us first see how to encode these matrices into a GBS experiment, this is, how to
start by A to obtain U and the appropriate r’s. Directly from the original article for the GBS
model, we have the following decomposition:

A = Udiag(λ1, λ2, ..., λN)U⊺

where λi = tanh ri is the hyperbolic tangent of the squeezing parameter applied to the vacuum
state that is used as input of each mode and U is the interferometer matrix as usual. Also,
from equation 46, we can rewrite the mean photon number in terms of λi and sum over all
modes obtaining:

n =
N

∑
i=0

λ2
i

1− λ2
i

(60)

With this we supposedly only require n (n do not necessarily need to be distributed equally
over all modes) and U to have A which is our adjacency matrix. The distribution of n over all
modes is not necessarily uniform and this decomposition will be made by using a Strawberry
Fields function based on Takagi factorization (see article by Cariolaro and Pierobon (2016)).
Although all this seems quite simple and direct, some things might not add up and here are
two examples why:
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1. If we go back to Eq. 54, the output probability is proportional to the hafnian, i.e. the
number of perfect matchings of the graph. Take for instance a complete graph with
2M nodes. Here all vertices have connection to all others and the number of perfect
matchings grows with M as:

(2M− 1)!!

This number might be enormous and lead to probabilities outside of the probability
interval [0, 1];

2. The adjacency matrix is obtained indirectly from the covariance matrix using σQ. In-
verting the equation to find σQ we have:

σQ = (12N − X2N A)−1 − 12N

2
(61)

where X2N =

(
0 1N

1N 0

)
. Since σQ has some restrictions (as mentioned above about

commutation and others), A must be such that σQ remains valid.

In the article Brádler et al. (2018) the authors explain in detail how to adjust and overcome
these two limitations in order to be able to encode arbitrary adjacency matrices. First, recall
the conditions that σ has to satisfy: σ is a real, symmetric, positive-definite matrix in the case
of quadrature basis in Eq. 9 and Hermitian, positive-definite matrix for the Heisenberg basis.
This was already mentioned above and also presented Eq. 24. Here, let us analyse it in the
Heisenberg basis. Since we are analysing in the Heisenberg basis, we have the following for
this particular case in correspondence to 24 for the quadrature basis:

σ +
1
2

K ≥ 0 with K =

(
1 0
0 −1

)

Now, starting from Eq. 61 we see the conditions A has to follow to lead to a valid σQ. A
first step is: if a matrix is invertible and symmetric, then its inverse is also symmetric and
from this, one can show that if (12N − X2N A)−1 is symmetric, so is 12N − X2N A. For this
part to be symmetric, we can divide A in four sub-matrices (as already done for analysing
physical behaviour) and they must satisfy:

A =

(
A11 A12

A21 A22

)
⇒

{
A12 = A21

A22 = A⊺
11

With this, we have the symmetry issue solved for these conditions.
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Secondly, for σQ > 0 to hold, the eigenvalues λk of A must satisfy |λk| < 1, ∀k. With this
we now have to find a way to turn all eigenvalues to values smaller than one. One way to do
so is to find λmax (the largest eigenvalue of A) and choose a value c such that:

0 < c < 1/λmax

and rescale A to cA which leads to a valid arbitrary covariance matrix as it’s Hermitian and
positive definite.

Turning this matrix into Hermitian and positive definite are the main points in encoding
A, but this is not enough. To allow this encoding to work for arbitrary matrices there is still
one small aspect to consider: back to the sub-matrices of A, let A11 and A12 commute and
consider fk and hk their respective eigenvalues. Then they are related to the eigenvalues νk of
our σQ via the next equation:

νk =
1
2

√
(1 + chk)2 − c2 f 2

k
(1− chk)2 − c2 f 2

k

Since, to satisfy the commutation relations, we have νk ≥ 1/2, ∀k then hk ≥ 0, ∀k and hence
A12 ≥ 0. If hk = 0∀k then the covariance matrix is pure and A is consequently in a diagonal
form. This leads to the doubling process where one can take the original adjacency matrix
and use A⊕2 such that A⊕2 = A⊕ A. Process doubling simplifies some aspects namely the
requirement of A12 ≥ 0 is already satisfied but at the cost of preparation of states is with single
mode squeezers needing twice the number of qumodes. In particular applications for graph
theory, this does not raise a major concern since most matrices already fulfill this condition
because of two reasons: for unweighted graphs, values in A are either 0 or 1 (both in agreement
with A12 ≥ 0) and weighted graphs usually use values ≥ 0 representing a cost, length or many
other positive numerical entities.

In short, we are interested in analyzing how these restrictions change the probability equa-
tion 54. A must be positive valued matrix and might need a rescaling factor c and equation
54 turns into:

Pr(n) =
ck

n!
√
|σQ|

Haf(AS) with k = ∑
i

ni

If we use the doubling process either for dealing with negative entries or for physical imple-
mentation we also change the previous probability equation in the hafnian by considering
Haf(A⊕2) = HafAHafA.

Last but not least, how to code or make this a computational and automatic task? One
can use the Strawberry Fields library to obtain this and help getting some answers. If
the choice is to code from the adjacency matrix A, we can use Strawberry Fields function
sf.decompositions.takagi() or sf.decompositions.graph_embed(). The first does a direct de-
composition of a matrix H into inteferometer unitary U and rl such that H = Udiag(rl)U⊺
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(rl are singular values from decomposition and related to squeezing parameters via arctan(rl))
and the latter does a specific decomposition for graph applications; it starts by selecting the
value for the scaling factor (with the help of mean photon number per mode from the argu-
ment), creates a new adjacency matrix with it and only then uses sf.decompositions.takagi()
to decompose returning squeezing parameters and the interferometer unitary.

5.2 graph algorithms

As we have indicated, the matrix A from the GBS model is related to graph adjacency
matrices and there are multiple important applications in using graph algorithms so lowering
their computational complexity is very beneficial for several areas.

A great and easier starting problem is dense subgraph identification that can be used to
detect denser subgraphs, such as required to identify communities in social networks.

5.2.1 Dense subgraph identification

Let us start by defining the problem of dense subgraph identification. The density of a
graph is found relating the cardinality of nodes with the number of edges connecting them.
Consider a graph G, a set of nodes V and edges E(V) of those nodes. Then, the density of a
graph given by nodes V is:

d(V) =
2|E(V)|
|V|(|V| − 1)

Note that the density of a complete graph is exactly one so this formula follows that the
number of possible edges in a graph of |V| nodes is |V|(|V| − 1)/2 and the density is a value
according to this maximum, this is, number of edges it has over the number it could have.
Also, a subgraph H of a graph G is an Induced Subgraph if every edge in G with both nodes
in H is also an edge in H, this is, an induced subgraph of a graph is formed from a subset of
the vertices of G and all of the edges of G connecting pairs of vertices in that subset.

The dense subgraph identification problem can then be stated formally as the following:
given a graph with fixed dimension and a chosen subgraph size, the algorithm returns the
nodes/graph corresponding to the subgraph with highest density. Applications for such algo-
rithm might be identification of a social network, i.e. a group of people strongly connected,
finding a dense cluster in a molecule or even in communication networks to capture a con-
gested part of the network (traffic above a certain threshold). Note that we defined the
problem with two arguments: the graph and size of subgraph to return; if the size is not
specified, although the number of subgraphs is exponential in the number of vertices, there is
a polynomial classical algorithm in Charikar (2000) that can find the subgraph corresponding
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to maximum density but finding such a subgraph with size constraints is NP-hard Khuller
and Saha (2009).

Now, how to solve this with a classical computer? There are several classical approaches and
first let us consider a naive version. First we could code this problem into a SAT problem with
specified conditions: look for nodes of given graph for a particular size and save the density
of the induced graph corresponding to these selected nodes; in the end return the graph
with highest density. This would blindly run over all nodes and exhaust all combinations for
subgraphs which is a number that grows exponentially with the number of nodes from the
original graph. A slightly improved algorithm would begin with nodes that are probably better
candidates. Since the density is strongly related to number of edges, a good starting point is
choosing the node with highest degree (degree of a vertex is the number of edges connecting
it) and preferably select neighbour nodes to complete the subgraph to analyse. Taking this
logic, we could also do it the other way around: start from all nodes of the graph and exclude
those with lowest degree leading to a simple resizing but no guarantees of finding the correct
result. Algorithms that use this last method usually work better but can be fooled by graphs
with a special layout and a good example is used in Bromley et al. (2020) that is accessible
by Strawberry Fields library via Applications module with apps.data.Planted().

Figure 29: Planted graph from Straw-
berry Fields; highlighted re-
gion in red is the denser 10
node subgraph.

This represents a graph with 30 nodes constructed
from two disconnected graphs: a 20-node graph with
edge probability p = 0.5 and a 10-node graph with
p = 0.875 and both connected via 8 randomly cho-
sen nodes. A graph resulting from this construction
is plotted in figure 29. From construction of this en-
semble, we know that the 10 node subgraph is denser
than the 20 node part because of the edge probabil-
ity connection however this is not very obvious by in-
spection. Although the 20 node subgraph has lower p,
those nodes have higher degree so a simple algorithm
that is based on removing or adding edges according
to its degree, would not work since density is not only
proportional to the number of edges (and degree) but
to the inverse number of nodes involved. The samples
in Strawberry Fields documentation for this graph are

available to make some direct numerical experiments.
Having mentioned a few classical approaches to finding dense subgraphs, we shall now

proceed to take a look at the quantum implementation. First of all, as we saw before, the
output probability of GBS devices is strongly related to the matrix A that fully represents
the graph and we analysed the operation of Hafnian in such matrix which, in this particular
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case, the Hafnian returns the number of perfect matchings. Thus, encoding a graph G into a
GBS device it will preferably output states corresponding to subgraphs with higher number of
perfect matchings. It was shown in Arrazola and Bromley (2018) that the number of perfect
matchings in a graph G with 2m vertices is upper bounded by a monotonically increasing
function of the number of edges l, which means there is a correlation between the number
of perfect matchings and edges of random graphs. This allows one to interpret the output
of a GBS device codified with a graph G as a construction that naturally outputs denser
subgraphs.

This is an amazing conclusion: we have a device that with the right encoding outputs with
high probability the result we are looking for! There is a detail on the value n: the mean
photon number should be the typical sample size for GBS outputs, which should ideally be
matched with the size for the densest subgraphs expected to be found. These samples have
the following interpretation: if ni = 0, the node in graph corresponding labeled as position i
is not part of the subgraph (this node is excluded) so clearly if ni = 1, i is relevant and part of
the solution. However we know the optical modes are not restricted to 0 or 1; in that case, if
ni = 2, 3, 4, · · · that particular node is repeated meaning the subgraph in output makes a copy
of the i node ni times leading to an extended induced subgraph. This is not a major concern
since we developed models where both Boson Sampling and GBS have low probability of
collision events and there are many algorithms that make use of threshold detectors (Planted
graph from Strawberry Fields is one example) that simplify the physical implementation and
can result in lower time complexity. The samples for graph in 29 are generated with average
number of photons n = 8 and with threshold detectors. This indicates that even though the
structure to identify has 10 nodes, the probabilistic nature of samples allows to select a smaller
size 8 and still obtain the results we need. This will be verified in numerical experiments.

The quantum implementation itself has already been specified: we encode the graph G as the
matrix A with a chosen mean photon number n and use the function sf.decompositions.graph_embed().
To run this program the only missing piece is to describe the quantum algorithm explicitly.

So finally, the steps to dense subgraph identification with a linear-optical quantum network
are:

1. Encode the graph into the device with help of sf.decompositions.graph_embed() where
arguments are the adjacency matrix of G and the mean photon number to detect. The
returning values are the squeezing parameters and unitary ready for implementation;

2. Generate N samples from the device programmed as described above.

3. Process these samples classically: from each sample, if the size of subgraph k = ∑ ni is
smaller than our intended value, add a node with the highest degree from the remaining
nodes and remove the node with lowest degree otherwise.

4. Calculate the density for each sample and output the one with the highest value.
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Thus, the dense subgraph identification quantum algorithm consists of showing us a seed of
where we should start looking for solutions, this is, the algorithm identifies optimal structures
for specific sizes and the classical algorithm has then a starting point. This is called a hybrid
algorithm since it makes use of both quantum and classical parts in the algorithm i.e. it has
a classical post-processing portion.

The classical post-processing is also helpful as it allows to use the same quantum-generated
seed to look for dense subgraphs of different sizes this is, we do not need to rescale the mean
photon number of Takagi decomposition each time we look for a different size.

5.2.2 Maximum clique

From the above algorithm, the theoretical introduction tells us that GBS devices can be
programmed to naturally sample subgraphs with higher density. Many problems can take
advantage of this feature and an example is the maximum clique problem. In graph theory,
a clique is a subset of nodes where each vertex has an edge to every other vertex, this is, a
subset is a clique if this induced subgraph is complete. For this problem we intend to find
the subgraph of largest size having all possible edges. In contrast to previous solutions, the
algorithm for this problem is NP-hard with or without size constraints.

Once again, encoding a graph and sampling from it with a GBS device will work as a starting
point and we then post-select from these samples. As the hybrid algorithm is probabilistic,
cliques will not be identified always, and we need to consider which classical post-processing is
necessary to increase that probability of success. So how do we handle our samples? Usually
we won’t get a clique hence we take the subgraph and remove nodes until we find one; the
selection of which ones to discard are chosen by those that have lowest degree relatively to the
subgraph identified. After having a clique C - either directly from the sample or by rescaling
- check the remaining vertices for a node that can be added and consequently increase the
clique size. This is done by successively choosing a node from the set s0(C) - a set where all
nodes have a connection to all vertices in C. This selection can also be based on the node
degree or it may be done uniformly.

The selection can guide us to a clique smaller than the largest clique contained in the graph.
To prevent this, consider another set s1(C) - the set of nodes from the original graph with
connections to all the nodes in the clique except one. If we find a node in this condition, we
replace the node it is not connected to with this new node. Note that before we arrived at
a dead end hence swapping nodes would never be a step back. If this set is empty, we end
the algorithm returning the size and corresponding clique found; otherwise, we go back to
expanding C with the updated set s0(C).

The steps to solve maximum clique algorithm are the following:
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1. Encode the graph into the device with the graph’s adjacency matrix and the mean
photon number. Use the returning values (squeezing parameters and unitary) for a
direct implementation of the GBS device;

2. Generate N samples from the device encoded as described above;

3. From each sample, if the subgraph is not a clique, remove nodes until we find a clique
C;

4. After a clique is found, select nodes from the set s0(C) readjusting after each step;

5. Construct the set s1(C). If any vertex is found, swap nodes for this set and run step 4
again.

6. Return the size of the maximum clique found and output the induced subgraph that
corresponds to this subset of vertices identified.

