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ABSTRACT

With the advent of web technologies, services are becoming increasingly accessible on-line, for user

convenience. Because of this, such systems are more susceptible to vulnerabilities, and several tools

have emerged to do code analysis, not only static, but also dynamic, with the aim to detect abnormalities,

such as vulnerabilities.

State-of-the-art solutions for calculating data flow paths in the analysed code suffer from efficiency

problems. Inefficiency appears because of the path representation, as it leads to a less efficient imple-

mentation.

This dissertation proposes a new approach that obtains data flow paths on demand, from a represen-

tation that can store efficiently a set of paths and that, as a result, can have better results in terms of time

efficiency.

Benchmarks of the naive solution to the problem and the proposed solution in the dissertation show a

drastic difference in time complexity, as the theory predicted, obtaining a time complexity ≥ O(e2), for

the simple solution, and a O(n + e), for the solution presented here, where e is the number of edges

and n the number of nodes of the DFG extracted from the source code.
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RESUMO

Com o advento das tecnologias web, os serviços estão a tornar-se cada vez mais acessíveis on-line,

para a conveniência do usuário. Devido a isso, os tais sistemas são mais suscetíveis a vulnerabilidades, e

diversas ferramentas surgiram para fazer análise de código, não apenas estática, mas também dinâmica,

com o objetivo de detectar anormalidades, como vulnerabilidades.

As soluções que compõem o estado de arte no cálculo de caminhos do data flow, têm problemas de

eficiência nessa procura. A ineficiência aparece por causa da representação dos caminhos, pois leva a

uma implementação menos eficiente.

Esta dissertação propõe uma nova abordagem que obtém os caminhos do data flow de forma ”on

demand”, a partir de uma representação que guarda de forma eficiente um conjunto de caminhos e por

consequencia consegue ter melhores resultados em termos de eficiência em tempo. Este mecanismo

tem até uma boa maneira de generalizar para algo modular.

Testes de tempo da solução ingênua para o problema e a solução proposta na dissertação mostram

uma diferença drástica na complexidade do tempo, como a teoria previa, tendo uma complexidade de

tempo de ≥ O(e2), para a solução simples, e O(n + e), para a solução apresentada aqui, onde e é o

número de edges e n o número de nodos do DFG.
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1. INTRODUCTION
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Nowadays, the digital world is growing, but must importantly the online world is growing. Because of

this, people and companies are becoming more dependent on online services, while important and private

information is stored in cloud based services. Vulnerability of such services means that the important and

private data of their clients also becomes vulnerable to cyberattacks.

The important and private data can be passwords, credit card information, addresses, or even secret

information that does not seem harmful to someone, but it can be so if exposed by an intruder who can

put the identity of a person at risk, or even worse. If someone has your name, date of birth, address,

Social Security number, phone numbers and more, each one of these data on its own could be thought

out as not important, but all combined can enable a social hacking attack by impersonating an individual

or group who is directly or indirectly known to the victims or by representing an individual or by a group

in a position of authority. On the Internet, data has high value. If stolen, it can be collected, maliciously

analysed and even sold.

Whenever you download an app, visit a website or use a social media platform, the company is likely

to be collecting data about you. People are doing a lot more online activities through their computers and

mobile devices today. We make purchases, look up medical conditions, interact with friends and relatives,

organize vacations, almost anything imaginable. With these actions, people are inadvertently creating a

huge digital footprint of data about themselves.

The number of cyberattacks is increasing yearly, with no signs of stopping [Alb19]. By detecting a

vulnerability in a system, in production, sometimes it is too late, because it could already been used for

malicious purposes. Sometimes, to correct the problem, a change in the source code of the application

in question is needed. That is why applications who store important information need to test the product

for vulnerabilities before launching it to the public.

The detection of vulnerabilities in the source code of an application is very helpful or even, in some

cases, needed. Such detection can be done by human security analysts or by an automatic analysis

tool (for example, a SAST). Without this security analysis, the only way to detect security vulnerabilities is

exposing users to such vulnerabilities and experience cyberattacks. As in most cases that is unacceptable,

the analysis of the source code itself is a very important activity.

1.1 VULNERABILITIES

One definition of what is a vulnerability is given in the RFC 4949 internet security glossary [Shi07]:

A flaw or weakness in a system’s design, implementation, or operation and management

that could be exploited to violate the system’s security policy.
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This glossary regards, in an informal way, a vulnerability as a software security bug. When learning

about vulnerabilities, examples are essential to build an intuitive sense of what is a vulnerability.

One such example could be injections, which are a broad class of vulnerabilities whereby an attacker

supplies untrusted input to a program. This input gets processed by an interpreter as part of a command

or query. In turn, this alters the intended execution of the command or query.

A powerful and stubborn example of an injection vulnerability is SQL Injection. Powerful, because it is

one of the most dangerous issues for data confidentiality and integrity in web applications and has been

listed in the OWASP Top 10 list of the most common and widely exploited vulnerabilities since its inception.

Stubborn, because it is an old vulnerability, dating back to 1998 [rr98] which, still in 2021, is considered

very dangerous, even reaching the first place in OWASP is Top 10 Web Application Security Risks in the

years 2017 and 2020.

An example A good explanation of the SQL Injection vulnerability can be found in [Anl02], followed

below. An SQL injection occurs when an attacker is able to insert a series of SQL statements into a ’query’

by manipulating data input into an application.

A typical SQL statement looks like this:

s e l e c t i d , f o r e n ame , su r name from a u t h o r s

This statement will retrieve the ’id’, ’forename’ and ’surname’ columns from some ’authors’ table,

returning all rows in the table. The ’result set’ could be restricted to a specific ’author’ like this:

s e l e c t i d , f o r e n ame , su r name

from a u t h o r s

where f o r e n ame = ’ j o h n ’ and su rname = ’ sm i t h ’

An important point to note here is that the string literals ’john’ and ’smith’ are delimited with single

quotes. Presuming that the ’forename’ and ’surname’ fields are being gathered from user-supplied in-

put, an attacker might be able to ’inject’ some spurious SQL into this query, by inputting values into the

application like this:

Fo r ename : j o ’ hn

Surname : sm i t h

The ’query string’ becomes this:

s e l e c t i d , f o r e n ame , su r name

from a u t h o r s

where f o r e n ame = ’ j o ’ hn ’ and su rname = ’ sm i t h ’

When the database attempts to run this query, it is likely to return an error:

3



S e r v e r : Msg 170 , L e v e l 15 , S t a t e 1 , L i n e 1

L i n e 1 : I n c o r r e c t s y n t a x n e a r ’ hn ’ .

The reason for this is that the insertion of the ’single quote’ character ’breaks out’ of the single-quote

delimited data. The database then tries to execute ’hn’ and fails.

However, should the attacker have opted for,

Fo r ename : j o ’ ; d r o p t a b l e a u t h o r s −−

Surname :

then the outcome would be the deletion of the authors’ table [Anl02].

Empirical Study By hiring web developers to conduct manual code reviews of a small web application

which had seven known vulnerabilities, the empirical study reported in [EHR+13] found that:

1. none of the subjects spotted all confirmed vulnerabilities,

2. more experience does not necessarily mean that the reviewer will be more accurate or effective,

3. reports of false vulnerabilities were significantly correlated with reports of valid vulnerabilities.

The main conclusion is that humans are not as good at detecting vulnerabilities as we give ourselves

credit for, at least well categorized ones. So the next step would be to use machines to detect them

automatically. Of course, because the nature of a vulnerability is dependable on the system’s security

model, machine checking will not detect all of them, but a good part of them would be a helping hand.

Further to what has been mentioned already, the growth of hacker attacks that exploit every single vul-

nerability found in the victim company’s software system can make a significant money loss for the victim

and subsequently to the company. This motivates companies to make products with no vulnerabilities.

Because of this, bug bounty programs exist that offer money incentives for bug finding (normally security

bugs, i.e. vulnerabilities), which makes every day people, or more commonly white hats (ethical computer

hackers) report the vulnerabilities found for money, which could save the company from an attacker. But

still, the product is at risk, because it is exposed, therefore can be attacked, with a zero-day vulnerability.

A zero-day vulnerability is a vulnerability that at the moment there is no documentation of its existence.

For this reason, companies rely heavily on software, made by people who specialize in vulnerability

detection, which analyses their products and automatically produces reports with all the vulnerabilities

detected. As the projects that will be analysed can have many LOC, it is important that this analysis is

scalable, to be more profitable to use a code analysis tool than using one or more staff to analyse the

source code manually.
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1.2 SAST

SAST (standing for ’Static Application Security Testing’) is a type of tool that tests the security of an

application. Rather than running the application under test, it analyses the source code (or binary) and

produces a report of what it regards as a security vulnerability. Because it is not a specific tool, it can be

implemented as an academic or commercial tool. For example, a debugger is a type of tool that helps

programmers to catch malfunctions of their programs. In this dissertation, vulnerabilities will be addressed

as paths in the source code that data go through, starting from something that the application does not

trust (for example, unfiltered user input) and ending in a critical part (for example, running a command

in the system’s server) of the application, which can lead to a vulnerability. The reference [Chr20] shows

some open source SAST tools that exist and some interesting statistics on vulnerabilities.

SAST scans are based on a set of predetermined rules that define the coding errors in the source code

that need to be addressed and assessed. SAST scans can be designed to identify some of the most

common security vulnerabilities out there, like SQL injection, input validation, some stack buffer overflows

and more. But it is not complete, because of the limited way that it analyses the code (statically) it has its

limits on what it can detect.

The SAST approach has prevalence of false positives, which are supposed vulnerabilities that the SAST

catches, but looking at it more carefully, it can be seen that it is not a vulnerability, just it ”seems” like a

vulnerability to the SAST tool. False positives entail a tremendous waste of time, as teams need to check

and validate manually each individual security bug candidate to make sure it is not a false positive. This

problem is not influenced by the changes on this dissertation.

The security analysis of complex applications with a SAST tool requires many hours of scanning. As a

result, sometimes teams schedule the scans to run offline (such as during nights). This practice breaks the

agile software development values. This dissertation wants to make this problem disappear by lowering

the complexity of a SAST program, by analysing its components and proposing a compelling optimization,

by changing the current strategy of storing and identifying a vulnerability path.

Checkmarx Companies like Checkmarx are needed, due to the high demand for safe and more secure

applications. IT companies are coming out of thin air, to help with this we need to make the process a

little more manageable than requiring to know all the most known vulnerabilities and how to correct them.

That is why there are companies like Checkmarx, with specialized people to work on their products, to

make them more complete and correct, so that the customer does not need to meet all the requirements

to make a secure application.

