
Bruna Isabel Afonso Carvalho Calisto

Formalization in Coq of the
Standardization Theorem for
λ-calculus

outubro de 2022UM
in
ho

 |
 2

0
2
2

B
ru

n
a

C
al

is
to

F
o

rm
a
li

za
ti

o
n

 i
n

 C
o

q
 o

f
th

e
 S

ta
n

d
a
rd

iz
a
ti

o
n

T
h

e
o

re
m

 f
o

r
λ
-c

a
lc

u
lu

s

Universidade do Minho
Escola de Ciências

Bruna Isabel Afonso Carvalho Calisto

Formalization in Coq of the
Standardization Theorem for
λ-calculus

Dissertação de Mestrado
Mestrado em Matemática e Computação

Trabalho efetuado sob a orientação do
Professor Doutor Luís Filipe Ribeiro Pinto

Universidade do Minho
Escola de Ciências

outubro de 2022

iii

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial 4.0 International

CC BY-NC 4.0

https://creativecommons.org/licenses/by-nc/4.0/deed.en

https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

Acknowledgements

I would like to thank all people who supported me through different ways in the writing of this dissertation,

of which I want to highlight:

My advisor and Doctor Luís Filipe Ribeiro Pinto for all the encouragement and help provided, for all

the patience and willingness to guide me throughout the dissertation. Without my advisor, this dissertation

would not be accomplished.

To my husband, Jorge Calisto, for the patience and support shown throughout this phase.

To my mother, Susy Calisto, who, in addition to supporting me, helped me in the translation of this

dissertation into English.

To the Research Centre of Mathematics of the University of Minho (CMAT) and the Portuguese Foun-

dation for Science and Technology (FCT), for funding this dissertation, through the CMAT Research Grant

- UIDB/00013/ 2020 - 02/2021.

Finally, I would like to thank Catarina for helping me with the structure of this dissertation as well as

other issues.

iv

v

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

Resumo

Formalização em Coq do Teorema da Standardização para o Cálculo-λ

Os teoremas da standardização são resultados fundamentais da teoria da redução do Cálculo-λ. Estes

resultados estabelecem que um termo t reduz para um termo t′ se e só se t reduz para t′ seguindo uma

sequência de redução específica, dita standard. Em particular, estes resultados garantem a completude

de certas maneiras específicas de efetuar reduções, e são a base dos resultados sobre estratégias de

avaliação, nomeadamente chamada-por-nome e chamada-por-valor, fazendo a ponte entre um cálculo

(uma teoria equacional) e uma linguagem de programação.

Esta dissertação apresenta uma formalização no sistema de prova assistida Coq do Teorema da

Standardização para o Cálculo-λ. Neste sentido, consideramos uma prova deste resultado que extraímos

de uma prova de um Teorema da Standardização para um cálculo-λ para lógicamodal proposto por Espírito

Santo-Pinto-Uustalu, onde redução standard é capturada através de uma relação definida indutivamente

nos termos-λ, em linha com tratamentos de standardização para o Cálculo-λ por Loader e por Joachimski-

Matthes. A implementação da sintaxe dos termos-λ usa os índices de De Bruijn, mas a formalização Coq

segue de muito perto a estrutura da prova do Teorema da Standardização (com termos-λ ordinários).

Adicionalmente, esta dissertação considera uma noção independente de sequência de redução stan-

dard para o Cálculo-λ estudada por Plotkin. Por um lado, provámos que sequências de redução e a

abordagem inicial de redução standard como uma relação indutiva nos termos-λ são formas equivalentes

de caracterizar redução standard e, por outro, fornecemos uma formalização dessa equivalência em Coq.

Palavras-chave: Chamada-por-nome, chamada-por-valor, sistema de prova Coq, standardização

vi

Abstract

Formalization in Coq of the Standardization Theorem for λ-calculus

Standardization theorems are fundamental results in the theory of reduction of λ-calculus. They es-

tablish that a term t reduces to a term t′ if and only if t reduces to t′ following some specific sequence

of reductions said standard. In particular, these results guarantee completeness of specific ways of per-

forming reduction, and are at the basis of results about evaluation strategies, namely call-by-name and

call-by-value, bridging between calculi (equational theories) and programming languages.

This dissertation presents a formalization in the Coq proof assistant of the Standardization Theorem

for the call-by-name version of λ-calculus, i.e. ordinary λ-calculus. In this development, we consider a proof

of this result that we extracted from a proof of a standardization theorem for a λ-calculus for modal logic

Espírito Santo-Pinto-Uustalu, where standard reduction is captured via an inductively defined relation on

λ-terms, in line with treatments of standardization for λ-calculus by Loader and Joachimski-Matthes. The

implementation of the λ-terms syntax uses the De Bruijn indices, but the Coq formalization follows closely

the structure of the proof of the Standardization Theorem (with ordinary λ-terms), both in what concerns

lemmata and the inductive structure of arguments.

Additionally, this dissertation also considers an independent notion of standard reduction sequence for

(call-by-name) λ-calculus studied by Plotkin. Firstly, we prove that reduction sequences and the approach

of standard reduction as an inductive relation on λ-terms are indeed equivalent ways of characterizing

standard reduction. Then, we provide a complete formalization in Coq of this equivalence.

Keywords: Call-by-name, call-by-value, Coq proof assistant, standardization

vii

Contents

List of Figures x

1 Introduction 1

2 Background on λ-Calculus 5

2.1 λ-terms and substitution . 5

2.2 β -reduction . 8

2.3 Call-by-name and call-by-value . 13

3 λ-calculus and the Standardization Theorem 15

3.1 Call-by-name evaluation . 15

3.2 Standardization relation and admissible rules . 17

3.3 Standardization Theorem . 19

4 Formalization in Coq of the Standardization Theorem 22

4.1 A λ-calculus with De Bruijn indices . 23

4.2 The Substitution Lemma . 29

4.3 Standard reduction relation and admissible rules 31

5 Standard Reduction Sequences 38

5.1 Theory . 38

5.2 Formalization in Coq . 44

6 Conclusion 48

Appendices 51

viii

CONTENTS

A 51

B 55

C 61

D 80

E 93

F 125

Bibliography 151

ix

List of Figures

1 Diamond Property . 10

2 Admissible rules for⇒n . 18

3 Admissible rules of⇒n for λdB . 32

4 Auxiliary admissible rules for λdB . 33

x

Chapter 1

Introduction

λ-calculus and functional programming. λ-calculus was introduced by Alonzo Church in the 1930s,

intended as a foundation for mathematics [4]. Church invented this formal system (λ-calculus) and by

this via defined the notion of computable function [7]. At about the same time, Turing invented a class of

machines (Turing machines) and by this via also defined a notion of computable function [7]. Still in the

1930s, Turing showed that λ-calculus can represent all the functions computable by a Turing machine and

vice versa [4, 7]. Meanwhile, Kleene and Rosser also proved that λ-calculus can represent all recursive

functions [4]. These equivalences, and the observation that other analysis of computability (such as Post

systems [31]) also captured the same class of functions, led to the so-called “Church-Turing Thesis”,

according to which λ-calculus (just as Turing machines) fully capture the notion of computability [6].

With the invention of computers and programming languages, the importance of λ-calculus became

obvious in the design, implementation, and theory of functional programming languages [37]. This formal

system has even been qualified as the “smallest universal programming language of the world” [32],

since, on the one hand it fully captures computability, and, on the other hand, it consists of a single rule

of substitution, which makes it convenient for a rigorous mathematical analysis.

Functional languages are concerned with describing a solution to a problem [10]. Some examples

of functional programming languages are Haskell, OCaml, Scheme, SML and LISP [14, 28]. One of the

advances provided in λ-calculus is that computations on data types, like trees and syntactic structures,

can be represented as expressions in λ-calculus (λ-terms) [6]. Viewed through λ-calculus, the execution

mechanism of functional programming languages corresponds to reduction of λ-terms to normal form.

One of the fundamental results of the theory of reduction of the λ-calculus is the Standardization Theorem,

which establishes that one λ-term t reduces to another λ-term t if and only if t reduces to t following some

1

CHAPTER 1. INTRODUCTION

specific sequence of reductions, said standard. In particular, these kind of results guarantee completeness

of specific ways of performing reduction. As mentioned, reduction in λ-calculus considers a single rule of

substitution, named (β). We will see later that there maybe situations where the (β)-rule can be applied

in different possible ways, which can potentially lead to non-determinism. But, generally, in programming

languages we expect determinism of execution. This is one of the reasons for programming languages to

adopt specific strategies to evaluate expressions. Two fundamental evaluation strategies are call-by-name

(cbn) and call-by-value (cbv), expressing different policies for treating “function call”. Roughly, cbn wants

to apply the function as soon as possible, whereas cbv only applies the function when the argument is

already a “value”. Still, it is possible to find simulations of each of the two evaluation strategies by the

other, as described in [30]. This work by Plotkin shows also that standardization theorems are useful tools

to bridge between functional programming languages, which implement a certain evaluation strategy, and

the λ-calculus, which provides an equational theory to reason about such functional programs.

Formalization and proof assistants. Nowadays, we can encode mathematical results in the com-

puter. We call formalization to such encoding, and proof assistant to a program that implements a meta-

logic where mathematical results can be described and which allows to check the correctness of formaliza-

tions [41]. Mathematical proofs can be extensive, with many cases to check, even if many of the cases are

not interesting and are easy to prove. Also, it is very easy to make a mistake in some part of a proof that

can put at risk the veracity of the result under consideration. Automated proof assistants can help us with

these type of problems, and therefore are useful tools in the formalization of proofs in Mathematics, but

also in the context of the verification of properties of software [2]. Examples of such tools highly used today

are the Coq, AGDA and Isabelle proof assistants. For example, the Coq proof assistant (which will be used

in this dissertation) implements an higher-order logic based on the Calculus of Inductive Constructions,

and it is an interactive tool, where the user can set up a mathematical theory, by defining concepts and

stating theorems, and then interactively develop formal proofs of these theorems [39]. An example of a

well known result fully formalized in computer is the Four Color Theorem. This theorem states that with at

most four colors it is possible to color the regions of any map, so that no two adjacent regions have the

same color. This theorem is famous for being the first significative mathematical problem to be formalized

using a computer program, namely Coq [15]. Another significative result that has been formalized in the

Coq proof assistant is the Feit-Thompson Odd Order Theorem (a result in Group Theory, establishing that

every finite group of odd order is solvable).

In the context of the λ-calculus and Type Theory, the literature offers a big collection of mechanized

2

CHAPTER 1. INTRODUCTION

formalizations. For example, in one of the early works in this direction, Huet formalized in Coq results of

the residual theory of β -reduction in λ-calculus, including a proof of the Church-Rosser theorem [18]. An

even earlier formalization of the Church-Rosser for λ-calculus was developed by Shankar using the Boyer-

Moore theorem prover [36], and a later one was developed by Nipkow in Isabelle [27]. Other early works

include formalizations in the LEGO proof assistant of results like strong normalization for system F (an

extension of simply typed λ-calculus with polymorphism) [1] or of the basic theory of Pure Type Systems (a

generalisation of Barendregt’s “λ-cube”, where the simply-typed lambda-calculus is the “starting corner”)

[25, 26], addressing in particular the Standardization Theorem.

In order to formalize the theory of λ-calculus or extensions of it, due to the binding mechanism under-

lying λ-abstraction and the need to address equality of λ-terms up to renaming of bound variables, it is

necessary to use some technique to deal with the binders. There are several techniques, such as renaming

variables [22], the De Bruijn indices [18], multiple substitution [38], locally nameless [3] and higher-order

abstract syntax [29].

Contributions of this dissertation. In this dissertation we consider some results of λ-calculus,

concerning standard reduction, using the Coq proof assistant to formalize them. The main result that

we formalize is the Standardization Theorem, using the De Bruijn indices technique to deal with binders.

There are different ways to define standard reduction in λ-calculus. Here, standard reduction will be given

through an inductively defined relation on λ-terms, extracted from a definition in [33] (for a λ-calculus

for modal logic), which is in line with the approach followed by Loader and Joachimski-Matthes, where

standard reduction is also given as an inductive binary relation, but for λ-terms which allow the application

construction to act on a non-empty lists of arguments (not only one argument, as in ordinary λ-terms).

So, we needed to start by adapting to λ-calculus the concepts and results leading to the Standardization

Theorem in [33]. This is a first small contribution of this dissertation, since these details cannot be found

elsewhere. Another contribution of the dissertion is the full formalization in Coq of this proof of the Stan-

dardization Theorem. This dissertation also presents a development of a proof of equivalence between the

approach we followed to standard reduction (via an inductive relation on λ-terms) and the more common

approach considered by Plotkin, based on standard reduction sequences [30]. This development and its

formalization in Coq is a last contribution of this dissertation.

Plan of the dissertation. Chapter 2 recalls basic concepts and results of the λ-calculus, and infor-

mally introduces the call-by-name and call-by-value evaluation strategies. Chapter 3 starts by introducing

3

CHAPTER 1. INTRODUCTION

the relations of call-by-name evaluation and of standard reduction, proves several properties of these re-

lations, and concludes with a proof of the Standardization Theorem. Chapter 4 introduces the λ-calculus

with the De Bruijn indices, and presents the Coq formalization of all the results of the previous chapter.

Chapter 5 introduces the definition of standard reduction sequence, proves the equivaleFnce between the

standard reduction relation and the standard reduction sequences approaches, and presents a full formal-

ization in Coq of this equivalence. Chapter 6 concludes and mentions some topics left open, which can

be subject of future work. In Appendices A, B, C and D are the details of proofs of the results of Chapters

2, 3, 4 and 5, respectively. In Appendices E and F is the full code of the formalization of the results of

Chapters 4 and 5, respectively, developed under version 8.12.2 of the Coq proof assistant.

4

Chapter 2

Background on λ-Calculus

In this chapter, we will recall basic material on λ-calculus relevant for this dissertation. We will introduce

basic concepts of the λ-calculus regarding syntactical aspects and β -reduction, and we will also recall

well known results such as the Substitution Lemma and the Church-Rosser Theorem. Examples are intro-

duced throughout the chapter in order to help understanding notations and definitions. Additionally, we will

informally introduce basic evaluation mechanisms for λ-calculus, namely call-by-name and call-by-value

evaluations. The concepts and the results recapitulated in this dissertation can be found in many places

in literature, such as [5, 16, 17, 21, 22, 24, 35, 40].

2.1 λ-terms and substitution

In λ-calculus there are three kinds of terms: variables, abstractions and applications. The combination of

these terms produces the set of λ-terms. Basically the abstractions represent functions and an application

represents the application of a function to its argument. Formally:

Definition 1. Let us assume an infinite denumerable set of variablesV , and assume also that x,y, z...

range over this set V . The set of λ-terms, Λ, is defined inductively by:

1. V ⊆ Λ;

2. M ∈ Λ⇒ (λx ·M) ∈ Λ (for any x ∈ V);

3. M,N ∈ Λ⇒ (MN) ∈ Λ.

5

CHAPTER 2. BACKGROUND ON λ-CALCULUS

In the above definition, a λ-term of the form (λx · M) (clause 2) is called a λ-abstraction, in which x is

said the parameter or the variable of the abstraction, andM is said the body of the abstraction. A λ-term

of the form (MN) (clause 3) is called an application, where M is said in function position and N is said

in argument position.

Remark 1. In this dissertation, to avoid heavy parentheses notation, we establish the following conven-

tions for writing λ-terms:

1. The outermost parentheses will be omitted. For example, the λ-term MN means (MN);

2. Applications associate to the left. Which means, M1M2M3 abbreviates ((M1M2) M3);

3. The body of a λ-abstraction extends as far right as possible. Thus, λx ·MN means λx · (MN);

4. Multiple λ-abstractions can be contracted. For instance, we write λxyz·M instead of (λx ·λy·λz·M).

An important operation in the λ-calculus is substitution that consists of replacing free occurrences of

a variable in a λ-term by another λ-term. For example, in the term (λx · xy), the occurrence of variable

x in its body is bound by the λx binder, so will not count as a free occurrence of x . But the occurrence

of the variable y is free, because it is not bound by any λ binder. The set of variables occurring freely in a

λ-term can be easily characterized by recursion as follows:

Definition 2. Let M be a λ-term. We represent the set of free variables by FV (M). This set is recur-

sively defined by:

1. FV (x) = {x} (x ∈ V);

2. FV (λx · N) = FV (N) \ {x} (x ∈ V ,N ∈ Λ);

3. FV (N1N2) = FV (N1) ∪ FV (N2) (N1,N2 ∈ Λ).

M is said closed when FV (M) = ∅, and is said open otherwise.

It is obvious to see that when the λ-abstractions λx · xz and λy · yz are regarded as functions, they

correspond to the same function, only differing in the concrete name chosen for the parameter. We will

say that these two λ-terms are α -equivalent. The α -equivalence relation is represented by =α , and can be

defined starting from a basic rule, called α -rule, which allows the renaming of variables in λ-abstractions

[22].

6

CHAPTER 2. BACKGROUND ON λ-CALCULUS

Let us return to the substitution operation. We will writeM[N /x] (for x a variable andM ,N λ-terms),

to stand for the substitution of the free occurrences of x by N in the λ-termM .

A very recurring problem in this operationM[N /x] is variable capture which occurs when some free

occurrence of a variable y in N ends up in the scope of a binder λy in M . To better understand this

phenomenon, let us see one example.

Example 1. Consider the substitution (λy ·xy)[y/x]. Applying the substitution operation just described

we obtain λy ·yy. Therefore the occurrence of the variable y that results from the substitution of the free

occurrences of x (the blue one) is now bound to the binder λy. In order to avoid this, we should rename

the bound variables with fresh variables (occurring nowhere) before making the substitution, i.e.:

(λy · xy)[y/x] =α (λz · xz)[y/x] = λz · yz

.

So, when we apply the substitution operation, we have to be careful in order to avoid the capture of

variables substitution, since this can change the intended effect of this operation.

In this dissertation, we will adopt capture-avoiding substitution and will work with λ-terms up to α -

equivalence. However, when we arrive at the formalization of meta-theory of λ-calculus in Chapters 4 and

5, as the proof assistant cannot simply assume this convention, we will come back to this, and present an

alternative to address the possibilities of renaming variables in binders.

Definition 3. For all M , N in Λ and x in V , M[N /x] represents the λ-term that results from the

(capture-avoiding) substitution in M of all free occurrences of x by N and is recursively defined by:

1. x[N /x] = N ;

2. y[N /x] = y, y , x (y ∈ V);

3. (λx ·M0)[N /x] = λx ·M0 (M0 ∈ Λ);

4. (λy · M0)[N /x] = λz · (M0[z/y])[N /x], y , x , z , y, z , x , z < FV (N) ∪ FV (M0)

(y ∈ V and M0 ∈ Λ);

5. (M0M1)[N /x] = M0[N /x]M1[N /x] (M0,M1 ∈ Λ)

7

CHAPTER 2. BACKGROUND ON λ-CALCULUS

In the definition above note in clause 4 the renaming of the bound variabley in the λ-abstraction to a fresh

variable z in order to prevent variable capture.

A well-known result of λ-calculus is the Substitution Lemma, described below.

Lemma 1. (Substitution Lemma): For all x , y in V and M , N , Q in Λ, if x , y and x < FV (Q),

then (M[N /x])[Q/y] = (M[Q/y])[N [Q/y]/x].

Proof. By induction on the size of M . For variables, the proof follows by case analysis and profits from

the assumption x < FV (Q). The abstraction and application cases follow routinely from the induction

hypotheses. □

2.2 β -reduction

Evaluation of λ-terms will consist of a sequence of reductions, where each reduction corresponds to a

substitution operation. When we have an application with a λ-abstraction in function position, we can

replace in the body of the abstraction its variable by the λ-term in the argument position.

This is called β -reduction rule, and its base rule is then:

(λx ·M)N → M[N /x] (β)

As usual, to the left hand side of (β) we call redex and the right hand side we call contractum.

Full β -reduction allows reduction at any subterm. For this we need to consider the compatible closure

of the base rule (β):

Definition 4. The compatible closure of the β -rule (also called one-step β -reduction) is denoted by

→β and is inductively defined by the following rules:

(λx ·M)N → M[N /x] (β)

M → N
MP → NP

(µ) M → N
PM → PN

(ν) M → N
λx ·M → λx · N (ξ)

A λ-term M is said to be in beta normal form (β -nf) if no β -reduction is possible from it, formally: for

no N ,M →β N , which is the same of saying that no subterm of M is a β -redex.

Sequencing of β -reductions corresponds to the reflexive and transitive closure of→β :

8

CHAPTER 2. BACKGROUND ON λ-CALCULUS

Definition 5. The reflexive-transitive closure of→β is denoted by →∗
β
and is inductively defined as:

M →β N

M →∗
β
N

BASE
M →∗

β
M

REF
M →∗

β
N N →∗

β
P

M →∗
β
P

TRANS

We defined inductively the relation→β as the closure of the β -rule w.r.t. to the rules (µ), (ν) and (ξ).

The next lemma says that the reflexive and transitive closure of→β is already closed with respect to these

rules, or in other words it is already a relation compatible with the λ-terms syntax:

Lemma 2. For all M , M′ in Λ, if M →∗
β
M′ then:

1. MN →∗
β
M′N , for all N ∈ Λ;

2. NM →∗
β
NM′, for all N ∈ Λ;

3. λx ·M →∗
β
λx ·M′, for all x ∈ V .

Proof. By induction on→∗
β
. The proof of the first statement uses rule (µ), the second uses rule (ν), and

the last uses rule (ξ). □

When we evaluate a λ-term, it may happen that it has more than one β -redex, and we need to choose

the redex that we want to reduce at that moment. In particular, two well-known strategies to select redexes

are the leftmost-outermost reduction and the rightmost-innermost reduction. As the name suggests, in

the first one we choose to reduce the leftmost-outermost redex, and in the second one we reduce the

rightmost-innermost redex. Let us illustrate these two strategies at work in the example of the λ-term

M0 = (λx · xx)((λy · y)(λz · z)). In the example below, ate each reduction step, we will color in red the

λ-abstraction of the selected redex and in blue its argument.

Example 2. Recall M0 = (λx · xx)((λy · y)(λz · z)). The leftmost-outermost reduction of M0 is

as follows:

(λx · xx)((λy · y)(λz · z))

→ ((λy · y)(λz · z))((λy · y)(λz · z))

→ (λz · z)((λy · y)(λz · z))

→ (λy · y)(λz · z)

→ λz · z

Let us now see the rightmost-innermost reduction of M0:

9

CHAPTER 2. BACKGROUND ON λ-CALCULUS

(λx · xx)((λy · y)(λz · z))

→ (λx · xx)(λz · z)

→ (λz · z)(λz · z)

→ λz · z

As we have just illustrated, there may be different ways of evaluating a λ-term. Therefore, β -reduction

is non-deterministic. An interesting question to pose is: does the way one chooses the β -redex to reduce in

the evaluation of a λ-term changes “the final result”? The answer will be “no” [16]. A fundamental result

of λ-calculus is the Church-Rosser Theorem establishing that β -reduction is confluent (and for this reason

is also called the Confluence Theorem):

Theorem 1. (Church-Rosser Theorem): For all M , M1, M2 in Λ, if M →∗
β
M1 and M →∗

β
M2,

then there exists N in Λ, such that M1 →∗β N and M2 →∗β N .

This property of→∗
β
is also known as the diamond property, because it can be depicted graphically

as follows [21]:

Figure 1: Diamond Property

Since the Church-Rosser Theorem is fundamental in the theory λ-calculus, we can find in the literature

multiple proofs of this theorem, such as [5], and we omit it here.

Another important concept in λ-calculus is normalization.

Definition 6. A λ-term N is called a (β -)normal form of a λ-term M when M →∗
β
N and N is a

β -normal form. A λ-term M is (β -)normalizing when it has a normal form.

From the Church-Rosser Theorem, we can easily conclude that if a λ-term has a normal form, then this

normal form is unique. However, not all terms have normal form. One well-known example is as follows.

10

CHAPTER 2. BACKGROUND ON λ-CALCULUS

Example 3. Consider the λ-term Ω = (λx ·xx)(λx ·xx). When we evaluate Ω the only possible reduction

sequence is:

Ω = (λx · xx)(λx · xx)

→β (λx · xx)(λx · xx) (= Ω)

→β (λx · xx)(λx · xx) (= Ω)

→β ...

As we saw in Example 2, using the rightmost-innermost strategy we arrived at the normal form of the

termM0 in fewer steps than the leftmost-outermost. However in some cases, the former strategy will not

even discover the normal form of a λ-term, contrary the leftmost-outermost strategy, as we will illustrate in

the next example. Again, in the example we color the λ-abstraction of the redex in red and the argument

in blue.

Example 4. Let us consider the λ-term M1 = (λy · z)((λx · xx)(λx · xx)).

Using leftmost-outermost reduction, a single step reduces to the normal form of M1:

(λy · z)((λx · xx)(λx · xx))

→ z

Let us now consider the rightmost-innermost reduction. In one step, we reduce back to M1 and

this will repeat forever:

(λy · z)((λx · xx)(λx · xx))

→ (λy · z)((λx · xx)(λx · xx))

→ ...

So, in this case, this strategy leads to non-termination of the evaluation process.

One last concept we will recall is:

Definition 7. A λ-termM is strongly normalizing if any reduction sequence starting fromM is finite.

Note that not all terms have normal form.

11

CHAPTER 2. BACKGROUND ON λ-CALCULUS

It is obvious that strong normalization implies weak normalization: the last term of any finite sequence

starting at a λ-term M must be a normal form and is therefore, the normal form of M . The reverse

implication does not hold. Consider the counter-example below.

Example 5. Consider the λ-termMNΩ. WhereM = λxy ·x , N = λx ·x and Ω = (λx ·xx)(λx ·xx).

We can obtain different reduction sequences starting from this term, depending on the redex that we

evaluate first. We will give two different possible sequences.