The theoretical part for implementation on a quantum device in this algorithm is very
close to the one presented for dense subgraphs identification: we use GBS device to ’seed’ our
algorithm and process the returned samples classically. For this reason, numerical experiments
will be only carried out on one of these problems.

5.2.3 Graph similarity

There are many possible ways of quantifying the similarity between two graphs. For instance,
some classical algorithms determine the degree of similarity between G and H by returning a
value in the interval [0, 1] with initial consideration that both already have the same number
of nodes and have the correspondence (labelling of nodes) leaving open to explore by the
algorithm edges properties like its connectivity and weight. For our purposes, allow us to
start by defining graph isomorphism. Two graphs are isomorphic if is there is an isomorphism
(structure-preserving mapping) that is classified as a bijection between the sets of edges of G
and H. More precisely, for a map f between the sets of nodes of both graphs, an edge in G
defined by nodes (u, v) exists if and only if the edge ( f (u), f (v)) exists in H.

This previous concept is quite restrictive because of the bijection: this requires that the
graphs have the same number of nodes, edges and an equal correspondence between them or
this relation up to a graph permutation1. Also a wide range of graphs might be similar but
non-isomorphic and testing such resemblance turns out to be doable in computational terms if
the vertex labelling correspondence of the two graphs are given. If not, the classical algorithm
can become very inefficient. One aspect to consider too is that although the probability of

1 This permutation has no relation to the permanent or any other related function. Graph permutation refers
to exchange of roles between nodes and edges where the nodes represent the elements of permutation and the
edges are turned into pairs of elements. Different permutations may give rise to the same permutation graph.
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an output is related to the hafnian and as so it takes exponential time to solve, this result is
usually exponentially small (recall that random Haar-unitaries are chosen to avoid symmetries)
so if the algorithm requires returning this exact value we need to collect enough information
to predict such value which would require running the experiment for an exponential time for
a reasonable chance of success. So there is no known classical or quantum efficient way of
testing for graph isomorphism. So for GBS applications we loosen up this condition and test
graph similarity. A way to test similarity is to measure the distance between feature vectors
of each graph to analyse with a so-called kernel where the inner product of these vectors is a
possible way, which is a well studied technique. A feature vector is an m-dimensional vector
of numerical features that represent some object. This approach maps a graph G into those
vectors and these in turn can be represented and compared with other graphs in the Feature
Vector space. These vectors are obtained from the resulting samples of a GBS device encoded
with A as the adjacency matrix of G as before and then postprocessing the outcomes.

The key in this algorithm is to turn GBS into feature vectors. A good proposal is to associate
features with probability of a measurement from the GBS device; is was shown in Brádler et al.
(2021) that two graphs are isomorphic if and only if their probability distributions from GBS
are equal up to permutation2. Finding the probability distribution brings two problems: (1)
the number of possible events grows with a factorial function over the total number of photons
to detect which would lead to an explosion on the dimension of the feature vectors and (2)
each probability might be an exponentially small number as mentioned, which would require
an unacceptable, exponential number of samples. To treat the first problem we use a technique
called coarse-graining. This method turns the feature vector of probabilities for single events
into probabilities of certain types of photon events. The first proposal is to group events into
orbits introduced in Brádler et al. (2021): an orbit combines all samples that are equivalent.
For example, samples [2, 1, 0, 0, 3] and [3, 0, 1, 0, 2] both belong to orbit described by the set
{3, 2, 1}, this is, orbits group samples into equivalent classes according to the set of output
mode occupation numbers only. For computational purposes, they are ordered (descending
order), this is, a given orbit On represents all permutations of detection event n so that we
group samples from the same orbit together more easily and have a more compact feature
vector which is our first goal. The probability for an orbit On is then the sum over the
samples under this permutation leading to next equation:

p(On) = ∑
n∈On

p(n)

This lowers the dimension for the feature vector but it still leads to a lot of features - for k
photons to distributed over M modes, even considering the usual relation k≪ M - so there is
another coarse-graining strategy. The second proposal (on top of the first strategy) turns these

2 Two square matrices A and B are permutationally similar if B = PAP⊺ where P is a permutation matrix.
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orbits into meta-orbitsMk,n. These meta-orbits summarizes samples containing k photons in
total and at least one mode has the maximum occupation number n. For better illustration,
see figure 30.

Figure 30: Example of coarse-grain strategies; first to each sample was attributed an orbit and only
those belonging to the meta-orbit M4,2 where selected.

The probability for a meta-orbit Mk,n is depicted as:

p(Mk,n) = ∑
n∈∆S

p(On)

where ∆S is the combinations of all possible states under those conditions.
Having the coarse-graining process defined, we are left with finding how many samples we

require from the GBS device to compute this strategy: too many samples would be heavy for
the quantum device and too few would not be enough for a good feature vector. Schuld et al.
(2020) defines the a variable S as the number of samples we need from a quantum GBS device
making a compromise between number of possible outcomes and the estimated error due to
finite sampling, this is, combines sampling size and experimental uncertainties returning a
numerical bound. Here due to some open questions in this algorithm and it is used for actual
implementations, we will not use this variable for numerical experiments.

Therefore, given two or more graphs to test similarity, one needs to construct feature vectors
for them and then run/compare them in a kernel. The probabilities for these vectors from a
classical computer can be obtained via p(Mk,n) described above and via a quantum computer
by the fraction of outcomes in those conditions by the total number of samples ni/N.

At last, we have all necessary steps to the algorithm to test graph similarity in a linear-
optical quantum network.

1. Encode graph G into the GBS device through its adjacency matrix A just like previous
algorithm and generate preferably S samples from a distribution with mean photon
number n;

2. Group together output samples corresponding to a selected meta-orbitMk,n with given
k and n;
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3. Compute the probabilities for each meta-orbit via p(Mki ,n) = ni/S assigning this vector
to graph G.

We will use the Euclidean distance between the resulting feature vectors to quantify the
similarity of the corresponding graphs.

Differently from the previous algorithm, here the quantum part of the algorithm does not
provide a seed for classical post-processing, but the end-result itself.

In Schuld et al. (2020) the authors described all the theoretical background in detail, showed
motivation for measuring the similarity and present their experiments. The authors explain
the relation between output photon events with the coefficients for graph properties which can
gives us a better understanding and intuition in choosing the appropriate values k and n for
what meta-orbits to study.

5.3 numerical experiments on graph problems

In order to test the previous algorithms, it is wise to generate structures to study with the
particularities we are looking for, this is, we will generate graphs for a specified input size and
some characteristic to test in algorithm. Also, now we have the tools to study the physical
requirements with more applicability compared to the approach in previous chapter so in the
next subsection we will deal with these two issues and then test the algorithms described.

5.3.1 Graph generation and physical requirements

Let us start with generation of graphs that we can test our algorithms on. To a simple graph
generation with size n_nodes and connection probability p we can create G with function
graphGenerator():

de f graphGenerator ( n_nodes , p ) :
2 #i n i t i a l i z i n g graph G with n_nodes nodes

G = nx . Graph ( )
4 G. add_nodes_from ( [ k f o r k in range ( n_nodes ) ] )

6 #adding edges with p r obab i l i t y p f o r the g iven nodes
f o r i in range ( n_nodes ) :

8 f o r j in range ( i , n_nodes ) :
r=np . random . random ( )

10 i f r<p : G. add_edge ( i , j )
r e turn G

This is the simplest way to generate a random graph given those conditions but for dense
subgraph identification it is not a good proposal since the edge probability is the same for all
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nodes and consequently it is not expected to have denser areas. To generate more adequate
structures, we implement a new function that can create denser subgraphs (see full code B.26
or algorithm 2 below).

Algorithm 2 Graph generator with denser regions
function GRAPHGENDENSEST(n_nodes, p1, n_densest, p2)

G1← new graph with n_nodes− n_densest nodes
G2← new graph with n_densest nodes
for i, j ∈G1.nodes() do

r =np.random.random()
if r ≤ p1 then

G1.add_edge(i,j)
end if

end for
for i, j ∈G2.nodes() do

r =np.random.random()
if r ≤ p2 then

G2.add_edge(i,j)
end if

end for
G ←nx.compose(G1,G2)
Connect n_densest/2 random nodes from G1 to G2
if There are isolated parts then

G ← graphGenDensest(n_nodes, p1, n_densest, p2)
end if
return G

end function

The arguments for this function are the size of graph n_nodes (total number of nodes) with
the respective edge probability for these nodes p1, the size of denser subgraph n_densest and
edge probability for the denser structure p2 where we assume the user attributes valid values
for each (meaning p1 < p2 and n_nodes > n_densest). The ensemble is built randomly in the
following way. We generate two separate graphs: one of size n_densest for the denser one and
another of size n_nodes− n_densest; in the end we connect both by selecting n_densest/2
nodes from each and deterministically connect them. To add edges in new graphs we run
through all N nodes and consider the N(N − 1) possible edges in turn, picking them with a
certain chosen probability p. This procedure sometimes will result in disconnected subgraphs,
if that is the case we discard the graph and start anew.

Before testing our algorithm on this graph construction, let us discuss the physical require-
ments for a quantum GBS implementation.
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Physical requirements

We can start by analysing the squeezing parameters required for the encoding of different
graphs. In order to program a GBS device we need to specify U and each squeezing parameter
or, alternatively, A and each mode mean photon number (recall equation 58 that easily relates
to ri by equation 46) where the Autonne-Takagi decomposition accessible by Strawberry Fields
function sf.decompositions.takagi(): mean photon number can be equally distributed over the
defined modes and then U is obtained with the decomposition.

Allow us to consider the ensemble of matrices we have described, where a denser subgraph is
embedded in a larger random graph with smaller density.This ensemble of matrices translating
specific graphs results from the above function graphGenDensest. Extracting an adjacency
matrix from a graph in that ensemble, we input it along with mean photon number in the pre-
viously mentioned function by Strawberry Fields sf.decompositions.graph_embed() to analyse
the squeezing parameters they require. In figure 31 we present the histograms of squeezing
parameters distribution for an ensemble of graphs with the structure here described.

(a) (b)

Figure 31: In sub-figure 31a is represented the histogram of distribution of squeezing parameters for an
ensemble of 1000 graphs with 16 nodes of edge probability of 0.2 and 4 selected nodes to be
a dense subgraph with edge probability of 1. In sub-figure 31b we show the histogram of
distribution of squeezing parameters for an ensemble of 1000 graphs with 16 nodes of edge
probability of 0.2 and 15 selected nodes to be a dense subgraph with edge probability of 1.

There are two tests: the first is for a common case where we have the relation n2 ≤ m
and is according to conditions used in chapter 4; the latter is for an extreme example where
we test for a denser subgraph with size close to the total/whole graph to see the upper limit
for parameters. This last not used in practice but for purposes of studying the demand for
the parameters under extreme conditions, i.e. as may be required when the subgraphs being
identified are much larger than the sizes we study here. As we can observe, the requirements for
squeezing parameters are in range zero to two which is a value that can be done experimentally
as presented for example in Arrazola et al. (2021) where they estimated the effective input
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squeezing in each mode to be approximately 8dB which equals squeezing r ≈ 1.776 in each
mode in a 8 mode device (recall subsection 2.3.2). An important note here is that the input
of 8dB in each mode was obtained by non integrated sources and values for this in a chip are
usually smaller. This conclusion says that the second and unusual condition in sub-figure 31b
can be hard for integrated technologies but can be done and, on top of that, recall that a
typical example is for similar distribution to sub-figure 31a that the mean squeezing value was
0.36 and maximum 1.2 and this is expected to be able to implement in an integrated chip.

5.3.2 Algorithm testing

Now that we have the algorithms and made sure the physical requirements to implement
them are doable, we are ready to test the theory to verify that such program outputs what
was predicted. Let us take a look at dense subgraph identification. A first test here will be
comparing the density from outcomes of a classical random graph generator versus a GBS
generator. The former is calculated via a trivial function we called classicalGenerator() in
code 5.1 below. Given a graph G, the size of subgraph to identify size and number of samples
n_samples, the classical generator randomly chooses size nodes from G; this random choice is
made n_samples times (see line 3 of code). After having the random subgraphs identified, we
calculate the density of each one and organize these results into an array of densities in line
10.

1 de f c l a s s i c a lGen e r a t o r (G, s i z e , n_samples ) :
nodes=l i s t (G. nodes ) ; dens i ty =[ ]

3 amostras=[np . random . cho i c e ( nodes , s i z e ) f o r i in range ( n_samples ) ]
f o r i in amostras :

5 H=G. subgraph ( i )
dens i ty . append (2∗ l en (H. edges ) /( s i z e ∗( s i z e −1) ) )

7 n_edges=in t ( s i z e ∗( s i z e −1)/2)
n_d=np . z e r o s ( n_edges+1)

9 f o r i in dens i ty :
ind=in t ( i ∗n_edges ) ; n_d [ ind ]=n_d [ ind ]+1

11 re turn n_d

Listing 5.1: Classical random selection of subgraphs to test dense subgraph identification.

The latter generator with sorting from GBS sampler is implemented in code B.27. Here,
we start by decomposing our graph’s adjacency matrix as described before, generate a given
number of samples with our method B and post-select the samples for the size we are looking
for - vacuum and samples of size that is not the one intended (for this direct approach of
classical versus quantum selection) and for considering here only GBS generators directly we
do not consider extended induced subgraphs. This selection will discard some and have less



5.3. Numerical experiments on graph problems 101

samples than the original number generated so we will call an auxiliary function to calculate the
remaining the same way. Then we calculate the density of each subgraph from our samples and
last but not least reorganize this result into an array of densities. For example, for detection
of subgraphs with size 4, the density array has length equal to 6, which is the possible number
of densities for a 4-node, 6-edge graph (position i has number of samples with density i/6).
In figure 32 we have a plot of graph density for results from 5 graphs from both classical and
quantum generators described above.

Figure 32: Density of subgraphs generated by random classical selection in dotted lines and by GBS
distribution in dashed lines. The figure is the result of subgraph identification for 5 graphs
in ensemble [16, 0.25, 4, 0.95] i.e. 16 nodes with edge probability 0.25 and denser subgraph
of size 4 with edge probability 0.95. 5000 samples were generated for each case.

There are two main points to note from the figure: the difference in density value 0 and
the mean values for both generators. The subgraphs identified by a GBS distribution show
densities far higher then classical random ones and at extreme points such as zero density or
a clique (d = 0 or d = 1) we have the opposite: the classical generator returned around 1/3
of those graphs with zero density and the quantum generator did not print one; for a fully
connected output, only the quantum generator was able to obtain such clique samples. There
are other classical algorithms that surely result in a better choice than the one presented but
this is only the beginning of demonstration of quantum capacity for these problems that makes
use of a natural selection and output from both devices, i.e. we do not post-process any of
the outcomes.