As mentioned earlier, due to the more popular methods of developing software, and due to the big

quantity of new companies that create software, so there are a lot of LOC that needs to be analysed.
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Figure 1.1. A simple pipeline to explain where in the software development process SAST is used

Therefore, needs to exist a quick way to analyse all of those LOC.

Checkmarx is aware of their tools being near and near to the limit of being scalable by today’s standards.

This is why they want solutions to help them in that regard, e.g. designing more efficient tools in detecting

vulnerabilities. Such is the focus of this dissertation.

By examining SAST tools already available and seeing how they manage to implement the critical part,

the analysis of the data flow graph, one can get an idea of what has been done in this regard.

Scalability Today, the volume of code that needs to be analysed is enormous. For example, big com-

panies like Facebook have found vulnerabilities in source code that had hundreds of millions of lines of

code [DFLO19]. At this scale it starts to be infeasible to have humans analysing the source code to find

vulnerabilities, that is why the scanning with a static analysis tool is so important nowadays, especially if

the pattern of the vulnerability is simple to detect.

The preferred software development model of companies nowadays is the incremental approach, e.g.

the agile approach [OMGSC18], meaning that the source code keeps getting bigger as time goes by, and

its analysis keeps taking longer to finish. This is why the analysis needs to be scalable, meaning analysis

time being proportional to source code change. If this is not the case, then the time needed to analyse

the source code will take an unrealistic time to finish and having human security analysts would be more

reasonable.
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1.3 DATA FLOW GRAPH

Dataflow is a way to describe a process by abstracting programs into computational actors and linking

them according to the flow of data among them, so that actors can execute in parallel. This description has

some good properties, like emphasizing the flow of data and being inherently parallel, therefore working

well in large decentralized systems [Rum77].

Representing a program by a dataflow graph can be very helpful for the static analysis of source code

[KSS17] by e.g. finding bugs, finding simple errors or (in the interest of this dissertation) finding vulnera-

bilities in source code.

The DFG shown in figure 1.2 represents a simple arithmetic expression, (1 + 2) ∗ 3.

Figure 1.2. DFG of (1 + 2) ∗ 3

From representing arithmetic expressions, DFGs scale up to doing the same for programs written in

some programming language (then with some more primitives, i.e. literals, variables, operators, function

calls and so on). To guarantee that one such DFG is a finite graph, it needs to have labels on the edges

that identify if it enters or exits a function body.

1.4 GRAPH ALGORITHMS

An algorithm to find all the nodes between two given sets of nodes of a graph can be seen as the search

starting from the first set of nodes to the second set of nodes. Such a task can be achieved by any graph

search algorithm. For example, DFS (depth-first search) and BFS (breadth-first search) [CLRS09] work

fine, because the order of the nodes does not matter to these algorithms. The implementation of DFS is

simpler, and the property that finds one path very quickly is an advantage for a future idea, so it is better

to use it instead of BFS.
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The book [CLRS09] in chapter 22, section 3 describes the DFS algorithm as follows. ”A depth-first

search strategy is, as its name implies, to search “deeper” in the graph wherever possible. Depth-first

search explores edges out of the most recently discovered vertex v that still has unexplored out-going edges.

Once all of v’s edges have been explored, the search “backtracks” to explore edges leaving the vertex from

which v was discovered. This process continues until it discovers all the vertices that are reachable from

the original source vertex. Should any undiscovered vertices remain, then depth-first search selects one

of them as a new source, and it repeats the search from that source. The algorithm repeats this entire

process until it has discovered every vertex”.

In this case, it does not need every detail in the [CLRS09], because the situation is more restricted —

needs to have a set of source nodes, so it does not need to use any undiscovered vertices that are not in

the source nodes. Also, it does not need to track the previous node of the search, it does not need the

time and the colour can be abstracted, as if the node is visited or not.

The pseudo algorithm then is as follows:

DFS ( G , s o u r c e s ) :

f o r e a ch s i n s o u r c e s :

i f s i s n o t v i s i t e d :

DFS − V I S I T ( G , s )

DFS − V I S I T ( G , s ) :

s e nd s

mark s a s v i s i t e d

f o r a l l n e i g h b o u r s w o f s i n G r a ph G :

i f w i s n o t v i s i t e d :

DFS − V I S I T ( G , w )

The image in figure 1.3 visually explains how the DFS works, by presenting a graph with the nodes being

represented as a number which tells the order that each node was visited. The sources on this image are

the two top nodes.

1.5 DISSERTATION STRUCTURE

This dissertation contains seven chapters, whose summary is presented below, excluding the introduc-

tion:

• State of the art: Presents tools named CodeQL and Pysa, which can give us a better overview of

what tools exist that deal with the problem of detecting vulnerabilities.
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Figure 1.3. Image explaining the DFS, by giving the order via the number in the nodes

• Explanation of SAST: Explains how a SAST tool can work with a DFG as an auxiliary tool. With an

example, follows all the process from source code and query to giving the malicious paths that

make the source code vulnerable.

• Problem and Proposed Solution: Presents the problem to tackle and a solution to that problem, by

modifying the return structure.

• Implementation: Implements a prototype SAST tool that will be used to show the benchmarks of

the techniques presented.

• Benchmarking: Shows results from the past chapter, comparing the difference in time between the

techniques presented.

• Conclusion: Concludes the dissertation, presenting an overview of the results obtained. Also, some

guidelines for future work are suggested.
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2. STATE OF THE ART
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2.1 CODEQL

This section will address CodeQL [Git21], a query language for finding patterns in source code. Even

though CodeQL is not a SAST tool, the part of the SAST that will be at focus later on relies on identifying

patterns in source code, therefore the important part is basically how the query language functions.

The CodeQL language is very similar to the SQL language, but instead of searching relations between

data, they search relation between elements of the source code. It is a logic programming language, so

it is built up of logical formulas. CodeQL uses common logical connectives (such as ’and’, ’or’ and ’not’),

quantifiers (such as ’forall’ and ’exists’), and other important logical concepts such as predicates.

CodeQL also supports recursion and aggregates. This allows one to write complex recursive queries

using simple CodeQL syntax and directly use aggregates such as count, sum, and average.

CodeQL queries typically look like this:

impor t < l a n g u a g e >

f r om /* . . . v a r i a b l e d e c l a r a t i o n s . . . */
whe r e /* . . . l o g i c a l f o r m u l a s . . . */
s e l e c t /* . . . e x p r e s s i o n s . . . */

For example, the outcome of the following query is the listing of all functions that have more than 7

arguments:

impor t p y t h o n

f r om F u n c t i o n f

wh e r e c o u n t ( f . g e t A n A r g ( ) ) > 7

s e l e c t f

The from clause defines a variable f representing a Python function. The where clause limits searching

to functions f with more than 7 arguments. Finally, the select clause lists these functions.

CodeQL is versatile and clearly a valuable tool in code analysis, what matters to this dissertation is how

efficient DFG extraction is in CodeQL and, if not efficient, what problems there are in their approach in

this respect.

A DFG in CodeQL is computed using classes to model the program elements that represent the graph’s

nodes. The flow of data among nodes is modelled using predicates to compute the graph’s edges. This

by itself tells that the main focus is on correctness, and therefore it is not surprising that DFGs can be very

large and slow to compute.

To overcome these problems, the strategy of CodeQL is to divide DFGs into two kinds:
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• Local data flow, concerning the data flow within a single function. When reasoning about local

data flow, one only considers edges between data flow nodes belonging to the same function. It

is generally sufficiently fast, efficient, and precise for many queries, and it is usually possible to

compute the local data flow for all functions in a CodeQL database.

• Global data flow, effectively considers the data flow within an entire program, by calculating data

flow between functions and through object properties. Computing global data flow is typically more

time and energy intensive than local data flow, therefore queries should be refined to look for more

specific sources and sinks.

2.2 PYSA

This section will address Pysa (Python Static Analyzer) [Met22], an open source static analysis tool to

detect and prevent security issues in Python code. Pysa is a feature of Pyre, which is an application that

type checks python code. This static analyser uses Taint Analysis, to identify potential security issues.

Tainted data is data that cannot be trusted in any critical function. Pysa uses the flow of data from

where the possible vulnerability begins (sources) to where it terminates in a critical location (sinks). This

analysis uses user-created specifications, which provide rules that define what danger specific sources

bring, and what danger specific sinks cannot accept to be tainted by.

x = s o m e _ f u n c t i o n _ t h a t _ r e t u r n s _ a _ t a i n t e d _ n a m e ( )

f = f ” H i { x } ! ”

In the code above, x will be tainted with a certain annotation, by the result of the function

some_function_that_returns_a_tainted_name, because of that, f will get marked as the same

taint x had.

2.3 DATAFLOW ANALYSIS

Introduction Dataflow analysis is relevant for this work because it can be used to calculate a DFG of a

source code with a CFG (Control Flow Graph) of that same source code. (A CFG is a graph of basic blocks

of the program, where the basic blocks are in a ”straight line” code sequence with no branches.) This

process is used in some tools to get the DFG, even though this work did not use this process to generate

the DFG.

Dataflow analysis is a way to obtain the possible set of values calculated at specific points in the source

code that is being analysed. The source code’s CFG is used to know how particular assignments propagate.
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For example, in an if statement, the assignment before propagates its change to the then part and the

else part. The code in a CFG basic block has:

1. One entry point, meaning no code within it is the destination of a jump instruction anywhere in the

program.

2. One exit point, meaning only the last instruction can cause the program to begin executing code in

a different basic block.

Figure 2.1. A CFG example.[AEK04]

Because of this, whenever the first instruction in a basic block is executed, the rest of the statements are

necessarily executed exactly once, in order [Coc70]. Classical papers that introduced this way of analysis

include [AC76] and [RHS95].

Dataflow obtains particular information at each point in a procedure. It is enough to obtain this in-

formation at the boundaries of basic blocks, since it is easy to calculate the information at points in the

basic block. In forward flow analysis, the block can be seen as a function of states. This function is the

composition of the effects of the statements in the block. The entry state of a block is a function, called

join, of the exit states of its predecessors. This gives a set of dataflow equations, for each block b,

outb = transb(inb)

inb = joinp∈pred(b)(outb)

where transb is the transfer function of the block b. It works on the entry state inb, giving the exit state

outb. The join operation join combines the exit states of the predecessors p ∈ predb of b, giving the

entry state of b.
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After solving these equations by fixpoint reasoning, the entry and exit states of the blocks can be used

to derive properties of the program at the entry and exist of a block. The transfer function, is basically the

specific behaviour of each statement separately, and can be composed to get information at a point inside

a basic block.