1. One such reduction sequence is:

MNΩ = (λxy · x)(λx · x)Ω

→β (λyx · x)Ω

→β λx · x

and λx · x is a normal form. Therefore, MNΩ is weakly normalizing.

2. Another possible way of evaluate the termMNΩ is to evaluate first Ω. But, as we have seen before,

this term admits an infinite reduction sequence:

MNΩ = (λxy · x)(λx · x)Ω

→β MNΩ

→β MNΩ

→β ...

so the term MNΩ is not strongly normalizing.

Observe that, in the previous example, the first reduction sequence obeys to the leftmost-outermost

strategy, whereas the second one obeys to the rightmost-innermost strategy. So, MNΩ is an example of

a λ-term whose normal form can be reached by the letfmost-outermost strategy, but not by the rightmost-

innermost strategy.

In fact, there is a fundamental theorem in the reduction theory of λ-calculus, known as the Leftmost

Reduction Theorem which establishes that, if a λ-term has a normal form, then the leftmost-outermost

reduction strategy will find it [20].

12

CHAPTER 2. BACKGROUND ON λ-CALCULUS

2.3 Call-by-name and call-by-value

In the previous section we saw the concept of (full) β -reduction. As already observed, this reduction relation

is non-deterministic, because a λ-term may have multiple β -redexes. Functional programming languages

are based on β -reduction and, therefore, their implementations need to fix an evaluation mechanism, to

tell which redex should be chosen at any given moment of the reduction process, turning this process

deterministic. Typically, evaluation mechanisms express different policies for treating “function call”, and

have in mind efficiency considerations. Between all the calling mechanisms of functional programming,

one can highlight two basic ones, namely, the call-by-name (cbn) and the call-by-value (cbv) mechanisms.

Call-by-name. This form of evaluation is also known as the normal order reduction and corresponds to

the choice of the leftmost-outermost redex (in the sense we have exemplified before). Basically, it evaluates

first the main expression and then the subexpressions [35]. But this form of evaluation can be too expensive

in practice because it can be repeating the same reductions unnecessarily. Let us illustrate this with one

example. Consider the λ-termM2 = (λx · ((xy)x)x)((λz · z)w). Its evaluation under call-by-name is as

follows (we color in red and blue, respectively, the terms in function and in argument position of the redex

being reduced at each step):

(λx · ((xy)x)x)((λz · z)w)

→ (((λz · z)w)y)((λz · z)w))((λz · z)w)

→ (((wy)(((λz · z)w)))((λz · z)w)

→ (((wy)w)(((λz · z)w)))

→ ((wy)w)w (4 steps)

So, the argument (λz · z)w ofM2 ends up evaluated three times.

Call-by-value. This evaluation strategy is also known as applicative order reduction [35]. While in

call-by-name evaluation reduction of the main expression is the first to occur, in call-by-value, basically,

we evaluate the subexpressions first and only reduce the main application after reducing the internal

redexes [35] (and so is closer to the spirit of rightmost-innermost reduction). More concretely, call-by-value

evaluation requires an argument to be reduced to a value before a function can be applied to it. So, this

evaluation mechanism can actually be defined on top of a restricted β -rule, namely:

(λ ·M)V → M[V /x] (βv)

13

CHAPTER 2. BACKGROUND ON λ-CALCULUS

.

where V is a value, and only variables and λ-abstractions are considered to be values.

An advantage of the call-by-value strategy is that arguments are only evaluated once. For example,

if we return to the λ-term M2 above, under the call-by-value strategy, reduction will proceed as follows

(again, at each step we color the redex):

(λx · ((xy)x)x)((λz · z)w)

→ (λx · ((xy)x)x)w

→ ((wy)w)w (2 steps)

So the reduction of (λz · z)w is not repeated as above (in cbn). However, in call-by-value the arguments

will always be evaluated, even when they will not be used. For example, consider the λ-term M3 =

(λx · y)(λwz ·wz)wz. Its evaluation under call-by-value is as follows:

(λx · y)(λwz ·wz)wz

→ (λx · y)(λz ·wzz)

→ λz ·wzz (2 steps)

Note that under call-by-name M3 reduces in a single step to y.

Another important remark is that the concept of normal form under call-by-name and call-by-value is

different. To better understand the differences, consider the example below.

Example 6. Consider the λ-term M4 = (λx · x)(yz).

Note that this term has no βv -redex and is therefore a normal form with respect to call-by-value, but

under call-by-name it reduces in one step to yz, resulting in a different normal form.

14

Chapter 3

λ-calculus and the Standardization

Theorem

As illustrated in the previous chapter, there are different types of evaluation mechanisms for λ-terms.

Throughout this dissertation, we will concentrate on the call-by-name variant of the λ-calculus, based on

the ordinary β -rule of λ-calculus. In this Chapter we will define the call-by-name evaluation relation, and

the standard reduction relation on λ-terms. In order to prove the Standardization Theorem, we will also

establish several auxiliary properties concerning the two defined relations.

3.1 Call-by-name evaluation

We start by considering a sub-relation of→β given by the closure of the β -rule under the closure rule (µ)

only, i.e.:

Definition 8. →n (one step call-by-name evaluation) is the binary relation in λ-terms given induc-

tively by:

(λx ·M)N →n M[N /x] (β)
M →n N

MP →n NP
(µ)

The call-by-name evaluation relation is then the relation →∗n, i.e. the reflexive and transitive

closure of→n.

Example 7. LetM := (λx · x)y, which is a β -redex. Whereas Mz →n yz (with the help of closure rule

(µ)), it is not the case zM →n zy. Of course, zM →β zy, but for this we need the closure rule (ν),

15

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

which is not allowed for→n.

An effect of the limitation to the closure rule (µ) is that β -reduction becomes deterministic that is

call-by-name evaluation is a deterministic relation. The β -redex that can be reduced at one given moment

corresponds to the leftmost-outermost redex, found in the function position of the given application.

Example 8. Given λ-terms M1, M2,

M0 := (λxy · y)M1M2 →n (λy · y)M2

Note that regardless of M1 and M2, only this reduction of M0 is possible under call-by-name. Then,

(λy · y)M2 →n M2

and, again, (and regardless ofM2) this is the only possible way of continuing reduction under call-by-name.

We end this section establishing some properties of the call-by-name evaluation relation that will be-

come useful later.

Lemma 3. The following rule is admissible, that is, for all M1,M2,N in Λ:

M1 →∗n M2
M1N →∗n M2N

Proof. The proof is by induction on M1 →∗n M2. In the base case of→n we make use of the closure

rule (µ). □

Lemma 4. The following rules are admissible:

M1 →n M2
M1[N /x] →n M2[N /x]

M1 →∗n M2
M1[N /x] →∗n M2[N /x]

Proof. The proof of the admissibility of the first rule is an induction on M1 →n M2. The (β) case of

→n uses the Substitution Lemma 1. The proof of admissibility of the second one is by induction on

M1 →∗n M2. The base case relative to→n, follows immediately from the first admissible rule. □

16

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

3.2 Standardization relation and admissible rules

The Standardization Theorem establishes thatM reduces to N if and only ifM reduces to N in a standard

way. The specification of reducing in a standard way can be made by using an inductive definition of

a binary relation of standard reduction. This approach has been independently by Loader [23] and by

Joachimski-Matthes [19].

In this dissertation we will follow this approach, and characterize what reductions are accepted as

standard by axiomatizing the relation “reduces in a standard way”, as a binary relation on λ-terms, to

which we call the standard reduction relation, and for this we will actually follow directly what is done in

[33].

It should be noted that, as in [33], we will consider a standard reduction relation defined on the original

syntax on λ-terms, rather than on a syntax of λ-terms where the application constructor can act on a list

of arguments, as is done in [19, 23].

Definition 9. The standard reduction relation is the binary relation on λ-terms, which we denote by

⇒n, and is inductively defined by:

x ⇒n x VAR
M ⇒n N

λx ·M ⇒n λx · N ABS
M ⇒n M′ N ⇒n N ′

MN ⇒n M′N ′ APL

M →∗n λx ·M′ M′[N /x] ⇒n P

MN ⇒n P RDX

Now we make some remarks of standard reduction rules. The key rule is RDX . In this rule, we reduce

under call-by-name evaluation the λ-term M that is in the function position until we find an abstraction

(λx · M′). Hence, a β -redex (λx · M′)N is found and can be contracted to M′[N /x]. Then, if this

contractum reduces in a standard way to a λ-term P , the original application of MN also reduces in

a standard way to P . Note also that in the APL rule, we can choose to reduce “first” M ⇒n M′, or

N ⇒n N ′, but these reductions can also be done in parallel.

Recall the two reduction steps in Example 8 leading fromM0 := (λxy ·y)M1M2 toM2 and for sim-

plicity fixM2 to bew respectively. This reduction sequence is actually associated to a standard reduction,

and hence we haveM0 ⇒n w , which can be justified by the following derivation:

(λxy · y)M1 →∗n λy · y (β) w ⇒n w VAR

(λxy · y)M1w ⇒n w
RDX

17

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

In order to prove the Standardization Theorem, we will first show the admissibility of the rules for the

standard reduction relation in Figure 2. In fact, in the proof of the Standardization Theorem, we will only

use directly rules (1), (7) and (8). However, to prove the admissibility of (7) we will use the remaining rules.

Figure 2: Admissible rules for⇒n

The following lemmata establish the admissibility of rules in Figure 2. More detailed proofs of these lemmas

can be found in Appendix B.

Lemma 5. The rules (1) and (2) of Figure 2 are admissible.

Proof. The proof of the admissibility of rule (1) is by an easy induction on M . The other one, (2), is by

induction onM ⇒n M′. TheRDX case requires the Substitution Lemma and uses the second admissible

rule of Lemma 4. □

Lemma 6. The rules (3) and (4) of Figure 2 are admissible.

Proof. The proof of the admissibility of (3) is by induction on M →n N . The (β) case of→n we make

use of the RDX rule. The (µ) case explores all the possible subcases of the hypothesis N ⇒n P . The

admissibility of (4) is proved by induction on M →∗n N . The base case of →∗n we make use of rule

(3). □

Lemma 7. The rules (5) and (6) of Figure 2 are admissible.

Proof. The proof of the admissibility of (5) is by induction onM ⇒n λx ·M′. The casesVAR and APL

are impossible. ABS case uses rules (2) and (4). RDX uses the first point of Lemma 2 and rule (4).

The admissibility of (6) is proved by induction on M ⇒n (λx · M′)N ′. The VAR and ABS cases are

impossible. Use is made of (5) in the APL case. □

18

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

Lemma 8. The rules (7) and (8) of Figure 2 are admissible.

Proof. The proof of the admissibility of (7) is by induction on M ⇒n N . Use is made of (6). The admis-

sibility of (8) is proved by induction on N →∗
β
P . The base case of→∗

β
requires rule (7). □

As we mentioned before, our proof of the Standardization Theorem can be extracted from the proof

in [33] of standardization for a λ-calculus for modal logic, namely λb -calculus. This proof identifies a

collection of admissible rules for the standard relation for λb (⇒b) in Figure 9 on [33]. Note that we can

obtain from these rules the rules in Figure 2 by: replacing ⇒b by ⇒n, →we by →n, →βb
by →β ,

and omitting the modal constructors box and the ϵ . Note however two differences. Our rule (8) has no

corresponding rule in Figure 9 in [33], but it is just a matter of convenience because it is immediately

obtained by induction once we have rule (7). The second difference is that in our proof we found no

need to use a rule corresponding to rule (2) of [33] so we have omitted such rule. More interestingly,

it should be remarked that whereas the proof of rule (6) of [33] (corresponding to our rule (5)) uses a

subinduction on N ⇒b box(N ′), in our (simplified) setting of the ordinary λ-calculus we found no need

to such subinduction.

3.3 Standardization Theorem

Now we are ready to prove the Standardization Theorem. On the one hand, we will show soundness of

standard reduction, i.e., if M standardly reduces to N , then M β -reduces to N . The true content of the

Standardization Theorem is however the converse, establishing that whenever a term N can be reached

by β -reduction from a termM it is in relation toM through standard reduction.

Theorem 2. (Standardization Theorem) For all M,N in Λ, M →∗
β
N iff M ⇒n N .

Proof. The “if” direction (soundness) follows by induction on M ⇒n N .

The VAR case just uses the fact that →∗
β
denotes the reflexive, transitive closure of →β , that in

particular is reflexive.

In theABS case,M = λx ·M′ and N = λx ·N ′, for some x inV andM′, N ′ in Λ andM′⇒n N ′.

From the induction hypothesis M′ →∗
β
N ′ and by the third point of Lemma 2 we obtain λx · M′ →∗

β

λx · N ′.

19

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

In the APL case,M = M′N ′ and N = M′′N ′′, for someM′, N ′,M′′, N ′′ in Λ andM′⇒n M′′

and N ′⇒n N ′′. By induction hypothesis M′→∗
β
M′′. Then, by the first point of Lemma 2, follows:

M′N ′→∗
β
M′′N ′

→∗
β
M′′N ′′

The last relation is justified by induction hypothesis N ′ →∗
β
N ′′ and by the second point of Lemma

2. Finally we concludeM′N ′→∗
β
M′′N ′′ by using the fact that→∗

β
denotes the reflexive and transitive

closure of→β , which in particular is transitive.

In the RDX case,M = QS , for someQ , S inΛ andQ →∗n λx ·Q′ (for some x,Q′) andQ′[S/x] nN .

By induction hypothesis Q′[S/x] →∗
β
N . From the hypothesis Q →∗n λx · Q′, follows Q →∗

β
λx · Q′

by the fact that→∗n⊆→∗β . Then by the first point of Lemma 2 follows:

QS →∗
β
(λx ·Q′)S

→β Q′[S/x]

→∗
β
N

The last relation is justified by induction hypothesis and the previous one is of course, justified by the

rule (β). Then we conclude QS →∗
β
N using the fact that→∗

β
is transitive.

Now we tern to the “only if”direction (completeness). Having shown the admissibility of rules (1), (7)

and (8) of Figure 2, this will be a simple induction onM →∗
β
N .

In the base case relative to→β , we have the hypothesis M →β N . Since from rule (1) M ⇒n M ,

by applying (7) we obtainM ⇒n N .

The reflexive case follows immediately from rule (1).

In the transitive case, we have the hypotheses M →∗
β
P and P →∗

β
N . From M →∗

β
P follows by

induction hypothesisM ⇒n P . Applying rule (8) withM ⇒n P and P →∗
β
N we obtainM ⇒n N .

□

Remark 2. From the proof that⇒n is contained in→∗
β
(soudness) we can extract a notion of standard

reduction sequence. A good example of this idea is found by looking back to the RDX case. In this case we

have argued thatQS reduces in a standard way to N . For this we implicitly build a sequence of reductions

QS →∗β (λx ·Q
′)S →β Q′[S/x] →∗β N

20

CHAPTER 3. λ-CALCULUS AND THE STANDARDIZATION THEOREM

which will be standard, once we impose QS →∗
β
(λx · Q′)S and Q′[S/x] →∗

β
N are themselves

standard. This idea will be fully developed in Chapter 5.

An immediate corollary of the Standardization Theorem is transitivity of the relation⇒n, which will be

useful later in Chapter 5.

Corollary 1. (Transitivity of⇒n) For all M , P , N in Λ, if M ⇒n P and P ⇒n N , then M ⇒n N .

Proof. We have by hypothesis P ⇒n N . By the Standardization Theorem follows immediately P →∗
β
N .

Then we apply (8) to obtain M ⇒n N .

□

21

Chapter 4

Formalization in Coq of the Standardization

Theorem

In this chapter, we will provide a complete formalization of the proof of the Standardization Theorem devel-

oped in the previous chapter. As already mentioned, when we want to formalize meta-theoretic results of the

λ-calculus or, in general, of languages which allow binders, we need to find a way to take into account that

expressions should be treated up to renaming of bound variables. There are several techniques to address

this question. For example, Section 2 of [3] offers an interesting survey of such techniques. In this survey,

the techniques are classified as “concrete” (also called “first-order”) or as “higher-order” approaches,

basically depending on whether variables acquire a concrete first-order representation, typically based on

natural numbers or names, or whether binders are represented as meta-language functions in an higher-

order setting. Concrete approaches include the “named representation”, the usual approach followed on

paper, where names are used to represent variables, but then requires to work under α -equivalence, which

raises difficulties in formal developments, like the fact that capture-avoiding substitution cannot be given by

structural recursion. An approach still with names that avoids this particular difficulty is found in [11] and

is based on multiple substitution [38], an operation that can be given by structural recursion and where

bound variables are always renamed in parallel with substitutions. Another concrete approach (used since

the early efforts of formalization of languages with binders) is the De Bruijn indices technique, where vari-

ables are represented by natural numbers indicating its depth relatively to its binder [9]. Another concrete

approach is the so-called locally nameless technique, where free variables are represented by names, but

bound variables are represented through De Bruijn indices, attempting to conjoin benefits of both named

22

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

and De Bruijn indices techniques [3]. Higher-order abstract syntax is a prototypical example of a higher-

order approach to binding representation [29]. In this representation, a λ-abstraction is represented as an

higher-order function, whose argument is a function that can be thought of as a function ready to substitute

an argument passed to the body of the abstraction.

In this dissertation we have chosen to use the De Bruijn indices technique for the representation of

binders. Since this is a widely used technique in formalization of meta-theoretic results of the λ-calculus and

our prior experience with proof assistants was rather short, it was very useful to benefit from the enormous

collection of material available in the literature on this technique. In this sense, it was possible to adapt

to our setting the formalization of essential concepts and results concerning the syntax of λ-terms, the β -

reduction rule and the Substitution Lemma. For this, we followed closely Huet [18] for the basic definitions

around the syntax of λ-terms and of β -reduction, but we also directly profited from other works, such as

[27], by Nipkow, and [8], by Berghofer-Urban, for the formalization of the Substitution Lemma. But, as

we progressed in our formalization effort, it turned out that, once we defined all the basic infrastructure

around de Bruijn indices, we could follow very closely the structure of the proof of the Standardization

Theorem with ordinary λ-terms, both in what concerns lemmata and the inductive structure of arguments.

4.1 A λ-calculus with De Bruijn indices

In this section we will introduce a λ-calculus with the De Bruijn indices, that we named λdB , which we

use in our formalization. Throughout this section, together with the definition of basic concepts of λdB ,

we immediately present their respective formalizations in Coq. In Section 2.1, we defined λ-terms and

the respective substitution operation. In this section will do the same but for the corresponding concepts

using the De Bruijn indices. In a first contact, λ-terms with the De Bruijn indices are not so intuitive to

understand and the substitution operation becomes rather complex. For this reason we will present quite

some examples throughout the section.

Definition 10. The set of λ-terms with the De Bruijn indices, ΛdB , is defined inductively by:

1. i ∈ ΛdB (i ∈ N0);

2. M ∈ ΛdB ⇒ (λ ·M) ∈ ΛdB ;

3. M,N ∈ ΛdB ⇒ (MN) ∈ ΛdB .

23

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

In the above definition, i (belonging to N0) is called a De Bruijn index and roughly corresponds to a

variable of the λ-calculus. In λ ·M ,M is said is the scope of the displayed occurrence of λ.

Using the Coq proof assistant we define the set of λ-terms ΛdB inductively as follows:

1 Inductive lambda : Set :=

2 | Ref : nat → lambda

3 | Abs : lambda→ lambda

4 | App : lambda→ lambda→ lambda.

Note that the constructor Ref is used to represent De Bruijn indices (resorting to the representation of N0

in Coq via nat), the constructor Abs is used to represent abstractions (λ ·M) and the constructor App is

used to represent applications (MN).

Remark 3. The conventions referred to in Remark 1 remain in this chapter, and for successive abstrac-

tions we will omit the ·. For example, the λ-term λλλ · 013 abbreviates (λ · (λ · (λ · 013))), hence the

scope of the third occurrence of λ is 013, the scope of the second occurrence of λ is λ · 013 and the

scope of the first occurrence of λ is λ · (λ · 013).

Definition 11. An occurrence of an index i is said bound if it is inside the scope of an abstraction (λ),

otherwise it is said free.

To better understand the definition, consider the example below:

Example 9. Consider the De Bruijn λ-term: (λλ · 01)0. As we can see, the red λ-binder (the first occur-

rence of λ) binds the only occurrence of index 1 and the blue one (the second λ occurrence) binds the

first occurrence of index 0. The second occurrence of index 0 is a free one.

The base β -reduction rule in λdB is given by:

(λ ·M)N → M[0 := N] (β)

whereM[0 := N] stands for a substitution operation that wants to replace free occurrences of index 0 in

M by N . This operation of substitution is tricky and complex:

1. as just said, in M[0 := N] we want to replace by N , all free occurrences of index 0 inM ;

24

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

2. however, we must take into account that inside M , if we have traversed k λ’s, 0 will actually cor-

respond to index k , and additionally we need to update the indices of N accordingly, in order to

prevent index capture;

3. finally, we should keep in mind that, as the outer λ of λ · M is being removed, the indices in its

scope should be decreased by 1.

To better understand the β -reduction rule, we describe it in detail below in one example.

Example 10. Let M0 be the following De Bruijn λ-term: (λλ · 31(λ · 02))(λ · 50).

Start by noting that inM0 each occurrence of λ binds the index with the same colour, and the indices

in black are free indices.

According to the β -rule M0 reduces to M[0 := N], where M is λλ · 31(λ · 02), and N is λ · 50.

First we have to find inM all free occurrences of index 0, as well as other occurrences of indices that also

represent index 0. So, we will have to replace the occurrences of indices 1 and 2. Because the occurrence

of 1 is inside the blue λ this occurrence should be replaced by λ ·60 (note here that 5 was updated to 6 in

N). Because the occurrence of 2 is inside the two λ’s (the blue and purple occurrences), this occurrence

should be replaced by λ · 70 (again note that 5 was updated to 7 in N). Finally, the only free occurrence

of an index in M , namely 3, should be decreased by 1. So the final result is: λ · 2(λ · 60)(λ · 0(λ · 70)).

As we describe above, in the course of the substitution operation some indices may need to be updated.

To make these updates, we will define the lifting operation that will be denoted by ⇑k . This operation

updates the indices of free occurrences of indices across k levels of extra binders in term N , in order to

avoid index capture. This operation is defined as follows:

Definition 12. Given k ∈ N0, the lifting function ⇑k is defined recursively by:

• ⇑k i =


i, if i < k

i + 1, otherwise

• ⇑k (λ ·M) = λ· ⇑k+1 M

• ⇑k (M1M2) =⇑k M1 ⇑k M2

In ⇑k the parameter k will represent the number of λ’s traversed. Notice that when the index is bound

(i < k), the index is not changed. When the index is free (i ≥ k), the corresponding index is lifted by 1. In

our Coq development, the lifting function is implemented as follows:

25

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

1 Fixpoint lift_rec (L : lambda) : nat → lambda :=

2 fun k : nat ⇒

3 match L with

4 | Ref i ⇒ Ref (relocate i k)

5 | Abs M ⇒ Abs (lift_rec M (S k))

6 | App M N ⇒ App (lift_rec M k) (lift_rec N k)

7 end.

8

9 Definition lift (N : lambda) := lift_rec N 0.

In the Coq code above, relocate i k stands for the implementation of the function that returns the

value i if k > i and i + 1 otherwise. Also, we define in Coq lift to represent the special case ⇑0 of the

lifting operation.

Now that we have defined the lifting function, we will turn to the definition of the substitution function.

Definition 13. For De Bruijn λ-terms M , N and De Bruijn index k the substitution function M[k :=

N] is recursively defined by:

• i[k := N] =


i − 1, if k < i

N, if k = i

i, if k > i

• (λ ·M1)[k := N] = λ ·M1[k + 1 :=⇑0 N]

• (M1M2)[k := N] = M1[k := N]M2[k := N]

Note that in the case of M[k := N] where M is index i we need to compare indices i and k and we can

have one more option than in the variable case of substitution with ordinary λ-terms. The additional case

corresponds to k < i where we decrease i by 1 because, as explained before, this substitution operation

will be used in the context of β -reduction.

In the Coq code below to implement the substitution function we use an auxiliary function insert_Ref

to perform all the action needed at the base case of substitution:

26

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

1

2 Definition insert_Ref (N : lambda) (i k : nat) :=

3 match compare k i with

4

5 (* k<i *) | inleft (left _) ⇒ Ref (pred i)

6 (* k=i *) | inleft _ ⇒ N

7 (* k>i *) | _ ⇒ Ref i

8 end.

9

10 Fixpoint subst_rec (L : lambda) : lambda→ nat→ lambda :=

11 fun (N : lambda) (k : nat) ⇒

12 match L with

13 | Ref i ⇒ insert_Ref N i k

14 | Abs M ⇒ Abs (subst_rec M (lift_rec N 0) (S k))

15 | App M M' ⇒ App (subst_rec M N k) (subst_rec M' N k)

16 end.

17

18 Definition subst (N M : lambda) := subst_rec M N 0.

Recall that→β stands for the compatible closure of the base β -rule. In λdB ,→β is defined analo-

gously, and now the closure rules are as follows:

M → N
MP → NP

(µ) M → N
PM → PN

(ν) M → N
λ ·M → λ · N (ξ)

In Coq the representation of→β for De Bruijn λ-terms is as follows:

1 Inductive red1 : lambda→ lambda→ Prop :=

2 | beta : forall M N : lambda, red1 (App (Abs M) N) (subst N M)

3 | abs_red : forall M N : lambda, red1 M N → red1 (Abs M) (Abs N)

4 | app_red_l :

5 forall M1 N1 : lambda,

27

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

6 red1 M1 N1 → forall M2 : lambda, red1 (App M1 M2) (App N1 M2)

7 | app_red_r :

8 forall M2 N2 : lambda,

9 red1 M2 N2 → forall M1 : lambda, red1 (App M1 M2) (App M1 N2).

In particular, note the encoding of the base β -rule of λdB , making use of the subst Coq function

defined before as a particular case of substitution in De Bruijn λ-terms.