Using the hybrid algorithm, that is, the one with subgraphs from GBS as a ’seed’, we can
use the Strawberry Fields functions that resize or search our samples. Both functions can be
found in the Applications layer and the first can be reached via sf.apps.subgraph() where the
arguments are a subgraph (listed by the numerical label of each node), the graph, maximum
and minimum size to resize to (sizes of subgraphs we are looking that are in the specified
range) and a default argument for node selection (in case next nodes to remove/add have the
same degree). The second function has an additional argument max_count also default for the
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number of graphs to output for the densest found, this is, for each size we save the max_count
densest subgraphs. Using our code to generate a random graph and simulate samples, the
hybrid dense subgraph identification code can be done using the next code 5.2 where defGraph
is an array with graph specifications; In this code we have the Strawberry Fields implemented
functions search() and to_subgraphs() in lines 6 and 7 to do some classical processing:

1 G=graphGenDensest ( defGraph [ 0 ] , defGraph [ 1 ] , defGraph [ 2 ] , defGraph [ 3 ] )
n_nodes=len (G. nodes ( ) )

3 ( r ,U)=s f . decompos i t ions . graph_embed (nx . adjacency_matrix (G) . todense ( ) ,
mean_photon_per_mode=s i z e /n_nodes )

5 G_A=sampleGeneratorB (np . asar ray (U) , r , times , l imit_photons=6)
G_A=sample . to_subgraphs (G_A, G) ; k_min=3; k_max=6

7 r e s u l t s=subgraph . search (G_A, G, k_min , k_max)

9 p lo t . graph (G)
p lo t . graph (G, r e s u l t s [ 4 ] [ 0 ] [ 1 ] )

11 p lo t . graph (G, r e s u l t s [ 3 ] [ 4 ] [ 1 ] )

Listing 5.2: Hybrid algorithm for dense subgraph identification.

Taking the results, we can plot figure 33 where sub-figure 33a was obtained from the last 3
lines of code. We can observe for the first graph that the algorithm worked for different sizes,
identifying both the dense subgraph purposefully inserted, but also other dense subgraphs
generated by the random graph construction. For the second graph in sub-figure 33b with
higher edge probability, the results from the algorithm were also satisfactory.

With improvements in output generation mentioned in last chapter, we were able to simulate
25-node graphs with denser regions of size 5. In figure 34 we have the results for two graphs
characterized by defGraph= [25, 0.3, 5, 0.95]. Note that the structure identified as denser for
the first graph generated (sub-figure 34a) does not correspond to the 5-node subgraph with
edge probability 0.95; in fact this is identified in second place with smaller density. This can
happen because although edge probability for the general graph is lower, the number of edges
to connect is much higher. Still, the algorithm was able to detect them as predicted for both
random graphs.

With these numerical experiments for different sizes and densities, we conclude that we
succeeded in detecting the denser subgraphs. We also compared the outcomes of a random
classical generator with a GBS generator which is an experiment that as low cost for both
(classically it is only random selection of number and for GBS is in the device nature with
proper codification) and GBS outputs showed being much more efficient.

Since the clique identification algorithm has the same theoretical basis as the above demon-
strated code, the code is alike the previous; we encode the graph into GBS with selected mean
photon number ideally, corresponding to the clique size we want to detect, and could make
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(a) (b)

Figure 33: Plot of two random 16-node graphs with one denser region each of size 4 with edge probability
0.95; graphs in sub-figure 33a and 33b have edge probability of 0.2 and 0.35 respectively. Gold
and grey highlighted areas are the denser regions from random graph generator. Golden area
was identified as the denser region of size 4 in results from code described above and in red at
sub-figure 33a represents the identification of a dense region of size 3. This was obtained with
the forth densest detected because the first three were attributed to the combinations of the
4-denser region (they all have density= 1). The red structure in sub-figure 33b corresponds
to the denser region found for size 5 while in grey is the first attempt to find such region
with size 4.

use of Strawberry Fields to resize and search - steps 3, 4 and 5 of algorithm. So now allow
us to make a brief numerical experiment for graph similarity. As mentioned before, there are
still some open questions about what values to attribute to meta-orbits, this is, there is not a
more appropriate way to chose them so we will use one of our choice that seems pertinent for
the case study.

To complete the necessary code to test similarity, we implement an auxiliary function that
does the last two steps described in earlier section: it assigns each sample to a meta-orbit
and calculates the corresponding probability, this is, returns the feature vector according to
description of meta-orbits for given samples both given as function arguments. See next code
5.3 for more detail.

1 de f featureVec_metaOrb ( samples , t o t a l s , n ) :
N=len ( samples ) ; l =[ ]

3 ordered=[np . f l i p (np . s o r t ( sample ) ) f o r sample in samples ]
f o r i in ordered :

5 i f i [0] >n : cont inue
e l s e : l . append (sum( i ) )

7 l=np . array ( l )
r e turn [ sum( l==i ) /N f o r i in t o t a l s ]

Listing 5.3: Function that given samples and meta-orbits description, returns the feature vector for
these conditions.
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(a) (b)

Figure 34: Plot of two random 25-node graphs. Orange and blue highlighted structures correspond
to denser regions from our graph generator code. The first 5-node subgraph identified for
sub-figure 34a was red region and for sub-figure 34b was blue region with densities of 0.9
and 1 respectively. The other regions are the 5−node subgraphs identified in second place
with densities 0.8 and 0.9 respectively.

Having a function to calculate feature vectors, we use function graphsFetVec() (see full
code in B.28) that returns feature vectors for meta-orbits Mki ,n given parameters n and k
as function arguments along with the graphs to test and two default arguments - for mean
photon number and number of samples required. With this, we have all necessary steps to
run the algorithm.

We start by generating 3 graphs: two closely related and one fundamentally different; all
three represented in figure 35. To test our algorithm, we decided to evaluate graphsFetVec()
results for four graphs where the first two are actually the same (sub-figure 35a) to examine
what the similarity calculation would do.

(a) (b) (c)

Figure 35: Random graphs to test similarity with described algorithm. The first two (G1 and G2)
in sub-figures 35a and 35b are generated with the same parameters using our function for
graph generation graphGenerator() with arguments (10, 0.1). Last sub-figure 35c graph (G3)
is generated by the same function but with edge probability 0.9.
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In figure 36 we have plotted the results from using graphsFetVec() for the four graphs de-
scribed. The return for those four graphs ([G1, G1’, G2, G3]) was [0.3126, 0.1154, 0.0142],
[0.3158, 0.1178, 0.0122], [0.3082, 0.125, 0.0194], [0.2106, 0.0738, 0.013] and each Euclidean dis-
tance to G1 given by di = d(Gi, G1) was successively d′1 ≈ 0.0045, d2 ≈ 0.0118 and d3 ≈ 0.1102.
As depicted, graphs that are more similar are closer to each other. This closeness highly de-
pends on the number of samples and given the similarity of G1 and G2, we obtained several
times this feature vectors closer than the two generated from G1.

Figure 36: Plot of feature vector for four graphs described. Meta-orbits were characterized by k=
[2, 4, 6] and n= 1 and mean photon number and number of samples was the default attributed
values (size= 7 and times= 5000). Blue and orange dots are results from graph G1, green
dot is from graph G2 and red dot is representation of feature vector for G3.

In appendix for code we added two extra tests for this algorithm under very similar con-
ditions: we used the same graphs but with different meta-orbits (n = 2) and more samples.
This is plotted in appendix figure 39.

5.4 future perspectives

Applications including graphs covers a wide range of problems as mentioned. Some of these
problems studied have an efficient classical algorithm such as dense subgraph identification
without size restriction and for those cases, the GBS device could present an advantage only
by a polynomial factor. Besides, in our simulation we tested for unweighted and undirected
graphs - described by positive adjacency matrices - that according to algorithm by Quesada
and Arrazola (2020), if σQ is both non-negative and a proper quantum covariance matrix,
then matrix A is also non-negative and the probabilities in equation 54 can be approximated
efficiently so our tests could too. The example of dense subgraph identification with size
constraints does not have an efficient algorithm and for weighted or directed graphs, the
GBS algorithm can not be approximated to a polynomial time algorithm. We can conclude
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once more that evolution of classical algorithms forces quantum devices to improve and show
exponential advantages only under certain conditions. To apply this to real world problems,
we need to additionally determine if these conditions for quantum advantage are the usual
ones or hardly used.

In this section we review a few of the other applications of GBS that have been proposed
in the literature.

5.4.1 Other applications with qumodes

Another application that can be run in GBS devices with encoding similar to graphs is
computing molecular vibronic spectra. This problem consists of analysing the pattern of
frequencies at which light is more strongly absorbed by a certain molecule. This absorption
spectra of molecules is important in determining, for instance, their usage in photovoltaics
or monitoring global warming. Classically, the vibronic spectrum of a molecule is given by
Franck-Condon profile (FCP) - a function that determines the probability of generating a
transition at a given vibrational frequency and some efficient classical algorithms have been
found to calculate the FCP. However, to be considered an efficient algorithm, the requirement
is polynomial run-time which can still grow considerably and consequently this has become
difficult to calculate for larger molecules. Here enters GBS: for a linear-optical quantum
computer, in Bourassa et al. (2021) we have the full description for codification and once more
the device provides an output that naturally solves the problem. This is, we incorporate the
molecule characteristic into the device and only need to rearrange the returned samples.

Another application is for neural networks. Killoran et al. (2019a) analysed the connection
between classical neural networks and the processing part with CV quantum computation.
Essentially, neural networks are based on a multi-layer technique where each layer is a linear
transformation. Each layer is composed by weight matrix W and the bias vector b and
a function that combines them with the input via φ(Wx + b). These layers are applied
sequentially where the final network is translated into function composition for each layer and
they are followed by a non-linear part. At this point, encoding this into a GBS is somewhat
intuitive: the weight matrix W and the bias vector b translate into the covariance matrix and
displacement vector; linear transformation to our linear interferometer and nonlinear elements
are non-Gaussian elements, namely photo-detection. The function composition for layers is
also intrinsic to this system.

It is worth mentioning that quantum optical systems are also important for applications
other than computation. Photons are excellent information carriers, and can be used in
quantum communication, teleportation Killoran et al. (2019b), and quantum key distribution
(QKD) Zhang et al. (2019).
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5.4.2 Optical qubits

The description of the Boson Sampling model allows to adapt and make a connection to pro-
cessing 2-level quantum information, this is, the usual qubit approach for quantum computing
(more detail in appendix section A.2). Note that we mentioned before that Boson Sampling
was mainly studied to show quantum supremacy, not real-life applications.

Since qubits can be built out of any quantum system having two distinguishable states to
fulfill the requirement for 2-level system for state representation of |0⟩ and |1⟩ (see section A.2),
we can associate Boson Sampling to this model with an approach towards scalable photonic
quantum computing proposed by Knill et al. (2001). State preparation now is a bit different
from the usual models we have reviewed so far because a qubit will be described by two
qumodes and here is why: if a quantum state is |ψ⟩ = α |0⟩+ β |1⟩, we can define |0⟩ and |1⟩
with Fock states as written in next equation:

|0⟩ = |0⟩ ⊗ |1⟩ = |01⟩ ; |1⟩ = |1⟩ ⊗ |0⟩ = |10⟩ (62)

The initial state is vacuum for both modes so of course we need a single photon source to
produce these input states which we considered hard to implement physically; for now this is
not exactly an efficient proposal for qubit given the reasons explored in chapter 3. However,
we expect that technology to evolve in time and other proposals for qubits also have some
drawback but for Knill et al. (2001) proposal it is sufficient to be able to prepare these states
non-deterministically.

After state preparation, we need to define state evolution describing the unitary matrix U.
With the model in consideration, U is an interferometer made up by combinations of beam
splitters BS and phase shifters P so here we want to turn the usual qubit operations and
describe them with UBS and UP. From introduction to qubit preparation and unitaries in
appendix section A.2 we can start by making equivalence between our unitaries - UBS and
UP - and matrices in table 3 with help of the Bloch sphere representation. Using power series
expansion and equation 63 and knowing that Pauli matrices are involutory (σ2

y = Î), a simple
phase shifter applies a rotation on z axis as UP(ϕ) = exp(−iσzϕ/2) and a beam splitter
UBS(θ) = exp

(
−iσyθ

)
:

UBS(θ, 0) =

(
cos θ − sin θ

sin θ cos θ

)
= cos θ Î − i sin θσ̂y =

= Î
(

1− θ2

2!
· · ·
)
− iσ̂y

(
θ − θ3

3!
· · ·
)
=

= exp
(
−iθσ̂y

)
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We can conclude that all qubit rotations can be implemented with linear optics and we have
transformations for one qubit. From the universal set of gates, to achieve full power of quantum
computation we still need an equivalent operation for CNOT, i.e. two-qubit gates capable of
producing entangled states. One option to implement this requires strong photon-photon
interactions which are hard to engineer which leads to the necessity of nonlinear components
into the quantum network, for instance, the Kerr gate. Other solution is proposed in the cited
article by Knill et al. (2001) which is to effectively create photon-photon interactions via the
measurement process; in their work it is implemented a conditional sign flip on one mode using
two ancilla modes making use of three beam splitters and one phase shifter and measurement
of these two ancilla modes in the end.

Another approach to represent qubits is using CV cluster states, this is, the elements studied
in the GBS model. This new approach only requires displacement, squeezing, linear interferom-
etry, Gaussian measurements and photo-detection, all seen in previous chapters. An obvious
advantage is the scalability of the physical implementation. These qubits are called GKP
qubits after Gottesman, Kitaev and Preskill who proposed them in article Gottesman et al.
(2001); they are superposition of Gaussian eigenstates centered in a specified grid in phase
space.

The idea behind this proposal is to prepare non-Gaussian states efficiently (as opposed
to single photon generation) combining displacement and squeezing with an efficient non-
Gaussian operation: photo-detection. Recall in chapter 2 where we discussed measurements,
measuring a mode in a Gaussian system with photo-detection, if the outcome is n ̸= 0, then
the remaining modes become non-Gaussian. If for a system of N modes, we prepare a multi-
mode input state of squeezed and displaced vacuum D̂(α)Ŝ(ζ) |0⟩ and measure N − 1 modes,
we obtain a GKP state for a specific pattern of detection. The Wigner function of these
states in the ideal form is a sum of delta functions with specific spacing determined by the
preparation (see article by Tzitrin et al. (2020) for details) and is fixed at 2

√
π. These spacings

and geometry in the phase space is modelled by a symplectic matrix and, for computational
terms, it is used a rectangular shape geometry. For this reason, these states are often referred
to as grid states.