Each particular type of dataflow analysis has a specific transfer function, for each statement, and join

operation. Normally the states are a set of values and the join operation is a simple union or an intersection.

2.3.1 Example

A simple example of a dataflow analysis is reaching definitions, which is explained below using an

example.

Reaching definitions is the problem of which definitions are ”active” in a given definition. Assume,

for example, the following code, whose structure is a sequence of an identifier followed by a definition,

separated by a colon. A definition is an attribution of an expression to a variable.

d1 : a : = 0

d2 : b : = a

Clearly, d1 reaches d2. However, in

d1 : a : = 0

d2 : a : = 1

d3 : b : = a

Here, d1 does not reach d3, because d2 kills the value defined in d1, no longer reaching d3, but d2

reaches d3.

The CFG of the latter piece of code is given by a directed graph between, in this case, the definitions.

The edges point to the next node to be executed in the program.

Figure 2.2. The CFG of the simple example above.
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LetDEFS[y] be the set of all definitions that assign to some given variable y. The dataflow equations

used for a given basic block S in reaching definitions are:

REACHin[S] =
∪

p∈pred[S]

REACHout[p]

REACHout[S] = GEN [S] ∪ (REACHin[S]−KILL[S])

GEN [d : y := f(x1, . . . , xn)] = {d}

KILL[d : y := f(x1, . . . , xn)] = DEFS[y]− {d}

Because of the simple nature of dataflow equations and the consensus of CFGs, dataflow analysis is

very appealing for static analysis.

In the small example above, dataflow analysis can be done by, first calculate the GEN andKILL of

each node, and the DEFS of each variable.

DEFS

a {d1, d2}
b {d3}

GEN KILL

d1 {d1} {d2}
d2 {d2} {d1}
d3 {d3} ∅

The initial values of REACHin and REACHout are all ∅.

first iteration second iteration third iteration

REACHout REACHin REACHout REACHin REACHout REACHin

d1 {d1} ∅ {d1} ∅ {d1} ∅
d2 {d2} {d1} {d2} {d1} {d2} {d1}
d3 {d3} {d2} {d2, d3} {d2} {d2, d3} {d2}

The last 2 iterations are the same, which means the fixed point was reached on this algorithm, and that

means it has an answer to the problem of reaching definitions. Every definition reaches to itself and d2

reaches d3, which is the expected solution.
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2.4 SUMMARY

In this chapter, is explored a tool and a technique widely used to catch vulnerabilities in source code,

CodeQL. This was introduced to the reader with examples, presented its advantages and how the tool

bypasses its disadvantages. Then Dataflow Analysis was presented to the user via the theory followed by

an example.

This will be followed, in the next chapter, by a study of SAST approaches.
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3. EXPLANATION OF SAST
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3.1 INTRODUCTION

SAST tools perform, as the acronym tells, static application security testing, i.e. they are designed

for analysing application source code (byte code and binaries) for coding and design conditions that are

indicative of security vulnerabilities. The static part of the name refers to the analysis of the application at

compile-time.

The main research problem addressed in this dissertation is the ”scalable detection of

security-vulnerabilities in source code”. Because security vulnerabilities are so dependable on the system’s

security model, one cannot really perfectly formalize any arbitrary vulnerability. Checkmarx has developed

a tool that, based on a query language, describes the vulnerability, which lets one find a vulnerability with

some information extracted from the source code. Although not perfect, it does catch some patterns.

One of the most important information and unscalable, is all the influence paths in the DFG, between two

groups of nodes, the sources (where it ”starts”) and the sinks (where it ”ends”). That information is asked

by queries, with different sources and sinks.

From the previous paragraph, we can assume that finding influence paths is a way to describe a given

vulnerability. So the problem can be rephrased to ”scalable detection of influence paths in the data flow

graph of the source code”.

”Scalable” means ”ability to scale up” in size without degrading the execution time, and because the

structure of the source code is growing at a fast rate we can say that a linear complexity, in the quantity

of edges in the DFG of the source code is ”Scalable”. So we can again rephrase the research question

above to ”linear detection of influence paths in the data flow graph of the source code”.

The following is an example that will help the reader to understand the problem, get some hints for the

solution and show all its most important components.

3.2 EXAMPLE

Consider the following definition of a known vulnerability, ”Deserialization of untrusted data”:

Data which is untrusted cannot be trusted to be well formed. Malformed data or unexpected

data could be used to abuse application logic, deny service, or execute arbitrary code, when

deserialized. [Fou22]

In the listing 3.1 we present an example of a source code. In this context, it is irrelevant how the

implementation of an integer parser is done, or even the memory allocation of a matrix. When in the

source code is commented pseudo, then it means that the implementation is not really important, and
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can be seen as a direct influence from the inputs to the outputs, we can do it by using operators that ”join”

2 variables, like ”+”. That influence is needed for the continuity and correctness of the DFG construction,

because without it, we would not be able to connect the variables that are influencing each other.

c l a s s Ma in {

pub l i c i n t p a r s e I n t ( S t r i n g i ) {

// p s e u d o

r e t u rn i ;

}

pub l i c i n t [ ] [ ] i n i t M a t r i x ( i n t r , i n t c ) {

// p s e u d o

r e t u rn r + c ;

}

pub l i c s t a t i c vo i d main ( S t r i n g [ ] a r g s ) {

i n t r ow s = p a r s e I n t ( a r g s [ 0 ] ) ;

i n t c o l umn s = p a r s e I n t ( a r g s [ 1 ] ) ;

i n t [ ] [ ] m a t r i x = i n i t M a t r i x ( r ows , c o l umn s ) ;

// . . .

}

}

Listing 3.1. Semi-Code excerpt suffering from the ”deserialization of untrusted data” vulnerability.

In the example of the code excerpt 3.1, the input could be a negative number and the size of the matrix

makes no sense, or could be an enormous number. Both cases can be problematic, the first would stop

the program, and the host could be a server, the second could possibly cause a DOS attack, by giving a

lot of space in the matrix, then some operation acting on it would delay or even deny the service.

All this may happen because the data from the input are not trusted and there is no sanitization of the

input. In this example, a possible sanitization could be to set some boundaries on the number given by

the input.

The user input can be seen as untrusted data and the initMatrix as a potentially vulnerable function

with this consideration it can be seen that the code 3.1 is affected by the vulnerability ”Deserialization of

untrusted data”,
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3.3 DATA FLOW GRAPH

A DFG is a graph extracted from a source code where the nodes can be function calls, variables,

constants and operators, the edges denote a dependency between nodes, but to keep the graph finite we

need annotations on some edges to identify from which call we enter and exit a function definition.

In the representations of the DFG, the vertices are denoted by i_n, where the i is the name of the

function calls, variables, constants, or operators mentioned in the source code, and the n is the identifier

of the associated vertex.
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Figure 3.1. DFG of listing 3.1
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In figure 3.1 one can see that the input args is influencing thematrix and its initialization, initMatrix.

3.4 ATOMIC QUERIES

The atomic queries are the queries we can make to the DFG and the other extra information, but because

we are targeting only the DFG, then that is all we need.

The most important atomic query we can make is ”what are the paths from the vertices of the set A

and the vertices of the set B”. Assuming DFG, V ertex and Path suitably defined, let us call this

InfluencingOn : DFG× P(V ertex)× P(V ertex) −→ P(Path).

There exists other Atomic Queries, like InfluencedBy and InfluencingOnAndNotSanitized,

but we can argue that InfluencedBy is just the InfluencingOn, but with the sources and sinks

swapped. And InfluencingOnAndNotSanitized that receives sources, sinks and sanitizers, is just

the ”composition” of the paths from InfluencingOn of sources and not sanitizers, and InfluencingOn

of not sanitizers and sinks. It is convenient to talk about sanitizers when analysing a DFG, sanitizers are

vertices that if they appear in the middle of the path, means that the path is not a vulnerability, for that

reason the InfluencingOnAndNotSanitized atomic query is also very important, but as we argued

above is nothing that we cannot do with just InfluencingOn.

If we continue to examine each of the ”Atomic Query”, it can be seen that the most important ”Atomic

Query” is the InfluencingOn. Because of that, we will focus only on this ”Atomic Query”, and how to

make it scalable.

Let us call the DFG in figure 3.1 DFGDes, then

InfluencingOn(DFGDes, {1, 4, 7}, {8}) = {[1, 4, 13, 14, 3, 2, 10, 16, 18, 19, 9, 8],

[4, 13, 14, 3, 2, 10, 16, 18, 19, 9, 8], [7, 13, 14, 6, 5, 11, 17, 20, 19, 9, 8]}

The figure 3.2 is the visual representation of the result of the ”Atomic Query” above.
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Figure 3.2. Influenced paths of 3.1 using the query that starts at 1, 4 and 7 and ends at 8.
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3.5 QUERIES

The query is a vulnerability description, that SAST can search with. The queries do not change the

complexity, just when calling the atomic queries, because the complexity of the query, without the atomic

queries, does not depend on the source code, but only on the intricacy of the vulnerability itself.

The queries already have the DFG, the other extra information and all the atomic queries available. So

we can see a query as a function that receives the DFG, extra information and the atomic queries, and

returns a set of paths. The inputs of the query can be accessed by calling by its name, for example if we

want the DFG, we can just call DFG, which is a variable with the DFG stored in it.

The description of the queries are given with an imperative language, that is not very important in our

context.

With figure 3.1 we can detect a ”deserialization of untrusted data”, by admitting that the input is not

a trusted source, and the function initMatrix is a vulnerable function, that requires the inputs to be

positive integers and not very large, depending on the machine we are working with. Because exists a

path from args (untrusted source) to initMatrix (vulnerable function).

A simple query that can catch this vulnerability, in this example, can be like:

v a r i n p u t s = F i n d ( DFG , ” a r g s ” ) ;

v a r v u l n e r a b l e = F i n d ( DFG , ” i n i t M a t r i x ” ) ;

r e t u rn I n f l u e n c i n g O n ( DFG , i n p u t s , v u l n e r a b l e ) ;

Where Find : DFG × String −→ P(Z) is the function that returns the keys of the nodes that have

the exact name as the input.

3.6 SEARCH

We talked about what the atomic queries are, but here we are going to talk about how do they search

the DFG.

The search consists of getting all the shortest unique paths, from the set of vertices A to B. Unique

means that we cannot have 2 paths that start and end at the same vertices, for example, the path [1, 2, 4]

starts and ends in the same vertices as [1, 3, 4]. Only caring about the unique paths causes ambiguity in

what path to choose, but when it is possible to have a cycle in the graph, that means we only care about

finitely many paths and not infinitely many paths.