Next we will see a representation of the→n relation for λdB . Recall that→n should correspond to a

sub-relation of→β , obtained by closing the base β -rule under rule (µ) only.

1 (* → n *)

2 Inductive name_eval_1 : lambda→ lambda→ Prop :=

3 | beta_name_eval : forall M N : lambda, name_eval_1 (App (Abs M) N) (subst N M)

4 | app_red_name_eval_1 :

5 forall M1 N1 : lambda,

6 name_eval_1 M1 N1 → forall M2 : lambda, name_eval_1 (App M1 M2) (App N1 M2).

The relation→∗
β
for De Bruijn λ-terms (as for ordinary λ-terms) is the reflexive-transitive closure of

→β and can thus be represented in Coq as follows:

1 Inductive red : lambda→ lambda→ Prop :=

2 | one_step_red : forall M N : lambda, red1 M N → red M N

3 | refl_red : forall M : lambda, red M M

4 | trans_red : forall M N P : lambda, red M N → red N P→ red M P.

Finally, call-by-name evaluation for De Bruijn λ-terms is the reflexive-transitive closure of→n (like for

ordinary λ-terms) and it is represented in Coq by:

1 (* Transitive closure of → n *)

2 Inductive name_eval : lambda→ lambda→ Prop :=

3 | one_step_name_eval : forall M N : lambda, name_eval_1 M N → name_eval M N

4 | refl_name_eval : forall M : lambda, name_eval M M

28

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

5 | trans_name_eval : forall M N P : lambda, name_eval M N → name_eval N P→ name_eval M P.

4.2 The Substitution Lemma

An important and well-known result of the λ-calculus is the Substitution Lemma. We already proved this

lemma in a previous chapter (Lemma 1). However, its statement for De Bruijn λ-terms is subtler, and a

proof of it becomes very involved as we will see below. In the organization of the proof of the Substitution

Lemma shown here we followed closely [27], but this proof also profited from the argument for this lemma

in [8].

As we have already mentioned, the substitution operation uses an auxiliary lifting function (⇑k). The

Substitution Lemma will require the next three auxiliary lemmas involving the lifting function. After each of

these lemmas we show the respective formalization in Coq of its statement.

Lemma 9. For all M , N in ΛdB and k in N0, (⇑k M)[k := N] = M .

Proof. By an easy induction on M. □

1 Lemma prop_1 : forall M N : lambda, forall k : nat, subst_rec (lift_rec M k) N k = M.

Lemma 10. For all M in ΛdB and k , i in N0, if i ≥ k , then ⇑i+1 (⇑k M) =⇑k (⇑i M).

Proof. By an easy induction on M.

□

1 Lemma prop_2 : forall M : lambda, forall k i : nat, k<=i→ lift_rec (lift_rec M k) (S i) =

2 lift_rec (lift_rec M i) k.

Lemma 11. For allM , N in ΛdB and k , i in N0, if i ≥ k , then ⇑k (M[i := N]) = (⇑k M)[i + 1 :=⇑k
N].

Proof. By an easy induction on M. Use is made of Lemma 10 in the abstraction case.

□

29

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

1 Lemma prop_3 : forall M N : lambda, forall k i : nat, k<=i→ lift_rec (subst_rec M N i) k =

2 subst_rec (lift_rec M k) (lift_rec N k) (S i).

The next lemma will not be used in the proof of the Substitution Lemma, however it will be useful later.

Lemma 12. For all M , N in ΛdB and k , i in N0, if i ≥ k , then ⇑i (M[k := N]) = (⇑i+1 M)[k :=⇑i
N].

Proof. By an easy induction on M. Again, the abstraction case uses Lemma 10.

□

1 Lemma prop_4 : forall M N : lambda, forall k i : nat, k<=i→ lift_rec (subst_rec M N k) i =

2 subst_rec (lift_rec M (S i)) (lift_rec N i) k.

Now we are ready to prove the Substitution Lemma for De Bruijn λ-terms (Lemma 13 below). In order

to help understanding its statement, we recall first the Substitution Lemma for ordinary λ-terms:

if x , y and x not free in Q , then (M[N /x])[Q/y] = (M[Q/y])[N [Q/y]/x].

A direct comparison of the two statements shows that in the De Bruijn case we need (additionally) to

increase by one the index for the inner substitution and lift by k the free indices of Q . Note also that the

statement only holds for De Bruijn indices i ≥ k .

Lemma 13. (Substitution Lemma for De Bruijn λ-terms) For all M , N , Q in ΛdB and i, k in N0,

if i ≥ k , then

M[k := N][i := Q] = M[i + 1 :=⇑k Q][k := N [i := Q]]

Proof. By induction on M . The index case requires Lemma 9. In the abstraction case, use is made of

Lemmas 10 and 11. □

The formalization in Coq of the statement of the Substitution Lemma is thus:

1 Lemma substitution_lemma : forall M N Q : lambda, forall i k : nat, k<=i→

2 subst_rec (subst_rec M N k) Q i =

3 subst_rec (subst_rec M (lift_rec Q k) (S i)) (subst_rec N Q i) k.

30

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

4.3 Standard reduction relation and admissible rules

This section corresponds to Section 3.2, but now using De Bruijn λ-terms. In particular, we will establish

that the rules for standard reduction in Section 3.2 (Figure 2) have admissible analogous for De Bruijn

λ-terms. Furthermore, the proofs of the latter are similar to those in Section 3.2, with the exception of rule

(2), which will require some new auxiliary lemmas.

We start with the analogue to Lemma 2 for De Bruijn λ-terms. We will omit its proof, as it follows

directly the proof of the mentioned lemma (an induction on M →∗
β
M′):

Lemma 14. For all M , M′, N in ΛdB , if M →∗β M′ then:

1. MN →∗
β
M′N

2. NM →∗
β
NM′

3. λ ·M →∗
β
λ ·M′

In Coq this lemma reads as follows:

1 Lemma right_apl_red : forall M1 M2 N : lambda, red M1 M2 → red (App M1 N) (App M2 N).

2

3 Lemma left_apl_red : forall M1 M2 N : lambda, red M1 M2 → red (App N M1) (App N M2).

4

5 Lemma center_abs_red : forall M1 M2 : lambda, red M1 M2 → red (Abs M1) (Abs M2).

Now, we define the standard reduction relation⇒n for De Bruijn λ-terms:

Definition 14. ⇒n for De Bruijn λ-terms is given inductively by the following rules:

i ⇒n i VAR
M ⇒n N

λ ·M ⇒n λ · N ABS
M ⇒n M′ N ⇒n N ′

MN ⇒n M′N ′ APL

M →∗n λ ·M′ M′[0 := N] ⇒n P

MN ⇒n P RDX

31

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

The formalization in Coq is thus:

1 (* Standard reduction ⇒ n *)

2 Inductive standard_red : lambda→ lambda→ Prop :=

3 | VAR : forall i : nat, standard_red (Ref i) (Ref i)

4 | ABS : forall M N : lambda, standard_red M N → standard_red (Abs M) (Abs N)

5 | APL : forall M1 M2 N1 N2 : lambda, standard_red M1 M2 → standard_red N1 N2→

6 standard_red (App M1 N1) (App M2 N2)

7 | RDX : forall M1 M2 N P : lambda, name_eval (M1) (Abs M2) → standard_red (subst N M2) (P)

8 → standard_red (App M1 N) (P).

The proof of the Standardization Theorem for De Bruijn λ-terms will follow directly the proof of this

result for ordinary λ-terms. Figure 3 shows the collection of rules about the standard reduction relation

for De Bruijn λ-terms that will play the role of the respective rules in Figure 2 for ordinary λ-terms. As

anticipated, the proofs of the admissibility of the rules in Figure 3 are very similar to the proofs of the

admissibility for the corresponding rules for ordinary λ-terms. For this reason we will omit details of the

proofs of the rules in Figure 3, except for rule (2) which shows relevant differences. Indeed, to prove the

admissibility of rule (2), we need the collection of auxiliary lemmas shown in Figure 4, whose admissibility

is established in the following three lemmas.

Figure 3: Admissible rules of⇒n for λdB

Lemma 15. The rules (aux1) and (aux2) on Figure 4 are admissible.

Proof. The proof of the admissibility of rule (aux1) is by induction on M1 →n M2. The (β) case uses

32

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

Figure 4: Auxiliary admissible rules for λdB

Lemma 12. The (µ) case follows from induction hypothesis. The proof of the admissibility of rule (aux2)

is by induction onM →∗n N . The base case follows immediately from the rule (aux1).

□

The statements in Coq of the admissibility of rules aux1 and aux2 are therefore:

1 Lemma lift_1: forall M N : lambda, forall i: nat, name_eval_1 M N →

2 name_eval_1 (lift_rec M i) (lift_rec N i).

3

4 Lemma lift_n: forall M N : lambda, name_eval M N → forall i :nat,

5 name_eval (lift_rec M i) (lift_rec N i).

Lemma 16. Rule (aux3) of Figure 4 is admissible.

Proof. By induction onM ⇒n N . TheVAR case follows from the admissible rule (1) on Figure 3 (proved

ahead in Lemma 18). The RDX case requires Lemmas 15 and 12.

□

In Coq this lemma reads as follows:

1 Lemma lift_i : forall N1 N2 : lambda, standard_red N1 N2 → forall i: nat,

2 standard_red (lift_rec N1 i) (lift_rec N2 i).

The next two lemmas correspond to Lemma 4 for ordinary λ-terms and their proofs are similar to those

constructed for the latter lemma.

Lemma 17. The rules (aux4) and (aux5) of Figure 4 are admissible.

33

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

Proof. The admissibility of aux4 follows by induction onM1 →n M2 and needs the Substitution Lemma

(Lemma 13). The admissibility of rule aux5 follows by induction on M1 →∗n M2. □

The statements of the admissibility of these two rules in Coq is:

1 Lemma subs_name_eval_1 : forall M1 M2 N : lambda, forall i : nat, name_eval_1 M1 M2 →

2 name_eval_1 (subst_rec M1 N i) (subst_rec M2 N i).

3

4 Lemma subs_name_eval : forall M1 M2 N : lambda, forall i : nat, name_eval M1 M2 →

5 name_eval (subst_rec M1 N i) (subst_rec M2 N i).

The next four lemmas establish the admissibility of the rules in Figure 3, and each of them is followed

by the respective codification in Coq. As said, the proofs of the admissibility of these proves are similar

to those of the respective rules for ordinary λ-terms, and are therefore omitted. The only exception will be

rule (2) which requires some of the admissible rules of Figure 4.

Lemma 18. The rules (1) and (2) of Figure 3 are admissible.

Proof. The proof of the admissibility of (2) is by induction onM ⇒n M′. TheABS case follows from rule

(aux3). The RDX case requires the Substitution Lemma (Lemma 13) plus rule (aux5).

□

1 Lemma rule_1 : forall M : lambda, standard_red M M.

2

3 Lemma rule_2 : forall M1 M2 : lambda, standard_red M1 M2 → forall N1 N2 : lambda,

4 standard_red N1 N2 → forall i:nat, standard_red (subst_rec M1 N1 i) (subst_rec M2 N2 i).

Lemma 19. The rules (3) and (4) of Figure 3 are admissible.

1 Lemma rule_3 : forall M N : lambda, name_eval_1 M N → forall P : lambda, standard_red N P

2 → standard_red M P.

3

4 Lemma rule_4 : forall M N P : lambda, name_eval M N → standard_red N P→ standard_red M P.

34

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

Lemma 20. The rules (5) and (6) of Figure 3 are admissible.

1 Lemma rule_5 : forall M1 M2 N1 N2 : lambda, standard_red M1 (Abs M2) → standard_red N1 N2

2 → standard_red (App M1 N1) (subst N2 M2).

3

4 Lemma rule_6 : forall M1 M3 N0 : lambda, standard_red M1 (App (Abs M3) (N0)) →

5 standard_red M1 (subst N0 M3).

In the Coq code above, recall that subst N M has been defined as subst_rec M N 0.

Lemma 21. The rules (7) and (8) of Figure 3 are admissible.

1 Lemma rule_7 : forall M N : lambda, standard_red M N → forall P : lambda, red1 N P →

2 standard_red M P.

3

4 Lemma rule_8 : forall M N P : lambda, standard_red M N → red N P→ standard_red M P.

Theorem 3. (Standardization Theorem with Bruijn indices): In λdB , for all M , N in ΛdB ,

M →∗
β
N iff M ⇒n N .

Since the proof of this theorem is very similar to the proof of the Standardization Theorem developed

in Section 3.3 for ordinary λ-terms, instead of giving its details we show directly its formalization in the

Coq proof assistant. As mentioned before, this formalization follows very closely the structure of the proof

on paper for λdB -terms:

1 Theorem standardization : forall M N : lambda, red M N ↔ standard_red M N.

2 Proof.

3 split.

4

5 (*”Only if” direction: *)

6 intro H. induction H.

7 (*Base case: *)

8 assert (H1: standard_red M M).

35

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

9 apply rule_1.

10 pose proof rule_7 as pp.

11 specialize pp with (1 := H1) (2 := H); trivial.

12 (*Reflexice case: *)

13 apply rule_1.

14 (*Transitive case: *)

15 pose proof rule_8 as pp.

16 specialize pp with (1 := IHred1) (2 := H0); trivial.

17

18 (*”If” direction: *)

19 intro H. induction H.

20 (* VAR case: M = Ref i and N = Ref i *)

21 apply refl_red.

22 (* ABS case: M = Abs M' and N = Abs N' *)

23 apply red_abs. trivial.

24 (* APL case: M = App M1 N1 and N = M2 N2 *)

25 assert (H1: red (App M1 N1) (App M2 N1)).

26 apply red_appl. trivial.

27 assert (H2: red (App M2 N1) (App M2 N2)).

28 apply red_appr. trivial.

29 apply trans_red with (App M2 N1). trivial. trivial.

30 (* RDX case: M = App M1 N*)

31 assert (H1: red M1 (Abs M2)).

32 induction H.

33 apply one_step_red.

34 induction H.

35 apply beta.

36 apply app_red_l. trivial.

37 apply refl_red.

38 apply trans_red with (N0); trivial.

39 assert (H2: red (App M1 N) (App (Abs M2) N)).

40 apply red_appl. trivial.

41 assert (H3: red1 (App (Abs M2) N) (subst N M2)).

36

CHAPTER 4. FORMALIZATION IN COQ OF THE STANDARDIZATION THEOREM

42 apply beta.

43 assert (H4: red (subst N M2) P). trivial. apply trans_red with (App (Abs M2) N).

44 trivial. apply trans_red with (subst N M2).

45 apply one_step_red in H3.

46 trivial. trivial.

47 Qed.

Transitivity of the relation⇒n is an immediate corollary of the Standardization Theorem, as for ordinary

λ-calculus. Since the proof of this is also similar to the one for λ-calculus (Corollary 1), we omit it here.

Corollary 2. For all M , P , N in Λ, if M ⇒n P and P ⇒n N , then M ⇒n N .

In Coq this corollary reads as follows:

1 Theorem rule_9 : forall M N P : lambda,

2 standard_red M N → standard_red N P→ standard_red M P.

37

Chapter 5

Standard Reduction Sequences

In this dissertation, we approach standard reduction via an inductive binary relation on λ-terms. As men-

tioned in Section 3.2, we follow very closely Espírito Santo-Pinto-Uustalu [33] in order to define standard

reduction (⇒n) and to prove the Standardization Theorem. A more traditional approach to standard re-

duction is via standard reduction sequences, such as suggested by Plotkin [30]. In this chapter we will

formalize the equivalence of these two approaches. We will start by developing in Section 5.1 the theory

of reduction sequences (concepts and properties). Then in Section 5.2, we will formalize in Coq all their

theory, as well as the equivalence of the two approaches to standard reduction.

5.1 Theory

Naturally, the representation of standard reduction sequences will be through lists of λ-terms. For our

purpose, it suffices to consider finite lists of λ-terms. So:

Definition 15. The set L(Λ) of lists of λ-terms is defined inductively by the grammar:

L ::= [] | M :: L

In the definition above, as throughout this section, M ,N ,P ,M′,M1, etc will range over λ-terms. Also, we

will assume that L,L′,L1,L2, etc will range over lists of λ-terms.

As usual, given a listM :: L, we say the λ-termM is its head, and the list L is its tail.

The appending of two lists is defined as usual:

Definition 16. Given lists of λ-terms L1 and L2, the append functionApp is recursively defined on lists

by:

38

CHAPTER 5. STANDARD REDUCTION SEQUENCES

App(L1, L2) =

L2, if L1 = []

M :: App(L′1, L2), if L1 = M :: L′1

A basic property of the append function needed below is associativity:

Lemma 22. For all L1, L2, L3 in L(Λ),

App(App(L1, L2), L3) = App(L1,App(L2, L3)).

Proof. By induction on the list L1.

□

In what follows, we often represent the appending of lists by :: (using infix notation) and drop paren-

theses when there are successive append operations, restoring parentheses as convenient (since append

is associative). Additionally, we often represent singleton lists by writing its unique λ-term. For example,

for lists L1, L2 and for λ-term M , the notation L1 :: M :: L2 will represent the list App(L1,App(M ::

[], L2)) = App(App(L1,M :: []), L2).

Definition 17. Given a list of λ-terms L, and a variable x , we define the function Abs by recursion on

lists:

Abs(x, L) =

[], if L = []

λx ·M :: Abs(x, L′), if L = M :: L′

So the Abs(x, L) function prefixes each λ-term of L by the binder λx , which means that eventual free

occurrences of x in λ-terms of L will become bound.

Definition 18. Given a list L of λ-terms and a λ-term N , we define the function Apla by recursion on

lists:

Apla(L,N) =

[], if L = []

MN :: Apla(L′,N), if L = M :: L′

So, Apla(L,N) creates an application MN out of each λ-termM in L.

Definition 19. Given a list L of λ-terms and a λ-term M , we define the function Apl f by recursion on

lists:

39

CHAPTER 5. STANDARD REDUCTION SEQUENCES

Apl f (M, L) =

[], if L = []

MN :: Apl f (M, L′), if L = N :: L′

Analogously to Apla , Apl f (M, L) creates an application MN out of each λ-term N in L.

The next two lemmas will be useful later. They establish how the functions just defined interact with

lists appending.

Lemma 23. For all L1, L2 ∈ L(Λ), and x ∈ V , Abs(x, L1 :: L2) = Abs(x, L1) :: Abs(x, L2)

Proof. By induction on L1.

□

Lemma 24. For all L1, L2 ∈ L(Λ),

1. Apl f (M, L1 :: L2) = Apl f (M, L1) :: Apl f (M, L2)

2. Apla(L1 :: L2,M) = Apla(L1,M) :: Apla(L2,M)

Proof. Both items follows by induction on L1.

□

Now we are ready to define standard reduction sequences. We follow Plotkin’s definition [30].

Definition 20. Standard reduction sequences (s.r.s.) is a predicate on lists of λ-terms given induc-

tively by:

x s .r .s . VAR
′ L s .r .s .

Abs(x, L) s .r .s . ABS
′ N1 →n N2 N2 :: L s .r .s .

N1 :: (N2 :: L) s .r .s . RDX ′

L :: M s .r .s . N :: L′ s .r .s .
Apla(L,N) :: MN :: Apl f (M, L′) s .r .s .

APL′

A sensible alternative to the rule APL′ above could have been:

M :: L s .r .s . L′ :: N s .r .s .
Apl f (M, L′) :: MN :: Apla(L,N) s .r .s . APL

′′

To better understand this two alternative rules, let us consider one example:

40

CHAPTER 5. STANDARD REDUCTION SEQUENCES

Example 11. Let us consider standard reduction sequences L1 = M1 :: M2 :: M3 and L2 = N1 ::

N2 :: N3.

• First, we apply APL′ to L1 and L2:

(M1 :: M2) :: M3 s .r .s . N1 :: (N2 :: N3) s .r .s .
Apla(M1 :: M2,N1) :: M3N1 :: Apl f (M3,N2 :: N3) s .r .s .

APL′

Note that, Apla(M1 :: M2,N1) :: M3N1 :: Apl f (M3,N2 :: N3) is the list

L3 = M1N1 :: M2N1 :: M3N1 :: M3N2 :: M3N3.

• Now, we apply APL′′ to L1 and L2:

M1 :: (M2 :: M3) s .r .s . (N1 :: N2) :: N3 s .r .s .

Apl f (M1,N1 :: N2) :: M1N3 :: Apla(M2 :: M3,N3) s .r .s .
APL′′

Note that, Apl f (M1,N1 :: N2) :: M1N3 :: Apla(M2 :: M3,N3) is the list

L4 = M1N1 :: M1N2 :: M1N3 :: M2N3 :: M3N3.

Note that, the first and last terms of lists L3 and L4 coincide, but the middle terms are different.

Although L4 is not s.r.s. according to our definition still it is a sensible reduction sequence, since there is

no interaction between the terms in fuction and in arguments position along the list L4 (as in L3).

The next lemma establishes that singleton lists are standard reduction sequences.

Lemma 25. For all M in Λ, M s.r.s.

Proof. By induction onM .

□

The following two lemmas will be useful later and establish that certain subsequences of a standard

reduction sequence are still standard reduction sequences with specific shapes.

Lemma 26. For all M , N ∈ Λ and L ∈ L(Λ), if M :: N :: L s.r.s., then N :: L s.r.s.

41

CHAPTER 5. STANDARD REDUCTION SEQUENCES

Proof. By induction on: M :: N :: L s.r.s..

□

Lemma 27. For all M , N in Λ and L in L(Λ), if M :: N :: L s.r.s., then M :: N s.r.s.

Proof. By induction on: M :: N :: L s.r.s.

□

Below we will make use of the lemma that follows, which in fact, is a particular case of our final result.

Lemma 28. For all M , N in Λ, if M :: N s.r.s., then M ⇒n N .

Proof. By induction on : M :: N s.r.s. The VAR′ case is impossible. The APL′ case requires the

admissible rule (1) of Figure 2 and the RDX ′ case uses the Standardization Theorem. □

In order to facilitate the proof of our main theorem, we will make use of an alternative way to charac-

terize the reflexive and transitive closure of the evaluation relation→n on λ-terms.

Definition 21. →∗n1 is the binary relation on λ-terms given inductively by:

M →∗n1 M
REF ′

M →n N N →∗n1 P
M →∗n1 P

BASE/TRANS′

Lemma 29. For all M , N and P in Λ,

M →∗n1 N N →∗n1 P
M →∗n1 P

Proof. The proof is by induction onM →∗n1 N . The REF ′ case, follows immediately from the hypothesis.

The BASE/TRANS′ case follows from induction hypothesis and by BASE/TRANS′. □

Now we can prove that→∗n1 is indeed the same as our initial relation→
∗
n:

Lemma 30. For all M and N in Λ, M →∗n N iff M →∗n1 N .

Proof. The “only if” direction is proved by induction onM →∗n N . Use is made of the previous lemma in

the transitive case. The “if” direction is proved by induction on M →∗n1 N . □

Now we are ready to prove the key relations between standard reduction sequences and the standard

reduction relation⇒n.

42

CHAPTER 5. STANDARD REDUCTION SEQUENCES

Theorem 4. For all M , N in Λ,

1. IfM ⇒n N , thenM = N or for some list L,M :: L :: N is a standard reduction sequence (s.r.s.);

2. For any M :: L s.r.s., L = [] or L = L′ :: N (for some list L’ and term N), and M ⇒n N .

Proof. The proof of 1. is by induction on induction onM ⇒n N . The proof of 2. is by induction on L. Use

is made of Lemmas 26, 27, 28 and Corollary 1.

□

As an easy corollary of the previous theorem, we can finally establish the equivalence between the

standard reduction relation (⇒n) and standard reduction sequences (s.r.s.).

Corollary 3. For all M , N in Λ, M ⇒n N iff (M = N or M :: L :: N s.r.s, for some list L).

Proof. In order to prove this corollary, we will prove separately both directions of the equivalence.

In the “only if” direction we have by hypothesis,

M = N orM :: L :: N s.r.s, for some list L.

IfM = N , thenM ⇒n M follows immediately from the admissible rule (1) of Figure 3. IfM :: L :: N

s.r.s, for some list L, then by the second statement of Theorem 4, follows

L :: N = [] ∨ ∃L′ ∈ L(Λ),N ′ ∈ λ, (L :: N = L′ :: N ′ ∧ M ⇒n N).

The hypothesis L :: N = [] is impossible. Then, remains the hypothesis,

∃L′ ∈ L(Λ),N ′ ∈ Λ, (L :: N = L′ :: N ′ ∧ M ⇒n N)

which in particular givesM ⇒n N .

The “if” direction follows immediately from clause 1 of Theorem 4.

□

43

CHAPTER 5. STANDARD REDUCTION SEQUENCES

5.2 Formalization in Coq

This section briefly presents the formalization in Coq of some of the definitions and main results described

in the previous section. This will use several definitions and results whose formalization was presented in

Chapter 4. In particular, recall that λ-terms are represented via De Bruijn λ-terms. The full details of this

Coq formalization can be found in Appendix F.

We will start with the Coq definitions of lists of De Bruijn λ-terms and of several functions operating on

these lists, and will then state some results about these functions.

Lists of De Bruijn λ-terms are represented in Coq through the following inductive definition:

1 Inductive term_list : Set :=

2 | nil

3 | cons (M : lambda) (L : term_list).

To avoid heavy notation, we will usually write cons M L as M :: L, and nil as []:

1 Notation ”M :: L” := (cons M L).

2 Notation ”[]” := nil.

The concatenation of two lists L1 and L2 is defined in Coq as follows:

1 Fixpoint app (L1 L2 : term_list) : term_list :=

2 match L1 with

3 | nil ⇒ L2

4 | h :: t ⇒ h :: (app t L2)

5 end.

6

7 Notation ”L1 · L2” := (app L1 L2) (at level 50) : type_scope.

The Coq function Abs_list, that follows implements the Abs function of Definition 17:

1 Fixpoint Abs_list (L : term_list) : term_list :=

2 match L with

44

CHAPTER 5. STANDARD REDUCTION SEQUENCES

3 | nil ⇒ nil

4 | M :: L1 ⇒ Abs M :: Abs_list (L1)

5 end.