In the article by Bourassa et al. (2021) we have a description of GKP states where the two
level states |0⟩gkp and |1⟩gkp are written as the following dimensionless combination in the
position axis:

|µ⟩gkp = ∑
n

∣∣(2n + µ)
√

π
〉

q

So a qubit can be written with the usual form as in description of Bloch sphere and now
we need to define the other components for a universal model. The position axis encodes the
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logical 0 and 1 values associated with Z; with similarity to Z axis for logical 0 and 1, the
momentum axis encodes the X eigenstates according to Tzitrin et al. (2020) as:

|+⟩gkp =
∞

∑
n=−∞

∣∣n√π
〉

p and |−⟩gkp ≡ Z(
√

π) |+⟩gkp = D̂(i
√

π/
√

2 |+⟩gkp

We know that the representation for the qubits uses to orthogonal states and we can conclude
this for our GKP states. The spacing in phase space and use of delta functions as peaks or
considering that |1⟩gkp are complementary states of |0⟩gkp it leads to the following inner
product:

⟨1|0⟩gkp = ∑
n

〈
(2n + 1)

√
π
∣∣2n
√

π
〉
= δ((2n + 1− 2n)

√
π) = 0

Figure 37: Wigner function representa-
tion of |0⟩gkp with ϵ = 0.1 that
stands for the finite energy pa-
rameter.

With tools and a tutorial from Strawberry Fields
library, figure 37 has a plot of the Wigner function
representation for these grid states. The difference in
spacing for momentum and position axis is explicitly
represented in the figure while observing the peaks of
delta functions where red dots represent negative func-
tions and blue dots represents positive ones.

To sum up state preparation, the states |0⟩gkp and
|1⟩gkp are superposition states in the position axis pe-
riodically spaced by 2

√
π and the two states are sep-

arated with spacing
√

π. The similar happens for
|+⟩gkp and |−⟩gkp in momentum axis. This implies
that error correction codes must be able to correct up
to
√

π/2 to distinguish logical basis states.
Having the states defined, we are left with opera-

tions. The Hadamard gate (see section A.2) when ap-
plied to a basis state, creates superposition so in linear-optics context, a state |0⟩gkp repre-
sented in position axis is turned into |+⟩gkp with a simple phase-shifter of ϕ = π/2. Pauli
operations are now a bit clearer: for instance, take the gate X as a NOT gate, it can be
implemented with a displacement by

√
π since |0⟩gkp and |1⟩gkp differ by this displacement in

the position axis. For universal computation, it is required a CNOT gate or any other with
non-zero entangling power; this can be translated into a pair of single-mode squeezers between
two beam splitters as we have indication from previous chapters. Some of the most important
operations have their translation explicit in table 2.

Here we have non-Gaussian states right in the system preparation to obtain the logical
qubits and gates are translated into Gaussian linear-optical operations. The missing step is
measurement; for the first time in this dissertation, it is referred homodyne detection in a
model that is hard to simulate classically. Let us take a look at what measurement implies

https://strawberryfields.ai/photonics/demos/run_sampling_bosonic.html
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Quantum Gate CV operation
X D̂(

√
π)

Z D̂(i
√

π)
Rϕ R̂(ϕ)
H R̂(π/2)

CNOT B̂S(θ) · (Ŝ(r)⊗ Ŝ(−r))B̂S(θ)

Table 2: Conversion of CV gates to a 2-level quantum gates.

in Z eigenstates, this is, position axis. Theoretically we have delta functions in phase space
hence measuring |µ⟩gkp we obtain n

√
π and the parity of n indicates state |0⟩ if n is even and

|1⟩ otherwise. In practice, we do not have delta functions so the detected value might not be
associated with a specific n. In this case, this number is approximated to the closest n

√
π.

Thus, the importance of quantum correction codes up to
√

π/2.
The fact that they are orthogonal along with being robust and allowing manipulation with

Gaussian optical elements as described in table 2 motivates to study these states.
This was a brief description of GKP states and they are still an application being studied

at the moment; this is in fact the most promising application for devices with components
that essentially use GBS as a building block. This is the approach to quantum computation
put forth by Canadian company Xanadu. For simulation purposes, Xanadu has a backend
to simulate this new approach since the physical requirements are close to GBS and this is
a promising application. The backend used to this simulation is a different one than Fock
and Gaussian used in previous chapters due to their nature. It is the ’Bosonic’ backend that
simulates quantum optical circuits by representing states as linear combinations of Gaussian
functions in phase space.

5.5 summary

Applications for this chapter were focused on graph problems so we started the chapter
with an introduction to graph theory where we reviewed the some basic facts necessary for the
comprehension of following sections. The key concepts were graph representation (classical
algorithms use edge lists to save memory but adjacency matrices A are easily encoded into
quantum computers) and matchings in a graph. These matchings can be found in several
conditions and for arbitrary graphs but our interest is for perfect matchings that happens
when, for a graph with even n number of nodes, all vertices are matched, this is, there a n/2
number of matchings. The Permanent and the Hafnian of matrices that represent graphs are
strongly related to the calculation of these matchings; the Hafnian is the general formula and
it counts the number of perfect matchings in a graph.

https://www.xanadu.ai/
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To make use of Haf(A) where A is the adjacency matrix, we need to prepare it to be a valid
matrix to physical implementation. From equation 61 we have the covariance matrix from an
adjacency matrix that has the following form:

σQ = (12N − X2N A)−1 − 12N

2

From chapter 2 we know it has some constraints and we made the conditions A needs to
lead to a σQ that corresponds to a physical Gaussian state. To solve symmetry and σQ > 0
we have that:

A =

(
A11 A12

A21 A22

)
⇒
{

A12 = A21

A22 = A⊺
11

; 0 < c < 1/λmax → A′ = cA

where λmax is the largest eigenvalue of A. A matrix with these two conditions/modifications is
Hermitian and positive definite. A last consideration is to make sure the commutation relations
are satisfied which implies that sub-matrix A12 ≥ 0. One option is to use the doubling process
and another is to ensure that A has no negative values which most do (unweighted matrices
only have values 0 and 1 and weighted usually has positive values). Decomposition of A into
interferometer unitaries and squeezing parameters are made via Strawberry Fields functions.

With this encoding ready, we start to study graph algorithms. The first was dense subgraph
identification. The density of a subgraph is the fraction of number of edges in the graph over
the total possible number of edges and finding this can be a difficult problem. If the size is not
specified, Charikar (2000) presents a polynomial classical algorithm that finds the subgraph of
maximum density but finding the denser subgraph with size constraints is NP-hard Khuller and
Saha (2009). This can be solved as a SAT problem but it is highly inefficient so we discussed
a few classical alternatives and some particularities the algorithm might find that complicates
the subgraph selection. Then we proceeded to the quantum approach. Arrazola and Bromley
(2018) showed that the number of perfect matchings in a graph G with 2m vertices is strongly
related to the number of edges. This connection becomes relevant because if the probability of
outputting a sample S representing a subgraph is proportional to number of perfect matchings
- Haf(AS) - and this number is related to the number of edges, then the GBS device encoded
with a graph G naturally outputs denser subgraphs. So using a nanophotonic chip with right
encoding we need to generate multiple samples, calculate the density of each and, given a size,
output the corresponding subgraph with highest density. A similar algorithm is the Maximum
clique; if the Hafnian of a graph returns denser subgraphs, finding a clique should also be a
high probability sample. Both these algorithms work as a seed for the actual problem which is
a nice advantage. For the maximum clique, probabilistic samples means we do not always find
what we are looking for so it was described a classical post-processing portion of the algorithm.
This portion can be both used for classical and quantum algorithms except that starting points
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differ: quantum part has samples and classical algorithm can start with a clique of minimum
size (a node or two connected nodes).

The last graph problem was graph similarity. We described how to measure and represent
the similarity between graphs. A proposal to solve it is by using feature vectors. A classical
algorithm defines what features it is looking for, rearranges those properties and uses a kernel
to return a value for the similarity; a quantum algorithm also uses feature vectors and uses a
technique called coarse-graining to organize the samples according to their occupation number.
When the final feature vectors are constructed, the inner product is an example of measuring
the similarity and for better visualization, we can plot them in the Euclidean space.

Before testing the algorithms, we showed how we implemented the generation of random
graphs and took the opportunity to see if the encoding of these arbitrary graphs can be
done with the current available hardware. We conclude that yes, we can! Even in extreme
conditions, the maximum values can be implemented although most likely in present hardware
only on no integrated technologies but the usual values (squeezing in interval [0, 1.2] focused
on the smaller requirements) where accomplished by Arrazola et al. (2021). The numerical
experiments on dense subgraph identification and graph similarity were both satisfactory. In
the first case we compared classical and quantum random generators and observed that the
latter outputs much better samples, as expected. We also identified denser regions in graphs of
size 16 and 25 in figures 33 and 34 respectively and in all tests we found the denser regions for
the sizes required. For similarity, we tested the algorithm for three graphs were two of them
were generated with the same conditions (number of nodes and edge probability). The results
were obtained and plotted for four graphs were the first two were the same. As expected,
similar graphs were closer.

In the last section we focused on other applications for which we did not make numerical
experiments. Vibronic spectra and neural networks can be encoded into a GBS devices similar
to graphs were some parts of the system is given by a matrix that can either be represented
by a matrix A or σQ and make use of photodetection in the end. Vibronic spectra can be
solved in a polynomial time in a classical computer so implementing in a quantum hardware
is not necessarily better or required. This an open discussion as it is still being studied and
many other proposals may arise in a near future for potentially useful applications.

We ended the chapter with applications fundamentally different than what was considered
previously. Quantum teleportation and QKD are two good examples since photons are excel-
lent information carriers. However, we still focused on quantum computation and considered
describing qubits with BS and GBS. With a device similar to BS we have the Knill et al. (2001)
dual rail encoding scheme where |0⟩ and |1⟩ are defined in equation 62 with Fock states:

|0⟩ = |0⟩ ⊗ |1⟩ = |01⟩ ; |1⟩ = |1⟩ ⊗ |0⟩ = |10⟩
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Single mode operations are implemented with beam splitters and phase shifters; two-mode
operations are generally hard to engineer due to strong photon-photon interactions but Knill
et al. (2001) suggested another solution that makes use of ancilla modes and measurement on
them linear optics operations only.

Using a device with same nature as GBS, it is possible to encode qubits with the following
construction:

|0⟩gkp = ∑
n

∣∣(2n)
√

π
〉

q |+⟩gkp =
∞

∑
n=−∞

∣∣n√π
〉

p

This periodicity and geometry is a consequence of the state preparation: it combines Gaussian
input states with Fock measurements, all in the first stage. Single qubit operations in these
states become intuitive where a NOT gate is easily applied with a displacement gate since for
instance |0⟩ and |1⟩ only differ by a displacement of

√
π. Table 2 summarizes the equivalence

of CV gates to qubit gates necessary for arbitrary quantum computation. This is the only
model in all dissertation that does not require photon detection in the end of the circuit, even
though the full scalable quantum photonic architecture employing these GKP encoded qubits
will naturally also require measurement read-out.



6

C O N C L U S I O N S

In this dissertation, we started by reviewing the fundamental theory of physical elements
for the models of quantum computation using linear optics. By the end of chapter 2, we had
reviewed the basic description of preparation of either Fock states or Gaussian states of light,
their linear-optical evolution, and a few elements that could render the classical simulation
inefficient.

Throughout the dissertation we focused on studying the representation and complexity
of two linear-optical models for quantum computation in order to demonstrate quantum
supremacy. It had some challenges because of two central reasons: physical instruments
for quantum hardware can be hard to implement (photon loss, preparation...) and classical
algorithms are always evolving which makes it difficult to show the exponential advantage for
an universal model. More particularly, better classical algorithms not only can make them
closer to computational complexity of quantum algorithm but demands for better devices; one
example is photon distinguishability where for this case the permanent calculation is efficient
which requires sources for indistinguishable photons. This is an example of the interplay be-
tween quantum hardware improvements and improvements in the classical simulation of these
processes.

An interesting problem we did not address in this dissertation was weak simulation namely
the Clifford and Clifford (2017) algorithm that is one of the most efficient simulations for the
Boson Sampling model: one is able to generate a sample calculating only approximately two
permanents. Although the complexity can be lowered significantly, it still requires computing
the permanent, a computationally intractable matrix function. In physical implementations for
Boson Sampling there is Wang et al. (2019) which could be a good proposal for encoding qubits
in quantum oscillators, by Knill et al. (2001) even though boson sampling is not an universal
model. The biggest obstacle here was the state preparation (that we expect to be developed
in a near future) which served as a motivation to look at variations of the boson sampling
model. As for Gaussian Boson Sampling, Zhong et al. (2021) made an experiment for many
modes that classical algorithms could not solve in polynomial time but their interferometer
is random and also not programmable; it is focused on low loss and high transmission rate
and their techniques are useful for future implementations. This implementation was able to
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sample in 200 seconds a system that they estimate it would take 2.5 billion years to calculate on
a supercomputer. Another proposal is the programmable chip by Arrazola et al. (2021) which
is the first to demonstrate to be ready for scalable hardware with efficient state preparation
and dynamically programmable interferometer at the cost of being a small device that classical
computers can still simulate.

With proper algorithms and these photonic devices, there is the problem of validating the
models. In chapter 3 we discussed a method that requires calculating the probability of output
by the nanochip which we saw to be related to the Permanent or Hafnian, both functions hard
to compute. For small chips such as the proposal by Arrazola et al. (2021), we can still
simulate but a device like the one demonstrated by Zhong et al. (2021) proposal can not. To
do so, we briefly mentioned a technique where one divides the system in two separate parts,
i.e. disconnect the interferometer in the middle so that there are no interactions and calculate
the two probabilities for the output state, one for each half. Validation methods can also be
improved.

Although BS and GBS can show quantum supremacy in a near future using a programmable
chip with all conditions required for quantum computation, direct applications for those mod-
els are not very promising at the moment comparing to classical methods. Applications to
graph theory could bring several advantages due to how many problems can be encoded into
adjacency matrices. However, some algorithms in chapter 5 are also efficient in classical sim-
ulation and in those specific cases the best we could hope is a polynomial speed up. Using
these models as a system for representing qubits is the application we think would be most
promising.

