nductive Valinity Vensor

Maria Barroso¹, J.L. Rocha¹, C.L. Faria¹, P.A. Gomes³, L.M. Gonçalves^{1,2}

¹ CMEMS-UMinho, University of Minho, Campus de Azurém, Guimarães, Portugal ² LABBELS – Associate Laboratory, Braga/Guimarães, Portugal ³ CBMA-Molecular and Environmental Biology Centre, University of Minho, Braga, Portugal *e-mail: mariabarroso731@gmail.com

Why is it important to measure salinity?

ydrological Cycle

Influences evaporation and cloud formation, impacting the global

Ocean Circulation

The difference in salinity contributes to ocean currents, affecting climate, nutrients, and marine species.

Marine Ecosystem

Influences the distribution of species, especially in estuaries.

Climatic Changes

Helps to monitor

climate.

HOW to measure salinity?

climate change and its effects on the oceans, such as melting ice.

Salinity determinations are usually made indirectly, measuring electrical conductivity, which depends on salinity and temperature.

Measure the conductivity of liquids

Contact (with two or four electrodes)

Advantages of using an inductive sensor

Biofoulingproof

Low maintenance

Improved accuracy

Cost-effective

Inductive

Sensor design

The sensor is designed so that part of the liquid medium forms a closed current path that passes through both coils. Applying an AC voltage or sinusoidal current to the transmitting coil induces a magnetic current, an inductive voltage in the seawater. The receiving coil receives the magnetic flux from the seawater

Inductive

cycle and gives an inductive voltage.

This work is co-funded by the projects SONDA (PTDC/EME-SIS/1960/2020), ATLÂNTIDA (NORTE-01-0145-FEDER-000040) and CMEMS R&D centre - UIDB/04436/2020.