The Coq functions Apl_arg and Apl_fun that follow implement the functions Apla and Apl f of

Definitions 18 and 19, respectively:

1 Fixpoint Apl_arg (L : term_list) : lambda→ term_list :=

2 fun N : lambda⇒

3 match L with

4 | nil ⇒ nil

5 | M :: L1 ⇒ (App M N) :: (Apl_arg L1 N)

6 end.

7

8

9 Fixpoint Apl_fun (L : term_list) : lambda→ term_list :=

10 fun M : lambda⇒

11 match L with

12 | nil ⇒ nil

13 | N :: L1 ⇒ (App M N) :: (Apl_fun L1 M)

14 end.

The statement in Coq that concatenation is associative is as follows:

1 Lemma concatenate_assoc : forall L1 L2 L3 : term_list, (L1 · L2) · L3 = L1 · (L2 · L3).

The next two Coq Lemmas correspond to Lemma 23 and to the first clause of Lemma 24 respectively:

1 Lemma abs_lists : forall L1 L2 : term_list, Abs_list (L1 · L2) = Abs_list L1 · Abs_list L2.

1 Lemma apl_fun_lists : forall L1 L2 : term_list, forall N : lambda, Apl_fun (L1 · L2) N =

2 (Apl_fun L1 N) · (Apl_fun L2 N).

45

CHAPTER 5. STANDARD REDUCTION SEQUENCES

Now, we turn to the representation of standard reduction sequences. This concept is formalized in Coq

as an inductive predicate:

1 Inductive standard_red_seq : term_list→ Prop :=

2 | VAR' : forall i : nat, standard_red_seq ((Ref i) :: [])

3 | ABS' : forall L : term_list, standard_red_seq L→ standard_red_seq (Abs_list L)

4 | APL' : forall L1 L2 : term_list, forall M N : lambda, standard_red_seq (L1 · (M :: []))

5 → standard_red_seq (N :: L2) →

6 standard_red_seq (Apl_arg L1 N · ((App M N) :: []) · Apl_fun L2 M)

7 | RDX' : forall N1 N2 : lambda, forall L : term_list, name_eval_1 N1 N2 →

8 standard_red_seq (N2 :: L) → standard_red_seq (N1 :: (N2 :: L)).

Next we show the Coq statement of the Lemmas 25 to 28 in the previous section:

1 Lemma single_list_srs : forall M : lambda, standard_red_seq (M :: []).

1 Lemma aux_2 : forall M N : lambda, forall L : term_list, standard_red_seq (M :: N :: L) →

2 standard_red_seq (N :: L).

1 Lemma aux_6 : forall M N : lambda, standard_red_seq (M :: (N :: [])) → standard_red M N.

1 Lemma aux_10 : forall M N : lambda, forall L : term_list, standard_red_seq (M :: N :: L) →

2 standard_red_seq (M :: N :: []).

We are now ready to address the formlization of the key results relating the standard reduction relation

and standard reduction sequences, namely parts 1 and 2 of Theorem 4. These results are stated in Coq

as follows, respectively:

1 Lemma standard_red_1 : forall M N : lambda, standard_red M N → M = N ∨

2 (exists L : term_list, standard_red_seq (M :: L · (N :: []))).

3

46

CHAPTER 5. STANDARD REDUCTION SEQUENCES

4 Lemma standard_red_2 : forall L : term_list, forall M : lambda, standard_red_seq (M :: L) →

5 (L=[] ∨ (exists N : lambda, exists L' : term_list, L = L' · (N :: []) ∧ standard_red M N)).

Finally, the equivalence of the two approaches to standard reduction (Corollary 3) is formalized as

follows:

1 Lemma s_r_s_equiv: forall M N : lambda, standard_red M N ↔

2 (M = N ∨ exists L : term_list, standard_red_seq (M :: L · (N :: []))).

47

Chapter 6

Conclusion

Concluding remarks. In this dissertation, we presented a formalization in the Coq proof assistant of a

proof of the Standardization Theorem for λ-calculus that we extracted from a proof of a Standardization

Theorem for a λ-calculus for modal logic [33]. The approach followed is in line with treatments of stan-

dardization for λ-calculus by Loader and Joachimski - Matthes, where standard reduction is captured via

an inductively defined relation, but differs from them in that our standard relation is over λ-terms with or-

dinary (unary) applications, rather than with applications that allow multiple arguments. Although distinct,

we show that the approach to standardization we follow is equivalent to the more traditional one, based

on standard reduction sequences (as considered in work by Plotkin [30]), providing a formalization of this

equivalence in Coq.

Our formalization used a representation of the binders via De Bruijn indices. In principle, there should

be no major difficulty in adapting this formalization to work with other techniques for dealing with binders.

The initial reasons to opt for this technique were rather pragmatic ones (a big body of literature and

developments of formalizations of meta-theory of λ-calculus and extensions available in the literature), but

it turned out that, once the basic structure for working on top of De Bruijn indices was set up, the Coq

formalization of the proof of the Standardization Theorem could follow very closely the structure of the

paper proof of this result, both in what concerns lemmata and the inductive structure of the arguments.

As expected in formalizations efforts, the complete formalization in Coq of the proof of the Standardiza-

tion Theorem (developed beforehand on paper) reinforced our confidence on the paper proof, for example,

ensuring that our inductive arguments (typically needing the analysis of multiple cases) did not miss any

case. Additionally, our formalization in Coq helped in identifying small aspects of the proof on paper that

48

CHAPTER 6. CONCLUSION

needed more attention or could have been done differently, or even to reuse some Coq code when ar-

guments had a similar structure. One example of the latter was the proof the admissibility of rule (8)

(Lemma 8) that resulted from an immediate adaptation of the Coq code to prove the admissibility of rule

(4) (Lemma 6).

Related work. In the literature, other efforts to formalize the Standardization Theorem for λ-calculus

include proofs based on Kashima [20] such as [12, 16], where a notion of β -reducibility with a standard

sequence is captured by an inductively defined reduction relation. What sets our development apart from

these efforts is essentially the way in which the standard reduction is captured. In particular, the definition of

standard sequence in Kashima [20] uses two binary relations, head reduction in application and standard,

that are defined on the set of λ-terms and are the keys to the main proof. In [12] the same two relations are

defined but, in order to formalize the proof, they use multiple substitution. In [16] the technique chosen to

formalize all the theory was also the De Bruijn indices, but they adopt a system of reference by pointers

(lists of steps). Another early effort worth highlighting is that of McKinna-Pollack [26]. This work also

proves the Standardization Theorem, but using the proof assistant LEGO. In order to formalize λ-terms,

this work uses named variables, based on syntactically distinguishing free from bound variables, following

a suggestion by Coquand in [13].

Future work. A natural follow-up on this dissertation would be to test all the ideas in this dissertation

on Plotkin’s call-by-value λ-calculus [34]. On the one hand, notice that the proof of standardization formal-

ized in this dissertation was extracted from a proof of standardization for the λb -calculus for modal logic,

and a refinement of this calculus studied in [34] (called λ><) allows to obtain as a corollary the Standard-

ization Theorem for Plotkin’s cbv λ-calculus. We expect that the overall ideas involved in the proof of the

Standardization Theorem in this dissertation (including the admissible rules for standard reduction) can be

adapted to work for Plotkin’s cbv λ-calculus. On the other hand, in such a formalization of standardization

for Plotkin’s cbv λ-calculus we could immediately profit from all the basic infrastructure of the De Bruijn

λ-terms that is already set up. Another natural follow-up (that could also immediately benefit from the work

in this dissertation) would be to address the formalization of the Standardization Theorem for the modal

calculus λb , or for its refined versions λbb− or λ>< considered in [34]. Since from the Standardization

Theorem for λ>< it is possible to obtain as corollaries the Standardization Theorem for the cbn and for the

cbv λ-calculus [34], a complementary and rather different (and big) challange could then be to formalize

the additional collection of concepts and results involved in these alternative proofs of standardization for

cbn and cbv λ-calculus.

49

CHAPTER 6. CONCLUSION

As mentioned before, the approach followed in this dissertation to formalize standard reduction as an

inductive relation is in line with the one followed by Joachimski and Matthes in [19]. In this paper, the

λ-calculus treated is actually an extension of ordinary λ-calculus with the so-called generalised applica-

tions. This calculus needs an additional rule (on top of β) to perform reduction (the π -rule). So, another

interesting challenge could be to try to adapt the ideas in this dissertation to obtain a formalized proof of

the Standardization Theorem for this λ-calculi with generalized applications. We would expect such a proof

to show some small differences w.r.t. the proof of standardization for this calculus in [19], because this

proof uses multiple application (“lists of generalised arguments”), and in our development we confine to

unary application, as in the ordinary syntax of λ-calculi.

50

Appendix A

In this Appendix we have the details of the proofs of some results described in Chapter 2.

Lemma 1. (Substitution Lemma): For all x , y inV andM , N , Q in Λ, if x , y and x < FV (Q),

then (M[N /x])[Q/y] = (M[Q/y])[N [Q/y]/x].

Proof. The proof of this lemma is an induction on the size of M , given as usual by: size(z) = 1,

size(λz.M0) = 1 + size(M0) and size(M1M2) = size(M1) + size(M2).

• M = z

– z = x :

Left-side:

(x[N /x])[Q/y] = N [Q/y]

Right-side:

(x[Q/y])[N [Q/y]/x] = x[N [Q/y]/x] = N [Q/y]

– z = y

Left-side:

(y[N /x])[Q/y] = y[Q/y] = Q

Right-side:

(y[Q/y])[N [Q/y]/x] = Q[N [Q/y]/x] = Q

The last equality is valid because x is not free in Q .

– z , x and z , y

51

APPENDIX A.

Left-side:

(z[N /x])[Q/y] = z[Q/y] = z

Right-side:

(z[Q/y])[N [Q/y]/x] = z[N [Q/y]/x] = z

• M = λx ·M′

Left-side:

((λx ·M′)[N /x])[Q/y] =∗1 (λx ·M′)[Q/y]

(∗1) by Definition 3

Right-side:

((λx ·M′)[Q/y])[N [Q/y]/x] =∗1 (λz · (M′[z/x])[Q/y])[N [Q/y]/x]) =∗2

(λz · (M′[z/x])[N /x])[Q/y] =∗3 (λz ·M′[z/x])[Q/y] =α (λx ·M′)[Q/y]

(∗1) by Definition 3

(∗2) by induction hypothesis (note that size(M′) = size(M′[z/x]))

(∗3) x < FV (M′[z/x])

• M = λw ·M′, wherew , x

Left-side:

((λw ·M′)[N /x])[Q/y] =∗1 (λz · (M′[z/w])[N /x])[Q/y]

(∗1) by Definition 3

Right-side:

((λw ·M′)[Q/y])[N [Q/y]/x] =∗1 ((λz ·M′[z/w])[Q/y])[N [Q/y]/x] =∗2

λz · (M′[z/w][N /x])[Q/y]

(∗1) by Definition 3

52

APPENDIX A.

(∗2) by induction hypothesis (note that size(M′) = size(M′[z/w]))

• M = M′M′′

By induction hypothesis: (M′[N /x])[Q/y] = (M′[Q/y])[N [Q/y]/x] and (M′′[N /x])[Q/y] =

(M′′[Q/y])[N [Q/y]/x].

Left-side:

((M′M′′)[N /x])[Q/y] =∗1 ((M′[N /x])[Q/y])((M′′[N /x])[Q/y]) =∗2

((M′[Q/y])[N [Q/y]/x])((M′′[N /x])[Q/y]) =∗3

((M′[Q/y])[N [Q/y]/x])((M′′[Q/y])[N [Q/y]/x])

(∗1) by Definition 3

(∗2) by induction hypothesis

(∗3) by induction hypothesis

Right-side:

((M′M′′)[Q/y])[N [Q/y]/x] =∗1 ((M′[Q/y])[N [Q/y]/x])((M′′[Q/y])[N [Q/y]/x])

(∗1) by Definition 3

□

Lemma 2. For allM ,M′ in Λ, ifM →∗
β
M′ then:

1. MN →∗
β
M′N , for all N ∈ Λ;

2. NM →∗
β
NM′, for all N ∈ Λ;

3. λx ·M →∗
β
λx ·M′, for all x ∈ V .

Proof. Proof of 1. The proof is an easy induction on M →∗
β
M′.

In the base case, we apply the rule (µ) to the hypothesis M →β M′ and obtain MN →β M′N .

Finally using the fact that→β⊆→∗β , we concludeMN →∗
β
M′N .

The reflexive case follows immediately by the fact that→∗
β
is reflexive. Then we conclude MN →∗

β

MN .

53

APPENDIX A.

In the transitive case, we suppose by hypothesesM →∗
β
P and P →∗

β
M′. By induction hypotheses,

for all N ′ in Λ, MN ′ →∗
β
PN ′ and for all N ′′ in Λ, PN ′′ →∗

β
M′N ′′. Using the fact that →∗

β
is

transitive, and take N ′ = N and N ′′ = N , we concludeMN →∗
β
M′N .

Proof of 2. The proof is an easy induction on M →∗
β
M′.

In the base case, we apply the rule (ν) to the hypothesis M →β M′ and obtain NM →β NM′.

Then we conclude NM →∗
β
NM′ using the fact that→β⊆→∗β .

The reflexive case just uses the fact that→∗
β
is reflexive to conclude NM →∗

β
NM .

In the transitive case, we suppose by hypothesesM →∗
β
P and P →∗

β
M′. By induction hypotheses,

for all N ′ in Λ, N ′M →∗
β
N ′P and for all N ′′ in Λ, N ′′P →∗

β
N ′′M′. Using the fact that →∗

β
is

transitive, and take N ′ = N and N ′′ = N , we conclude NM →∗
β
NM′ .

Proof of 3. The proof is an easy induction on M →∗
β
M′.

In the base case, we apply the rule (ξ) to the hypothesisM →β M′ and obtain λx ·M →β λx ·M′.

We conclude λx ·M →∗
β
λx ·M′, just using the fact that→β⊆→∗β .

The reflexive case follows immediately by the fact that→∗
β
is reflexive to conclude λx ·M →∗

β
λx ·M .

In the transitive case, we suppose by hypothesesM →∗
β
P and P →∗

β
M′. By induction hypotheses

λx · M →∗
β

λx · P and λx · P →∗
β

λx · M′. Using the fact that →∗
β
is transitive, we conclude

λx ·M →∗
β
λx ·M′ .

□

54

Appendix B

In this Appendix we have the details of the proofs of some results described in Chapter 3.

Lemma 3. The following rule is admissible, that is, for all M1,M2,N in Λ:

M1 →∗n M2
M1N →∗n M2N

Proof. By induction onM1 →∗n M2.

In the base case, we have by hypothesis M1 →n M2. Then by (µ) follows immediately:

M1N →n M2N ⊆ M1N →∗n M2N

The reflexive case follows immediately by the fact→∗n is reflexive, to concludeM1N →∗n M1N .

In the transitive case, we suppose by hypotheses M1 →∗n M3 and M3 →∗n M2. By induction hy-

pothesesM1N →∗n M3N andM3N →∗n M2N . Then we concludeM1N →∗n M2N by using the fact

that→∗n is transitive.

□

Lemma 4. The following rules are admissible:

M1 →n M2
M1[N /x] →n M2[N /x]

M1 →∗n M2
M1[N /x] →∗n M2[N /x]

Proof. Proof of the admissibility of the first rule The proof is an induction on M1 →n M2.

In the (β) case we have by hypothesis (λy · M)N0 →n M[N0/y]. We want to prove ((λy ·

M)N0)[N /x] →n (M[N0/y])[N /x]. By Definition 3 follows the equalities:

55

APPENDIX B.

((λy ·M)N0)[N /x] = (λy ·M)[N /x]N0[N /x] = λy · (M[N /x])N0[N /x]

→n (M[N /x])[N0[N /x]/y]

where the last reduction is justified by rule (β).

By the Substitution Lemma (1) follows (M[N0/y])[N /x] = (M[N /x])[N0[N /x]/y].

In the (µ) case, we want to prove (M0M3)[N /x] →n (M4M3)[N /x]. By hypothesisM0 →n M4. By

Definition 3, (M0M3)[N /x] = M0[N /x]M3[N /x] and (M4M3)[N /x] = M4[N /x]M3[N /x]. By in-

duction hypothesisM0[N /x] →n M4[N /x]. Use is made of (µ) to concludeM0[N /x]M3[N /x] →n

M4[N /x]M3[N /x].

Proof of the admissibility of the second rule. The proof is by induction on M1 →∗n M2.

In the base case, we have by hypothesis M1 →n M2. Then by the previous admissible rule follows:

M1[N /x] →n M2[N /x] ⊆ M1[N /x] →∗n M2[N /x]

The reflexive case follows immediately by the fact→∗n is reflexive, to concludeM1[N /x] →∗n M1[N /x].

In the transitive case, we suppose by hypotheses M1 →∗n M3 and M3 →∗n M2. By induction hy-

potheses M1[N /x] →∗n M3[N /x] and M3[N /x] →∗n M2[N /x]. Then we conclude M1[N /x] →∗n
M2[N /x] by using the fact that→∗n is transitive.

□

Lemma 5. The rules (1) and (2) of Figure 2 are admissible.

Proof. Proof of the admissibility of (1). The proof is an induction on M .

The case whereM is a variable follows immediately from rule VAR.

The case whereM = λx ·M′, follows by ABS and the induction hypothesisM′⇒n M′ to conclude

λx ·M′⇒n λx ·M′.

The case whereM = M′N ′, follows by APL and the induction hypothesesM′⇒n M′ and N ′⇒n

N ′, to obtain M′N ′⇒n M′N ′.

Proof of the admissibility of (2). The proof is an induction on M ⇒n M′.

By inversion on the VAR case follows two possible subcases, or M and M′ are equal to the variable

that we want to replace x , or are different.

In the first one, by Definition 3:

56

APPENDIX B.

x[N /x] = N

x[N ′/x] = N ′

Then by hypothesis N ⇒n N ′.

In the second one (y , x), using the Definition 3:

y[N /x] = y

y[N ′/x] = y

Then by VAR follows y ⇒n y.

In the ABS case,M = λy ·Q andM′ = λy ·Q′. By hypothesis Q ⇒n Q′. By Definition 3:

(λy ·Q)[N /x] = λy · (Q[N /x])

(λy ·Q′)[N ′/x] = λy · (Q′[N ′/x])

By induction hypothesis Q[N /x] ⇒n Q′[N ′/x]. Applying this induction hypothesis in rule ABS

follows λy · (Q[N /x]) ⇒n λy · (Q′[N ′/x]).

In the APL case, M = QS and M′ = Q′S′. By hypotheses Q ⇒n Q′ and S ⇒n S′. By Definition

3:

(QS)[N /x] = (Q[N /x])(S[N /x])

(Q′S′)[N ′/x] = (Q′[N ′/x])(S′[N ′/x])

By induction hypotheses, Q[N /x] ⇒n Q′[N ′/x] and S[N /x] ⇒n S′[N ′/x]. From the induction

hypotheses and rule APL follows immediately (Q[N /x])(S[N /x]) ⇒n (Q′[N ′/x])(S′[N ′/x]).

57

APPENDIX B.

In the RDX case, M = QS . By hypotheses Q →∗n λy ·Q′ and Q′[S/y] ⇒n M′. By the hypothesis

Q →∗n λy ·Q′ and Lemma 4, follows Q[N /x] →∗n (λy ·Q′)[N /x].

By Definition 3, (λy · Q′)[N /x] = λy · (Q′[N /x]). By the hypotheses Q′[S/y] ⇒n M′ and

N ⇒n N ′ follows by induction hypothesis (Q′[S/y])[N /x] ⇒n M′[N ′/x]. By the Substitution Lemma,

(Q′[S/y])[N /x] = (Q′[N /x])[S[N /x]/y]. From the hypotheses Q[N /x] →∗n λy · (Q′[N /x]) and

(Q′[N /x])(S[N /x]/y] ⇒n M′[N ′/x] and rule RDX follows (Q[N /x])(S[N /x]) ⇒n M′[N ′/x].

□

Lemma 6. The rules (3) and (4) of Figure 2 are admissible.

Proof. Proof of the admissibility of (3). The proof is by induction on M →n N .

In the (β) case, M = (λx · Q)S . By hypothesis Q[S/x] ⇒n P . Using the fact that→∗n is reflexive,

follows λx ·Q →∗n λx ·Q . Then by rule RDX follows (λx ·Q)S ⇒n P .

In the (µ) case M = QR and N = Q′R. By inversion on the hypothesis Q′R ⇒n P we have two

possible subcases, APL and RDX .

In the first one, P = Q′′R′. By the hypothesesQ →n Q′⇒n Q′′ and by induction hypothesis follows

Q ⇒n Q′′. Applying rule APL to the hypotheses Q ⇒n Q′′ and R ⇒n R′ follows QR ⇒n Q′′R′.

In the second one, we have by hypotheses Q′→∗n λx ·Q′′ and Q′′[R/x] ⇒n P . Using the fact that

Q →n Q′ and Q′ →∗n λx ·Q′′ and→∗n is transitive, follows Q →∗n λx ·Q′′. Finally applying the rule

RDX with Q →∗n λx ·Q′′ and Q′′[R/x] ⇒n P we conclude QR ⇒n P .

Proof of the admissibility of (4) . The proof is by induction on M →∗n N .

The base case follows immediately from (3).

The reflexive case follows immediately by the hypothesis M ⇒n P .

In the transitive case, we suppose by hypotheses M →∗n Q and Q →∗n N . By induction hypoth-

esis associated with the hypothesis Q →∗n N ⇒n P follows Q ⇒n P . Then by induction hypothesis

associated withM →∗n Q and Q ⇒n P we concludeM ⇒n P .

□

Lemma 7. The rules (5) and (6) of Figure 2 are admissible.

Proof. Proof of the admissibility of (5). The proof is by induction on M ⇒n λx ·M′.

We only have two possible cases, the ABS and the RDX .

58

APPENDIX B.

In the first one,M = λx ·Q . Applying the rule (β) we have that (λx ·Q)N →β Q[N /x]. Then using

the fact that (β) ⊆→∗n follows:

(λx ·Q)N →∗n Q[N /x]

⇒n M′[N ′/x]

The last relation is justified by (2) with the hypotheses Q ⇒n M′ and N ⇒n N ′. Then using (4)

follows (λx ·Q)N ⇒n M′[N ′/x].

In the second one, M = QS . By Lemma 2 and uses the fact→∗n⊆→∗β and the hypothesis Q →∗n
λy ·Q′ follows:

QS →∗n (λy ·Q′)S

→∗n Q′[S/y]

The last relation is justified by rule (β) and the fact that (β) ⊆→∗n
Using the fact that→∗n is transitive we conclude QS →∗n Q′[S/y]. Then by the first point of Lemma

2, with the hypothesis QS →∗n Q′[S/y] and the fact that→∗n⊆→∗β follows:

(QS)N →∗n (Q′[S/y])N

⇒n M′[N ′/x]

The last relation is justified by induction hypothesis associated with Q′[S/y] ⇒n λx · M′ and the

hypothesis N ⇒n N ′. Then (QS)N ⇒n M′[N ′/x] follows immediately from (4).

Proof of the admissibility of (6). The proof of the admissibility of (6) is by induction on M ⇒n (λx ·

M′)N ′.

In this induction we only have two possible cases, the APL and the RDX .

In the first one M have the form QP . Then QP ⇒n M′[N ′/x] follows immediately from (5) using

the hypothesis Q ⇒n λx ·M′ and P ⇒n N ′.

In the second, M have the form QR. We have by hypothesis Q →∗n λy · Q′ and Q′[R/y] ⇒n

(λx · M′)N ′. By induction hypothesis associated to the hypothesis Q′[R/y] ⇒n (λx · M′)N ′ follows

Q′[R/y] ⇒n M′[N ′/x]. Finally applying RDX to the hypothesis Q →∗n λy · Q′ and Q′[R/y] ⇒n

M′[N ′/x] we conclude QR ⇒n M′[N ′/x].

□

59

APPENDIX B.

Lemma 8. The rules (7) and (8) of Figure 2 are admissible.

Proof. Proof of the admissibility of (7). The proof is by induction on M ⇒n N .

The VAR case is impossible.

In ABS case, M = λx ·M′ and N = λx · N ′. then by inversion on λx · N ′ →β P , follows the (ξ)

subcase, where P = λx ·N ′′. By induction hypothesis associated to the hypothesesM′⇒n N ′→β N ′′

followsM′⇒n N ′′. Then by ABS we conclude λx ·M′⇒n λx · N ′′.

In APL case, M = QS and N = Q′S′. Then by inversion on Q′S′ →β P we have three possible

subcases, (β), (µ) and (ν).

In the first one, Q′ = λx ·Q′′. Applying APL with the hypotheses Q ⇒n λx ·Q′′ and S ⇒n S′, we

have QS ⇒n (λx ·Q′′)S′. Then QS ⇒n Q′′[S′/x] follows immediatly by (6).

In the second one, P = RS′. Then by induction hypothesis associated to the hypothesesQ ⇒n Q′→β

R follows Q ⇒n R. Finally applying the APL with the hypotheses Q ⇒n R and S ⇒n S′ we conclude

QS ⇒n RS′.

In the last one, P = Q′R. By induction hypothesis associated to the hypotheses S ⇒n S′ →βn R

follows S ⇒n R. Then applying APL with the hypotheses Q ⇒n Q′ and S ⇒n R we conclude QS ⇒n

Q′R.

In the RDX case,M = QS . Using the induction hypothesis associated to the hypothesesQ′[S/y] ⇒n

N →βn P follows Q′[S/y] ⇒n P . Finally applying RDX to the hypotheses Q →∗n λy · Q′ and

Q′[S/y] ⇒n P , we conclude QS ⇒n P .

Proof of the admissibility of (8). The proof is by induction on N →∗
β
P .