From this work, we see that there are many prospects for future work: in physical implemen-
tation for photonic chips, in classical algorithms, in validation, applications and many others.
It is expected that physical experiments significantly improve in a near future and it then be-
comes impossible to classically simulate them, as has already arguably happened in the case of
the Gaussian Boson Sampling experiment. Most importantly, for applications, programmable
devices, some of which already available on the cloud Xanadu, promise to showcase advantage
in different applications, and use for encoding information as necessary for the longer-term
goal of scalable quantum computation.

https://www.xanadu.ai/cloud
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A
F U N D A M E N TA L S O F Q U A N T U M C O M P U T I N G

a.1 bra-ket notation and hilbert space

The bra-ket notation introduced and named after by Paul Dirac was created to describe
physical quantum states by a state vector |Ψ⟩ named ket which refers to the symbol |a⟩ the
following way:

|Ψ⟩ = (c0, c1, c2, ..., cN)
T

where xT denotes the transpose of the N × 1 column vector. Each bra corresponds to a ket
and vice-versa and represents its dual such that

⟨Ψ| = (c∗0 , c∗1 , c∗2 , ..., c∗N).

These vectors are represented in the Hilbert space H (usually a complex one), an abstract
vector space in which is defined a scalar product and is complete. The dimension of H is the
cardinality of the orthonormal basis representing the states.

For a system and states with this description we have a collection of mathematical operations
that are relevant. Some of them are the following:

• The scalar product is denoted as ⟨Φ|Ψ⟩. This determines how linear decomposed ⟨Φ| is
into |Ψ⟩. If |Ψ⟩ is the state of a system, the probability that a measurement finds the
system in state |Φ⟩ is | ⟨Φ|Ψ⟩ |2. This implies that the sum for all possible outcomes
⟨qn| (the eigenstates of a defined operator) must equal one:

∑
n
| ⟨qn|Ψ⟩ |2 = 1

and the states satisfy the normalization condition.

• The outer product is written as |Φ⟩ ⟨Ψ| and produces a matrix from those two vectors
with dimension N × N equal to length of both states |Φ⟩ and |Ψ⟩. This can also be
called a projection.
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• The tensor product is denoted as |Φ⟩ ⊗ |Ψ⟩. This operation is used to represent a
system composed of several subsystems. This is, analysing a system with states |Φ⟩
and |Ψ⟩ followed by a transformation on both, it is convenient to see them together and
|Φ⟩ ⊗ |Ψ⟩ represents this union. In mathematical terms, this is equivalent to create a
new state with dimension N2 where N is length of |Φ⟩ (and |Ψ⟩). Usually this notation
is simplified to just |Φ⟩ |Ψ⟩ or |Φ, Ψ⟩. This separation of states or trying to write a
system based on its subsystems is an essential detail for quantum mechanics as we can
see by studying entanglement.

The evolution of a system is described in the general form by the Schrödinger equation:

ih̄
d
dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩

where Ĥ is the Hamiltonian of the system. Since these vectors represent a state, operations
over them can represent its evolution in a particular aspect. These operations transform a
vector into another vector and are N × N matrices. So the operator A acting on state |Ψ⟩ is
a ket A |Ψ⟩ and is computed via the multiplication of both.

Given a generic operator P̂ with eigenstates |Ψ⟩ and eigenvalues pn, one can define an
operator with the form eP̂ that has the same eigenstates |Ψ⟩ and with eigenvalues λn such
that λn = epn . This conclusion can be retrieved from expanding the exponential with Taylor
series:

eP̂ = Î + P̂ +
1
2

P̂2 +
1
6

P̂3 + ... → eP̂ |Ψ⟩ = λn |Ψ⟩ (63)

and calculate its eigenvalues of a state:

( Î + P̂ +
1
2

P̂2 +
1
6

P̂3 + ...) |Ψ⟩ = (1 + pn +
p2

n
2

+
p3

n
6

+ ...) |Ψ⟩ = epn |Ψ⟩ = λn |Ψ⟩

Trace

The mean value of A is given by

Ā = ⟨Â⟩ = Tr(ρÂ)

where Tr denotes the trace operations which is carried out by summing the diagonal matrix
elements of the operator ρÂ. Note that the trace is independent of the basis of the operator
as long as it consists in a complete orthonormal set of states.
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a.2 2-level quantum information

The fundamental unit for classical computation is a bit that has either value 0 or 1. Every-
thing is encoded into these bits. The quantum analog is a qubit (short for quantum bit) that
not only can be 0 or 1 but also a combination - superposition state - of the following qubit
state |ψ⟩:

|ψ⟩ = α |0⟩+ β |1⟩ where |0⟩ =
(

1
0

)
; |1⟩ =

(
0
1

)
(64)

where α and β are complex numbers that must fulfill |α|2 + |β|2 = 1 which each value corre-
sponds to probability of measuring the respective state. This normalization and property of
α and β allows a different representation that leads to a different illustration good for visual
terms. This is, the qubit state can be written using the complex numbers angles θ and ϕ

where the state always has norm one:

|ψ⟩ = cos
(

θ

2

)
|0⟩+ sin

(
θ

2

)
expiϕ |1⟩

Translating this into a visual representation we obtain figure 38. In this figure we represented
an arbitrary state but this can be generalized to many however visualizing purposes turns less
effective.

(a)

(b)

Figure 38: Bit versus qubit illustration using Bloch sphere. A bit - represented in sub-figure 38a - is
restricted to 0 or 1 where one excludes the other. Contrary to this approach, a qubit -
represented in sub-figure 38b - is a state with norm 1 defined in the Bloch sphere by angles
θ and ϕ. Visualizing we can easily see that to a direct measurement, phase exchange (in
parameter ϕ) has no effect. The written states are the extreme values for the corresponding
axis in the sphere limit.

With sub-figure 38b we can comprehend easily some importance aspects. The previously
used variable α with this notation is equivalent to α = cos(θ/2) hence the probability of
measuring |0⟩ is |α|2 = | cos(θ/2)|2 where a measure collapses two one of the two poles in
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that direction (projection onto a basis vector). This last part becomes important because we
are not restricted to measuring in z axis but can do the same to x and y. We have then the
Pauli operators defined as σ̂x, σ̂y and σ̂z that leads to measurements in this 3 directions that
are characterized by detecting the states (for short) in Pauli basis |+⟩ or |−⟩, |+i⟩ or |−i⟩
and |0⟩ or |1⟩ each pair respectively to Pauli operators.

For interest of purely computational applications, we have the liberty to choose whatever
appropriate system to be |0⟩ or |1⟩. Typical and most common sources are two level systems,
this is, physical systems where we can easily distinguish two states or isolate from the other
possible. Examples are the following:

• Photon polarization - |0⟩ represents horizontal and |1⟩ represents vertical polarization;

• Superconducting qubits using Josephson juntion;

• Electronic spin - Up and down represent |0⟩ and |1⟩ respectively;

• Nuclear spin by Nuclear Magnetic Resonance (NMR).

There are many other proposals for encoding qubits and they are chosen according to their
efficiency since scaling systems to use a great number of qubits becomes complicated for
some problems mentioned in chapter 3 and 4. Some issues are extremely common such as
decoherence and lost of information can manifest in several ways.

Having defined the states, we should describe the operations we can apply to them. In
table 3 we have some of the most used quantum logic gates. The first matrix represented is
identity I; this operation does not modify the system and is only represented for mathematical
and simplification purposes. In second place is the rotation gate Rϕ; as the name indicates
it rotates the state by an angle ϕ. For instance, applying to state |0⟩ we have Rϕ |0⟩ = |0⟩
and for |1⟩ we obtain eiϕ |1⟩. This gate does not interfere in measuring a state before of after
it is applied; it is a phase rotation - see Bloch sphere for better intuition. The 3 following
gates are Pauli gates which are the Pauli matrices; they correspond to a rotation of π over the
respective axis. For this reason, X is often called NOT gate since X |0⟩ = |1⟩ and X |1⟩ = |0⟩,
Z a phase-flip for |1⟩ (|0⟩ → |0⟩ and |1⟩ → − |1⟩) and Y simultaneously phase-flips (for
|1⟩) and bit-flips while applying i to the state. Then we have Hadamard gate H that creates
superposition given a basis state; this is, |0⟩ → |+⟩ and |1⟩ → |−⟩. Last but not least, we
have Controlled NOT gate or CNOT for short. This is the first gate mentioned that acts on
two modes or, more particularly, on more than one mode. The controlled qubit in this case
is the first draw with a dot and the target is the second qubit with a circle. The operation
on the target happens when the controlled qubit is |1⟩ and CNOT specifically flips the target
qubit if this is the case.

Many other operations can be implemented from this. An example is controlled gates where
we can use a control qubit to apply conditionally a unitary to other target qubit or qubits
even. The same goes for measurements and we can use several qubits as control too.
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Quantum Gate Unitary Symbol

I
(

1 0
0 1

)
I

Rϕ
1√
2

(
1 0
0 eiϕ

)
R

X
(

0 1
1 0

)
X

Z
(

1 0
0 −1

)
Z

Y
(

0 −i
i 0

)
Y

H 1√
2

(
1 1
1 −1

)
H

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 •

Table 3: 2-level quantum gates.

Generating new arbitrary matrices to implement algorithms makes universality necessary
and decomposition is required as we needed here in interferometer in this thesis models. This
decomposition for this approach can be done in polynomial time using gates from the polyno-
mial set (composed by rotations over two axis and CNOT).



B
C O D E I M P L E M E N TAT I O N A N D S I M U L AT I O N

b.1 strawberry fields library

The Walrus is a library for the calculation of hafnians, GBS and other related problems with
optimized algorithms. Functions used in Strawberry Fields use functions from this library to
write faster algorithms. The company Xanadu developed for the Strawberry fields library a
language to work with programming a GBS device and some more photonic-related topics
allowing to run the program in a actual device or simulating where the latter makes use of
The Walrus library.

Strawberry Fields is a cross-platform Python library focused on problem solving, execution
and simulation of quantum photonic hardware. To start with, in order to do such simulation,
it is required to perform operations, prepare states and realize measurements as described in
chapter 2 along with a platform capable of such classical description. This and encoding into
a quantum processor is detailed in Killoran et al. (2019b). Strawberry Fields is not restricted
to linear optics; they also implement other functionalities outside the propose in this thesis
(for instance, Kerr gate and Cubic Phase gate).

To write and run a Strawberry Fields program, it is essentially divided in three parts:

1. Program initialization. The program is created and initialized with the number of modes
and a name (optional).

2. Program physical description. This is where preparation and operations are made.

3. Run program. To run the program we first have to define the engine (where the program
will run, see later notes) and only then run.

The first part is a simple line of code that only requires the import of this library. The second
part is realized within a context manager for the program, this is, in our classical simulation
code we use a program direct to calculation (one for BS and another for GBS) but Strawberry
Fields is more general and define these conditions within the context manager: along with
the with statement, the context allows to allocate and manage resources according to the
needs the programmer wants. With the with statement and the program context, we prepare
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the input states and implement the proper operations to our qumodes. With the purpose of
defining our system, Strawberry Fields offers several operations and, for the conditions in this
thesis, we consider the following where parameters within square brackets are optional:

• State preparation. The main and most used in our code are the following:

1. Vacuum(). This state is already the default initialization.

2. Coherent([r, ϕ]) where r and ϕ are the polar representation of α being respectively
displacement amplitude and phase angle.

3. Squeezed([r, p]) where r and p are the squeezing parameter and angle of ζ. This
prepares the so called squeezed vacuum.

4. Fock([n]) where n is the photon number for the particles in the associated qumode.

They also offer other ways such as DensityMatrix(state) that prepares a state given a
density matrix in Fock basis and Gaussian(V[, r, decomp, tol]) prepares a Gaussian state
given a valide covariance matrix V. Default values for parameters are zero or None
except for tol = 1× 10−6 (the tolerance used when checking if the matrix is symmetric)
and decomp = True for decompose operation into a sequence of elementary gates.

• Application of gates.

1. Rgate(theta) where theta is the angle ϕ in equation 34.

2. BSgate([theta, phi]) where default values are theta = π/4 and phi = 0 and they
represent respectively θ and ϕ for the beam splitter in equation 36.

3. S2gate(r[, phi]) and Sgate(r[, phi]) in equations 40 and 37 respectively. Within this
settings, they also have Dgate(r[, phi]) where they all are similar to state prepara-
tion but in contrary to that, here is required the squeezing parameter and displace-
ment amplitude for squeezing and displacement gates in function arguments.

4. Interferometer(U[, mesh, drop_identity, tol]) where U is the matrix describing the
interferometer and default values are mesh =’rectangular’, drop_identity =True
and tol = 1× 10−6.

Other gates we won’t present because are outside of the BS and GBS applications but
inside the linear optics are Xgate(x) and Zgate(p) that are positium and momentum dis-
placement gate (specific cases for Dgate(r[, phi])) and also CXgate([s]) and CZgate([s])
that are controlled addition or sum gate in the position basis and controlled phase gate
in the position basis.

• Performing measurements.

1. MeasureFock([select, dark_counts]) measures the qumodes returning n ∈N.

2. MeasureThreshold([select]) - avalanche detectors that returns n ∈ [0, 1].
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3. MeasureHomodyne(phi[, select]) performs a homodyne measurement on a mode as
introduced the first basis in equation 44 returning xθ ∈ R. For specific values
of θ or argument phi we are measuring one of the quadratures and they can be
performed via MeasureX and MeasureP.

4. MeasureHeterodyne([select]) performs a heterodyne measurement on a mode also
introduced the basis in equation 44 returning α ∈ C. One can also use MeasureHD
for short when no arguments are specified (MeasureHeterodyne() =MeasureHD)

The select arguments are used for post-selection if needed.

In the end of circuit preparation, one needs to select the appropriate engine where the
program should run. Here is the first step to distinguish simulators from quantum processors
where the former is via the Strawberry Fields engines and the latter is via a remote engine.
For simulation it is now available four backends: Gaussian, Fock, TensorFlow and Bosonic.
Let us consider here only the first two since those are the ones used in the core of dissertation.

The Fock and Gaussian backend treat the system with fundamentally different descriptions.
As the names suggest, the first uses the approach used for Fock states in chapter 2 with count-
able infinite-dimensional Hilbert space and the second uses the symplectic formalism storing
quantum information in displacement vectors and covariance matrices. Regardless of the back-
end choice, if it is being used to simulate an output in the Fock basis, it is necessary to define a
cutoff dimension cuto f f _dim or impose some limit in the dimension of the system. The num-
ber cuto f f _dim represents the numerical truncation of the Fock space used by the underlying
state. If cutoff is defined by D then it corresponds to the Fock states {|0⟩ , · · · , |D− 1⟩}. As
for the limit in Gaussian backend, it does not have an equivalent function to all_fock_probs()
and to return a probability from simulation we need to input the state we intend to analyse,
one by one. For generation of samples they also have a function to return them accessible via
sf.apps.sample.sample().

So far we used programs to run with a simulator hence the choice of a backend as an Engine.
However, there are already quantum computers based in this model and Xanadu allows access
to theirs. To do so, one must configure in their computer with an authentication token given
by Xanadu once they accept the request for their use. In this case, the program will run in an
actual device where the engine now is the name of the device to chose and results are obtained
using eng.run(prog[, shots]) and shots is by default 1 but can be set as any arbitrary integer.