The algorithm is a special graph search algorithm for this type of graph, because when it arrives at a
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node, it checks if the In andOut labels of the edges, are correctly sequenced, if so continue the process,

if not backtrack the path.

Then, when it finds a path that the first vertex is in A and the last is in B, then it needs to verify that

this path found is unique in the current state of the return set, if so, adds to the set, if not, continues the

search.

3.7 SUMMARY

In this chapter, the main concern was to give a brief explanation of how a SAST based on the source

code’s DFG works and its problems in finding a malicious path in the source code.

Started by presenting a semi source code example, of a ”deserialization of untrusted data”, to guide

the explanation with something tangible, followed by the DFG of that same semi source code.

Then the explanation of how the atomic queries and the queries work, with the assistance of the example

presented in the beginning of the chapter.

After that we talked about the inner works of the atomic queries, by explaining how it can search the

DFG, for paths. With that, we can now understand the problem in hand.
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4. PROBLEM AND PROPOSED SOLUTION
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This chapter addresses the subtle problem which the search approach presented in the previous chapter

suffers from, and discusses the minimum time complexity such search algorithm can exhibit. It also

discusses an even worse problem, should the implementation follow a particular strategy, to be explained.

The solution proposed in this dissertation will be explained in detail. It is based on the idea of creating a

subgraph of the DFG, henceforth referred to as the sub-DFG. Great benefit in time complexity will come from

the use of this sub-DFG. We will stress on the improvement of the process as a whole, by describing this

as a pipeline. This is followed by determining the time complexity of the proposed solution and discussing

its main advantages and disadvantages.

4.1 THE PROBLEM

Let us look at the complexity of searching the paths between two sets of vertices.

The result of the search in the previous chapter is a set of paths of the DFG. With this in mind, we can

see the following case scenario, when we have n source nodes linked to one node, and that same node

linked to another n sink nodes. This makes the total number of edges equal to 2 ∗ n. Since the number
of sources and the number of sinks are both n, the number of paths is n ∗ n. Because each path has 2
edges, the total number of edges in the return value of the search is 2 ∗n2, which is equal to e2/2, where

e is the number of edges in the DFG. Therefore, the complexity of any algorithm that makes that searches

for all the possible paths has to have a time complexity ≥ O(e2).

Figure 4.1. The case where it must return O(e2) vulnerable paths.

Actually, the time complexity is even worse when we look closely at an actual implementation that

searches the DFG for every possible path: we need to take into consideration the time it takes to reject

the paths that are already chosen. We can construct the following case scenario with only 1 source and

sink node, where the source node is linked to two other nodes, and those two nodes linked to yet another

node, repeating this process k times, with the last node being the sink node. In this scenario, the number

of possible paths be 2k. Since this graph has 4 edges by each k repetition, the number of possible paths

27



is 2e/4, where e is the number of edges. With this type of implementation, we have a time complexity

≥ O(2e/4).

Figure 4.2. The case where we need time complexityO(2e/4) for a specific algorithm that searches for
paths.

4.2 SUGGESTED SOLUTION

When this problem was presented, a possible solution was also presented. Here we will see what was

the idea and why this is not a solution to this problem.

4.2.1 Idea

In the DFG of the example, at figure 3.1, we can see that the 2 paths have [13, 14] in common, because

in both paths there is a call to the same function, parseInt. There is also [19, 9, 8] in common, because

the junction caused by the sum in the pseudocode of initMatrix. In this example, there is only a simple

function, but in an industrial scale we can see lots of functions reused everywhere. If there was a way to

have that already calculated, and give the result when needed, it would speed up the process.
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Because, if the path in the function parseInt was already calculated, then, instead of calculating for

both of the paths, we would calculate only on one of them and the other would receive the result of the

calculation for the other path, saving, in this case, one search of the function parseInt.

The function calls were the more critical part, because it is very common the re-usability of functions

already written and tested.

Figure 4.3. Vulnerable paths of 3.2 as a heat map of node encountering, where yellow means 1, orange
2 and red means 3 encounters.
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To implement this idea, we would need to have for each function an already calculated set of paths

from each formal parameter to each return node. Analysing the function only one time, resulting in the

improvement the idea talked about. At least in the path from inside the function, which is the critical part.

The case of junction of the binary operators would not be treated, because it is not a problem that causes

big concern, statistically speaking.

For example, the min function implemented as such:

pub l i c i n t min ( i n t a , i n t b ) {

i f ( a < b ) {

r e t u rn a ;

} e l s e {

r e t u rn b ;

}

}

The min function will have a DFG as such:

Figure 4.4. DFG of the min function implemented above.

So the function min after being analysed should have something like this:

• For the case of entering from the input 2 and exiting from 7 should give {[2, 7]}.

• For the case of entering from the input 2 and exiting from 8 should give {}.

• For the case of entering from the input 3 and exiting from 7 should give {}.

• For the case of entering from the input 3 and exiting from 8 should give{[3, 8]}.

Why it is not a Solution Even when all the function paths are calculated, the process still has a time

complexity ≥ O(e2), because of the quantity of paths in the return set as previously explained in section

4.1.
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The idea would only help in creating the paths, but the quantity of paths would continue the same and

as before unscalable, which means this is optimizing the process, but the complexity maintains. That

means this is not a solution for the problem we want to solve.

4.2.2 What a Solution Should Do

The solution has to treat the problem of having a large quantity of elements in the return set, but without

reducing the quantity of elements, because every element is important information, a potential vulnerability

in this case.

That can be achieved by having a more condensed structure, instead of a simple set. That structure

has to be able to access the individual paths, and remove them, like what a set is capable of doing.

Going a step back and reflecting on the purpose of the In and Out edges, they exist to be feasible

to represent the DFG of different calls of the same function, and to not repeatedly represent the same

function. This solution solves the same problem that we have now, but instead of the dependencies in the

function, we have the function paths.

4.3 THE SOLUTION

Instead of having a set of paths, a path for each vulnerability candidate, we can have a subgraph of the

DFG to encapsulate all of those paths, and only those paths. From now on, let us call that subgraph of

the DFG by the name sub-DFG.

The process is the same as before until the search of the atomic query, which, instead of searching

every path and removing the duplicated instances, will postpone the path search by first calculating the

sub-DFG of the given DFG, with the sources and sinks the atomic query receives from the query.

The figure 4.5 shows how we described the SAST beforehand, getting the DFG by the source code,

which is a much more complicated process than the arrow suggests, after the DFG is calculated, the

queries find the sources, sinks and so on for the specific vulnerability, to call the atomic queries which

finds the vulnerable paths, after that the queries can also modify the set of paths, like remove paths, add

paths and so on.

The figure 4.6 shows basically the same as the figure 4.5, except the part where the atomic queries

were calculating the vulnerable paths. Now they are calculating the sub-DFG and storing it like before

we were storing the vulnerable paths. Then, if the user wants to see a vulnerable path, he can use the

sub-DFGs to ask for it and receive it.

With the sub-DFGs calculated, we can also have a different way of visualizing the vulnerabilities without
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Figure 4.5. pipeline of the simple design

Figure 4.6. changed pipeline for the proposed solution

having to search for vulnerable paths. This makes the sub-DFG a better alternative than simply making a

by-demand search in the DFG.

4.4 HOW TO GET THE SUB-DFG

With the source nodes and sink nodes given by the query to the atomic query, the sub-DFG must

have all the paths that go from source nodes to the sink nodes. The dfs(DFG, sources) represents

all the nodes that are influenced by sources. The rdfs(DFG, sinks) represents all the nodes that

are influencing the sinks. So the sub-DFG can be calculated by filtering the DFG by the intersection of

dfs(DFG, sources) and rdfs(DFG, sinks), hence the following equality:

subDFG = subgraph(DFG, dfs(DFG, sources) ∩ rdfs(DFG, sinks))

We are going to explore how to calculate the sub-DFG, of figure 3.1, namedDFGDes, with the atomic

query InfluencingOn(DFGDes, {4}, {8}).
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Figure 4.7. sub-DFG of 3.1 using the Atomic Query InfluencingOn(DFGDes, {4}, {8})
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The sub-DFG has also the information of the sources and sinks within the structure, but because we are

more interested in the graph part than this embedded information, for the next sections and chapters we

are going to omit this information and refer to the sub-DFG as only the part of the graph. Specially when

talking about the search process where we need the information of the sources and sinks to start and end

the search.

4.5 HOW TO SEARCH A PATH IN THE SUB-DFG

To find a path in the sub-DFG we cannot simply use a normal DFS, because we need to have in con-

sideration the call edges we already entered and exited, so we need to use a search graph algorithm with

a stack to capture what call we entered, when exiting the procedure we remove it from the stack. We

can ensure that we end up in a defined sink, because we constructed the sub-DFG, so that every node

influences a sink.

A valid path can be informally defined as a path that can be traversed by an evaluation of the source

program. When we consider a language which does not have procedure calls, the path could be any

path on the DFG, but procedure calls are present in the languages we want to discuss. To define what

a valid path is, we can see how the paper [RHS95] in definition 2.3 has done it, we can ignore every

normal transition in a path, i.e. we can validate a path only by what procedures it enters and exits. Let us

represent an edge that enters a procedure call i by ”(i” and an edge that exits a procedure call i by ”)i”.

With this, we can say that a path is valid if it can be built by the following rules, for i ∈ Call:

matched → (i matched )i matched

| ε

validInside → validInside (i matched

| matched

validOutside → matched )i validOutside

| matched

valid → validOutside validInside

The definition 2.3 in the paper [RHS95] shows that the valid is our validInside, because the language

the paper was presenting has only procedures that cannot modify the state outside of it. Because of that,

in the paper, it did not make sense to validate a path that says that a local variable is influencing a global

one. But, for us, it is possible that a procedure could modify the global state, by for example reading an

input and assigning a value to a global variable. Because of that, we present a validOutside which says

that a path can be valid if it starts in a procedure and ends outside that procedure.
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The search part of the process only runs after the sub-DFG of all queries are calculated, so this process of

calculating paths is only for the evaluation of the vulnerabilities found and wanted to be checked. Because

of this, it is a very light calculation.

Below, we can see a pseudocode of how to catch flows or paths of a DFG or sub-DFG. In our case, we

need this part to execute on demand by the user, so that it executes only when the user wants a path, or

some paths.