The base case follows immediately from (7).

The reflexive case follows immediately by the hypothesis M ⇒n N .

In the transitive case, we suppose by hypotheses N →∗
β
P′ and P′ →∗

β
P . By induction hypothesis

associated with the hypothesis M ⇒n N →∗
β

P′ follows M ⇒n P′. Then by induction hypothesis

associated withM ⇒n P′→∗
β
P we concludeM ⇒n P .

□

60

Appendix C

In this Appendix we have the details of the proofs of some results described in Chapter 4.

Lemma 9. For allM , N in ΛdB and k in N0, (⇑k M)[k := N] = M .

Proof. The proof of this lemma is an induction on M.

• M = n

– subcase n < k :

(⇑k n)[k := N] =∗1 n[k := N] =∗2 n

(*1) by Definition 12 and n < k

(*2) by Definition 13 and n < k

– subcase n ≥ k :

(⇑k n)[k := N] =∗1 n + 1[k := N] =∗2 n

(*1) by Definition 12 and n ≥ k

(*2) by Definition 13 and n ≥ k ⇒ n + 1 > k

• M = λ ·M′

By induction hypothesis: (⇑k M′)[k := N] = M′

(⇑k λ ·M′)[k := N] =∗1 (λ· ⇑k+1 M′)[k := N] =∗2 λ ·(⇑k+1 M′[k+1 :=⇑0 N]) =∗3 λ ·M′

(*1) by Definition 12

61

APPENDIX C.

(*2) by Definition 13

(*3) by induction hypothesis

• M = M′M′′

By induction hypothesis: (⇑k M′)[k := N] = M′ and (⇑k M′′)[k := N] = M′′

(⇑k M′M′′)[k := N] =∗1 ((⇑k M′)(⇑k M′′))[k := N] =∗2 (⇑k M′)[k := N](⇑k M′′)[k :=

N] =∗3 M′(⇑k M′′)[k := N] =∗4 M′M′′

(*1) by Definition 12

(*2) by Definition 13

(*3) by induction hypothesis

(*4) by induction hypothesis

□

Lemma 10. For allM in ΛdB and k , i in N0, if i ≥ k , then ⇑i+1 (⇑k M) =⇑k (⇑i M).

Proof. The proof of this lemma is an induction on M .

• M = n

– subcase n < k :

Left-side:

⇑i+1 (⇑k n) =∗1⇑i+1 n =∗2 n

(*1) by Definition 12 and n < k

(*2) by Definition 12 and (n < i ∧ i ≥ k ⇒ n < i + 1)

Right-side:

⇑k (⇑i n) =∗1⇑k n =∗2 n

(*1) by Definition 12 and (n < k ∧ i ≥ k ⇒ n < i)

62

APPENDIX C.

(*2) by Definition 12 and n < k

– subcase n ≥ k and n < i :

Left-side:

⇑i+1 (⇑k n) =∗1⇑i+1 (n + 1) =∗2 n + 1

(*1) by Definition 12 and n ≥ k

(*2) by Definition 12 and (n < i ⇒ n + 1 < i + 1)

Right-side:

⇑k (⇑i n) =∗1⇑k n =∗2 n + 1

(*1) by Definition 12 and n < i

(*2) by Definition 12 and (n ≥ k ⇒ n + 1 > k)

– subcase n ≥ k and n ≥ i :

Left-side:

⇑i+1 (⇑k n) =∗1⇑i+1 (n + 1) =∗2 n + 2

(*1) by Definition 12 and n ≥ k

(*2) by Definition 12 and (n ≥ i ⇒ n + 1 ≥ i + 1)

Right-side:

⇑k (⇑i n) =∗1⇑k (n + 1) =∗2 n + 2

(*1) by Definition 12 and n ≥ i

(*2) by Definition 12 and (n ≥ k ⇒ n + 1 > k)

• M = λ ·M′

By induction hypothesis: ⇑i+1 (⇑k M′) =⇑k (⇑i M′)

Left-side:

63

APPENDIX C.

⇑i+1 (⇑k λ ·M′) =∗1⇑i+1 (λ· ⇑k+1 M′) =∗2 λ ·(⇑i+2 (⇑k+1 M′)) =∗3 λ ·(⇑k+1 (⇑i+1 M′))

(*1) by Definition 12

(*2) by Definition 12

(*3) by induction hypothesis

Right-side:

⇑k (⇑i λ ·M′) =∗1⇑k (λ ⇑i+1 M′) =∗2 λ(⇑k+1 (⇑i+1 M′))

(*1) by Definition 12

(*2) by Definition 12

• M = M′M′′

By induction hypothesis: ⇑i+1 (⇑k M′) =⇑k (⇑i M′) and ⇑i+1 (⇑k M′′) =⇑k (⇑i M′′)

Left-side:

⇑i+1 (⇑k M′M′′) =∗1⇑i+1 ((⇑k M′)(⇑k M′′)) =∗2 (⇑i+1 (⇑k M′))(⇑i+1 (⇑k M′′)) =∗3
(⇑k (⇑i M′))(⇑i+1 (⇑k M′′)) =∗4 (⇑k (⇑i M′))(⇑k (⇑i M′′))

(*1) by Definition 12

(*2) by Definition 12

(*3) by induction hypothesis

(*4) by induction hypothesis

Right-side:

⇑k (⇑i M′M′′) =∗1⇑k ((⇑i M′)(⇑i M′′)) =∗2 (⇑k (⇑i M′))(⇑k (⇑i M′′))

(*1) by Definition 12

(*2) by Definition 12

64

APPENDIX C.

□

Lemma11. For allM ,N inΛdB andk , i inN0, if i ≥ k , then ⇑k (M[i := N]) = (⇑k M)[i+1 :=⇑k
N].

Proof. The proof of this lemma is an induction on M.

• M = n

– subcase n < i and n < k :

Left-side:

⇑k (n[i := N]) =∗1⇑k n =∗2 n

(*1) by Definition 13 and n < i

(*2) by Definition 12 and n < k

Right-side:

(⇑k n)[i + 1 :=⇑k N] =∗1 n[i + 1 :=⇑k N] =∗2 n

(*1) by Definition 12 and n < k

(*2) by Definition 13 and (n < i ⇒ n < i + 1)

– subcase n < i and n ≥ k :

Left-side:

⇑k (n[i := N]) =∗1⇑k n =∗2 n + 1

(*1) by Definition 13 and n < i

(*2) by Definition 12 and n ≥ k

Right-side:

(⇑k n)[i + 1 :=⇑k N] =∗1 (n + 1)[i + 1 :=⇑k N] =∗2 n + 1

(*1) by Definition 12 and n ≥ k

(*2) by Definition 13 and (n < i ⇒ n + 1 < i + 1)

65

APPENDIX C.

– subcase n = i and n < k : This subcase is impossible because i ≥ k .

– subcase n = i and n ≥ k :

Left-side:

⇑k (n[i := N]) =∗1⇑k N

(*1) by Definition 13 and n = i

Right-side:

(⇑k n)[i + 1 :=⇑k N] =∗1 (n + 1)[i + 1 :=⇑k N] =∗2⇑k N

(*1) by Definition 12 and n ≥ k

(*2) by Definition 13 and (n = i ⇒ n + 1 = i + 1)

– subcase n > i and n < k : This subcase is impossible because i ≥ k .

– subcase n > i and n = k : This subcase is impossible because i ≥ k .

– subcase n > i and n > k :

Left-side:

⇑k (n[i := N]) =∗1⇑k (n − 1) =2 n

(*1) by Definition 13 and n > i

(*2) by Definition 12 and (n > k ⇒ n − 1 ≥ k)

Right-side:

(⇑k n)[i + 1 :=⇑k N] =∗1 (n + 1)[i + 1 :=⇑k N] =∗2 n

(*1) by Definition 12 and n > k

(*2) by Definition 13 and (n > i ⇒ n + 1 > i + 1)

• M = λ ·M′

By induction hypothesis: ⇑k (M′[i := N]) = (⇑k M′)[i + 1 :=⇑k N]

66

APPENDIX C.

Left-side:

⇑k ((λ ·M′)[i := N]) =∗1⇑k (λ · (M′[i + 1 :=⇑0 N])) =∗2 λ· ⇑k+1 (M′[i + 1 :=⇑0 N]) =∗3
λ · ((⇑k+1 M′)[i + 2 :=⇑k+1 (⇑0 N)])

(*1) by Definition 13

(*2) by Definition 12

(*3) by induction hypothesis

Right-side:

(⇑k λ ·M′)[i + 1 :=⇑k N] =∗1 (λ· ⇑k+1 M′)[i + 1 :=⇑k N] =∗2 λ · ((⇑k+1 M′)[i + 2 :=⇑0
(⇑k N)]) =∗3 λ · ((⇑k+1 M′)[i + 2 :=⇑k+1 (⇑0 N)])

(*1) by Definition 12

(*2) by Definition 13

(*3) by Lemma 10

• M = M′M′′

By induction hypothesis: ⇑k (M′[i := N]) = (⇑k M′)[i + 1 :=⇑k N] and ⇑k (M′′[i := N]) =

(⇑k M′′)[i + 1 :=⇑k N]

Left-side:

⇑k ((M′M′′)[i := N]) =∗1⇑k (M′[i := N]M′′[i := N]) =∗2⇑k (M′[i := N]) ⇑k (M′′[i :=

N]) =∗3 (⇑k M′)[i + 1 :=⇑k N] ⇑k (M′′[i := N]) =∗4 (⇑k M′)[i + 1 :=⇑k N](⇑k
M′′)[i + 1 :=⇑k N]

(*1) by Definition 13

(*2) by Definition 12

(*3) by induction hypothesis

(*4) by induction hypothesis

Right-side:

67

APPENDIX C.

(⇑k (M′M′′))[i+1 :=⇑k N] =∗1 ((⇑k M′)(⇑k M′′))[i+1 :=⇑k N] =∗2 (⇑k M′)[i+1 :=⇑k
N](⇑k M′′)[i + 1 :=⇑k N]

(*1) by Definition 12

(*2) by Definition 13

□

Lemma 12. For allM ,N inΛdB and k , i inN0, if i ≥ k , then ⇑i (M[k := N]) = (⇑i+1 M)[k :=⇑i
N].

Proof. The proof of this lemma is an induction on M.

• M = n

– subcase n < k and n < i:

Left-side:

⇑i (n[k := N]) =∗1⇑i n =∗2 n

(*1) by Definition 13 and n < k

(*2) by Definition 12 and n < i

Right-side:

(⇑i+1 n)[k :=⇑i N] =∗1 n[k :=⇑i N] =∗2 n

(*1) by Definition 12 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and n < k

– subcase n < k and n ≥ i: This subcase is impossible because i ≥ k .

– subcase n = k and n > i: This subcase is impossible because i ≥ k .

– subcase n = k and n < i:

Left-side:

68

APPENDIX C.

⇑i (n[k := N]) =∗1⇑i N

(*1) by Definition 13 and n = k

Right-side:

(⇑i+1 n)[k :=⇑i N] =∗1 n[k :=⇑i N] =∗2⇑i N

(*1) by Definition 12 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and n = k

– subcase n = k and n = i:

Left-side:

⇑i (n[k := N]) =∗1⇑i N

(*1) by Definition 13 and n = k

Right-side:

(⇑i+1 n)[k :=⇑i N] =∗1 n[k :=⇑i N] =∗2⇑i N

(*1) by Definition 12 and (n = i ⇒ n < i + 1)

(*2) by Definition 13 and n = k

• M = λ ·M′

By induction hypothesis: ⇑i (M′[k := N]) = (⇑i+1 M′)[k :=⇑i N]

Left-side:

⇑i (λ ·M′[k := N]) =∗1⇑i λ · (M′[k + 1 :=⇑0 N]) =∗2 λ · (⇑i+1 (M′[k + 1 :=⇑0 N])) =∗3

=∗3 λ · ((⇑i+2 M′)[k + 1 :=⇑i+1 (⇑0 N)])

(*1) by Definition 13

(*2) by Definition 12

(*3) by induction hypothesis

69

APPENDIX C.

Right-side:

(⇑i+1 (λ ·M′))[k :=⇑i N] =∗1 (λ· ⇑i+2 M′)[k :=⇑i N] =∗2 λ · ((⇑i+2 M′)[k + 1 :=⇑0 (⇑i
N)]) =∗3

=∗3 λ · ((⇑i+2 M′)[k + 1 :=⇑i+1 (⇑0 N)])

(*1) by Definition 12

(*2) by Definition 13

(*3) by Lemma 10

• M = M′M′′

By induction hypothesis: ⇑i (M′[k := N]) = (⇑i+1 M′)[k :=⇑i N] and ⇑i (M′′[k := N]) =

= (⇑i+1 M′′)[k :=⇑i N]

Left-side:

⇑i (M′M′′[k := N]) =∗1⇑i (M′[k := N]M′′[k := N]) =∗2 (⇑i (M′[k := N]))(⇑i
(M′′[k := N])) =∗3

=∗3 ((⇑i+1 M′)[k :=⇑i N])(⇑i (M′′[k := N])) =∗4 ((⇑i+1 M′)[k :=⇑i N])((⇑i+1
M′′)[k :=⇑i N])

(*1) by Definition 13

(*2) by Definition 12

(*3) by induction hypothesis

(*4) by induction hypothesis

Right-side:

(⇑i+1 M′M′′)[k :=⇑i N] =∗1 (⇑i+1 M′ ⇑i+1 M′′)[k :=⇑i N] =∗2 ((⇑i+1 M′)[k :=⇑i
N])((⇑i+1 M′′)[k :=⇑i N])

(*1) by Definition 12

(*2) by Definition 13

70

APPENDIX C.

□

Lemma 13. (Substitution Lemma for De Bruijn λ-terms) For all M , N , Q in ΛdB and i, k in

N0, if i ≥ k , then

M[k := N][i := Q] = M[i + 1 :=⇑k Q][k := N [i := Q]]

Proof. The proof of this lemma is an induction on M .

• M = n

– subcase n < k and n < i:

Left-side:

(n[k := N])[i := Q] =∗1 n[i := Q] =∗2 n

(*1) by Definition 13 and n < k

(*2) by Definition 13 and n < i

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 n[k := N [i := Q]] =∗2 n

(*1) by Definition 13 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and n < k

– subcase n < k and n = i: This subcase is impossible because i ≥ k .

– subcase n < k and n > i: This subcase is impossible because i ≥ k .

– subcase n = k and n < i:

Left-side:

(n[k := N])[i := Q] =∗1 N [i := Q]

(*1) by Definition 13 and n = k

Right-side:

71

APPENDIX C.

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 n[k := N [i := Q]] =∗2 N [i := Q]

(*1) by Definition 13 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and n = k

– subcase n = k and n = i:

Left-side:

(n[k := N])[i := Q] =∗1 N [i := Q]

(*1) by Definition 13 and n = k

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 n[k := N [i := Q]] =∗2 N [i := Q]

(*1) by Definition 13 and (n = i ⇒ n < i + 1)

(*2) by Definition 13 and n = k

– subcase n = k and n > i: This subcase is impossible because i ≥ k .

– subcase n > k and n < i:

Left-side:

(n[k := N])[i := Q] =∗1 n − 1[i := Q] =∗2 n − 1

(*1) by Definition 13 and n > k

(*2) by Definition 13 and (n < i ⇒ n − 1 < i)

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 n[k := N [i := Q]] =∗2 n − 1

(*1) by Definition 13 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and n > k

– subcase n > k and n = i:

Left-side:

72

APPENDIX C.

(n[k := N])[i := Q] =∗1 n − 1[i := Q] =∗2 n − 1

(*1) by Definition 13 and n > k

(*2) by Definition 13 and (n = i ⇒ n − 1 < i)

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 n[k := N [i := Q]] =∗2 n − 1

(*1) by Definition 13 and (n < i ⇒ n < i + 1)

(*2) by Definition 13 and (n > k)

– subcase n > k , n > i and n − 1 = i:

Left-side:

(n[k := N])[i := Q] =∗1 n − 1[i := Q] =∗2 Q

(*1) by Definition 13 and n > k

(*2) by Definition 13 and (n − 1 = i ⇒ n − 1 < i)

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 (⇑k Q)[k := N [i := Q]] =∗2 Q

(*1) by Definition 13 and (n − 1 = i ⇒ n = i + 1)

(*2) by Lemma 9

– subcase n > k , n > i and n − 1 > i:

Left-side:

(n[k := N])[i := Q] =∗1 n − 1[i := Q] =∗2 n − 2

(*1) by Definition 13 and n > k

(*2) by Definition 13 and n − 1 > i

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1 (n − 1)[k := N [i := Q]] =∗2 n − 2

73

APPENDIX C.

(*1) by Definition 13 and (n − 1 > i ⇒ n > i + 1)

(*2) by Definition 13 and (n − 1 > i ∧ i ≥ k ⇒ n − 1 > k)

– subcase n > k , n > i and n − 1 = i:

Left-side:

(n[k := N])[i := Q] =∗1 n − 1[i := Q] =∗2 Q

(*1) by Definition 13 and n > k

(*2) by Definition 13 and n − 1 = i

Right-side:

(n[i + 1 :=⇑k Q])[k := N [i := Q]] =∗1⇑k Q[k := N [i := Q]] =∗2 Q

(*1) by Definition 13 and (n − 1 = i ⇒ n = i + 1)

(*2) by Lemma 9

• M = λ ·M′

By induction hypothesis: M′[k := N][i := Q] = M′[i + 1 :=⇑k Q][k := N [i := Q]]

Left-side:

(λ · M′)[k := N][i := Q] =∗1 (λ · (M′[k + 1 :=⇑0 N]))[i := Q] =∗2 λ · ((M′[k + 1 :=⇑0
N])[i + 1 :=⇑0 Q]) =∗3 λ · (M′[i + 2 :=⇑k+1 (⇑0 Q)][k + 1 := (⇑0 N)[i + 1 :=⇑0 Q]])

(*1) by Definition 13

(*2) by Definition 13

(*3) by induction hypothesis

Right-side:

(λ · M′)[i + 1 :=⇑k Q][k := N [i := Q]] =∗1 (λ · (M′[i + 2 :=⇑0 (⇑k Q)]))[k := N [i :=

Q]] =∗2 λ · (M′[i +2 :=⇑0 (⇑k Q)][k + 1 :=⇑0 (N [i := Q])]) =∗3 λ · (M′[i +2 :=⇑k+1 (⇑0
Q)][k + 1 :=⇑0 (N [i := Q])]) =∗4 λ · (M′[i +2 :=⇑k+1 (⇑0 Q)][k + 1 := (⇑0 N)[i + 1 :=⇑0
Q]])

74

APPENDIX C.

(*1) by Definition 13

(*2) by Definition 13

(*3) by Lemma 10

(*4) by Lemma 11

• M = M′M′′

By induction hypothesis: M′[k := N][i := Q] = M′[i + 1 :=⇑k Q][k := N [i := Q]] and

M′′[k := N][i := Q] = M′′[i + 1 :=⇑k Q][k := N [i := Q]]

Left-side:

(M′M′′)[k := N][i := Q] =∗1 (M′[k := N]M′′[k := N])[i := Q] =∗2 (M′[k := N][i :=

Q])(M′′[k := N][i := Q]) =∗3 (M′[i + 1 :=⇑k Q][k := N [i := Q]])(M′′[k := N][i :=

Q]) =∗4 (M′[i + 1 :=⇑k Q][k := N [i := Q]])(M′′[i + 1 :=⇑k Q][k := N [i := Q]])

(*1) by Definition 13

(*2) by Definition 13

(*3) by induction hypothesis

(*4) by induction hypothesis

Right-side:

(M′M′′)[i + 1 :=⇑k Q][k := N [i := Q]] =∗1 (M′[i + 1 :=⇑k Q]M′′[i + 1 :=⇑k Q])[k :=

N [i := Q]] =∗2 (M′[i + 1 :=⇑k Q][k := N [i := Q]])(M′′[i + 1 :=⇑k Q][k := N [i := Q]])

(*1) by Definition 13

(*2) by Definition 13

□

Lemma 15. The rules (aux1) and (aux2) on Figure 4 are admissible.

75

APPENDIX C.

Proof. Proof of the admissibility of (aux1). The proof is an induction on M1 →n M2.

In the (β) case, M1 = (λ · M0)M3 and M2 = M0[0 := M3]. We want to prove ⇑k ((λ ·

M0)M3) →n⇑k (M0[0 := M3]). By Definition 12:

⇑k ((λ ·M0)M3) =⇑k (λ ·M0) ⇑k M3 = (λ· ⇑k+1 M0) ⇑k M3

→n (⇑k+1 M0)[0 :=⇑k M3]

=⇑k (M0[0 := M3])

where the last reduction follows immediately from (β), and the last equailty is justified by Lemma 12.

In the (µ) case,M1 = M0M3 andM2 = M4M3. We want to prove ⇑k (M0M3) →n⇑k (M4M3).

By Definition, 12 ⇑k (M0M3) = (⇑k M0)(⇑k M3) and ⇑k (M4M3) = (⇑k M4)(⇑k M3). By

induction hypothesis associated to the hypothesis M0 →n M4 follows (⇑k M0) →n (⇑k M4). Then

(⇑k M0)(⇑k M3) →n (⇑k M4)(⇑k M3) follows immediately from (µ).

Proof of the admissibility of (aux2). The proof is an induction on M →∗n N .

In the base case we have by hypothesis M →n N . Then by the previous admissible rule follows:

(⇑k M) →n (⇑k N) ⊆ (⇑k M) →∗n (⇑k N)

The reflexive case just uses the fact that→∗n is reflexive.

In the transitive case we have by hypothesis M →∗n P →∗n N . By induction hypothesis associated

to the hypothesis M →∗n P follows ⇑k M →∗n⇑k P . And using the induction hypothesis associated

to the hypothesis P →∗n N follows ⇑k P →∗n⇑k N . Using the fact that→∗n is transitive we conclude

⇑k M →∗n⇑k N .

□

Lemma 16. Rule (aux3) of Figure 4 is admissible.

Proof. By induction onM ⇒n N .

The VAR case follows immediately from rule (1).

In the ABS case M = λ · M0 and N = λ · N0. We want to prove, ⇑k (λ · M0) ⇒n (λ · N0). By

Definition 12:

⇑k (λ ·M0) = λ · (⇑k+1 M0)

76

APPENDIX C.

⇑k (λ · N0) = λ · (⇑k+1 N0)

From induction hypothesis, ⇑k+1 M0 ⇒n⇑k+1 N0. Then we conclude by ABS , λ · (⇑k+1 M0) ⇒n

λ · (⇑k+1 N0).

In the APL case, M = M1N1 and N = M2N2. We want to prove ⇑k (M1N1) ⇒n⇑k (M2N2).

From Definition 12, we have the equalities:

⇑k (M1N1) =⇑k M1 ⇑k N1

⇑k (M2N2) =⇑k M2 ⇑k N2

From induction hypothesis associated with the hypothesis M1 ⇒n M2 follows ⇑k M1 ⇒n⇑k M2.

And associated with the hypothesis N1 ⇒n N2 follows ⇑k N1 ⇒n⇑k N2. Finally we apply APL to

conclude ⇑k M1 ⇑k N1 ⇒n⇑k M2 ⇑k N2.

In the RDX case, M = M1P . We want to prove ⇑k (M1P) ⇒n⇑k N and by Definition 12 ⇑k
(M1P) =⇑k M1 ⇑k P . Applying Lemma 15 to the hypothesis M1 →∗n λ ·M2 we obtain:

⇑k M1 →∗n⇑k (λ ·M2)

= λ · (⇑k+1 M2)

Where the last equality is justified by Definition 12. By Lemma 12 and using the fact that k ≥ 0, we have

⇑k (M2[0 := P]) = (⇑k+1 M2)[0 :=⇑k P]. By induction hypothesis ⇑k (M2[0 := P]) ⇒n⇑k N .

Applying the RDX rule with the hypothesis ⇑k M1 →∗n λ · (⇑k+1 M2) and (⇑k+1 M2)[0 :=⇑k
P] ⇒n⇑k N we conclude ⇑k M1 ⇑k P ⇒n⇑k N .

□

Lemma 18. The rules (1) and (2) of Figure 3 are admissible.

Proof. Proof of the admissibility of (1). The proof of this rule is very similar to the proof of the first admissible

rule of Lemma 5. For this reason the details of the proof will be omitted.

Proof of the admissibility of (2). The proof of the admissibility of (2) is by induction onM ⇒n M′.

In the VAR case, we have three possible cases, i < i0, i = i0 or i > i0.

In the first one, by Definition 13:

77

APPENDIX C.

i0[N /i] = i0 − 1

i0[N ′/i] = i0 − 1

Then by VAR, i0 − 1⇒n i0 − 1.

In the second one by Definition 13:

i0[N /i] = N

i0[N ′/i] = N ′

Then by hypothesis N ⇒n N ′.

In the last one, by Definition 13:

i0[N /i] = i0

i0[N ′/i] = i0

Then from VAR follows i0 ⇒n i0.

InABS case,M = λ·M1 andM
′ = λ·M′1. We want to prove, (λ·M1)[i := N] ⇒n (λ·M′1)[i := N ′].

By Definition 13 follows the equalities:

(λ ·M1)[i := N] = λ · (M1[i + 1 :=⇑0 N])

(λ ·M′1)[i := N ′] = λ · (M′1[i + 1 :=⇑0 N ′])

By Lemma 16 and take k = 0 with the hypothesis N ⇒n N ′ follows (⇑0 N) ⇒n (⇑0 N ′). By

induction hypothesis associated to the hypothesisM1 ⇒n M′1 and the hypothesis (⇑0 N) ⇒n (⇑0 N ′)

follows ∀i0 ∈ N, M1[i0 :=⇑0 N] ⇒n M′1[i0 :=⇑0 N ′]. Take i0 = i + 1, M1[i + 1 :=⇑0 N] ⇒n

M′1[i + 1 :=⇑0 N ′]. Finally by ABS , λ · (M1[i + 1 :=⇑0 N]) ⇒n λ · (M′1[i + 1 :=⇑0 N ′]).