Xanadu and Strawberry Fields simulators both use the assembly language called Blackbird
as the quantum instruction set of lower level for this type of quantum computation. Given that
Strawberry Fields is open-source, we can see the generated Blackbird code from our program
with the function sf.io.to_blackbird(prog, version =′ 1.0′).
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b.2 linear optics programs

prog = s f . Program (1)
2 with prog . context as q :

Vac | q [ 0 ]
4

eng = s f . Engine ( ’ gauss ian ’ )
6 s t a t e = eng . run ( prog ) . s t a t e

8 f i g = p l t . f i g u r e ( )
X = np . l i n s p a c e (−5 , 5 , 100)

10 P = np . l i n s p a c e (−5 , 5 , 100)
Z = s t a t e . wigner (0 , X, P)

12 X, P = np . meshgrid (X, P)
ax = f i g . add_subplot (111 , p r o j e c t i o n="3d" )

14 ax . p lo t_sur face (X, P, Z , cmap="RdYlGn" , lw=0.5 , r s t r i d e =1, c s t r i d e =1)
f i g . s e t_s ize_inches ( 4 . 8 , 5)

Listing B.1: Code to plot Wigner function of vacuum state.

1 prog = s f . Program (1)
with prog . context as q :

3 Fock (1 ) | q [ 0 ]

5 eng = s f . Engine ( ’ fock ’ , backend_options={" cutoff_dim" : 10})
s t a t e = eng . run ( prog ) . s t a t e

7

f i g = p l t . f i g u r e ( )
9 X = np . l i n s p a c e (−5 , 5 , 100)

P = np . l i n s p a c e (−5 , 5 , 100)
11 Z = s t a t e . wigner (0 , X, P)

X, P = np . meshgrid (X, P)
13 ax = f i g . add_subplot (111 , p r o j e c t i o n="3d" )

ax . p lo t_sur face (X, P, Z , cmap="RdYlGn" , lw=0.5 , r s t r i d e =1, c s t r i d e =1)
15 f i g . s e t_s ize_inches ( 4 . 8 , 5)

#ax . se t_ax i s_of f ( )

Listing B.2: Plotting Wigner function of Fock state |1⟩.

prog = s f . Program (1)
2 with prog . context as q :

D = Dgate ( 1 . 5 )
4 D | q [ 0 ]



B.2. Linear Optics programs 131

6 eng=s f . Engine ( ’ gauss ian ’ )
s t a t e = eng . run ( prog ) . s t a t e

8 f i g = p l t . f i g u r e ( )
X = np . l i n s p a c e (−5 , 5 , 100)

10 P = np . l i n s p a c e (−5 , 5 , 100)
Z = s t a t e . wigner (0 , X, P)

12 X, P = np . meshgrid (X, P)
ax = f i g . add_subplot (111 , p r o j e c t i o n="3d" )

14 f i g . s e t_s ize_inches ( 4 . 8 , 5)
ax . p lo t_sur face (X, P, Z , cmap="RdYlGn" , lw=0.5 , r s t r i d e =1, c s t r i d e =1)

16 ax . s e t_x labe l ( ’X ’ )
ax . s e t_y labe l ( ’P ’ )

Listing B.3: Plotting Wigner function of coherent state |α = 1.5⟩.

1 prog = s f . Program (1)
with prog . context as q :

3 S = Sgate (1 )
S | q [ 0 ]

5

eng . r e s e t ( )
7 s t a t e = eng . run ( prog ) . s t a t e

f i g = p l t . f i g u r e ( )
9 X = np . l i n s p a c e (−5 , 5 , 100)

P = np . l i n s p a c e (−5 , 5 , 100)
11 Z = s t a t e . wigner (0 , X, P)

X, P = np . meshgrid (X, P)
13 ax = f i g . add_subplot (111 , p r o j e c t i o n="3d" )

f i g . s e t_s ize_inches ( 4 . 8 , 5)
15 ax . p lo t_sur face (X, P, Z , cmap="RdYlGn" , lw=0.5 , r s t r i d e =1, c s t r i d e =1)

ax . s e t_x labe l ( ’X ’ )
17 ax . s e t_y labe l ( ’P ’ )

#ax . se t_ax i s_of f ( )

Listing B.4: Plotting Wigner function of squeezed state |ζ = 1⟩ .

U=haar_measure (4 )
2 boson_sampling = s f . Program (4)

4 with boson_sampling . context as q :
I n t e r f e r ome t e r (U) | q

6
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boson_sampling . compi le ( compi le r=" fock " ) . p r i n t ( )
8 boson_sampling . draw_circuit ( wr i t e_to_f i l e=Fal se )

Listing B.5: Haar random matrix decomposition from interferometer description to beam splitters and
phase shifters.

b.3 boson sampling

1 de f permanent (U) :
m=len (U)

3 i f (m==2) : perm=U[ 0 ] [ 0 ] ∗U[ 1 ] [ 1 ]+U[ 0 ] [ 1 ] ∗U [ 1 ] [ 0 ]
e l i f (m==1) : perm=U[ 0 ] [ 0 ]

5 e l s e :
cp=np . z e r o s ( (m−1, m−1) , dtype=complex )

7 perm=0; k=0; l=0

9 f o r n in range (m) :
f o r i in range (m−1) :

11 f o r j in range (m−1) :
i f ( k==0 and l==n) : k+=1; l+=1

13 e l i f ( k==0) : k+=1
e l i f ( l==n) : l+=1

15 cp [ i ] [ j ]=U[ k ] [ l ] ; l+=1
k+=1; l=0

17 k=1
perm+=U[ 0 ] [ n ] ∗ permanent ( cp )

19 re turn perm

Listing B.6: Permanent algorithm.

1 de f probC (U, S , T) :
’ ’ ’ probC takes as arguments the e lements that f u l l y d e f i n e the system

( in the f i n a l equat ion f o r Boson Sampling formula ) :
3 U − numpy matrix [m, m] f o r the l i n e a r i n t e r f e r ome t e r

S − l i s t [m] input Fock s t a t e
5 T − l i s t [m] output Fock s t a t e

r e tu rn s : numpy f l o a t f o r p r obab i l i t y Pr (S ,T) ’ ’ ’
7

#i n i t i a l i z e nece s sa ry v a r i a b l e s
9 k=0; summ=0; m=len (U)

f o r i in range (m) : summ+=S [ i ] ;
11 UST=np . z e r o s ( (summ, summ) , dtype=complex )
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13 rows = [ i f o r s u b l i s t in [ [ idx ] ∗ j f o r idx , j in enumerate (T) ] f o r i
in s u b l i s t ]

columns = [ i f o r s u b l i s t in [ [ idx ] ∗ j f o r idx , j in enumerate (S) ]
f o r i in s u b l i s t ]

15 UST=U[ : , columns ] [ rows ]

17 permt=perm(UST)
PR=pow( abs ( permt ) , 2)

19 f a c t o r i a l=1
f o r i in range (m) :

21 f a c t o r i a l=f a c t o r i a l ∗math . f a c t o r i a l (S [ i ] ) ∗math . f a c t o r i a l (T[ i ] )

23 re turn PR/ f a c t o r i a l

Listing B.7: BS classical algorithm.

1 de f probQ(U, inputQ , s t a t e s ) :
’ ’ ’ probQ takes as arguments the e lements that f u l l y d e f i n e the system

:
3 U − numpy matrix [m, m] f o r the l i n e a r i n t e r f e r ome t e r

inputQ − l i s t [m] input Fock s t a t e
5 s t a t e s − l i s t ([m]) output Fock s t a t e s to re turn probs

r e tu rn s : l i s t [ f l o a t ] f o r p r o b a b i l i t i e s Pr ( inputQ , s t a t e ) f o r s t a t e
in s t a t e s ’ ’ ’

7

m=len ( inputQ )
9 boson_sampling = s f . Program(m)

11 with boson_sampling . context as q :
f o r i in range (m) : # prepare the input fock s t a t e s

13 i f inputQ [ i ]==0: cont inue #or Vac | q [ i ]
e l s e : Fock ( inputQ [ i ] ) | q [ i ]

15 I n t e r f e r ome t e r (U) | q # apply the matrix

17 eng = s f . Engine ( backend=" fock " , backend_options={" cutoff_dim" : m+1})
r e s u l t s = eng . run ( boson_sampling )

19

probs = r e s u l t s . s t a t e . a l l_fock_probs ( )
21 l i s t_probs = [ probs [ s t ] f o r s t in s t a t e s ]

r e turn l i s t_probs

Listing B.8: BS quantum algorithm with Strawberry Fields functions.
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de f s t a t e s_g ive r In (m, f ) :
2 """ r e tu rn s 1 photon per mode on f i r s t f modes and 0 in the remaining

l i s t ( tup l e ) − [ ( 1 , . . , 1 , 0 , . . , 0 ) ]
4 r e tu rn s i n t 0 i f number o f photons i s > number o f modes

"""
6 i f f>m: re turn 0

return (1 , ) ∗ f + (0 , ) ∗(m−f )
8

de f states_giverOut (m, f ) :
10 # retu rn s a l l combinations o f f photons in m modes ( f o r each n_i f o r

i in m , sum_i ( n_i ) =f )
# l i s t ( tup l e ∗B_m̂ f )

12

s=l i s t ( i t e r t o o l s . product ( ∗ [ range ( f +1) ] ∗m) ) #a l l
s t a t e s

14 f i l t e r e d_ s t a t e s =[ s [ i ] f o r i in range (1 , l en ( s ) ) i f sum( s [ i ] )==f ]
f i l t e r e d_ s t a t e s . s o r t ( key=lambda s t : sum( s t ) ) #f o r

b e t t e r p r e s en ta t i on only (1 photon , then 2 e tc )
16 re turn f i l t e r e d_ s t a t e s

Listing B.9: State generation for input and output of BS.

de f i n i t i a l i z eComp (U) :
2 N=len (U)

#s t a t e s=l i s t ( i t e r t o o l s . product ( range (2 ) , r epeat=N) ) #s t a t e s with
outputs 0 and 1 only

4 #s t a t e s . remove ( ( 0 , ) ∗N)
s t a t e s =[ (1 , ) ∗N]

6 l=l en ( s t a t e s ) ; p=np . z e ro s ( l )
f o r i in range ( l ) :

8 p=[probC(U, s t a t e s [ i ] , s t a t e s [ j ] ) f o r j in range ( l ) i f sum( s t a t e s
[ j ] )==sum( s t a t e s [ i ] ) ] ; prob=0

temp=[ j f o r j in s t a t e s i f sum( j )==sum( s t a t e s [ i ] ) ]
10 f o r j in range ( l en (p) ) :

prob+=p [ j ]
12

de f mede(tam , reps , t ecn i ca , gerador ) :
14 tamanhos = range (1 , tam)

setup = ’ from __main__ import ’+t e cn i c a+’ \nfrom __main__ import ’+
gerador

16 re turn [ t ime i t ( setup=setup , stmt=te cn i c a+" ( "+gerador+" ( "+s t r ( i )+" ) ) " ,
number=reps ) / reps f o r i in tamanhos ]
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18 mede (11 ,2 , ’ i n i t i a l i z eComp ’ , ’ haar_measure ’ )

Listing B.10: Function to study BS complexity.

de f s t a t e s_g ive r (m, f ) :
2 """ arguments :

m − nr o f modes
4 f − max nr t o t a l photons

r e tu rn s l i s t [ l i s t ] o f s t a t e s """
6 s=l i s t ( i t e r t o o l s . product ( ∗ [ range ( f +1) ] ∗m) ) ;

f i l t e r e d_ s t a t e s =[ s [ i ] f o r i in range ( l en ( s ) ) i f sum( s [ i ] )<=f ]
8 f i l t e r e d_ s t a t e s . s o r t ( key=lambda s t : sum( s t ) )

s t a t e s =[ l i s t ( elem ) f o r elem in f i l t e r e d_ s t a t e s ]
10 re turn s t a t e s

Listing B.11: Generation of possible output states for a GBS device up to f photons.

de f helpA ( photonOutput , l imit_prob , U, s ta te In , t imes ) :
2 x=np . random . rand int (0 , l en ( photonOutput ) , t imes ) ;

y=np . random . uniform (0 , l imit_prob , t imes ) ;
4

accepted=np . array ( [ photonOutput [ x [ i ] ] f o r i in range ( l en (x ) ) i f y [ i ]<
probC (U, s ta t e In , photonOutput [ x [ i ] ] ) ] )

6 re turn accepted

8 de f randomGeneratorA (U, f , t imes ) :
""" arguments :

10 U − un i tary matrix f o r i n t e r f e r ome t e r in c i r c u i t
f − number o f photons f o r input mode ( f<m)

12 t imes − number o f samples to generate
r e j e c t i o n sampling method : func t i on c a l c u l a t e s the p r o b a b i l i t i e s f o r

each s t a t e and samples from th i s d i s t r i b u t i o n dist
14 random cho i c e from a l l s t a t e s x and random cho i c e y from 0 to

h i ghe s t p r obab i l i t y limitprob .
Keep samples x [ i ] where y [ i ]< d i s t [ x [ i ] ]

16

re turn : numpy . array [ np . array [m]∗ t imes ]
18 """

20 m=len (U) ; s t a t e I n=s ta t e s_g ive r In (m, f )
s t a t e s=states_giverOut (m, f )

22 l imit_prob=1 #d i s t .max( ) ; #pr in t ( s c ipy . s p e c i a l . binom(m, f ) )
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24 x=np . random . rand int (0 , l en ( s t a t e s ) , t imes ) ;
y=np . random . uniform (0 , l imit_prob , t imes ) ;

26 accepted=np . array ( [ s t a t e s [ x [ i ] ] f o r i in range ( l en (x ) ) i f y [ i ]<probC
(U, s ta t e In , s t a t e s [ x [ i ] ] ) ] )

28 #generate new samples to compensate the ones r e j e c t e d
whi l e l en ( accepted )<times :

30 x=helpA ( s ta t e s , l imit_prob , U, s ta t e In , times−len ( accepted ) )

32 i f accepted . s i z e ==0:
accepted=np . copy (x )

34 e l i f x . s i z e ==0: pass
e l s e : accepted=np . concatenate ( ( accepted , x ) , ax i s =0)

36

re turn accepted

Listing B.12: BS sampling algorithm with rejection sampling method.