G stands for graph, sc stands for source, sks stands for sinks, callS stands for call stack and fl stands

for flow.

f l o w s ( G , sc , s k s ) :

f l o w s A u x ( G , sc , s k s , [ ] , [ s c ] )

f l o w s A u x ( G , sc , s k s , c a l l S , f l ) :

mark s c a s v i s i t e d

f o r a l l n e i g h b o u r s w o f s c i n G :

e : = ed g e ( sc , w )

i f w i s n o t v i s i t e d and e i s v a l i d i n c a l l S :

c a l l S ’ : = u p d a t e c a l l S w i t h e

f l ’ : = i n s e r t w i n f l

f u t u r e f l o w s : = f l o w s A u x ( G , w , s k s , c a l l S ’ , f l ’ )

i f w i s i n s k s :

f l ’ , f u t u r e f l o w s

e l s e :

f u t u r e f l o w s

Below we can see 2 functions, one to validate if the edge makes sense given a call stack, the other to

update a call stack given a valid edge.

v a l i d ( e , c a l l S ) :

i f c a l l S i s emp t y :

e i s not ( Ou t i )

l c : = l a s t c a l l o f c a l l S

i f e i s ( Ou t i ) and l c ! = i :

f a l s e

e l s e :

t r u e

u p d a t e ( c a l l S , e ) :

i f c a l l S i s emp t y :

i f e i s ( I n i ) :

i n s e r t i i n c a l l S

e l s e :
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c a l l S

l c : = l a s t c a l l o f c a l l S

i f e i s ( Ou t i ) and l c = i :

r emov e l c o f c a l l S

i f e i s ( I n i ) :

i n s e r t i i n c a l l S

e l s e :

c a l l S

4.6 COMPLEXITY

In chapter 4.1, we argued that the complexity of the atomic query to the vulnerable paths is ≥ O(e2),

where e is the quantity of edges in the DFG. In the solution presented we can argue that the complexity of

the atomic query to a sub-DFG, defined in 4.4 is O(e + n), where n is the quantity of the nodes in the

DFG, because the algorithms for subgraph, intersection and DFS are all O(e+ n).

If the user wants to store all the paths, it has all the problems we discussed earlier again. A simple

alternative is to guarantee the user only uses a limited number of paths, but that is limiting the information

given. So one strategy where we do not store all the paths, and we do not limit the information the user

can have, is to give one vulnerable path at each time, when the user asks for the next we calculate and

give that next vulnerable path. This strategy can give all the vulnerable path, storing only one path and the

sub-DFG for each query. The time complexity until the first path is given, after the sub-DFG calculation, is

O(e+ n), which is the time complexity of a DFS.

4.7 ADVANTAGES AND DISADVANTAGES OF SUB-DFG

The paths returned from the simple search have too many repeating nodes and edges, but returning

the sub-DFG removes the repeated ones, making a more advantageous solution by having a very efficient

storing capability for the nodes. The waiting time can be reduced, by using the right strategy talked in this

chapter. If we wanted to create an automatic analysis tool, that gives extra information, like where to make

changes in the code, the changes would be minimal, we do not need to run it in each path, but in sub-DFG

which represents all the vulnerable paths, making this extra information much more quick to calculate.

The disadvantages of using a sub-DFG is the migration, from the simple method to this method, which

means not everything can be reused, special information from the paths need a rewrite, for example the

quantity of vulnerable paths, some scores that we could have by analysing each path independently, etc.

Even the API of the queries needs to be rewritten, for example the addition of paths, the removal of paths,
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the concatenation of paths, etc. If we return lists, we can have simpler algorithms and simplify the next

processes, so returning a graph makes the next process a lot difficult. With lists, we could know very easily

how many vulnerabilities there were and also evaluate each path for a score of risk, but with a graph that

part is not that simple.

Another disadvantage of a DFG or a sub-DFG is that it does not have a good property of a graph, one

that we expect by default, which is that, if two nodes are adjacent, then it means the first is influencing

the second. But in a DFG of a program that is not the case, because in searching a path, if we previously

entered through a call of a procedure, then we have to exit through the same call, that is, if it is possible

to exit to another call, we cannot, because we did not enter from it previously. So, to know if one node is

influencing another, we need to know the history of the path we took to reach that node, so that we can

verify if the path did not go through a call of a procedure to another.

For example, in the 3.1 we can see that the path [7, 13, 14, 3] does not make sense, because in the

context of 3.1 we are entering in parseInt6, through the second formal parameter, and exiting from

parseInt3. This means that the connection between 14 to 3 depends on the history of the path, which

is not a thing that happens in a normal graph.

4.8 SUMMARY

This chapter begins by introducing the subtle problem we are facing, that at first glance is hard to catch,

following it up by a suggestion that could improve the time it takes to give the vulnerable paths to the user,

here we also discuss that it could improve, but it would not make the solution a scalable one.

We talked about a solution that makes the process scalable, by introducing a sub-DFG which we proceed

to elaborate on how to calculate it from the DFG and a set of sources and sink nodes, given from a query.

After, we also talked on how to search a path on it.

Ending with a discussion on the time complexity and with a note on the advantages and disadvantages

of this solution.
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5. IMPLEMENTATION
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5.1 INTRODUCTION

To show this solution is a better alternative to other solution, we first need an implementation of both in

the same environment, so we can have a common ground. This environment is needed, to simulate the

true product, without any obstruction unnecessary for the purpose of this dissertation, and also to show

my version of the product without any problem.

This environment is going to be written in Haskell, because of its power to generalize and its vast

available packages.

5.2 LANGUAGE

To make the construction clear, was chosen one language, even though this type of construction can

be generalized to other languages.

To be even more clear, we are going to focus on only the important part of the language. So the

language we are going to talk is made up called MiniLang and defined in figure 5.1 and represented as

Haskell datatype in the code 5.1.

39



Syntax

(Programs) P ::= (S, F1 · · ·Fn,M1 · · ·Mm) (the default class)
(Fields) F ::= x := E (field assignment)
(procedure declarations) M ::= f(x1, · · · , xn) = S
(Statements) S ::= S;S (seq. composition)

| IF (E,S1, S2) (if then else)
| W (E,S) (while)
| S(E) (expression-to-stmt)
| R(E) (return)
| ⋆ (empty, skip)

(Expressions) E ::= L (literal)
| I (identifier)
| E1 op E2 (binary operation)
| f(E1, · · · , En) (procedure call)
| x := E (assignment)

op ∈ {+,−, ∗, · · · }

Figure 5.1. Language syntax.

data P ’ f m f n i l op =

P ’

{ mainM : : m f n i l op

, f i e l d s : : [ f f n i l op ]

, me t h od s : : [m f n i l op ]

}

d e r i v i n g ( Eq , Ord , Read , Show )

data F ’ e f n i l op =

F ’

{ l h s : : i

, r h s : : e f n i l op

}

d e r i v i n g ( Eq , Ord , Read , Show )

data M’ s f n i l op =

M’

{ methodName : : f n

, me t hodPa r ams : : [ i ]

, me t h odBod y : : s f n i l op

}

d e r i v i n g ( Eq , Ord , Read , Show )
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data S ’ e f n i l op

= Comp ( S ’ e f n i l op ) ( S ’ e f n i l op )

| I F ( e f n i l op ) ( S ’ e f n i l op ) ( S ’ e f n i l op )

| W ( e f n i l op ) ( S ’ e f n i l op )

| S ( e f n i l op )

| R ( e f n i l op )

| NOP

d e r i v i n g ( Eq , Ord , Read , Show )

data E f n i l op

= L i t l

| I d e n t i

| B i nOp ( E f n i l op ) op ( E f n i l op )

| C a l l f n [ E f n i l op ]

| A s s i g n i ( E f n i l op )

d e r i v i n g ( Eq , Ord , Read , Show )

t ype P = P ’ F M

t ype F = F ’ E

t ype M = M’ S

t ype S = S ’ E

Listing 5.1. Language syntax in Haskell.

5.3 DFG

For the purpose of this dissertation, DFG is a directed, weighted graph DFG = (V I, vl, EI, el)

where

• Op = {+,−, ∗, · · · }

• V I ⊆ Z (the nodes of the graph, vertex identifiers)

• vl : V I −→ Fn+ I + L+Op (a vertex-labelling function)

• EI ⊆ V I × V I (the edges of the graph, edge identifiers)
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• el : EI −→ V I + V I + 1 (the arcs of the graph weighted by references to other vertices).

In el, the first VI is the identifier of the method call, which is the label of the edge, that goes from the

expressions given to the method call, to the input variable declarations in the method declaration. The

second VI is the identifier of the method call, which is the label of the edge, that goes from an expression

vertex to the vertex of the method call that the VI represents. The 1 in the end is to represent a ”normal”

edge, which is an edge that does not have any information, only says the first influences the second. An

example can be seen in 3.1.

The representation in Haskell datatype is in the listing 5.2.

t ype Key = I n t

t ype Fun = Key

t ype C a l l = Key

data NodeL f n i l op

= N o d e L i t l

| N o d e I d e n t i

| NodeFN f n

| NodeOp op

d e r i v i n g ( Read , Eq , Ord )

data EdgeL

= No rma l

| I n C a l l

| Ou t C a l l

d e r i v i n g ( Read , Eq , Ord )

data Gr a b =

Gr

{ v l : : Map Key a

, e l : : Map ( Key , Key ) b

}

t ype DFG f n i l op = Gr ( NodeL f n i l op ) EdgeL

Listing 5.2. DFG in Haskell.

In the Haskell datatype we did not define the EI or the V I , because the Map is a partial function

with a domain with the number of elements less than 263 and the elements of the domain need to have
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a total order, this restriction is not very worrying, so we can continue with it. That means that EI can be

defined to be the domain of el and the V I as the domain of vl.

This can be proven to be a graph by definingGr as an instance of the classGraph. BecauseGr can

also be altered, we can instantiate DynGraph for convenience. Both of this can be seen in 5.3.

i n s t ance G r aph Gr where

emp t y = Gr M . emp t y M . emp t y

i s Em p t y ( G r n e ) = M . n u l l n && M . n u l l e

ma t ch i gr@ ( G r n e ) =

case n ! ? i of

Noth ing −> ( Nothing , g r )

Jus t n l −> ( Jus t ( l t i , i , n l , l f i ) , G r n n i e n i )

where n n i = M . de l e t e i n

e n i = M . f i l t e r W i t h K e y ( \ ( l , r ) _ −> l /= i && r /= i )

e

l f i =

map ( \ ( ( _ , r ) , l b l ) −> ( l b l , r ) ) $

M . t o L i s t $ M . f i l t e r W i t h K e y ( \ ( l , _ ) _ −> l == i )

e

l t i =

map ( \ ( ( l , _ ) , l b l ) −> ( l b l , l ) ) $

M . t o L i s t $ M . f i l t e r W i t h K e y ( \ ( _ , r ) _ −> r == i )

e

mkGraph l n l e =

G r

{ v l = M . f r o m L i s t l n

, e l = M . f r o m L i s t $ map ( \ ( a , b , c ) −> ( ( a , b ) , c ) ) l e

}

l a b N o d e s ( G r n _ ) = M . t o L i s t n

noNodes ( G r n _ ) = M . s i z e n

n od eRang e ( G r n _ ) =

l e t n ’ = map f s t $ M . t o L i s t n

i n (minimum n ’ , maximum n ’ )

l a b E d g e s ( G r _ e ) = map ( \ ( ( a , b ) , c ) −> ( a , b , c ) ) $ M . t o L i s t e

i n s t ance DynG r aph Gr where

( l t i , i , i l , l f i ) & ( G r n e ) = G r n ’ e ’

where

n ’ = M . i n s e r t i i l n

e ’ =

mcon c a t

[ M . f r o m L i s t [ ( ( l , i ) , l b l ) | ( l b l , l ) <− l t i ]

, M . f r o m L i s t [ ( ( i , r ) , l b l ) | ( l b l , r ) <− l f i ]
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, e

]

Listing 5.3. Instances of Graph and DynGraph.