In the APL case, M = M1M3 and M′ = M2M4. We want to prove, (M1M3)[i := N] ⇒n

(M2M4)[i := N ′]. By Definition 13 follows:

(M1M3)[i := N] = (M1[i := N])(M3[i := N])

78

APPENDIX C.

(M2M4)[i := N ′] = (M2[i := N ′])(M4[i := N ′])

By induction hypothesis, M1[i := N] ⇒n M2[i := N ′] and M3[i := N] ⇒n M4[i := N ′]. Then

from APL we conclude (M1[i := N])(M3[i := N]) ⇒n (M2[i := N ′])(M4[i := N ′]).

In the RDX case, M = M1M3. and we want to prove M1M3[i := N] ⇒n M′[i := N ′]. By

Definition 13 M1M3[i := N] = M1[i := N]M3[i := N]. By induction hypothesis associated to the

hypothesisM2[0 := M3] ⇒n M′ and N ⇒n N ′ follows, (M2[0 := M3])[i := N] ⇒n M′[i := N ′].

By the Substitution Lemma 13:

(M2[0 := M3])[i := N] = (M2[i + 1 :=⇑0 N])[(M3[i := N]) := 0]

Applying (aux5) to the hypothesis M1 →∗n λ ·M2 follows:

M1[i := N] →∗n (λ ·M2)[i := N]

= λ · (M2[i + 1 :=⇑0 N])

where the last equality is justified by Definition 13. Finally by RDX with the hypothesis:

M1[i := N] →∗n λ · (M2[i + 1 :=⇑0 N])

(M2[i + 1 :=⇑0 N])[(M3[i := N]) := 0] ⇒n M′[i := N ′]

we conclude,M1[i := N]M3[i := N] ⇒n M′[i := N ′].

□

79

Appendix D

In this Appendix we have the details of the proofs of some results described in Chapter 5.

Lemma 22. For all L1, L2, L3 in L(Λ),

App(App(L1, L2), L3) = App(L1,App(L2, L3)).

Proof. By induction on list L1.

In the case whereL1 is the empty list, we want to prove,App(App([], L2), L3) = App([],App(L2, L3)).

The equality is prove by developing both sides of the equality:

Left-side:

App(App([], L2), L3) =∗1 App(L2, L3)

(∗1) by Definition 16

Right-side:

App([],App(L2, L3)) =∗1 App(L2, L3)

(∗1) by Definition 16

In case where L1 = M :: L′1, for someM ∈ λ-term and L′1 ∈ Γ. We want to prove,

App(App(M :: L′1, L2), L3) = App(M :: L′1,App(L2, L3))

.

By induction hypothesis, App(App(L′1, L2), L3) = App(L′1,App(L2, L3)) .Once again, the equality

is prove by developing both sides of the equality:

80

APPENDIX D.

Left-side:

App(App(M :: L′1, L2), L3) =∗1 App(M :: App(L′1, L2), L3) =∗2 M :: App(App(L′1, L2), L3) =∗3
M :: App(L′1,App(L2, L3))

(∗1) by Definition 16

(∗2) by Definition 16

(∗3) by induction hypothesis

Right-side:

App(M :: L′1,App(L2, L3)) =∗1 M :: App(L′1,App(L2, L3))

(∗1) by Definition 16

□

Lemma 23. For all L1, L2 ∈ L(Λ), and x ∈ V , Abs(x, L1 :: L2) = Abs(x, L1) :: Abs(x, L2)

Proof. By induction on L1.

In the case where L1 = [], we want to prove, Abs(x, [] :: L2) = Abs(x, []) :: Abs(x, L2). The

equality is proved by developing both sides of the equality:

Left-side:

Abs(x, [] :: L2) = Abs(x, L2)

Right-side:

Abs(x, []) :: Abs(x, L2) = [] :: Abs(x, L2) = Abs(x, L2)

In the case where L1 = M :: L′1, for someM ∈ λ-term and L′1 ∈ Γ. We want to prove, Abs(x, (M ::

L′1) :: L2) = Abs(x, (M :: L′1)) :: Abs(x, L2). The prove is made by developing both sides of the

equality:

Left-side:

Abs(x, (M :: L′1) :: L2) = λx ·M :: Abs(x, L′1 :: L2) = λx ·M :: Abs(x, L′1) :: Abs(x, L2)

Right-side:

Abs(x, (M :: L′1)) :: Abs(x, L2) = λx ·M :: Abs(x, L′1) :: Abs(x, L2)

81

APPENDIX D.

The first equality of both sides follows from Definition 17, and the second one from left-side follows

from the induction hypothesis, Abs(x, L′1 :: L2) = Abs(x, L′1) :: Abs(x, L2).

□

Lemma 24. For all L1, L2 ∈ L(Λ),

1. Apl f (M, L1 :: L2) = Apl f (M, L1) :: Apl f (M, L2)

2. Apla(L1 :: L2,M) = Apla(L1,M) :: Apl f (L2,M)

Proof. Proof of 1. The proof is an induction on L1.

In the case where L1 = [], we want to prove, Apl f (M, [] :: L2) = Apl f (M, []) :: Apl f (M, L2).

The prove is made by developing both sides of the equality.

Left-side:

Apl f (M, [] :: L2) = Apl f (M, L2)

Right-side:

Apl f (M, []) :: Apl f (M, L2) = [] :: Apl f (M, L2) = Apl f (M, L2)

The first equality from the right-side follows by Definition 19.

In the case where L1 = M′ :: L′1, for some M′ ∈ λ-term and L′1 ∈ Γ, we want to prove,

Apl f (M, (M′ :: L′1) :: L2) = Apl f (M,M′ :: L′1) :: Apl f (M, L2). Once again the prove is made

by developing both sides of the equality:

Left-side:

Apl f (M, (M′ :: L′1) :: L2) = MM′ :: Apl f (M, L′1 :: L2) = MM′ :: Apl f (M, L′1) :: Apl f (M, L2)

Right-side:

Apl f (M,M′ :: L′1) :: Apl f (M, L2) = MM′ :: Apl f (M, L′1) :: Apl f (M, L2)

The second equality of the left-side follows from the induction hypothesis, Apl f (M, L′1 :: L2) =

Apl f (M, L′1) :: Apl f (M, L2). The others follows from Definition 19.

Proof of 2. The proof is also an induction on L1 and is analogous to the previous proof.

□

Lemma 25. For allM in λ-term,M s.r.s.

82

APPENDIX D.

Proof. The proof of this lemma is an induction on M .

The case whereM is a variable follows immediately by VAR′.

In the case where M is an abstraction, M have the form M = λx · M′. We want to prove λx ·

M′ s.r.s. By induction hypothesis, M′ s.r.s. Then by ABS′ follows Abs(x,M′) s .r .s . By Definition 17,

Abs(x,M′) s .r .s . = λx ·M′ s .r .s.

In the case where M is an application, M = M1M2. We want to prove M1M2 s.r.s. By induction

hypothesis,M1 s.r.s. andM2 s.r.s. It is obvious that, [] :: M1 = M1 andM2 :: [] = M2. Then by APL
′

follows Apla([],M2) :: M1M2 :: Apl f (M1, []) s .r .s .. finally by Definitions 18 and 19 follows:

(Apla([],M2) :: M1M2 :: Apl f (M1, [])) s .r .s . = M1M2 s .r .s .

□

Lemma 26. For allM , N ∈ Λ and L ∈ L(Λ), ifM :: N :: L s.r.s., then N :: L s.r.s.

Proof. The proof of this lemma is an induction on M :: N :: L s.r.s.

The VAR′ case is impossible.

In theABS′ case,Abs(x,M0 :: N0 :: L0) s .r .s .. By hypothesis,M0 :: N0 :: L0 s .r .s .. By Definition

17, Abs(x,M0 :: N0 :: L0) = λx ·M0 :: λx · N0 :: Abs(x, L0). So, M = λx ·M0, N = λx · N0 and

L = Abs(x, L0). By induction hypothesis,N0 :: L0 s.r.s.. Then byABS′ followsAbs(x,N0 :: L0) s .r .s ..

Finally by Definition 17 follows:

Abs(x,N0 :: L0) = λx · N0 :: Abs(x, L0).

In the APL′ case, Apla(L0,N0) :: M0N0 :: Apl f (M0, L
′
0) s .r .s .. By hypothesis L0 :: M0 s .r .s .

and N0 :: L′0 s .r .s .. Then when we analyse all possible subcases we have the subcase where L0 =

M1 :: L1 and the subcase where L0 = [] and L′0 = N1 :: L′1.

In the first one, by Definition 18 follows the equality:

Apla(M1 :: L1,N0) :: M0N0 :: Apl f (M0, L
′
0) = M1N0 :: Apla(L1,N0) :: M0N0 :: Apl f (M0, L

′
0)

By inversion on L1 follows, L1 = [] or L1 = M2 :: L2.

If L1 = [], follows the equality:

83

APPENDIX D.

M1N0 :: Apla([],N0) :: M0N0 :: Apl f (M0, L
′
0) s .r .s . = M1N0 :: M0N0 :: Apl f (M0, L

′
0)

Then we have,M = M1N0, N = M0N0 and L = Apl f (M0, L
′
0).

Finally by APL′ with the hypothesis, M0 s .r .s . and N0 :: L′0 s .r .s . follows:

M0N0 :: Apl f (M0, L
′
0) s .r .s ..

If L1 = M2 :: L2, by Definition 18 follows the equality:

Apla(M1 :: M2 :: L2,N0) :: M0N0 :: Apl f (M0, L
′
0) s .r .s . = M1N0 :: M2N0 :: Apla(L2,N0) ::

M0N0 :: Apl f (M0, L
′
0)s .r .s .

Then we have,M = M1N0, N = M2N0 and L = Apla(L2,N0) :: M0N0 :: Apl f (M0, L
′
0).

By induction hypothesis, associated to the hypothesis M1 :: M2 :: L2 :: M0 follows:

M2 :: L2 :: M0 s.r.s.

Finally from applying the hypotheses M2 :: L2 :: M0 s .r .s . and N0 :: L′0 s .r .s . to APL′ follows:

Apla(M2 :: L2,N0) :: M0N0 :: Apl f (M0, L
′
0) s .r .s . = M2N0 :: Apla(L2,N0) :: M0N0 ::

Apl f (M0, L
′
0)s .r .s .

The equality is justified by Definition 18.

In the second possible subcase, we have L0 = [] and L′0 = N1 :: L′1. By Definition 19 follows the

equality:

Apla([],N0) :: M0N0 :: Apl f (M0,N1 :: L′1) s .r .s . = M0N0 :: M0N1 :: Apl f (M0, L
′
1),

By induction hypothesis, associated to the hypothesis N0 :: N1 :: L′1 s.r.s. follows, N1 :: L′1 s.r.s.

Finally applying the hypothesis M0 s .r .s . and N1 :: L′1 s .r .s . to APL′, we conclude:

Apla([],N1) :: M0N1 :: Apl f (M0, L
′
1) = M0N1 :: Apl f (M0, L

′
1)

84

APPENDIX D.

In the RDX ′ case, from the hypothesis, follows immediately N :: L s.r.s.

□

Lemma 27. For allM , N in Λ and L in L(Λ), ifM :: N :: L s.r.s., thenM :: N s.r.s.

Proof. The proof of this Lemma is an induction on M :: N :: L s.r.s.

The VAR′ case is impossible.

In the ABS′ case, Abs(x,M0 :: N0 :: L0) s .r .s . By hypothesis,M0 :: N0 :: L0 s .r .s . By Definition

17, Abs(x,M0 :: N0 :: L0) = λx ·M0 :: λx · N0 :: Abs(x, L0). So, M = λx ·M0, N = λx · N0 and

L = Abs(x, L0). By induction hypothesis,M0 :: N0 s.r.s. From applying the hypothesisM0 :: N0 s .r .s .

to ABS′ follows:

Abs(x,M0 :: N0) s .r .s . = λx ·M0 :: λx · N0

where the equality is justified by Definition 17.

In the APL′ case, Apla(L0,N0) :: M0N0 :: Apl f (M0, L
′
0) s .r .s .. By hypotheses, L0 :: M0 s .r .s .

and N0 :: L′0 s .r .s ..

Then we analyse all possible subcases for the lists L0 and L′0.

The subcase where, L0 = [] and L′0 = [] is impossible.

If L0 = [] and L′0 = N1 :: L′1, by Definition 19 follows the equality:

Apla([],N0) :: M0N0 :: Apl f (M0,N1 :: L′1) = M0N0 :: M0N1 :: Apl f (M0, L
′
1)

Where, M = M0N0, N = M0N1 and L = Apl f (M0, L
′
1). Then by induction hypothesis associated

to the hypothesis, N0 :: N1 :: L′1 s.r.s. follows, N0 :: N1 s.r.s.

Finally applying the hypothesesM0 s .r .s . and N0 :: N1 s .r .s . to APL′ follows:

Apla([],N0) :: M0N0 :: Apl f (M0,N1) s .r .s . = M0N0 :: M0,N1 s .r .s .

The equality is justified by Definition 19.

If L0 = M1 :: L1 and L′0 = [], then by Definition 18 follows:

Apla(M1 :: L1,N0) :: M0N0 :: Apl f (M0, []) = M1N0 :: Apla(L1,N0) :: M0N0

85

APPENDIX D.

Now one of two things can happen, L1 = [] or L1 = M2 :: L2.

In the first one, we have the equality:

M1N0 :: Apla([],N0) :: M0N0 s .r .s . = M1N0 :: M0N0 s .r .s .

Where,M = M1N0, N = M0N0 and L = [].

In the second one, by Definition 18 follows the equality:

M1N0 :: Apla(M2 :: L2,N0) :: M0N0 :: Apl f (M0, []) s .r .s . = M1N0 :: M2N0 :: Apla(L2,N0) ::

M0N0 s .r .s .

WhereM = M1N0, N = M2N0 and L = Apla(L2,N0) :: M0N0.

By induction hypothesis, associated to the hypothesis, M1 :: M2 :: L2 :: M0 s .r .s . follows, M1 ::

M2 s .r .s .

Finally applying the hypotheses,M1 :: M2 s .r .s . and N0 s .r .s . to APL′ follows:

Apla(M1,N0) :: M2N0 :: Apla(M2, []) s .r .s . = M1N0 :: M2N0 s .r .s .

The equality is justified by Definition 18.

If L0 = M1 :: L1 and L′0 = N1 :: L′1, then by Definitions 18 and 19 follows the equality:

Apla(M1 :: L1,N0) :: M0N0 :: Apl f (M0,N1 :: L′1) s .r .s . = M1N0 :: Apla(L1,N0) :: M0N0 ::

M0N1 :: Apl f (M0, L
′
1) s .r .s .

Now one of two things can happen, L1 = [] or L1 = M2 :: L2.

In the first one, we have:

M1N0 :: M0N0 :: M0N1 :: Apl f (M0, L
′
1) s .r .s .

WhereM = M1N0, N = M0N0 and L = M0N1 :: Apl f (M0, L
′
1).

Finally applying the hypothesesM1 :: M0 s .r .s . and N0 :: [] s .r .s . to APL′ follows:

Apla(M1,N0) :: M0N0 :: Apl f (M0, []) = M1N0 :: M0N0

The equality is justified by Definition 18.

In the second one, by Definitions 18 and 19 follows:

86

APPENDIX D.

Apla(M1 :: M2 :: L2,N0) :: M0N0 :: Apl f (M0,N1 :: L′1) s .r .s . = M1N0 :: M2N0 ::

Apla(L2,N0) :: M0N0 :: M0N1 :: Apl f (M0, L
′
1) s .r .s .

WhereM = M1N0, N = M2N0 and L = Apla(L2,N0) :: M0N0 :: M0N1 :: Apl f (M0, L
′
1).

By induction hypothesis, associated to the hypothesis, M1 :: M2 :: L2 :: M0 s .r .s ., follows M1 ::

M2 s .r .s ..

Finally applying the hypothesesM1 :: M2 s .r .s . and N0 s .r .s . to APL′ follows:

Apla(M1,N0) :: M2N0 :: Apl f (M2, []) s .r .s . = M1N0 :: M2N0 s .r .s .

The equality is justified by Definition 18.

In the RDX ′ case,M :: (N :: L) s .r .s .. By hypotheses, M →n N and N :: L s .r .s .

Then applying the hypothesesM →n N and N :: [] s .r .s . to RDX ′ follows,M :: N s .r .s .

□

Lemma 28. For allM , N in Λ, ifM :: N s.r.s., thenM ⇒n N .

Proof. The proof of this Lemma is an induction on M :: N s.r.s.

The VAR′ case is impossible.´

In theABS′ case,Abs(x,M0 :: N0) s .r .s .. By hypothesisM0 :: N0 s .r .s .. By Definition 17 follows:

Abs(x,M0 :: N0) = λx ·M0 :: λx · N0

So, M = λx · M0 and N = λx · N0. By induction hypothesis, M0 ⇒n N0. Then by ABS follows

λx ·M0 ⇒n λx · N0.

In the APl′ case, Apla(L1,N1) :: M1N1 :: Apl f (M1, L2) s .r .s .. By hypothesis, L1 :: M1 s .r .s .

and N1 :: L2 s .r .s .. In this case we have two possible subcases, L1 = M2 and L2 = [], or L1 = [] and

L2 = N2.

In the first one,M = M2N1 and N = M1N1. By induction hypothesis,M2 ⇒n M1. By (1), follows

N1 ⇒n N1. Then by APL, we concludeM2N1 ⇒n M1N1.

In the second one,M = M1N1 and N = M1N2. By induction hypothesis, N1 ⇒n N2. Then by (1)

followsM1 ⇒n M1. Finally by APL we conclude,M1N1 ⇒n M1N2.

In the RDX ′ case, we have by hypothesisM →n N and N :: [] s .r .s .. We conclude thatM ⇒n N

using the Standardization Theorem and using the fact that→n⊆→∗n⊆→∗β .

87

APPENDIX D.

□

Lemma 29. For allM , N and P in Λ,

M →∗n1 N N →∗n1 P
M →∗n1 P

Proof. By induction onM →∗n1 N .

The REF ′ case, follows immediately from the hypothesis M →∗n1 P .

In the BASE/TRANS′, we have by hypothesis M →n Q , Q →∗n1 N and N →∗n1 P .

By induction hypothesis associated to the hypotheses Q →∗n1 N and N →∗n1 P follows:

Q →∗n1 P

Then by BASE/TRANS′ associated to M →n Q and Q →∗n1 P follows,M →∗n1 P .

□

Lemma 30. For allM and N in Λ,M →∗n N iffM →∗n1 N .

Proof. In order to prove this Lemma, we will prove both directions of the equivalence.

The ”only if”direction is proved by induction on M →∗n N .

In the base case, we have by hypothesis M →n N . By REF ′ follows N →∗n1 N . Then applying

BASE/TRAN ′ with the hypotheses M →n N and N →∗n1 N follows:

M →∗n1 N .

The reflexive case follows immediately from REF ′ to conclude,M →∗n1 M

In the transitive case, we have by hypothesis, M →∗n P and P →∗n N . By induction hypotheses

follows,M →∗n1 P and P →∗n1 N . Then from Lemma 29 follows immediately:

M →∗n1 N .

The ”if”direction is proved by induction on M →∗n1 N .

The REF ′ case follows immediately from REF , to concludeM →∗n M .

In the BASE/TRANS′ case, we have by hypothesisM →n P and P →∗n1 N . It is easy to see that:

M →n P ⊆ M →∗n P

88

APPENDIX D.

By induction hypothesis associated to the hypothesis P →∗n1 N follows P →∗n N . Applying TRANS

with the hypothesis M →∗n P and P →∗n N follows:

M →∗n N

□

Theorem 4. For allM , N in Λ,

1. IfM ⇒n N , thenM = N or for some list L,M :: L :: N is a standard reduction sequence (s.r.s.);

2. For anyM :: L s.r.s., L = [] or L = L′ :: N (for some list L’ and term N), and M ⇒n N .

Proof. Proof of 1. The proof is a induction on M ⇒n N .

In the VAR case we have x = x .

In the ABS case (M = λx · M′ and N = λx · N ′), we have by induction hypotheses M′ = N ′ or

M′ :: L′ :: N ′ s.r.s, for some list L′.

In the first subcase, follows immediately:

λx ·M′ = λx · N ′⇔ λx ·M′ = λx ·M′

In the second one, by ABS′ follows, Abs(x,M′ :: L′ :: N ′) s .r .s. Then by Definition 17 and Lemma

23, we have the equalities:

Abs(x,M′ :: L′ :: N ′) = Abs(x,M′) :: Abs(x, L′) :: Abs(x,N ′) = λx ·M′ :: Abs(x, L′) :: λx ·N ′

Then just take, L = Abs(x, L′) to obtain λx ·M′ :: Abs(x, L′) :: λx · N ′ s.r.s.

In the APL case, M = M1N1 and N = M2N2. We have by induction hypothesis associated to the

hypothesisM1 ⇒n M2, (M1 :: L1) :: M2 s.r.s., for some list L1, or M1 = M2).

In the first subcase, we have (M1 :: L1) :: M2 s.r.s., for some list L1. Then by induction hypothesis

associated to the hypothesis N1 ⇒n N2 follows, (N1 :: L2) :: N2 s.r.s., for some list L2, or N1 = N2).

If (N1 :: L2) :: N2 s.r.s., for some list L2. Then by APL
′ follows:

Apla(M1 :: L1,N1)@M2N1@Apl f (M2, L2 :: N2) s .r .s . = (M1N1) :: Apla(L1,N1) :: M2N1 ::

Apl f (M2, L2) :: (M2N2) s .r .s .

89

APPENDIX D.

The last equality is justified by Definitions 18 and 19.

Then just take, L = Apla(L1,N1) :: M2N1 :: Apl f (M2, L2).

If N1 = N2, by APL
′ follows:

Apla(M1 :: L1,N1) :: M2N1 :: Apl f (M2, []) s .r .s . = M1N1 :: Apla(L1,N1) :: M2N2 s .r .s .

The last equality is justified by Definition 18 an by the hypothesis, N1 = N2.

Then just take, L = Apla(L1,N1).

In the second subcase , we have the hypothesis M1 = M2. Then by induction hypothesis associated

to the hypothesis N1 ⇒n N2 follows, (N1 :: L2) :: N2 s.r.s., for some list L2, or N1 = N2).

If (N1 :: L2) :: N2 s.r.s., for some list L2. By APL
′ follows:

Apla([],N1)@M1N1@Apl f (M1, L1 :: N2) s .r .s . = M1N1 :: Apl f (M1, L1) :: M2N2 s .r .s .

The equality is justified by Definition 19 and the hypothesis M1 = M2.

Then just take, L = Apl f (M1, L1).

Finally if N1 = N2, follows immediately:

M1N1 = M1N2 ⇔ M1N2 = M1N2

In theRDX case, we haveM = QS . By induction hypothesis associated to the hypothesisQ′[S/x] ⇒n

N follows, Q′[S/x] :: L′ :: N s.r.s., for some list L′, or Q′[S/x] = N .

In the first subcase, we have Q′[S/x] :: L′ :: N s.r.s.

Then by subinduction on Q →∗n λx · Q′, follows two possible subcases, the reflexive or the base/-

transitive.

In the reflexive subcase, we have by hypothesis Q = λx ·Q′.

By the β reduction rule (β) follows:

(λx ·Q′)S →n Q′[S/x]

90

APPENDIX D.

Then by RDX ′ applying with the hypothesis (λx · Q′)S →n Q′[S/x] and Q′[S/x] ⇒n N , follows,

(λx ·Q′)S :: (Q′[S/x] :: (L′ :: N)) s .r .s .

Then just take, L = Q′[S/x] :: L′.

In the base/transitive case, we have by hypothesis Q →n P and P →∗n λx ·Q′.

Then applying RDX to the hypothesis P →∗n λx · Q′ and Q′[S/x] ⇒n N , follows, PS ⇒n N . By

induction hypothesis:

PS :: L1 :: N s .r .s ., for some list L1, or PS = N

If PS :: L1 :: N s .r .s ., for some list L1, from the hypothesisQ →n P and by (µ) follows,QS →n PS .

Then applying the hypothesesQS →n PS and PS :: (L1 :: N) s .r .s . to RDX ′ follows,QS :: (PS ::

(L1 :: N)) s .r .s .

The we just take, L = PS :: L1 :: N .

If PS = N , from the hypothesis Q →n P and (µ) follows, QS →n PS .

Then by applying the hypotheses QS →n PS and PS s .r .s . to RDX ′ follows, QS :: PS s .r .s .

Then we just take, QS :: L :: PS , for L = [].

In the subcase where, Q′[S/x] = N , by subinduction on Q →∗n λx · Q′, follows two possible

subcases, the reflexive or the base/transitive.

In the reflexive subcase, we have by hypothesis Q = λx ·Q′.

By the β reduction rule (β) follows:

(λx ·Q′)S →n Q′[S/x]

Then by RDX ′, (λx ·Q′)S :: Q′[S/x] s .r .s ..

Then just take, (λx ·Q′)S :: L :: Q′[S/x] s .r .s ., for L = [].

In the base/transitive subcase, we have by hypothesis Q →n P and P →∗n λx · Q′. Then applying

RDX to the hypothesis P →∗n λx · Q′ and Q′[S/x] ⇒n N , follows, PS ⇒n N . Then by induction

hypothesis:

PS :: L1 :: Q′[S/x], for some list L1, or PS = Q′[S/x]

91

APPENDIX D.

If PS :: L1 :: Q′[S/x], for some list L1, by the hypothesis Q →n P and (µ) follows, QS →n PS .

Then applying the hypotheses QS →n PS and PS :: (L1 :: Q′[S/x]) s .r .s . to RDX ′ follows:

QS :: (PS :: (L1 :: Q′[S/x])) s .r .s .

Then we just take, QS :: L :: Q′[S/x] s.r.s., for L = PS :: L1.