1 de f randomGeneratorB (U, f , t imes ) :
""" arguments :

3 U − un i tary matrix f o r i n t e r f e r ome t e r in c i r c u i t
f − number o f photons f o r input mode ( f<m)

5 t imes − number o f samples to generate
method : c a l c u l a t e s a l l p r o b a b i l i t i e s in array dist , does the cumulat ive

sum in probs and samples in i n t e r v a l [0, 1]
7 samples correspond to the p r obab i l i t y s e l e c t e d

9 re turn : numpy . array [ np . array [m]∗ t imes ]
"""

11 m=len (U) ; s t a t e I n=s ta t e s_g ive r In (m, f )
s t a t e s=states_giverOut (m, f )

13 s t a t e s=np . array ( s t a t e s )

15 d i s t=np . array ( [ probC (U, s ta t e In , T) f o r T in s t a t e s ] ) ;
probs=np . cumsum( d i s t )#; p r i n t ( ’ probs ’ , probs )

17 y=np . random . uniform ( s i z e=times ) ; y=np . s o r t ( y )#; p r i n t ( ’ y ’ , y )

19 x=0;
whi l e y [0] > probs [ x ] :

21 x=x+1
accepted=np . array ( [ s t a t e s [ x ] ] ) #i n i t i a l i z e with the f i r s t one

accepted and then concatenate the r e s t
23
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f o r i in range (1 , t imes ) :
25 whi le y [ i ]>probs [ x ] : x=x+1 #cyc l e to go trough s t a t e s with

zero p r o b a b i l i t i e s
accepted=np . concatenate ( ( accepted , np . array ( [ s t a t e s [ x ] ] ) ) , ax i s

=0)
27 re turn accepted

Listing B.13: BS sampling algorithm with brute force.

1 de f randomVal (U, f , t imes ) :
m=len (U) ; s t a t e I n=s ta t e s_g ive r In (m, f )

3 s t a t e s=states_giverOut (m, f )
s t a t e s=np . array ( s t a t e s )

5

d i s t=np . array ( [ probC (U, s ta t e In , T) f o r T in s t a t e s ] ) ;
7 probs=np . cumsum( d i s t )

y=np . random . uniform ( s i z e=times ) ; y=np . s o r t ( y )
9

x=0;
11 whi le y [0] > probs [ x ] : x=x+1

probBSampler=np . array ( [ d i s t [ x ] ] )
13 accepted=np . array ( [ s t a t e s [ x ] ] )

15 f o r i in range (1 , t imes ) :
whi l e y [ i ]>probs [ x ] : x=x+1

17 accepted=np . concatenate ( ( accepted , np . array ( [ s t a t e s [ x ] ] ) ) )
probBSampler=np . concatenate ( ( probBSampler , np . array ( [ d i s t [ x ] ] ) ) )

19

probUniSelec=np . array ( [ 1 / l en ( s t a t e s ) ] ∗ t imes )
21 re turn [ probBSampler , probUniSelec ]

Listing B.14: Validation of samples from a (theoretical) Boson Sampler for comparing BS with Uniform
Sampler.

1 de f unifGenVal (U, f , t imes ) :
m=len (U) ; s t a t e I n=s ta t e s_g ive r In (m, f )

3 s t a t e s=np . array ( states_giverOut (m, f ) )
a=len ( s t a t e s ) ; samples=np . random . cho i c e ( a , t imes )

5

probBS=np . array ( [ probC (U, s ta t e In , s t a t e s [ i ] ) f o r i in samples ] )
7 probUniSelec=np . array ( [ 1 / a ] ∗ t imes )

re turn [ probUniSelec , probBS ]

Listing B.15: Generation of uniform samples for post validation with BS.
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de f d i s t r i b u t i o n s (m, f , samples , i n t e r f=’ haar ’ ) :
2 #de f i n e input cond i t i on s

s t a t e s=states_giverOut (m, f )
4 s t a t e s=np . array ( s t a t e s ) ; s t a t e I n=s ta t e s_g ive r In (m, f )

i f i n t e r f==’ d f t ’ : U=DFT_matrix(m)
6 e l i f i n t e r f==’hadamard ’ : U=hadamard (m, dtype=complex ) /np . sq r t (m)

e l s e : U=haar_measure (m)
8

#obta in our samples
10 samplesA=randomGeneratorA (U, f , samples )

samplesB=randomGeneratorB (U, f , samples )
12

n_states=len ( s t a t e s )
14 occurencesA=np . z e ro s ( n_states ) ; occurencesB=np . z e ro s ( n_states )

f o r i , j in z ip ( samplesA , samplesB ) : #run both ar rays in same loop
16 f o r k in range ( n_states ) :

i f ( np . array_equal ( i , s t a t e s [ k ] ) ) : occurencesA [ k]=occurencesA [
k]+1

18 i f ( np . array_equal ( j , s t a t e s [ k ] ) ) : occurencesB [ k]=occurencesB [
k]+1

20 #wri t e d i s t r i b u t i o n s
distT=np . array ( [ probC (U, s ta te In , T) f o r T in s t a t e s ] )

22 distA=occurencesA /( samples )
distB=occurencesB /( samples )

24

s t a t e sp =[np . a r r ay2 s t r i n g ( s ta te , p r e c i s i o n =2, s epara to r=’ , ’ ,
26 suppress_smal l=True ) f o r s t a t e in s t a t e s ]

28 #to remove e lements whose p r obab i l i t y i s ze ro f o r b e t t e r
v i s u a l i z a t i o n

j =0; e p s i l o n =0.00001
30 f o r i in range ( l en ( s t a t e sp ) ) :

i f d istT [ j ]< ep s i l o n and distA [ j ]< ep s i l o n and distB [ j ]< ep s i l o n :
32 distT=np . d e l e t e ( distT , j )

distA=np . d e l e t e ( distA , j ) ;
34 occurencesA=np . d e l e t e ( occurencesA , j )

d istB=np . d e l e t e ( distB , j ) ;
36 occurencesB=np . d e l e t e ( occurencesB , j )

s t a t e sp=np . d e l e t e ( s ta te sp , j )
38 e l s e : j=j+1

40 re turn [ s ta te sp , distT , distA , distB , occurencesA , occurencesB ]
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Listing B.16: Distribution calculation for preparation of comparison in plots. Calculates the theoretical
probability distribution and calculates distributions from the two sampling methods all
in the same conditions.

de f p l o tD i s tEr ro r ( matrix , d i s t s , samples ) :
2 #ca l c u l a t i n g e r r o r f o r each sampling d i s t r i b u t i o n computing the

standard dev i a t i on f o r binomial d i s t r i b u t i o n
yerrA=np . sq r t ( d i s t s [4 ]∗(1 − d i s t s [ 2 ] ) ) / samples

4 yerrB=np . sq r t ( d i s t s [5 ]∗(1 − d i s t s [ 3 ] ) ) / samples

6 i f l en ( d i s t s [ 0 ] ) >50:
p l t . f i g u r e ( f i g s i z e =(22 , 4) )

8 i n d ex i s=np . a r g s o r t ( d i s t s [ 1 ] )
d i s t s [1 ]=np . array ( [ d i s t s [ 1 ] [ i ] f o r i in i nd ex i s ] )

10 d i s t s [2 ]=np . array ( [ d i s t s [ 2 ] [ i ] f o r i in i nd ex i s ] )
d i s t s [3 ]=np . array ( [ d i s t s [ 3 ] [ i ] f o r i in i nd ex i s ] )

12 d i s t s [0 ]=np . array ( [ d i s t s [ 0 ] [ i ] f o r i in i nd ex i s ] )
p l t . tick_params ( labe lbottom = False , bottom = False ) #l a b e l l e f t=

False ,
14 p l t . x l ab e l ( s t r ( d i s t s [ 0 ] [ 0 ] )+’ , ’+s t r ( d i s t s [ 0 ] [ 1 ] )+’ . . . . . . . .

output s t a t e s . . . . . . . . ’+ s t r ( d i s t s [ 0 ] [ l en ( d i s t s [ 0 ] )−1 ] ) )
#p l t . y l ab e l ( ’ P r o b a b i l i t i e s ’ )

16 #pl t . bar ( d i s t s [ 0 ] , −d i s t s [ 1 ] , width =0.5 , c o l o r =’ l i g h t g r ay ’ )
#p l t . axh l ine (y = −0.000001 , c o l o r = ’k ’ )

18

p l t . bar ( d i s t s [ 0 ] , d i s t s [ 1 ] , width =0.5 , c o l o r=’ l i g h t g r ay ’ ) #
exper imentar a l t e r a r apenas e s t e para barra

20 p l t . e r r o rba r ( d i s t s [ 0 ] , d i s t s [ 2 ] , yerrA , fmt=’ bs ’ , markers i ze=4)
p l t . e r r o rba r ( d i s t s [ 0 ] , d i s t s [ 3 ] , yerrB , fmt=’ g^ ’ , markers i ze=4)

22

#i f matrix==’d f t ’ : p l t . t i t l e ( ’DFT matrix ’ )
24 #e l i f matrix==’hadamard ’ : p l t . t i t l e ( ’Hadamard matrix ’ )

#e l s e : p l t . t i t l e ( ’Random haar−measured matrix ’ )
26

p l t . x t i c k s ( r o t a t i on = 90)
28 p l t . s a v e f i g ( ’ saved_figure8m4fhadamard . png ’ , bbox_inches=’ t i g h t ’ ) #,

bbox_inches=’ t i g h t ’
p l t . l egend ( [ ’ Theory ’ , ’ SamplesA ’ , ’ SamplesB ’ ] )

30 p l t . show ( )

Listing B.17: Function to plot boson sampling distributions from theoretical analysis, rejection sampling
B.12 and brute force (method B) B.13.
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b.4 gaussian boson sampling

a0 = 1000 .
2 anm1 = 2 .

n = 20
4 r = (anm1/a0 ) ∗∗ ( 1 . / ( n−1) )

#nreps : number o f samples f o r each s i z e ( sma l l e r matr i ce s run more t imes
f o r b e t t e r r e s u l t s s i n c e the computer can run them in a smal l amount
o f time )

6 nreps = [ ( i n t ) ( a0 ∗( r ∗∗( ( i ) ) ) ) f o r i in range (n) ]

8 t imes = np . empty (n)
f o r ind , reps in enumerate ( nreps ) :

10 s t a r t = time . time ( )
f o r i in range ( reps ) :

12 s i z e = 2∗( ind+1)
nth = 1

14 matrix = haar_measure ( s i z e )
A = matrix @ matrix .T

16 A = 0 .5∗ (A+A.T)
r e s = hafn ian (A)

18 end = time . time ( )
t imes [ ind ] = ( end − s t a r t ) / reps

20 pr in t (2∗( ind+1) , t imes [ ind ] )

Listing B.18: Generation of results to study complexity of calculating the Hafnian. Plot can be found
in figure 21.

sum_trunc1() and sum_trunc2() are functions that return CDF given the same input con-
ditions but with different states to test, this is, states_giver() and geraMF().

nPhot=[ i f o r i in range (11) ]
2 m=9; r=1

U=haar_measure (m)
4

p l t . p l o t ( nPhot , [ sum_trunc1 (U, r , i ) f o r i in nPhot ] , l a b e l=’ s t a t e s_g ive r ’ ,
marker=’ . ’ )

6 p l t . p l o t ( nPhot , [ sum_trunc2 (U, r , i ) f o r i in nPhot ] , l a b e l=’geraMF ’ ,
marker=’ . ’ )

p l t . l egend ( )
8 p l t . x l ab e l ( ’ Total photon Number ’ )

p l t . y l ab e l ( ’CDF’ )
10 #pl t . t i t l e ( ’ P robab i l i t y f o r d i f f e r e n t squeez ing parameters ’ )

p l t . s a v e f i g ( ’ truncation_9mMs ’ , bbox_inches=’ t i g h t ’ )
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12 p l t . show ( )

Listing B.19: GBS CDF for same input squeezing parameter in every qumode.

nPhot=[ i f o r i in range (11) ]
2 m=9

meanV=0.5
4 squeez ing=squeezeDis t2 (m,meanV)

U=haar_measure (m)
6

#pr in t ( sum_trunc ( haar_measure (m) , squeez ing , 4) )
8 p l t . p l o t ( nPhot , [ sum_trunc1 (U, squeez ing , i ) f o r i in nPhot ] , l a b e l=’

s t a t e s_g ive r ’ , marker=’ . ’ )
p l t . p l o t ( nPhot , [ sum_trunc2 (U, squeez ing , i ) f o r i in nPhot ] , l a b e l=’

gera_MF ’ , marker=’ . ’ )
10

p l t . l egend ( )
12 p l t . x l ab e l ( ’ Total photon Number ’ )

p l t . y l ab e l ( ’CDF’ )
14 #pl t . t i t l e ( ’ P robab i l i t y f o r d i f f e r e n t squeez ing parameters ’ )

#p l t . s a v e f i g ( ’ truncation_9mMeansM1 ’ , bbox_inches=’ t i g h t ’ )
16 p l t . show ( )

Listing B.20: GBS CDF for squeezing parameters around a mean value.

de f helpA ( photonOutput , l imit_prob , U, squeeze , t imes ) :
2 x=np . random . rand int (0 , l en ( photonOutput ) , t imes ) ;

y=np . random . uniform (0 , l imit_prob , t imes ) ;
4

accepted=np . array ( [ photonOutput [ x [ i ] ] f o r i in range ( l en (x ) ) i f y [ i ]<
probGBS(U, squeeze , photonOutput [ x [ i ] ] ) ] )

6 re turn accepted

8 de f sampleGeneratorA (U, squeeze , times , l imit_photons=10) :
""" arguments :

10 U − un i tary matrix o f i n t e r f e r ome t e r
squeeze − squeez ing parameters ( e i t h e r a value and equal

squeez ing f o r a l l modes or l i s t o f N squeez ing parameters )
12 t imes − number o f samples

l imit_photons − t runcat i on number f o r the sum of number photons
per mode , d e f au l t va lue i s 10

14

r e j e c t i o n sampling method :
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16 random cho i c e from a l l s t a t e s x and random cho i c e y from 0 to
h i ghe s t p r obab i l i t y limit_prob .

Keep samples x [ i ] where y [ i ]<probGBS [ x [ i ] ]
18

r e tu rn s np . ndarray [ np . ndarray ]
20 """

l imit_prob=probGBS( U, squeeze , np . z e r o s ( l en ( squeeze ) , dtype=in t ) )
22 photonOutput=states_giverOut ( l en (U) , l imit_photons )

x=np . random . rand int (0 , l en ( photonOutput ) , t imes ) ;
24 y=np . random . uniform (0 , l imit_prob , t imes ) ;

26 accepted=np . array ( [ photonOutput [ x [ i ] ] f o r i in range ( l en (x ) ) i f y [ i ]<
probGBS(U, squeeze , photonOutput [ x [ i ] ] ) ] )

28 #generate new samples to compensate the ones r e j e c t e d
whi l e l en ( accepted )<times :

30 x=helpA ( photonOutput , l imit_prob , U, squeeze , times−len ( accepted ) )

32 i f accepted . s i z e ==0:
accepted=np . copy (x )

34 e l i f x . s i z e ==0: pass
e l s e : accepted=np . concatenate ( ( accepted , x ) , ax i s =0)

36

re turn accepted

Listing B.21: GBS sampling algorithm with rejection sampling method.