5.3.1 Union

A very useful operation to construct the DFG, is the union of graphs, to implement that we are going to

create an instance of a Semigroup, which is possible, because the union operation is associative. Also,

a Monoid for convenience, and because we have an obvious identity element, which is the graph with no

vertices or edges. Both implementations are in 5.4

i n s t ance S em i g r o u p ( G r a b ) where

( G r v1 e1 ) <> ( G r v2 e2 ) = G r ( v1 <> v2 ) ( e1 <> e2 )

i n s t ance Mono i d ( G r a b ) where

mempty = Gr mempty mempty

mcon c a t = ( \ ( vs , e s ) −> Gr ( mcon c a t v s ) ( mcon c a t e s ) ) . unz ip . map

f r om

where

f r om = \ ( G r v e ) −> ( v , e )

Listing 5.4. Monoid DFG instance in Haskell.

5.3.2 Information on a Method Definition

Because we have function calls, we need certain information from the function definition, when we get

to one function call. That is because if it exists a cycle in function calls, like a recursive function, then

when a program is analysed, and we encounter a function call, if we also analyse the function definition,

then we can have an infinite cycle and the analysis not ending.

To avoid the earlier behaviour, we can introduce some information already calculated before the analysis.

For that, we will define a MethodInfo, defined in 5.5.

data M e t h o d I n f o f n i l op =

M e t h o d I n f o

{ name : : f n

, f o r m a l P a r am s : : [ i ]

, r e t u r n s : : [ Key ]

}
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d e r i v i n g ( Show )

Listing 5.5. definition of MethodInfo.

ThisMethodInfo can be seen as a datatype that we can increment whenever we feel the need to do

it, for now the information that is needed is in 5.5.

The worst part of this way of analysis, is that we have to be aware to change this datatype to all the

things we want to analyse.

5.3.3 Construction of DFG

The parser is going to be language-java. And then transformed to the language at figure 5.1, if possible.

A thing can be transformed to a DFG if there exists a function that goes from that thing to a DFG.

Because the DFG needs to have a unique identifier for each vertex, we need to annotate the FN , I , L

and Op with a Key, which in this case is an Int like in the listing 5.6.

To not have an infinite cycle in the analysis, we have the annotation of fn with a MethodInfo seen

in 5.6. Since the function definition can be absent, we have a Maybe to represent that behaviour.

t ype MI f n i l op = M e t h o d I n f o ( Key , f n ) ( Key , i ) ( Key , l ) ( Key , op )

c l a s s HasDFG d where

d f g : : ( Ord f n , Ord i , Ord l , Ord op )

=> d ( Key , (Maybe ( MI f n i l op ) , f n ) ) ( Key , i ) ( Key , l ) ( Key , op )

−> DFG f n i l op

Listing 5.6. HasDFG class.

Now if we want P to have a DFG, P , F , S,M and E needs to be instantiated, like the listing 5.7 and

5.11.

i n s t ance ( HasDFG f , HasDFG m) => HasDFG ( P ’ f m) where

d f g ( P ’ ma f me ) = d f g ma <> d f <> dme

where

d f = mcon c a t $ map d f g f

dme = mcon c a t $ map d f g me

i n s t ance ( HasDFG e , H a s I n f imum e ) => HasDFG ( F ’ e ) where

d f g ( F ’ ( z , i ) e ) = d f g e <> Gr [ ( z , N o d e I d e n t i ) ] [ ( ( ze , z ) , N o rma l ) ]

where

z e = f s t $ i n f i m um e
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Listing 5.7. Instances of P and F .

The composition of Statements is more elaborated, let us follow an example below of 2 assignments.

i n t x = 2 ;

i n t y = x + 3 ;

Now we need to connect the variable x in the first line to the x in the second line. To do that, we need

to store the information that the x is an ”output” variable, to the first line, and the x is an ”input” variable,

to the second line. Having those ”input” and ”output” variables, it is possible to connect them with an

edge.

That information can be stored like (Is, instances) where

• Is ⊆ I

• instances : Is −→ P(Z) , the function that goes from a variable name to a set of instances of

that variable.

The function that connects them, called, connect can be defined like the code 5.8.

For example, if the example above has the identifiers as following:

i n t x_0 = 2_1 ;

i n t y_2 = x_3 +_4 3_5 ;

the function connect can be applied to the example as:

connect{(”x”, {0})}{(”x”, {3})} = {((0, 3), Normal)}

c o n n e c t : : Ord i => Map i ( S e t I n t ) −> Map i ( S e t I n t ) −> Map ( I n t , I n t )

E dgeL

c o n n e c t o i =

M . f r o m L i s t $ −− Map ( I n t , I n t ) EdgeL

S . t o L i s t $ −− [ ( ( I n t , I n t ) , E dgeL ) ]

S .map ( \ x −> ( x , N o rma l ) ) $ −− S e t ( ( I n t , I n t ) , E d geL )

M. f o l d r S . union [ ] $ −− S e t ( I n t , I n t )

M.map ( uncurry c a r t e s i a n P r o d u c t ) $ −− Map i ( S e t ( I n t , I n t ) )

M. i n t e r s e c t i o n W i t h ( , ) o i −− Map i ( S e t I n t , S e t I n t )

Listing 5.8. definition of connect.
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To collect the ”input” and ”output” variables, we can define a type class that has the functions inV ars

and outV ars.

c l a s s I O V a r s a where

i n V a r s : : Ord i => a f n ( Key , i ) l op −> Map i ( S e t Key )

o u t V a r s : : Ord i => a f n ( Key , i ) l op −> Map i ( S e t Key )

Listing 5.9. class IOV ars.

We have to instantiate S and E, that can be done like in the listing 5.10.

i n s t ance I O V a r s e => I O V a r s ( S ’ e ) where

i n V a r s ( Comp s1 s2 ) = M . u n i o n W i t h S . union i v 1 i v 2

where

i v 1 = i n V a r s s1

i v 2 = S . f o l d r M. de l e t e ( i n V a r s s2 ) ( k e y s S e t $ o u t V a r s s1 )

i n V a r s ( I F e s1 s2 ) = M . u n i o n W i t h S . union i v 1 i v 2

where

i v 1 = i n V a r s $ Comp ( S e ) s1

i v 2 = i n V a r s $ Comp ( S e ) s2

i n V a r s (W e s ) = i n V a r s ( I F e s NOP )

i n V a r s ( S e ) = i n V a r s e

i n V a r s ( R e ) = i n V a r s e

i n V a r s ( NOP ) = [ ]

o u t V a r s ( Comp s1 s2 ) = M . u n i o n W i t h S . union i v 1 i v 2

where

i v 1 = S . f o l d r M. de l e t e ( o u t V a r s s1 ) ( k e y s S e t $ i n V a r s s1 )

i v 2 = o u t V a r s s2

o u t V a r s ( I F e s1 s2 ) = M . u n i o n W i t h S . union i v 1 i v 2

where

i v 1 = o u t V a r s $ Comp ( S e ) s1

i v 2 = o u t V a r s $ Comp ( S e ) s2

o u t V a r s (W e s ) = o u t V a r s ( I F e s NOP )

o u t V a r s ( S e ) = o u t V a r s e

o u t V a r s ( R e ) = o u t V a r s e

o u t V a r s ( NOP ) = [ ]

i n s t ance I O V a r s E where

i n V a r s ( L i t l ) = [ ]

i n V a r s ( I d e n t ( z , i ) ) = [ ( i , [ z ] ) ]

i n V a r s ( B i nOp e1 _ e2 ) = i n V a r s ( Comp ( S e1 ) ( S e2 ) )

i n V a r s ( C a l l _ l e ) = i n V a r s $ P . f o l d r ( \ e s −> Comp ( S e ) s ) NOP l e

i n V a r s ( A s s i g n i e ) = i n V a r s e

o u t V a r s ( L i t _ ) = [ ]
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o u t V a r s ( I d e n t _ ) = [ ]

o u t V a r s ( B i nOp e1 _ e2 ) = o u t V a r s ( Comp ( S e1 ) ( S e2 ) )

o u t V a r s ( C a l l _ l e ) = o u t V a r s $ P . f o l d r ( \ e s −> Comp ( S e ) s ) NOP l e

o u t V a r s ( A s s i g n ( z , i ) e ) = u n i o n W i t h cons t [ ( i , [ z ] ) ] $ o u t V a r s e

Listing 5.10. IOVars instances of S and E.