If PS = Q′[S/x], by the hypothesis Q →n P and (µ) follows, QS →n PS . Then applying the

hypotheses QS →n PS and PS s .r .s . to RDX ′ follows, QS :: PS s .r .s ..

The we just take, QS :: L :: PS , for L = [].

Proof of 2. The proof is a induction on L, and consists in find a list L′ and a term N that satisfies the

equality (L = L′ :: N) and the relation (M ⇒n N).

The case where L = [] is trivial.

In case where L = M0 :: L0, for some list L0, by Lemma 26 and the hypothesis M :: M0 ::

L0 s .r .s ., followsM0 :: L0 s .r .s .. By induction hypothesis, associated to the hypothesisM0 :: L0 s .r .s .

follows:

L0 = [] or (L0 = L′0 :: N0, for some L′0 list and λ-term N0, and M0 ⇒n N0).

In the first subcase, we just consider L′ = [] and N = M0. Then by Lemma 28 with the hypothesis

M :: M0 s .r .s ., follows,M ⇒n M0.

In the second one, we consider L′ = M0 :: L′0 and N = N0. Then from applying Lemma 27

to the hypothesis M :: M0 :: L′0 :: N0 s .r .s . follows, M :: M0 s .r .s . The by Lemma 28 follows

immediately M ⇒n M0. Finally applying Lemma 1, to the hypothesis, M ⇒n M0 and M0 ⇒n N0

followsM ⇒n N0.

□

92

Appendix E

This appendix contains the full Coq code for the theory of λ-calculus with the De Bruijn indices, and

the formalization of all concepts and results corresponding to Chapter 4, such as the relations of call-by-

name evaluation and of standard reduction and several properties of these relations. The code below was

developed under version 8.12.2 of the Coq proof assistant.

1 (*------------------------- Arithmetic tests ------------------------- *)

2

3 Require Import Arith.

4

5 (* Pattern-matching lemmas for comparing 2 naturals *)

6

7 Definition test : forall n m : nat, { n <= m} + { n > m}.

8 Proof.

9 simple induction n; simple induction m; simpl in |− *; auto with arith.

10 intros m' H'; elim (H m'); auto with arith.

11 Defined.

12

13 Definition le_lt : forall n m : nat, n <= m → {n < m} + { n = m}.

14 Proof.

15 simple induction n; simple induction m; simpl in |− *; auto with arith.

16 intros m' H1 H2; elim (H m'); auto with arith.

17 Defined.

18

19 Definition compare : forall n m : nat, { n < m} + { n = m} + { n > m}.

93

APPENDIX E.

20 Proof.

21 intros n m; elim (test n m); auto with arith.

22 left; apply le_lt; trivial with arith.

23 Defined.

24

25 (*--------------- Lambda terms with de Bruijn's indices ---------------*)

26

27 (* Lambda terms with de Bruijn's indices *)

28

29 Inductive lambda : Set :=

30 | Ref : nat → lambda

31 | Abs : lambda→ lambda

32 | App : lambda→ lambda→ lambda.

33

34 (*-------------------------- Lifting --------------------------*)

35

36 Definition relocate (i k : nat) :=

37 match test k i with

38

39 (* k<=i *) | left _ ⇒ S i

40 (* k>i *) | _ ⇒ i

41 end.

42

43 Fixpoint lift_rec (L : lambda) : nat → lambda :=

44 fun k : nat ⇒

45 match L with

46 | Ref i ⇒ Ref (relocate i k)

47 | Abs M ⇒ Abs (lift_rec M (S k))

48 | App M N ⇒ App (lift_rec M k) (lift_rec N k)

49 end.

50

51 Definition lift (N : lambda) := lift_rec N 0.

52

94

APPENDIX E.

53 (*-------------------------- Substitution --------------------------*)

54

55 Definition insert_Ref (N : lambda) (i k : nat) :=

56 match compare k i with

57

58 (* k<i *) | inleft (left _) ⇒ Ref (pred i)

59 (* k=i *) | inleft _ ⇒ N

60 (* k>i *) | _ ⇒ Ref i

61 end.

62

63 Fixpoint subst_rec (L : lambda) : lambda→ nat→ lambda :=

64 fun (N : lambda) (k : nat) ⇒

65 match L with

66 | Ref i ⇒ insert_Ref N i k

67 | Abs M ⇒ Abs (subst_rec M (lift_rec N 0) (S k))

68 | App M M' ⇒ App (subst_rec M N k) (subst_rec M' N k)

69 end.

70

71 Definition subst (N M : lambda) := subst_rec M N 0.

72

73 (*------------------------- one step beta-reduction -------------------------*)

74

75 Inductive red1 : lambda→ lambda→ Prop :=

76 | beta : forall M N : lambda, red1 (App (Abs M) N) (subst N M)

77 | abs_red : forall M N : lambda, red1 M N → red1 (Abs M) (Abs N)

78 | app_red_l :

79 forall M1 N1 : lambda,

80 red1 M1 N1 → forall M2 : lambda, red1 (App M1 M2) (App N1 M2)

81 | app_red_r :

82 forall M2 N2 : lambda,

83 red1 M2 N2 → forall M1 : lambda, red1 (App M1 M2) (App M1 N2).

84

85 (*----------------- Reflevixe-transitive closure of beta-reduction -----------------*)

95

APPENDIX E.

86

87 Inductive red : lambda→ lambda→ Prop :=

88 | one_step_red : forall M N : lambda, red1 M N → red M N

89 | refl_red : forall M : lambda, red M M

90 | trans_red : forall M N P : lambda, red M N → red N P→ red M P.

91

92 (*--------------------- Auxiliar Lemmas for beta-reduction ---------------------*)

93

94 Lemma red_appl :

95 forall M M' : lambda,

96 red M M' → forall N : lambda, red (App M N) (App M' N).

97 Proof.

98 simple induction 1; intros.

99 apply one_step_red; apply app_red_l; trivial.

100 apply refl_red.

101 apply trans_red with (App N N0); trivial.

102 Qed.

103

104 Lemma red_appr :

105 forall M M' : lambda,

106 red M M' → forall N : lambda, red (App N M) (App N M').

107 Proof.

108 simple induction 1; intros.

109 apply one_step_red; apply app_red_r; trivial.

110 apply refl_red.

111 apply trans_red with (App N0 N); trivial.

112 Qed.

113

114 Lemma red_abs : forall M M' : lambda, red M M' → red (Abs M) (Abs M').

115 Proof.

116 simple induction 1; intros.

117 apply one_step_red; apply abs_red; trivial.

118 apply refl_red.

96

APPENDIX E.

119 apply trans_red with (Abs N); trivial.

120 Qed.

121

122 (*---------------------- one step cbn evaluation → n ----------------------*)

123

124 Inductive name_eval_1 : lambda→ lambda→ Prop :=

125 | beta_name_eval : forall M N : lambda, name_eval_1 (App (Abs M) N) (subst N M)

126 | app_red_name_eval_1 :

127 forall M1 N1 : lambda,

128 name_eval_1 M1 N1 → forall M2 : lambda, name_eval_1 (App M1 M2) (App N1 M2).

129

130 (*----- Call-by-name evaluation: Reflexive-transitive closure of → n -----*)

131

132 Inductive name_eval : lambda→ lambda→ Prop :=

133 | one_step_name_eval : forall M N : lambda, name_eval_1 M N → name_eval M N

134 | refl_name_eval : forall M : lambda, name_eval M M

135 | trans_name_eval : forall M N P : lambda, name_eval M N → name_eval N P→ name_eval M P.

136

137 (*--------------------------- Auxiliar Lemma for cbn ------------------------*)

138

139 Lemma right_apl_n : forall M1 M2 N : lambda,

140 name_eval M1 M2 → name_eval (App M1 N) (App M2 N).

141 Proof.

142 intros M1 M2 N H. induction H.

143 (* Base case: *)

144 apply one_step_name_eval.

145 apply app_red_name_eval_1; trivial.

146 apply refl_name_eval.

147 apply trans_name_eval with (App N0 N); trivial.

148 Qed.

149

150 (*--------------------------- Standard reduction (⇒ n) ---------------------------*)

151

97

APPENDIX E.

152 Inductive standard_red : lambda→ lambda→ Prop :=

153 | VAR : forall i : nat, standard_red (Ref i) (Ref i)

154 | ABS : forall M N : lambda, standard_red M N → standard_red (Abs M) (Abs N)

155 | APL : forall M1 M2 N1 N2 : lambda, standard_red M1 M2 → standard_red N1 N2→

156 standard_red (App M1 N1) (App M2 N2)

157 | RDX : forall M1 M2 N P : lambda, name_eval (M1) (Abs M2) → standard_red (subst N M2) (P)

158 → standard_red (App M1 N) (P).

159

160 (*------------------- Properties of substitution and lifting -------------------*)

161

162 Require Import Lia.

163

164 Lemma prop_1 : forall M N : lambda, forall k : nat, subst_rec (lift_rec M k) N k = M.

165 Proof.

166 induction M.

167

168 (*VAR case: *)

169 intros N k.

170 unfold lift_rec.

171 unfold relocate.

172 destruct (test k n) eqn:H0.

173 (* subcase k <= n: *)

174 simpl.

175 unfold insert_Ref.

176 destruct (compare k (S n)) eqn:H1.

177 destruct s.

178 (*subsubcase k < S n: *)

179 simpl. trivial.

180 (* subcases k = S n and k > S n, are impossible! *)

181 lia. lia.

182 (* subcase k > n: *)

183 simpl.

184 unfold insert_Ref.

98

APPENDIX E.

185 destruct (compare k n) eqn:H1.

186 destruct s.

187 (* subcases k < n and k = n, are impossible! *)

188 lia. lia.

189 (* subcases k > n : *)

190 trivial.

191

192 (*ABS case: *)

193 intros N k.

194 simpl.

195 assert (H: subst_rec (lift_rec M (S k)) (lift_rec N 0) (S k) = M).

196 apply IHM.

197 rewrite→ H. trivial.

198

199 (*APL case: *)

200 intros N k.

201 simpl.

202 rewrite→ IHM1.

203 rewrite→ IHM2.

204 trivial.

205

206 Qed.

207

208

209 Lemma prop_2 : forall M : lambda, forall k i : nat,

210 k<=i→ lift_rec (lift_rec M k) (S i) = lift_rec (lift_rec M i) k.

211 Proof.

212 induction M.

213

214 (*VAR case: *)

215 intros k i H.

216 simpl.

217 unfold relocate.

99

APPENDIX E.

218 destruct (test k n) eqn:H0.

219 (* subcase k < = n : *)

220 destruct (test i n) eqn:H1.

221 (* subcase i < = n : *)

222 destruct (test (S i) (S n)) eqn:H2.

223 (* subcase S i < = S n : *)

224 destruct (test k (S n)) eqn:H3.

225 (*subcase k < = S n : *)

226 trivial.

227 (* subcase k > S n is impossible: *)

228 lia.

229 (* subcase S i > S n : *)

230 destruct (test k (S n)) eqn:H4.

231 (* subcase k < = S n is impossible: *)

232 lia.

233 (* subcase k > S n : *)

234 trivial.

235 (* subcase i>n : *)

236 destruct (test (S i) (S n)) eqn:H2.

237 (* subcase S i < = S n is impossible: *)

238 lia.

239 (* subcase S i > S n : *)

240 destruct (test k n) eqn:H3.

241 trivial. lia.

242 (* subcase k > n : *)

243 destruct (test (S i) n) eqn:H1.

244 (* subcase S i < = n is impossible : *)

245 lia.

246 (* subcase S i > n : *)

247 destruct (test i n) eqn:H2.

248 (* subcase i < = n is impossible : *)

249 lia.

250 (* subcase i > n : *)

100

APPENDIX E.

251 destruct (test k n) eqn:H3. lia. trivial.

252

253 (*ABS case: *)

254 intros k i H.

255 simpl.

256 assert (H0: (S k) <= (S i)).

257 lia.

258 assert (H1: (lift_rec (lift_rec M (S k)) (S (S i))) = (lift_rec (lift_rec M (S i)) (S k))).

259 pose proof IHM as pp.

260 specialize pp with (1:= H0). trivial.

261 rewrite← H1. trivial.

262

263 (*APL case: *)

264 intros k i H.

265 simpl.

266 rewrite→ IHM1.

267 rewrite→ IHM2.

268 trivial. trivial. trivial.

269 Qed.

270

271 (* If n > 0, then S(n-1) = n *)

272 Lemma pred_n : forall n : nat, n>0 → S (Init.Nat.pred n) = n.

273 Proof.

274 intro n. intro H.

275 induction n.

276 (* H: 0 > 0 is absurd *)

277 lia.

278 (* H: S n > 0 *)

279 simpl. trivial.

280 Qed.

281

282

283 Lemma prop_3 : forall M N : lambda, forall k i : nat,

101

APPENDIX E.

284 k<=i→ lift_rec (subst_rec M N i) k = subst_rec (lift_rec M k) (lift_rec N k) (S i).

285 Proof.

286 induction M.

287

288 (*VAR case: *)

289 intros N k i H.

290 unfold subst_rec at 1.

291 unfold insert_Ref at 1.

292 destruct (compare i n) eqn:H0.

293 destruct s.

294 (* subcase i < n : *)

295 unfold lift_rec at 1.

296 unfold relocate at 1.

297 destruct (test k (Init.Nat.pred n)) eqn:H1.

298 (* subcase k <= n-1 : *)

299 unfold lift_rec at 1.

300 unfold relocate at 1.

301 destruct (test k n) eqn:H2.

302 (* subcase k <= n : *)

303 simpl.

304 unfold insert_Ref at 1.

305 destruct (compare (S i) (S n)) eqn:H3.

306 destruct s.

307 (* subcase S i < S n : *)

308 simpl.

309 assert (H4: S (Init.Nat.pred n)=n).

310 apply pred_n. lia.

311 rewrite→ H4. trivial.

312 (* subcase S i = S n and S i > S n, are impossible: *)

313 lia. lia.

314 (* subcase k > n is impossible: *)

315 lia.

316 (* subcase k > n-1 is impossible: *)

102

APPENDIX E.

317 lia.

318 (* subcase i = n : *)

319 unfold lift_rec at 2.

320 unfold relocate.

321 destruct (test k n) eqn:H1.

322 (* subcase k <= n : *)

323 simpl.

324 unfold insert_Ref.

325 destruct (compare (S i) (S n)) eqn:H2.

326 destruct s.

327 (* subcase S i < S n is impossible: *)

328 lia.

329 (* subcase S i = S n : *)

330 trivial.

331 (* subcase S i > S n is impossible: *)

332 lia.

333 (* subcase k > n is impossible: *)

334 lia.

335 (* subcase i > n : *)

336 unfold lift_rec at 1.

337 unfold relocate.

338 destruct (test k n) eqn:H1.

339 (* subcase k <= n : *)

340 unfold lift_rec at 1.

341 unfold relocate.

342 destruct (test k n) eqn:H2.

343 simpl.

344 unfold insert_Ref.

345 destruct (compare (S i) (S n)) eqn: H3.

346 destruct s.

347 (* subcase S i < S n is impossible: *)

348 lia.

349 (* subcase S i = S n is impossible: *)

103

APPENDIX E.

350 lia.

351 (* subcase S i > S n : *)

352 trivial.

353 lia.

354 (* subcase k > n : *)

355 unfold lift_rec at 1.

356 unfold relocate.

357 destruct (test k n) eqn:H2. lia.

358 simpl.

359 unfold insert_Ref.

360 destruct (compare (S i) n) eqn:H3.

361 destruct s.

362 (*subcase S i < n and S i = n are impossible: *)

363 lia. lia.

364 (*subcase S i > n : *)

365 trivial.

366

367 (*ABS case: *)

368 intros N k i H.

369 simpl.

370 assert (H0 : 0<=k).

371 lia.

372 assert (H1 : lift_rec (lift_rec N 0) (S k) = lift_rec (lift_rec N k) 0).

373 pose proof prop_2 as pp.

374 specialize pp with (1 := H0). trivial.

375 rewrite← H1.

376 assert (H2: (S k) <= (S i)).

377 lia.

378 assert (H3 : (lift_rec (subst_rec M (lift_rec N 0) (S i)) (S k)) =

379 (subst_rec (lift_rec M (S k)) (lift_rec (lift_rec N 0) (S k)) (S (S i)))).

380 pose proof IHM as pp.

381 specialize pp with (1:= H2). trivial.

382 rewrite← H3. trivial.

104

APPENDIX E.

383

384 (*APL case: *)

385 intros N k i H.

386 simpl.

387 rewrite→ IHM1.

388 rewrite→ IHM2.

389 trivial. trivial. trivial.

390

391 Qed.

392

393

394 Lemma prop_4 : forall M N : lambda, forall k i : nat,

395 k<=i→ lift_rec (subst_rec M N k) i = subst_rec (lift_rec M (S i)) (lift_rec N i) k.

396 Proof.

397 induction M.

398

399 (*VAR case: *)

400 intros N k i H.

401 unfold subst_rec at 1.

402 unfold insert_Ref.

403 destruct (compare k n) eqn:H0.

404 destruct s.

405 (* subcase k < n *)

406 unfold lift_rec at 1.

407 unfold relocate.

408 destruct (test i (Init.Nat.pred n)) eqn:H1.

409 unfold lift_rec at 1.

410 unfold relocate.

411 destruct (test (S i) n) eqn:H2.

412 unfold subst_rec.

413 unfold insert_Ref.

414 destruct (compare k (S n)) eqn:H3.

415 destruct s. simpl.

105

APPENDIX E.

416 assert (H4: S (Init.Nat.pred n)=n).

417 apply pred_n. lia.

418 rewrite→ H4. trivial. lia. lia. lia.

419 unfold lift_rec at 1.

420 unfold relocate.

421 destruct (test (S i) n) eqn:H2.

422 unfold subst_rec.

423 unfold insert_Ref.

424 destruct (compare k (S n)) eqn:H3.

425 destruct s. lia. lia. lia.

426 unfold subst_rec.

427 unfold insert_Ref.

428 destruct (compare k n) eqn:H3.

429 destruct s. trivial. lia. lia.

430 (* subcase k = n *)

431 unfold lift_rec at 2.

432 unfold relocate.

433 destruct (test (S i) n) eqn:H1.

434 unfold subst_rec.

435 unfold insert_Ref.

436 destruct (compare k (S n)) eqn:H2.

437 destruct s. lia. trivial. lia.

438 unfold subst_rec.

439 unfold insert_Ref.

440 destruct (compare k n) eqn:H2.

441 destruct s. lia. trivial. lia.

442 (* subcase k > n*)

443 unfold lift_rec at 2.

444 unfold relocate.

445 destruct (test (S i) n) eqn:H1.

446 unfold subst_rec.

447 unfold insert_Ref.

448 destruct (compare k (S n)) eqn:H2.

106

APPENDIX E.

449 destruct s. lia. lia. lia.

450 unfold subst_rec.

451 unfold insert_Ref.

452 destruct (compare k n) eqn:H2.

453 destruct s. lia. lia.

454 simpl.

455 unfold relocate.

456 destruct (test i n) eqn:H3.

457 lia. trivial.

458

459 (*ABS case: *)

460 intros N k i H.

461 simpl.

462 assert (H0 : 0<=i).

463 lia.

464 assert (H1 : lift_rec (lift_rec N 0) (S i) = lift_rec (lift_rec N i) 0).

465 pose proof prop_2 as pp.

466 specialize pp with (1 := H0). trivial.

467 rewrite← H1.

468 assert (H2: (S k) <= (S i)).

469 lia.

470 assert (H3 : (lift_rec (subst_rec M (lift_rec N 0) (S k)) (S i)) =

471 (subst_rec (lift_rec M (S (S i))) (lift_rec (lift_rec N 0) (S i)) (S k))).

472 pose proof IHM as pp.

473 specialize pp with (1:= H2). trivial.

474 rewrite← H3. trivial.

475

476 (*APL case: *)

477 intros N k i H.

478 simpl.

479 rewrite→ IHM1.

480 rewrite→ IHM2.

481 trivial. trivial. trivial.

107

APPENDIX E.

482

483 Qed.

484

485 (*--- -------------------------------*)

486

487 (*------------------------------- Substitution Lemma -------------------------------*)

488

489 Lemma substitution_lemma : forall M N Q : lambda, forall i k : nat,

490 k<=i→ subst_rec (subst_rec M N k) Q i =

491 subst_rec (subst_rec M (lift_rec Q k) (S i)) (subst_rec N Q i) k.

492 Proof.

493 induction M.

494

495 (*VAR case: *)

496 intros N Q i k H.

497 unfold subst_rec at 2.

498 unfold insert_Ref.

499 destruct (compare k n) eqn:H0.

500 destruct s.

501 (* k < n *)

502 unfold subst_rec at 3.

503 unfold insert_Ref.

504 destruct (compare (S i) n) eqn:H1.

505 destruct s.

506 unfold subst_rec at 2.

507 unfold insert_Ref.

508 destruct (compare k (Init.Nat.pred n)) eqn:H2.

509 destruct s.

510 unfold subst_rec.

511 unfold insert_Ref.

512 destruct (compare i (Init.Nat.pred n)) eqn:H3.

513 destruct s. trivial. lia. lia. lia. lia.

514 unfold subst_rec at 1.

108

APPENDIX E.

515 unfold insert_Ref.

516 destruct (compare i (Init.Nat.pred n)) eqn:H3.

517 destruct s. lia.

518 assert (H4: subst_rec (lift_rec Q k) (subst_rec N Q i) k = Q).

519 apply prop_1.

520 rewrite→ H4. trivial.

521 lia.

522 unfold subst_rec at 1.

523 unfold insert_Ref.

524 destruct (compare i (Init.Nat.pred n)) eqn:H2.

525 destruct s. lia. lia.

526 unfold subst_rec at 1.

527 unfold insert_Ref.

528 destruct (compare k n) eqn:H3.

529 destruct s. trivial. lia. lia.

530 (* k = n *)

531 unfold subst_rec at 3.

532 unfold insert_Ref.

533 destruct (compare (S i) n) eqn:H1.

534 destruct s.

535 lia. lia.

536 unfold subst_rec at 2.

537 unfold insert_Ref.

538 destruct (compare k n) eqn:H2.

539 destruct s. lia. trivial. lia.

540 (* k > n *)

541 unfold subst_rec at 3.

542 unfold insert_Ref.

543 destruct (compare (S i) n) eqn:H1.

544 destruct s.

545 lia. lia.

546 unfold subst_rec at 2.

547 unfold insert_Ref.

109

APPENDIX E.

548 destruct (compare k n) eqn:H2.

549 destruct s. lia. lia.

550 unfold subst_rec.

551 unfold insert_Ref.

552 destruct (compare i n) eqn:H3.

553 destruct s. lia. lia. trivial.

554

555 (*ABS case: *)

556 intros N Q i k H.

557 simpl.

558 assert (H1 : 0 <= k).

559 lia.

560 assert (H2 : lift_rec (lift_rec Q 0) (S k) = lift_rec (lift_rec Q k) 0).

561 pose proof prop_2 as pp.

562 specialize pp with (1 := H1). trivial.

563 rewrite← H2.

564 assert (H3 : 0 <= i).

565 lia.

566 assert (H4 : lift_rec (subst_rec N Q i) 0 = subst_rec (lift_rec N 0) (lift_rec Q 0) (S i)).

567 pose proof prop_3 as pp.

568 specialize pp with (1 := H3). trivial.

569 rewrite→ H4.

570 assert (H5 : (S k) <= (S i)). lia.

571 assert (H6 : (subst_rec (subst_rec M (lift_rec N 0) (S k)) (lift_rec Q 0) (S i)) =

572 subst_rec (subst_rec M (lift_rec (lift_rec Q 0) (S k)) (S (S i))) (subst_rec (lift_rec N 0)

573 (lift_rec Q 0) (S i)) (S k)).

574 pose proof IHM as pp.

575 specialize pp with (1 := H5). trivial.

576 rewrite→ H6. trivial.

577

578

579 (* APL case: *)

580 intros N Q i k H.

110

APPENDIX E.

581 simpl.

582 rewrite← IHM1.

583 rewrite← IHM2.

584 trivial.

585 lia.

586 lia.

587

588 Qed.

589

590 (*--*)

591

592 (*----------------------- Admissible rules (1) to (8) for ⇒ n --------------------*)

593

594 Lemma rule_1 : forall M : lambda, standard_red M M.

595 Proof.

596 intro M. induction M.

597 (*M = Ref n *)

598 apply VAR.

599 (*M = Abs M *)

600 apply ABS. trivial.

601 (*M = M1 M2 *)

602 apply APL. trivial. trivial.

603 Qed.

604

605 (*---------- Auxiliar Lemmas to prove Rule 2 -------------*)

606

607 Lemma lift_1: forall M N : lambda, forall i: nat, name_eval_1 M N →

608 name_eval_1 (lift_rec M i) (lift_rec N i).

609 Proof.

610 simple induction 1.

611 intros M0 N0.

612 unfold subst.

613 rewrite prop_4; auto with arith.

111

APPENDIX E.

614 unfold lift_rec at 1.

615 apply beta_name_eval.

616 intros.

617 unfold lift_rec.

618 apply app_red_name_eval_1; auto with arith.

619

620 Qed.

621

622

623 Lemma lift_n: forall M N : lambda, name_eval M N →

624 forall i : nat, name_eval (lift_rec M i) (lift_rec N i).

625 Proof.

626 simple induction 1; intros.

627

628 (* Base case: *)

629 apply one_step_name_eval.

630 apply lift_1.

631 trivial.

632

633 (* Reflexice case: *)

634 apply refl_name_eval.

635

636 (* Transitive case: *)

637 apply trans_name_eval with ((lift_rec N0 i)).

638 auto. auto.

639

640 Qed.

641

642 Lemma lift_i : forall N1 N2 : lambda, standard_red N1 N2 →

643 forall i: nat, standard_red (lift_rec N1 i) (lift_rec N2 i).

644 Proof.

645 intro N1. intro N2. intro H.

646 induction H.