1 de f sampleGeneratorB (U, squeeze , times , l imit_photons=10) :
""" arguments :

3 U − un i tary matrix f o r i n t e r f e r ome t e r in c i r c u i t
t imes − number o f samples to generate

5 l imit_photons − t runcat i on number f o r number photons per mode ,
d e f au l t va lue i s 10

7 method : c a l c u l a t e s a l l p r o b a b i l i t i e s in array dist , does the cumulat ive
sum in probs and samples in i n t e r v a l [0, 1]
samples correspond to the p r obab i l i t y s e l e c t e d

9

re turn : numpy . array [ np . array [m]∗ t imes ]
11 """

m=len (U) ;
13 photonOutput=states_giverOut (m, l im i t \_photons )
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15 d i s t=np . array ( [ probGBS(U, squeeze , T) f o r T in photonOutput ] ) ;
l imit_prob=sum( d i s t ) #given limit_photons , method has to be adapted

17 probs=np . cumsum( d i s t )
y=np . random . uniform (0 , l imit_prob , s i z e=times ) ; y=np . s o r t ( y )

19

x=0;
21 whi le y [0] > probs [ x ] : x=x+1

accepted=np . array ( [ photonOutput [ x ] ] )
23

f o r i in range (1 , t imes ) :
25 whi le y [ i ]>probs [ x ] : x=x+1

accepted=np . concatenate ( ( accepted , np . array ( [ photonOutput [ x ] ] ) ) ,
ax i s =0)

27

re turn accepted

Listing B.22: GBS sampling algorithm with brute force.

de f d i s t r i b u t i o n s (U, squeeze , samples , f ) :
2 #de f i n e input cond i t i on s

s t a t e s=outState s ( l en (U) , f )
4 s t a t e s=np . array ( s t a t e s )

6 #obta in our samples
samplesA=sampleGeneratorA (U, squeeze , samples , l imit_photons=f )

8 samplesB=sampleGeneratorB (U, squeeze , samples , l imit_photons=f )

10 n_states=len ( s t a t e s )
occurencesA=np . z e ro s ( n_states ) ; occurencesB=np . z e ro s ( n_states )

12 f o r i , j in z ip ( samplesA , samplesB ) : #run both ar rays in same loop
f o r k in range ( n_states ) :

14 i f ( np . array_equal ( i , s t a t e s [ k ] ) ) :
occurencesA [ k]=occurencesA [ k]+1

16 i f ( np . array_equal ( j , s t a t e s [ k ] ) ) :
occurencesB [ k]=occurencesB [ k]+1

18

#wri t e d i s t r i b u t i o n s
20 distT=np . array ( [ probGBS(U, squeeze , T) f o r T in s t a t e s ] )

t runcat i on=(sum_trunc (U, squeeze , f ) )
22 distT=distT / t runcat i on #r e s c a l i n g t h e o r e t i c a l d i s t r i b u t i o n

24 distA=occurencesA /( samples )#; p r i n t ( ’ distA ’ , distA )
distB=occurencesB /( samples )#; p r i n t ( ’ d istB ’ , d istB )
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26

s t a t e sp =[np . a r r ay2 s t r i n g ( s ta te , p r e c i s i o n =2, s epara to r=’ , ’ ,
28 suppress_smal l=True ) f o r s t a t e in s t a t e s ]

30 #to remove e lements whose p r obab i l i t y i s ze ro
j =0; e p s i l o n =0.00001

32 f o r i in range ( l en ( s t a t e sp ) ) :
i f d istT [ j ]< ep s i l o n and distA [ j ]< ep s i l o n and distB [ j ]< ep s i l o n :

34 distT=np . d e l e t e ( distT , j )
distA=np . d e l e t e ( distA , j ) ; occurencesA=np . d e l e t e ( occurencesA , j )

36 distB=np . d e l e t e ( distB , j ) ; occurencesB=np . d e l e t e ( occurencesB , j )
s t a t e sp=np . d e l e t e ( s ta te sp , j )

38 e l s e : j=j+1

40 re turn [ s ta te sp , distT , distA , distB , occurencesA , occurencesB ]

Listing B.23: Function distributions to returns the distributions for a specific configuration given in
parameters for the theoretical prediction and both sampling methods.

de f p l o tD i s tEr ro r ( matrix , d i s t s , samples ) :
2 #ca l c u l a t i n g e r r o r f o r each sampling d i s t r i b u t i o n computing the

standard dev i a t i on f o r binomial d i s t r i b u t i o n
yerrA=np . sq r t ( d i s t s [4 ]∗(1 − d i s t s [ 2 ] ) ) / samples

4 yerrB=np . sq r t ( d i s t s [5 ]∗(1 − d i s t s [ 3 ] ) ) / samples
p r i n t ( ’Number o f s t a t e s ’ , l en ( d i s t s [ 0 ] ) )

6 i f l en ( d i s t s [ 0 ] ) >35:
p l t . f i g u r e ( f i g s i z e =(9 , 4) )

8 i n d ex i s=np . a r g s o r t ( d i s t s [ 1 ] )
d i s t s [1 ]=np . array ( [ d i s t s [ 1 ] [ i ] f o r i in i nd ex i s ] )

10 d i s t s [2 ]=np . array ( [ d i s t s [ 2 ] [ i ] f o r i in i nd ex i s ] )
d i s t s [3 ]=np . array ( [ d i s t s [ 3 ] [ i ] f o r i in i nd ex i s ] )

12 d i s t s [0 ]=np . array ( [ d i s t s [ 0 ] [ i ] f o r i in i nd ex i s ] )
p l t . tick_params ( labe lbottom = False , bottom = False )

14 p l t . x l ab e l ( s t r ( d i s t s [ 0 ] [ 0 ] )+’ ,
’+s t r ( d i s t s [ 0 ] [ 1 ] )+’ . . . . . . . . output s t a t e s . . . . . . . . ’+

16 s t r ( d i s t s [ 0 ] [ l en ( d i s t s [ 0 ] )−1 ] ) )

18 p l t . bar ( d i s t s [ 0 ] , d i s t s [ 1 ] , width =0.5 , c o l o r=’ l i g h t g r ay ’ )
p l t . e r r o rba r ( d i s t s [ 0 ] , d i s t s [ 2 ] , yerrA , fmt=’ bs ’ , markers i ze=4)

20 p l t . e r r o rba r ( d i s t s [ 0 ] , d i s t s [ 3 ] , yerrB , fmt=’ g^ ’ , markers i ze=4)

22 p l t . x t i c k s ( r o t a t i on = 90)
p l t . s a v e f i g ( ’ GBS_simulationGraphEns . png ’ , bbox_inches=’ t i g h t ’ )



B.5. Applications 145

24 p l t . l egend ( [ ’ Theory ’ , ’ SamplesA ’ , ’ SamplesB ’ ] )
p l t . show ( )

Listing B.24: Calculation of error for each sampling probability distribution obtained from function
distributions.

Plots for figure 24 can be found by running the next lines of code:

1 p lo tD i s tEr ro r ( ’ haar ’ , d i s t r i b u t i o n s ( haar_measure (2 ) , [ 2 , 2 ] , 1 0 0 0 , 1 5 ) , 1000)
p l o tD i s tEr ro r ( ’ d f t ’ , d i s t r i b u t i o n s (DFT_matrix (2 ) , [ 2 , 2 ] , 1 0 0 0 , 1 5 ) , 1000)

3 p lo tD i s tEr ro r ( ’ d f t ’ , d i s t r i b u t i o n s (DFT_matrix (2 ) , [ 2 , −2 ] ,1000 , 15) , 1000)

Listing B.25: Code for two-modes GBS sampler.

b.5 applications

1 de f graphGenDensest ( n_nodes , p1 , n_densest , p2 ) :
’ ’ ’ Generates a random graph with :

3 . n_nodes and edges with p r obab i l i t y p1
. n_densest − s e l e c t s n_densest nodes to add edges with

p r obab i l i t y p2
5 ’ ’ ’

G1 = nx . Graph ( )
7 G1. add_nodes_from ( [ k f o r k in range ( n_nodes−n_densest ) ] )

9 #adding edges with p r obab i l i t y p1 f o r the g iven nodes
f o r i in range ( n_nodes−n_densest ) :

11 f o r j in range ( i +1,n_nodes−n_densest ) :
r=np . random . random ( )

13 i f r<p1 :
G1 . add_edge ( i , j )

15

#adding edges with p r obab i l i t y p2 f o r s e l e c t e d nodes
17 G2 = nx . Graph ( )

G2 . add_nodes_from ( [ k f o r k in range ( n_nodes−n_densest , n_nodes ) ] )
19

#adding edges with p r obab i l i t y p2 f o r the g iven nodes
21 f o r i in range ( n_nodes−n_densest , n_nodes ) :

f o r j in range ( i +1, n_nodes ) :
23 r=np . random . random ( )

i f r<p2 :
25 G2. add_edge ( i , j )
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27 G=nx . compose (G1, G2)
n_connect=round ( n_densest /2)

29 f o r i in range ( n_connect ) :
node1=np . random . rand int ( n_nodes−n_densest )

31 node2=np . random . rand int ( n_nodes−n_densest , n_nodes )
G. add_edge ( node1 , node2 )

33

#te s t i n g i f the re are e i t h e r i s o l a t e d nodes or i s o l a t e d subgraphs
35 i f l i s t ( nx . i s o l a t e s (G) ) != [ ] or l en ( l i s t (G. subgraph ( c ) f o r c in nx .

connected_components (G) ) ) >1:
G1 . c l e a r ( ) ; G2 . c l e a r ( ) ; G. c l e a r ( )

37 G=graphGenDensest ( n_nodes , p1 , n_densest , p2 )
re turn G

Listing B.26: Graph generator for denser subgraphs.

de f GBShelp (U, r , s i z e , t imes ) :
2 G_A=sampleGeneratorB (U, r , times , l imit_photons=5)

G_A=po s t s e l e c t (G_A, s i z e −1, s i z e +1)
4 re turn G_A

6 de f GBSGenerator (G, s i z e , t imes =5000) :
n_nodes=len (G. nodes ( ) )

8 ( r ,U)=s f . decompos i t ions . graph_embed (nx . adjacency_matrix (G) . todense ( ) ,
mean_photon_per_mode=s i z e /n_nodes )

10 G_A=sampleGeneratorB (np . asar ray (U) , r , times , l imit_photons=5)
G_A=po s t s e l e c t (G_A, s i z e −1, s i z e +1)

12 whi le l en (G_A)<times :
G_A=np . concatenate ( (G_A, np . array (GBShelp (np . asar ray (U) , r , s i z e ,

t imes ) ) ) )
14 G_A=G_A[ : t imes ]

16 f o r i in range ( l en (G_A) ) :
f o r j in range (1 , n_nodes ) :

18 i f G_A[ i ] [ j ] !=0 : G_A[ i ] [ j ]= j
dens i ty =[ ]

20 f o r subG in G_A:
i f subG [ 0 ] != 0 : H=G. subgraph ( [0 ]+ subG [ subG != 0 ] )

22 e l s e : H=G. subgraph (subG [ subG !=0 ] )
dens i ty . append (2∗ l en (H. edges ) /( s i z e ∗( s i z e −1) ) )

24

n_edges=in t ( s i z e ∗( s i z e −1)/2)
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26 n_d=np . z e r o s ( n_edges+1)
f o r i in dens i ty :

28 ind=in t ( i ∗n_edges )
n_d [ ind ]=n_d [ ind ]+1

30 re turn n_d

Listing B.27: Function GBSGenerator that outputs a density array of subgraphs of a given graph G
from arguments. This function generates subgraphs according to a GBS sampler.

de f graphsFetVec ( graphs , k , n , s i z e =7, t imes =5000) :
2 samplesGBS =[ ]

f o r G in graphs :
4 n_nodes=len (G. nodes ( ) )

( r ,U)=s f . decompos i t ions . graph_embed (nx . adjacency_matrix (G) .
todense ( ) , mean_photon_per_mode=s i z e /n_nodes )

6 G_A=sampleGeneratorB (np . asar ray (U) , r , times , l imit_photons=s i z e )
samplesGBS . append (G_A)

8 re turn [ featureVec_metaOrb ( samples , k , n ) f o r samples in samplesGBS ]

Listing B.28: Calculation of feature vectors for each graph in graphs argument for meta-orbits described
by array k and number n. size and times are default arguments for mean photon number
and required number of samples.

k= [ 2 , 4 , 6 ] ; n=1
2 f e tVecs=graphsFetVec ( [G1,G1,G2,G3 ] , k , n , s i z e =7)

f i g = p l t . f i g u r e ( ) #f i g s i z e =(4 ,4)
4 ax = p l t . axes ( p r o j e c t i o n=’ 3d ’ ) ;

6 l b s =[ ’G1 ’ , ’G1 ’ , ’G2 ’ , ’G3 ’ ] ; j=0
f o r i in f e tVecs :

8 ax . s c a t t e r ( i [ 0 ] , i [ 1 ] , i [ 2 ] , l a b e l=lb s [ j ] )
j=j+1

10

ax . l egend ( )
12 ax . g r id (True )

14 ax . s e t_x labe l ( ’ k=’+s t r ( k [ 0 ] )+’ , n=’+s t r (n) )
ax . s e t_y labe l ( ’ k=’+s t r ( k [ 1 ] )+’ , n=’+s t r (n) )

16 ax . s e t_z l abe l ( ’ k=’+s t r ( k [ 2 ] )+’ , n=’+s t r (n) ) ;
ax . tick_params ( d i r e c t i o n=’ out ’ , l ength =6, width=2, c o l o r s=’ grey ’ ,

grid_alpha =0.5)
18 #pl t . s a v e f i g ( ’ app_s imi lar i ty1 . png ’ )

p l t . show ( )
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Listing B.29: Generation of plot for graph similarity of G1, G1’, G2 and G3.

(a) (b)

Figure 39: Plot of feature vectors for the four graphs described and used in figure 36. Meta-orbits were
characterized by k= [2, 4, 6] and n= 2 and mean photon number was the default attributed
value (size= 7). Number of samples was default for sub-figure 39a (times= 5000) and for
sub-figure 39b was times= 10000. Blue and orange dots are results from graph G1, green
dot is from graph G2 and red dot is representation of feature vector for G3.
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