The rest of the DFG instances, S, M and E, can be implemented like in the listing 5.11.

i n s t ance ( HasDFG e , I O V a r s e ) => HasDFG ( S ’ e ) where

d f g ( Comp s1 s2 ) = d f g s1 <> d f g s2 <> Gr [ ] e s

where

e s = c o n n e c t ( o u t V a r s s1 ) ( i n V a r s s2 )

d f g ( I F e s1 s2 ) = d1 <> d2

where

d1 = d f g ( Comp ( S e ) s1 )

d2 = d f g ( Comp ( S e ) s2 )

d f g (W e s ) = d f g ( I F e ( Comp s ( I F e s NOP ) ) NOP )

d f g ( S e ) = d f g e

d f g ( R e ) = d f g e

d f g NOP = Gr [ ] [ ]

i n s t ance ( HasDFG s , I O V a r s s ) => HasDFG (M ’ s ) where

d f g (M ’ _ ps b ) = d f g b <> Gr ns e s

where

ns = f r o m L i s t [ ( z , N o d e I d e n t i ) | ( z , i ) <− ps ]

mps = f r o m L i s t [ ( i , [ z ] ) | ( z , i ) <− ps ]

e s = c o n n e c t mps ( i n V a r s b )

i n s t ance HasDFG E where

d f g ( L i t ( z , l ) ) = G r [ ( z , N o d e L i t l ) ] [ ]

d f g ( I d e n t ( z , i ) ) = G r [ ( z , N o d e I d e n t i ) ] [ ]

d f g ( B i nOp e1 ( z , op ) e2 )

=

d f g e1 <>

d f g e2 <> Gr [ ( z , NodeOp op ) ] [ ( ( z1 , z ) , N o rma l ) , ( ( z2 , z ) , N o rma l )

]

where

( z1 , _ ) = i n f i m um e1

( z2 , _ ) = i n f i m um e2

−− i f t h e f u n c t i o n i s n o t d e f i n e d , t h e n l e t ’ s s u p p o s e e v e r y i n p u t

i n f l u e n c e s t h e o u t p u t

d f g ( C a l l ( z , ( Nothing , f n ) ) l e ) = mcon c a t l d <> Gr [ ( z , NodeFN f n ) ] e s
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where

l z = map ( f s t . i n f i m um ) l e

l d = map d f g l e

e s = f r o m L i s t [ ( ( e , z ) , N o rma l ) | e <− l z ]

d f g ( C a l l ( z , ( Jus t ( M e t h o d I n f o _ ps r s ) , f n ) ) l e ) =

mcon c a t l d <> Gr [ ( z , NodeFN f n ) ] ( e s <> r s ’ )

where

l z = map ( f s t . i n f i m um ) l e

l d = map d f g l e

e s = f r o m L i s t $ map ( \ e −> ( e , I n z ) ) $ z i p l z $ map f s t ps

r s ’ = f r o m L i s t [ ( ( x , z ) , Ou t z ) | x <− r s ]

d f g ( A s s i g n ( z , i ) e ) = d f g e <> Gr [ ( z , N o d e I d e n t i ) ] [ ( ( ze , z ) ,

N o rma l ) ]

where

z e = f s t $ i n f i m um e

Listing 5.11. Instances of S, M and E.

When executing the dfg described in 5.7, and beautifying the output, we get the results in 3.1.

5.4 SUB-DFG

To create a sub-DFG, we can use the expression below.

subDFG = subgraph(DFG, dfs(DFG, sources) ∩ rdfs(DFG, sinks))

The implementation can be seen below.

i n f l u e n c i n g O n : :

DFG f n i l op −− DFG

−> [ Key ] −− s o u r c e s

−> [ Key ] −− s i n k s

−> DFG f n i l op −− sub −DFG

i n f l u e n c i n g O n d s o u r c e s s i n k s = s u b g r a p h d n o d e s F o r S u b

where

n o d e s F o r S u b = i n t e r s e c t b e l o w S o u r c e s a b o v e S i n k s

b e l o w S o u r c e s = d f s d s o u r c e s

a b o v e S i n k s = r d f s d s i n k s

Listing 5.12. Definition of influencingOn for the sub-DFG.
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To compare the simple solution to this one, we can also implement the search of the simple solution

as in the section 5.5.

5.5 SEARCH

The detection of a vulnerability with the DFG can be very complex at times. Because of that exists a

component named ”Query” that can process and query very specific questions, called ”Atomic Query”, like

InfluencingOn that receives sources and sinks, then gives all the possible paths from the sources to the

sinks. InfluencedBy that is just the InfluencingOn, but with the inputs swapped. It is convenient

to talk about sanitizers when analysing a DFG, sanitizers are vertices that if they appear in the middle of

the path, means that the path is not a vulnerability. That said, InfluencingOnAndNotSanitized

receives sources, sinks and sanitizers, then gives the ”composition” of the paths from InfluencingOn

of sources and not sanitizers, and InfluencingOn of not sanitizers and sinks.

If we continue to examine each of the ”Atomic Query”, it can be seen that the most important ”Atomic

Query” is the InfluencingOn. Because of that, we will focus only on this ”Atomic Query”, and how to

make it scalable.

Because the DFG tries to condense the dataflow, by identifying the function body, and only writing it

once, a valid path has some restrictions. To demonstrate these restrictions, we can look at the example

in the figure 3.1, there we can see that we can enter in the parseInt_3 by going from args_4 to i_13,

but when getting out we could get out from i_14 to parseInt_3 or to parseInt_6, but the valid way to

get out is only by parseInt_3, because we never entered from the call parseInt_6.

To check if a path in a DFG is a valid path, we can do it by traversing the paths, from the source vertex

to the sink vertex, and when we find a Normal we continue traversing, when we find an In i we store

the i in the stack, when we find the Out i we remove the i from the top of the stack, if the i is in the top.

This algorithm can be written like in the code 5.13.

t ype F l o w L f n i l op = ( NodeL f n i l op , [ ( EdgeL , NodeL f n i l op ) ] )

c h e c k : : F l o w L f n i l op −> Bool

c h e c k f = maybe Fa l se ( n u l l . f s t ) $ r e s S t a t e

where

e d g eS eq = map f s t $ snd f

r e s S t a t e = c h e c k W i t h S t a t e ( [ ] , e d g eS eq )

c h e c k W i t h S t a t e : : ( [ I n t ] , [ E dgeL ] ) −> Maybe ( [ I n t ] , [ E dgeL ] )

c h e c k W i t h S t a t e x@ ( _ , [ ] ) = Jus t x

c h e c k W i t h S t a t e ( s , N o rma l : t ) = c h e c k W i t h S t a t e ( s , t )
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c h e c k W i t h S t a t e ( s , ( I n i ) : t ) = c h e c k W i t h S t a t e ( i : s , t )

c h e c k W i t h S t a t e ( i ’ : s , ( Ou t i ) : t )

| i == i ’ = c h e c k W i t h S t a t e ( s , t )

c h e c k W i t h S t a t e _ = Noth ing

Listing 5.13. Algorithm to check Influence.

To search a valid path, we can use the implementation of the simple solution. This search originally

occurs in the DFG and not on the sub-DFG, but because the sub-DFG is a subgraph of the DFG it can also

be used on the sub-DFG. This implementation also searches for all the paths at once, but can also search

on demand, with some tweaks.

The return of influencingOn is the accumulation of the flows that start from a single source, therefore

the implementation is the union of the flows from a single source. Here we also use parallel processes to

handle each search from a single source, to also show that the bottleneck of this strategy does not depend

on the optimizations done, but depends on the data structure itself.

i n f l u e n c i n g O n : :

DFG f n i l op

−> [ Key ]

−> [ Key ]

−> F l o w s

i n f l u e n c i n g O n d f s o u r c e s s i n k s = u n i o n s W i t h s m a l l e s t F l o w f l o w O f S o u r c e s

where

f l o w O f S o u r c e s = L .map ( \ s −> i n f l u e n c i n g O n S d f s s i n k s ) s o u r c e s ‘

u s i n g ‘ p a r B u f f e r 100 r s e q

Listing 5.14. Definition of influencingOn.

To iterate through the DFG, we need to have the additional information of the flow (fl) we are currently

on, and the call stack (callS) to have a way to know if we should exit in a certain call or not.

i n f l u e n c i n g O n S : :

DFG f n i l op

−> Key

−> [ Key ]

−> F l o w s

i n f l u e n c i n g O n S d f s o u r c e s i n k s =

i n f l u e n c i n g O n S W i t h S t a t e d f ( F l o w ( s o u r c e , [ ] ) ) [ ] s i n k s

Listing 5.15. Definition of influencingOnS.
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The code below can be viewed as a DFS, but it does not track which nodes were visited, instead has

a flow which is the path already taken, only when a node does not have a neighbour or already is in the

flow, that we stop or backtrack the search. This algorithm does not have the same complexity of the DFS,

because it can visit a node or an edge multiple times.

i n f l u e n c i n g O n S W i t h S t a t e : :

DFG f n i l op

−> F l o w

−> [ C a l l ]

−> [ Key ]

−> F l o w s

i n f l u e n c i n g O n S W i t h S t a t e d f f l @ ( F l o w ( c u r r , c t ) ) c a l l S s i n k s

| c u r r ‘ elem ‘ c t = mempty

| c u r r ‘ elem ‘ s i n k s = i n s e r t W i t h s m a l l e s t F l o w ( i d F l o w f l ) f l

n e i g h b o r F l o w s

| o therw ise = n e i g h b o r F l o w s

where

l i n k s N o d e s = l s u c d f c u r r

n e i g h b o r F l o w s = u n i o n s W i t h s m a l l e s t F l o w $

L .map

( \ ( n , l ) −>

case l of

No rma l −> i n f l u e n c i n g O n S W i t h S t a t e d f ( F l o w ( n , c u r r :

c t ) ) c a l l S s i n k s

I n i −> i n f l u e n c i n g O n S W i t h S t a t e d f ( F l o w ( n , c u r r : c t )

) ( i : c a l l S ) s i n k s

Ou t i −> case c a l l S of

( j : c a l l S ’ ) | i == j −> i n f l u e n c i n g O n S W i t h S t a t e d f (

F l o w ( n , c u r r : c t ) ) c a l l S ’ s i n k s

_ −> mempty

)

l i n k s N o d e s

Listing 5.16. Definition of influencingOnSWithState.

With the auxiliary functions implemented below. We give a way to identify a flow by the two nodes that

start and end the path, which in this case we only care about the smallest for each path identified by that

way, and because of that we also give a way to choose what flow is the smallest.

−− f i r s t and l a s t node o f t h e p a t h

i d F l o w : : F l o w −> ( Key , Key )

i d F l o w ( F l o w ( h , [ ] ) ) = ( h , h )

i d F l o w ( F l o w ( h , t ) ) = ( h , l a s t t )
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l e n g t h F l o w : : F l o w −> I n t

l e n g t h F l o w ( F l o w ( _ , t ) ) = 1 + l e ng th t

s m a l l e s t F l o w : : F l o w −> F l o w −> F l o w

s m a l l e s t F l o w f f ’

| l e n g t h F l o w f < l e n g t h F l o w f ’ = f

| o therw ise = f ’

Listing 5.17. Auxiliary functions for the implementation of influencingOn.

5.6 SUMMARY

We formulated the syntax of a simple imperative made up language, so we can work with it for demon-

stration purposes. Formulated also the data structure of the DFG, some useful operation on it and how to

get that from a source code of our simple imperative language.

With the DFG and an atomic query InfluencingOn, we showed how to construct a sub-DFG, this

process can be used to create a query language that has more operations, but the InfluencingOn is

the main operation that needed attention, because other ones can be constructed with it, or are simple

lookup algorithms, unions, or intersections.

In the end we focused on how to search a path for the user to visualize, which is a more involved graph

search algorithm than a normal DFS, with a stack for call entrances and exits.
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6. BENCHMARKING
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6.1 INTRODUCTION

For what I have collected in the actual product, when the solution here was implemented at Checkmarx,

to show that this proposal worked, unfortunately performed worse than the solution proposed here.

The two possible causes for this to happen is, that the sources are in parts very disconnected of the DFG,

whichmeans that the parallelism had an advantage, because went throughmore frequently in less repeated

edges than very repeated edges. Or the DFG was so big, that the limits on the current implementation

were reached, and it got advantages in every query.

But the reader has to remember that this is comparing the simplest solution, which takes only 1 CPU

core, against a product that is in production which uses multiple CPU cores and with some cases limited,

for performance’s sake.

So to have both of the approaches on a common ground, the implementation on the previous chapter

was created. For that reason, these implementations are prepared to be compared against each other and

gather some data.

6.2 PREPARATION IN THE IMPLEMENTATION

To be able to compare both solutions needs the ability to generate some random programs, but because

the queries can perform in any graph, the test of performance of the queries just needs to generate a

random graph.

This generation is just the generation of a graph, because the algorithm does not differentiate between

call edges and normal edges, which makes call edges not very important in this part of the work, and it

can also happen that a program can have this structure, i.e. without calls.

The generation process can just use a generator for graphs of the package fgl-arbitrary, and treat the

nodes as variables, literals, operators, etc. and the edges like an influence between nodes of the program.

To generate the source and sink nodes, we just need to generate two random sets of nodes.

6.3 TIME

After having the simple implementation and the proposed solution of this dissertation, then it just needs

to test each in time execution. The following graphs measure the time by the execution of the program

and writing the result to a file. This is to emulate writing to a database or to the monitor of the user.
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The vertical axis is the average time it takes to execute an influencingOn in a given DFG, sources

and sinks. The horizontal axis is the number of edges that a DFG has when given to the atomic query

influencingOn.

These tests were done in a machine with the following CPU with 8 cores, i7-10510U @ 1.80GHz. It was

measured 1 million tests with CPU time for each iteration.

Figure 6.1. The mean of the execution time for each approach, by number of edges of the input DFG.

As it can be seen just for this few values of quantity of edges, the difference is clear and it can verify

the theoretical values.

6.4 SUMMARY

This chapter compares both of the implementations by time taken to execute and write it to a file, the

simple implementation and the solution presented in this dissertation.

In the end, it is concluded that the solution presented in this dissertation is by far the best option in

terms of time complexity.
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7. CONCLUSION
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The main goal of this work is finding a linear way to detect a vulnerability in a DFG, which the simple

implementation discussed in the beginning of this dissertation does not do, in a specific type of SAST

tool. The solution presented does this successfully by coming up with a more compact structure that can

represent all the key expected outputs. After having this structure, the algorithms needed are just simple

graph algorithms. But even then one can see a big difference in performance, also by delaying the hard

process to the point where users can control how much information they want.

Dividing the main problem in two parts, (a) finding the subgraph and then (b) returning specific paths,

shows better results than just navigating through the same connections from a DFG directly, because the

user can control how many paths to return and keep the execution time reasonable, instead of calculating

every single path and give all of those paths without any input from the user.

With this linear strategy, it can be said that the growth of the online services can happen with a viable

way of detecting vulnerabilities, the source code can also grow in a way that the time grows with it, in the

same magnitude as the number of LOC.

The more vulnerabilities identified before the application launch, the less impact the cyberattacks have

in the world. The contribution of this dissertation is to help in this regard, by presenting a strategy that

can make the vulnerability detection less of a hassle, by reducing the time a tool needs to detect it and

present it to the user.

Even though this solution has a better time complexity because it delivers a more compact report of

vulnerabilities, it also means that the user will receive a graph instead of a set of vulnerable paths, which

is a different perspective of the vulnerabilities. With one approach, it gets one path each time, making

that path clearer to understand and easy to share and talk about with other colleagues, and even getting

different ways of evaluation from the machine, for example, calculating the number of vulnerable paths, or

the number of vulnerable nodes in the code. With the other approach, it gets a sub-DFG, which is hard to

understand as a whole, but it gives more information on the vulnerability structure and can also get part or

all the paths on the vulnerabilities, but with a price, which is the time it takes. These points emphasize that

this solution is not a substitution for the current approach. It only gives a different and faster alternative

with limited information if it does not expand the sub-DFG into paths.

7.1 PROSPECT FOR FUTURE WORK

7.1.1 Optimization by dynamically incrementing the DFG

The approach proposed in this dissertation helps programmers to create programs without vulnerabil-

ities. If the programmer is constantly modifying small parts of the code, it is a waste of computational
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power and time if all the things analysed are deleted, and it needs to start over again, both on creating the

DFG and the sub-DFG for all the queries.

This optimization seems like the simpler one, but it can have a larger impact on the cycle of the imple-

mentation of a program. It was even discussed in the beginning of this dissertation as another possible

optimization to this process, very briefly.

The incremental part can be adding something to the implementation, e.g. a new function, some lines

etc., or deleting something from the implementation. All of those things are mere nodes and edges in the

graph, with that, the new DFG can be written like so: NewDFG = (DFG ∪ Inc) \ Dec. The first

problem is how can we get Inc andDec, from the differences in the program files. Then we need to find

an efficient transformation T , such that:

NewSubDFG = T (subDFG, Inc,Dec)

One idea on the efficient transformation part, is to store not only the sub-DFG, but also the result of

dfs(source,DFG) and the result of rdfs(sinks,DFG), because an unordered DFS can be com-

puted dynamically given some increments and decrements, efficiently. With the ability to update the

dfs(source,DFG) and the rdfs(sinks,DFG) dynamically, we can also update the sub-DFG dy-

namically.

7.1.2 Optimization with DAG

When we calculate the sub-DFG we calculate all the nodes that are reachable from the sources and all

the nodes that can reach the sinks, only then we intersect the results. The results from the dfs or rdfs

can produce a lot of wasted computation, especially when the sources and sinks are in a small distance

from each other and the DFG has very long paths. Also, when we have cycles, and have sources and

sinks inside a strongly connected component of the DFG, the sub-DFG should be obviously all the strongly

connected component. This optimization can take care of these 2 problems.

Before any query evaluation we can modify the DFG, linearly, so that it is much more simple to calculate

the sub-DFG for each query. That modification needs to be great at calculating the graph reachability

problem, and a DAG seems like a good alternative.

To transform a generic directed graph to a directed acyclic graph (DAG), we can use not the graph,

but the condensation of the graph, to have the advantages of a DAG, and still not losing any information

from the original directed graph. Condensation groups vertices from a strongly connected component to

a single vertex, where that vertex has all the information, like the old vertices and its internal connections,

also groups the edges, from strongly connected components to other strongly connected components, with
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that in the end we do not have a strongly connected component in the condensation, therefore achieving

a DAG.

Figure 7.1. The yellow directed acyclic graph is the condensation of the blue directed graph.

This optimization consists in creating the condensation of the DFG, so that we can create a partial

order of the nodes, making the process of finding the sub-DFG simpler and more efficient. For example,

if 2 nodes are in the same strongly connected component, then they are automatically influencing each

other inside the component, filtering out some unnecessary edges. And also, if we have a sink with lots of

nodes after it, that are not sinks themselves, or a source with lots of nodes before it, that are not sources

themselves, then it is useless to search there for parts of paths.

A recent approach on reachability queries that could be utilized in this situation, by condensing the DFG,

can be found in [WYLJ14].

7.1.3 Optimization by introducing parallel algorithms

There are essentially no good parallel algorithms known for the most basic problems on general directed

graphs, especially when the graph is sparse [Fin18]. In our case, the DFG is a graph representing the

information flow of a program, so we can admit that the graph is not sparse.

Because of how we calculate the sub-DFG, we want the reachable nodes from the source nodes and

the nodes that reach the sink nodes. The paper [Fin18] creates a probabilistic work efficient algorithm to

solve a simple problem, which in the paper’s words is described as:

Perhaps the most basic problem on directed graphs is the single-source reachability problem: given a

directed graph G = (V,E) and source vertex s ∈ V , identify the set of vertices reachable by a directed

path originating at s.
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Even though this problem is for only one source node, we can easily adapt the graph to have one

extra node with neighbours as the source nodes only. The paper [Fin18] presents a randomized parallel

algorithm for digraph reachability and related problems with expected work Ω̃(m) and span Õ(n2/3),

and hence parallelism Ω̃(m/n2/3) = Ω̃(n1/3), on any graph with n vertices and m arcs. This makes it

a good candidate for a parallel algorithm to make the calculation of the sub-DFG a bit faster.

7.1.4 Restricting the sub-DFG

It is possible for the sub-DFG to have nodes and edges that do not make part of any valid path, making

those nodes and edges irrelevant. One example of this can be thought as a source code with two unrelated

parts, where one part has a source node and the other has a sink node. If it has a procedure call, of the

same procedure, in both of this unrelated parts, it would exist an invalid path that enters from one call and

exits to the other call creating a connection from two unrelated parts of the source code, therefore that

connection creates a potential path in the sub-DFG, even though that path is an invalid one.

The big problem here is the relaxation of the call indexes on the construction of the sub-DFG. To make

the sub-DFG not relaxed on the call indexes, we need to make sure if we enter a procedure from call i and

we cannot get out from the call i, we must influence a sink before the procedure ends.

With the previous property, we can create a search algorithm that for any path taken ends in a sink node.

With an hash map to associate a call index to something that indicates if it only has an edge entering the

call, or has both edges, entering and exiting the call. And with annotations inside each procedure, that

annotates all the nodes that influence only the sink nodes, and not the return nodes. We can have a search

that when it enters a procedure, via a call, we can look up the call index (a) if the call only enters, and

does not exit the procedure, we can follow only the annotated nodes, with that we can guarantee that we

will always end up in a sink node, i.e. we do not need to backtrack to find a path in the sub-DFG (b) if the

call enters and exits, we can continue the search normally.

With these modifications, we can have certainty that the search does not need to backtrack, because

we do not have the situation of checking if the call index is exiting the procedure. Now we can argue that

finding a valid path in the sub-DFG has complexity O(l), where l is the length of the maximum path in

the graph.

With these modifications, if a procedure does not have any annotations, all the call indexes of that

procedure that can only enter the call, cannot influence any sink node, therefore it can be removed from

the sub-DFG. Leaving the sub-DFG with only relevant nodes and edges.
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