112

APPENDIX E.

647

648 (*VAR case: *)

649 intro i0. apply rule_1.

650

651 (*ABS case: *)

652 intro i. simpl.

653 assert (H1: standard_red (lift_rec M (S i)) (lift_rec N (S i))).

654 apply IHstandard_red.

655 pose proof ABS as pp.

656 specialize pp with (1:= H1). trivial.

657

658 (*APL case: *)

659 intro i.

660 simpl.

661 assert (H1: standard_red (lift_rec M1 i) (lift_rec M2 i)).

662 apply IHstandard_red1.

663 assert (H2: standard_red (lift_rec N1 i) (lift_rec N2 i)).

664 apply IHstandard_red2.

665 pose proof APL as pp.

666 specialize pp with (1:= H1) (2:= H2). trivial.

667

668 (*RDX case: *)

669 intro i. simpl.

670 assert (H1: name_eval (lift_rec M1 i) (lift_rec (Abs M2) i)).

671 apply lift_n. trivial.

672 assert (H2: name_eval (lift_rec M1 i) (Abs (lift_rec M2 (S i)))).

673 simpl in H1. trivial.

674 assert (H3: lift_rec (subst_rec M2 N 0) i = subst_rec (lift_rec M2 (S i)) (lift_rec N i) 0).

675 apply prop_4. lia.

676 assert (H4: standard_red (lift_rec (subst N M2) i) (lift_rec P i)).

677 trivial. unfold subst in H4.

678 rewrite→ H3 in H4.

679 pose proof RDX as pp.

113

APPENDIX E.

680 specialize pp with (1:= H2) (2:= H4). trivial.

681

682 Qed.

683

684 Lemma subs_name_eval_1 : forall M1 M2 N : lambda, forall i : nat, name_eval_1 M1 M2 →

685 name_eval_1 (subst_rec M1 N i) (subst_rec M2 N i).

686 Proof.

687 simple induction 1.

688

689 (* beta case: *)

690 intros.

691 unfold subst.

692 rewrite substitution_lemma; auto with arith.

693 unfold subst_rec at 1.

694 apply beta_name_eval.

695 (* \mu case: *)

696 intros.

697 apply app_red_name_eval_1; auto with arith.

698 Qed.

699

700 Lemma subs_name_eval : forall M1 M2 N : lambda, forall i : nat, name_eval M1 M2 →

701 name_eval (subst_rec M1 N i) (subst_rec M2 N i).

702 Proof.

703 simple induction 1; intros.

704

705 (* Base case: *)

706 apply one_step_name_eval.

707 apply subs_name_eval_1. trivial.

708

709 (* Reflexice case: *)

710 apply refl_name_eval.

711

712 (* Transitive case: *)

114

APPENDIX E.

713 apply trans_name_eval with ((subst_rec N0 N i)).

714 auto. auto.

715

716 Qed.

717

718 (*--*)

719

720 Lemma rule_2 : forall M1 M2 : lambda, standard_red M1 M2 → forall N1 N2 : lambda,

721 standard_red N1 N2 → forall i:nat, standard_red (subst_rec M1 N1 i) (subst_rec M2 N2 i).

722 Proof.

723 intro M1. intro M2. intro H.

724 induction H.

725

726 (* Var case: *)

727 intros N1 N2 H i0.

728 unfold subst_rec.

729 unfold insert_Ref.

730 destruct (compare i0 i) eqn:H0.

731 destruct s.

732 apply rule_1.

733 trivial.

734 apply rule_1.

735

736 (* ABS case: *)

737 intros N1 N2 H0 i.

738 simpl.

739 assert (H2: standard_red (lift_rec N1 0) (lift_rec N2 0)).

740 apply lift_i. trivial.

741 assert (H3 : forall i: nat,

742 standard_red (subst_rec M (lift_rec N1 0) i) (subst_rec N (lift_rec N2 0) i)).

743 pose proof IHstandard_red as pp.

744 specialize pp with (1:= H2). trivial.

745 assert (H4: standard_red (subst_rec M (lift_rec N1 0) (S i))

115

APPENDIX E.

746 (subst_rec N (lift_rec N2 0) (S i))).

747 apply H3.

748 pose proof ABS as pp.

749 specialize pp with (1:= H4). trivial.

750

751 (*APL case: *)

752 intros N0 N3 H1 i. simpl.

753 assert (H2: standard_red (subst_rec M1 N0 i) (subst_rec M2 N3 i)).

754 pose proof IHstandard_red1 as pp. specialize pp with (1:= H1). trivial.

755 assert (H3: standard_red (subst_rec N1 N0 i) (subst_rec N2 N3 i)).

756 pose proof IHstandard_red2 as pp. specialize pp with (1:= H1). trivial.

757 pose proof APL as pp. specialize pp with (1:= H2) (2:= H3). trivial.

758

759 (*RDX case: *)

760 intros N1 N2 H1 i. simpl. unfold subst in H0.

761 assert (H2: subst_rec (subst_rec M2 N 0) N1 i =

762 subst_rec (subst_rec M2 (lift_rec N1 0) (S i)) (subst_rec N N1 i) 0).

763 apply substitution_lemma. lia.

764 unfold subst in IHstandard_red.

765 assert (H3: standard_red (subst_rec (subst_rec M2 N 0) N1 i) (subst_rec P N2 i)).

766 pose proof IHstandard_red as pp. specialize pp with (1:= H1). trivial.

767 assert (H4: standard_red (subst_rec (subst_rec M2 (lift_rec N1 0) (S i))

768 (subst_rec N N1 i) 0) (subst_rec P N2 i)).

769 rewrite← H2. trivial.

770 assert (H5: name_eval (subst_rec M1 N1 i) (subst_rec (Abs M2) N1 i)).

771 apply subs_name_eval. trivial.

772 simpl in H5.

773 pose proof RDX as pp. specialize pp with (1:= H5) (2:= H4). trivial.

774

775 Qed.

776

777 Lemma rule_3 : forall M N : lambda, name_eval_1 M N → forall P : lambda, standard_red N P →

778 standard_red M P.

116

APPENDIX E.

779 Proof.

780 intro M. intro N. intro H. induction H.

781

782 (* beta_n case: *)

783 intros P H.

784 assert (H1: name_eval (Abs M) (Abs M)). apply refl_name_eval.

785 pose proof RDX as pp.

786 specialize pp with (1 := H1) (2 := H); trivial.

787

788 (* mu case: *)

789 intros P H0.

790 inversion H0.

791 (* APL subcase: *)

792 assert (H6: standard_red M1 M3).

793 pose proof IHname_eval_1 as pp.

794 specialize pp with (1:= H3). trivial.

795 pose proof APL as pp.

796 specialize pp with (1 := H6) (2 := H5); trivial.

797

798 (* RDX subcase: *)

799 assert (H6: name_eval M1 (Abs M3)).

800 apply trans_name_eval with (N1); trivial.

801 apply one_step_name_eval; trivial.

802 pose proof RDX as pp.

803 specialize pp with (1 := H6) (2 := H5); trivial.

804

805 Qed.

806

807 Lemma rule_4 : forall M N P : lambda, name_eval M N → standard_red N P→ standard_red M P.

808 Proof.

809 intros M N P H H0. induction H.

810 (*Base case: *)

811 pose proof rule_3 as pp.

117

APPENDIX E.

812 specialize pp with (1 := H) (2 := H0); trivial.

813

814 (*Reflexive case: *)

815 trivial.

816

817 (*Transitive case: *)

818 apply IHname_eval1.

819 apply IHname_eval2.

820 trivial.

821

822 Qed.

823

824 Lemma rule_5_linha : forall M1 M3 N1 N2 : lambda, standard_red M1 M3 → forall M2 : lambda,

825 M3 = Abs M2 → standard_red N1 N2→ standard_red (App M1 N1) (subst N2 M2).

826 Proof.

827 intros. induction H.

828 inversion H0.

829 inversion H0.

830 assert (H4: name_eval (App (Abs M) N1) (subst N1 M)).

831 apply one_step_name_eval.

832 apply beta_name_eval.

833 assert (H5: standard_red (subst N1 M) (subst N2 M2)).

834 pose proof rule_2 as pp.

835 unfold subst.

836 specialize pp with (1 := H) (2 := H1); auto.

837 rewrite← H3. trivial.

838 pose proof rule_4 as pp.

839 specialize pp with (1 := H4) (2 := H5); trivial.

840 inversion H0.

841 assert (H5: name_eval (App M1 N) (App (Abs M0) N)).

842 apply right_apl_n; trivial.

843 assert (H6: name_eval (App (Abs M0) N) (subst N M0)).

844 apply one_step_name_eval.

118

APPENDIX E.

845 apply beta_name_eval.

846 assert (H7: name_eval (App M1 N) (subst N M0)).

847 apply trans_name_eval with (App (Abs M0) N); trivial.

848 assert (H8: name_eval (App (App M1 N) N1) (App (subst N M0) N1)).

849 apply right_apl_n; trivial.

850 rewrite→ H0 in H2.

851 assert (H9: standard_red (App (subst N M0) N1) (subst N2 M2)).

852 apply IHstandard_red. trivial.

853 pose proof rule_4 as pp.

854 specialize pp with (1:= H8) (2:= H9). trivial.

855 Qed.

856

857 Lemma rule_5 : forall M1 M2 N1 N2 : lambda, standard_red M1 (Abs M2) → standard_red N1 N2→

858 standard_red (App M1 N1) (subst N2 M2).

859 Proof.

860 intros.

861 pose proof rule_5_linha as pp.

862 specialize pp with (1:= H).

863 apply pp. trivial. trivial.

864 Qed.

865

866 Lemma rule_6_linha : forall M1 M2 : lambda, standard_red M1 M2 → forall M3 N : lambda,

867 M2 = App (Abs M3) N → standard_red M1 (subst N M3).

868 Proof.

869 intros. induction H.

870 inversion H0.

871 inversion H0.

872 inversion H0.

873 rewrite→ H3 in H.

874 rewrite→ H4 in H1.

875 pose proof rule_5 as pp.

876 specialize pp with (1 := H) (2 := H1). trivial.

877 assert (H5: standard_red (subst N0 M2) (subst N M3)).

119

APPENDIX E.

878 apply IHstandard_red. trivial.

879 pose proof RDX as pp.

880 specialize pp with (1 := H) (2 := H5). trivial.

881 Qed.

882

883

884

885 Lemma rule_6 : forall M1 M3 N0 : lambda, standard_red M1 (App (Abs M3) (N0)) →

886 standard_red M1 (subst N0 M3).

887 Proof.

888 intros.

889 pose proof rule_6_linha as pp.

890 specialize pp with (1:= H).

891 apply pp. trivial.

892

893 Qed.

894

895

896 Lemma rule_7 : forall M N : lambda, standard_red M N → forall P : lambda, red1 N P →

897 standard_red M P.

898 Proof.

899 intro M. intro N. intro H. induction H.

900

901 (*VAR case:

902 impossible case: *)

903 intros P H. inversion H.

904

905

906 (*ABS case: *)

907 intros P H0.

908 inversion H0.

909 assert (H4: standard_red M N0).

910 pose proof IHstandard_red as pp.

120

APPENDIX E.

911 specialize pp with (1:= H2). trivial.

912 pose proof ABS as pp.

913 specialize pp with (1:= H4). trivial.

914

915 (*APL case: *)

916 intros P H1.

917 inversion H1.

918 (*beta_n subcase: *)

919 rewrite← H3 in H.

920 assert (H5: standard_red (App M1 N1) (App (Abs M) N2)).

921 pose proof APL as pp.

922 specialize pp with (1:= H) (2:= H0). trivial.

923 pose proof rule_6 as pp.

924 specialize pp with (1:= H5). trivial.

925 (*mu subcase: *)

926 assert (H6: standard_red M1 N0).

927 pose proof IHstandard_red1 as pp.

928 specialize pp with (1:= H5). trivial.

929 pose proof APL as pp.

930 specialize pp with (1:= H6) (2:= H0). trivial.

931 (*V subcase: *)

932 assert (H6: standard_red N1 N0).

933 pose proof IHstandard_red2 as pp.

934 specialize pp with (1:= H5). trivial.

935 pose proof APL as pp.

936 specialize pp with (1:= H) (2:= H6). trivial.

937

938 (*RDX case: *)

939 intros P0 H1.

940 assert (H2: standard_red (subst N M2) P0).

941 pose proof IHstandard_red as pp.

942 specialize pp with (1:= H1). trivial.

943 pose proof RDX as pp.

121

APPENDIX E.

944 specialize pp with (1:= H) (2:= H2). trivial.

945

946 Qed.

947

948 Lemma rule_8 : forall M N P : lambda, standard_red M N → red N P→ standard_red M P.

949 Proof.

950 intros M N P H H0. induction H0.

951 (*Base case: *)

952 pose proof rule_7 as pp.

953 specialize pp with (1 := H) (2 := H0); trivial.

954 (*Reflexive case: *)

955 trivial.

956 (*Transitive case: *)

957 apply IHred2.

958 apply IHred1.

959 trivial.

960 Qed.

961

962 (*--- ---------------------------*)

963

964 (*--------------------------- Standardization Theorem ---------------------------*)

965

966 Theorem standardization : forall M N : lambda, red M N ↔ standard_red M N.

967 Proof.

968 split.

969

970 (*”Only if” direction: *)

971 intro H. induction H.

972 (*Base case: *)

973 assert (H1: standard_red M M).

974 apply rule_1.

975 pose proof rule_7 as pp.

976 specialize pp with (1 := H1) (2 := H); trivial.

122

APPENDIX E.

977 (*Reflexice case: *)

978 apply rule_1.

979 (*Transitive case: *)

980 pose proof rule_8 as pp.

981 specialize pp with (1 := IHred1) (2 := H0); trivial.

982

983 (*”If” direction: *)

984 intro H. induction H.

985 (* VAR case: M = Ref i and N = Ref i *)

986 apply refl_red.

987 (* ABS case: M = Abs M' and N = Abs N' *)

988 apply red_abs. trivial.

989 (* APL case: M = App M1 N1 and N = M2 N2 *)

990 assert (H1: red (App M1 N1) (App M2 N1)).

991 apply red_appl. trivial.

992 assert (H2: red (App M2 N1) (App M2 N2)).

993 apply red_appr. trivial.

994 apply trans_red with (App M2 N1). trivial. trivial.

995 (* RDX case: M = App M1 N*)

996 assert (H1: red M1 (Abs M2)).

997 induction H.

998 apply one_step_red.

999 induction H.

1000 apply beta.

1001 apply app_red_l. trivial.

1002 apply refl_red.

1003 apply trans_red with (N0); trivial.

1004 assert (H2: red (App M1 N) (App (Abs M2) N)).

1005 apply red_appl. trivial.

1006 assert (H3: red1 (App (Abs M2) N) (subst N M2)).

1007 apply beta.

1008 assert (H4: red (subst N M2) P). trivial. apply trans_red with (App (Abs M2) N).

1009 trivial. apply trans_red with (subst N M2).

123

APPENDIX E.

1010 apply one_step_red in H3.

1011 trivial. trivial.

1012

1013 Qed.

1014

1015 (*--*)

1016

1017 (*------------------------- Corollary: Transitivity of ⇒ n -------------------------*)

1018

1019 Theorem rule_9 : forall M N P : lambda,

1020 standard_red M N → standard_red N P→ standard_red M P.

1021 Proof.

1022 intros M N P H1 H2.

1023 assert (H3: red N P).

1024 apply standardization. trivial.

1025 pose proof rule_8 as pp.

1026 apply pp with N. trivial. trivial.

1027 Qed.

124

Appendix F

This appendix contains the full Coq code for the theory of λ-calculus with the De Bruijn indices, introduces

the definition of standard reduction sequence, proves the equivalence between the standard reduction

relation and the standard reduction sequences approaches, i.e., formalizes all the results corresponding

to Chapter 5. The code below was developed under version 8.12.2 of the Coq proof assistant.

1

2 (*------------------------ Standard Reduction Sequence ------------------------*)

3

4 (*------------------------- Lists of lambda terms -------------------------*)

5

6 Inductive term_list : Set :=

7 | nil

8 | cons (M : lambda) (L : term_list).

9

10 Notation ”M :: L” := (cons M L).

11 Notation ”[]” := nil.

12

13 (*------------------- Append: concatenates (appends) two lists ------------------- *)

14

15 Fixpoint app (L1 L2 : term_list) : term_list :=

16 match L1 with

17 | nil ⇒ L2

18 | h :: t ⇒ h :: (app t L2)

19 end.

125

APPENDIX F.

20

21 Notation ”L1 · L2” := (app L1 L2) (at level 50) : type_scope.

22

23 Lemma concatenate_assoc : forall L1 L2 L3 : term_list, (L1 · L2) · L3 = L1 · (L2 · L3).

24 Proof.

25 intros L1 L2 L3.

26 induction L1.

27 simpl. trivial.

28 simpl.

29 rewrite← IHL1.

30 trivial.

31 Qed.

32

33 (*------------------------------ Auxiliar functions ------------------------------*)

34

35 Fixpoint Abs_list (L : term_list) : term_list :=

36 match L with

37 | nil ⇒ nil

38 | M :: L1 ⇒ Abs M :: Abs_list (L1)

39 end.

40

41 Fixpoint Apl_arg (L : term_list) : lambda→ term_list :=

42 fun N : lambda⇒

43 match L with

44 | nil ⇒ nil

45 | M :: L1 ⇒ (App M N) :: (Apl_arg L1 N)

46 end.

47

48 Fixpoint Apl_fun (L : term_list) : lambda→ term_list :=

49 fun M : lambda⇒

50 match L with

51 | nil ⇒ nil

52 | N :: L1 ⇒ (App M N) :: (Apl_fun L1 M)

126

APPENDIX F.

53 end.

54

55 (*------------------- Standard Reduction Sequences (s.r.s.) -------------------*)

56

57 Inductive standard_red_seq : term_list→ Prop :=

58 | VAR' : forall i : nat, standard_red_seq ((Ref i) :: [])

59 | ABS' : forall L : term_list, standard_red_seq L→ standard_red_seq (Abs_list L)

60 | APL' : forall L1 L2 : term_list, forall M N : lambda, standard_red_seq (L1 · (M :: []))

61 → standard_red_seq (N :: L2) →

62 standard_red_seq (Apl_arg L1 N · ((App M N) :: []) · Apl_fun L2 M)

63 | RDX' : forall N1 N2 : lambda, forall L : term_list, name_eval_1 N1 N2 →

64 standard_red_seq (N2 :: L) → standard_red_seq (N1 :: (N2 :: L)).

65

66

67 (*---------------------------------- Lemmas ----------------------------------*)

68

69 Lemma abs_lists : forall L1 L2 : term_list, Abs_list (L1 · L2) = Abs_list L1 · Abs_list L2.

70 Proof.

71 intros.

72 induction L1.

73 simpl. trivial.

74 simpl.

75 rewrite← IHL1.

76 trivial.

77 Qed.

78

79 Lemma apl_fun_lists : forall L1 L2 : term_list, forall N : lambda, Apl_fun (L1 · L2) N =

80 (Apl_fun L1 N) · (Apl_fun L2 N).

81 Proof.

82 intros.

83 induction L1.

84 simpl. trivial.

85 simpl.

127

APPENDIX F.

86 rewrite← IHL1.

87 trivial.

88 Qed.

89

90 (*Lemma arg_fun_lists : forall L1 L2 : term_list, forall N : lambda,

91 Apl_arg (L1 · L2) N = (Apl_arg L1 N) ·(Apl_arg L2 N).

92 Proof.

93 intros.

94 induction L1.

95 simpl. trivial.

96 simpl.

97 rewrite ← IHL1.

98 trivial.

99 Qed.*)

100

101 Lemma single_list_srs : forall M : lambda, standard_red_seq (M :: []).

102 Proof.

103 intro M.

104 induction M.

105 (* VAR case: *)

106 apply VAR'.

107 (* ABS case: *)

108 assert (H0: standard_red_seq (Abs_list (M :: []))).

109 pose proof ABS' as pp.

110 apply pp. trivial.

111 simpl in H0. trivial.

112 (* APL case: *)

113 assert (H0: standard_red_seq ((Apl_arg [] M2 · ((App M1 M2) :: [])) · Apl_fun [] M1)).

114 pose proof APL' as pp.

115 apply pp. simpl. trivial. trivial.

116 simpl in H0. trivial.

117 Qed.

118

128

APPENDIX F.

119 (*-- Alternative characterization of cbn-evaluation --*)

120

121 Inductive name_eval_t : lambda→ lambda→ Prop :=

122 | refl_name_eval_t : forall M : lambda, name_eval_t M M

123 | trans_name_eval_t : forall M N P : lambda, name_eval_1 M N → name_eval_t N P→

124 name_eval_t M P.

125

126 Lemma admissible_trans : forall M N P : lambda, name_eval_t M N → name_eval_t N P→

127 name_eval_t M P.

128 Proof.

129 intros.

130 induction H.

131 trivial.

132 assert (H2: name_eval_t N P).

133 apply IHname_eval_t. trivial.

134 apply trans_name_eval_t with (N). trivial. trivial.

135 Qed.

136

137 Lemma equiv_name_eval: forall M N : lambda, name_eval M N ↔ name_eval_t M N.

138 Proof.

139 intros.

140 split.

141 intro.

142 induction H.

143 apply trans_name_eval_t with (N). trivial.

144 apply refl_name_eval_t.

145 apply refl_name_eval_t.

146 apply admissible_trans with (N). trivial.

147 trivial.

148 intros.

149 induction H.

150 apply refl_name_eval.

151 apply trans_name_eval with (N).

129

APPENDIX F.

152 apply one_step_name_eval. trivial. trivial.

153 Qed.

154

155

156 (*--*)

157

158 (*Equivalence between s.r.s. and ⇒ n *)

159

160 (*--------------------- Theorem 1: ⇒ n implies s.r.s. ---------------------*)

161

162

163 Require Import Coq.Program.Equality.

164

165 Lemma standard_red_1 : forall M N : lambda, standard_red M N → M = N ∨

166 (exists L : term_list, standard_red_seq (M :: L · (N :: []))).

167 Proof.

168 intros M N H.

169 induction H.

170

171 (* VAR case: *)

172 auto.

173

174 (* ABS case: *)

175 destruct IHstandard_red.

176 (* H0: M = N *)

177 rewrite← H0.

178 auto.

179 (* H0 : exists L : term_list, standard_red_seq (M :: L ·(N :: [])) *)

180 destruct H0 as [L].

181 assert (H1: standard_red_seq (Abs M :: Abs_list (L · (N :: [])))).

182 pose proof ABS' as pp.

183 specialize pp with (1:= H0).

184 simpl in pp. trivial.

130

APPENDIX F.

185 assert (H2: Abs_list (L · (N :: [])) = Abs_list L · Abs_list (N :: [])).

186 apply abs_lists.

187 rewrite→ H2 in H1.

188 simpl in H1.

189 right.

190 exists (Abs_list L). trivial.

191

192 (* APL case: *)

193 destruct IHstandard_red1.

194 destruct IHstandard_red2.

195 (* M1 = M2 ∧ N1 = N2 *)

196 rewrite← H1.

197 rewrite← H2.

198 auto.

199 (* M1 = M2 ∧ exists L : term_list, standard_red_seq (N1 :: L ·(N2 :: [])) *)

200 destruct H2 as [L2].

201 right.

202 exists (Apl_fun L2 M1).

203 assert (H3: standard_red_seq ((Apl_arg [] N1 · ((App M1 N1) :: []) ·

204 Apl_fun (L2 · (N2 :: [])) M1))) .

205 pose proof APL' as pp.

206 apply pp.

207 simpl.

208 apply single_list_srs.

209 trivial.

210 simpl in H3.

211 rewrite← H1.

212 assert (H4: Apl_fun (L2 · (N2 :: [])) M1 = (Apl_fun L2 M1) · (Apl_fun (N2 :: []) M1)).

213 apply apl_fun_lists.

214 rewrite→ H4 in H3.

215 simpl in H3.

216 trivial.

217 destruct IHstandard_red2.

131

APPENDIX F.

218

219 (*exists L : term_list, standard_red_seq (M1 :: L ·(M2 :: [])) ∧ N1 = N2*)

220 destruct H1 as [L1].

221 right.

222 exists (Apl_arg L1 N1).

223 assert (H3: standard_red_seq (((Apl_arg (M1 :: L1)) N1 · ((App M2 N1) :: [])) ·

224 Apl_fun [] M2)) .

225 pose proof APL' as pp.

226 apply pp.

227 trivial.

228 apply single_list_srs.

229 simpl in H3.

230 rewrite← H2.

231 assert (H4: ((Apl_arg L1 N1 · (App M2 N1 :: [])) · []) = (Apl_arg L1 N1 ·

232 ((App M2 N1 :: []) · []))).

233 apply concatenate_assoc.

234 rewrite→ H4 in H3.

235 simpl in H3. trivial.

236

237 (* exists L : term_list, standard_red_seq (M1 :: L ·(M2 :: [])) ∧

238 exists L : term_list, standard_red_seq (N1 :: L ·(N2 :: [])) *)

239 destruct H1 as [L1].

240 destruct H2 as [L2].

241 pose proof APL' as pp.

242 assert (H3: standard_red_seq (Apl_arg (M1 :: L1) N1 · ((App M2 N1) :: []) ·

243 Apl_fun (L2 · (N2 :: [])) M2)).

244 apply pp. trivial. trivial.

245 simpl in H3.

246 right.

247 assert (H4: Apl_fun (L2 · (N2 :: [])) M2 = Apl_fun L2 M2 · Apl_fun (N2 :: []) M2).

248 apply apl_fun_lists.

249 rewrite→ H4 in H3.

250 simpl in H3.

132

APPENDIX F.

251 exists (Apl_arg L1 N1 · ((App M2 N1) :: []) · Apl_fun L2 M2).

252 assert (H5: ((Apl_arg L1 N1 · (App M2 N1 :: [])) · Apl_fun L2 M2) · (App M2 N2 :: []) =

253 (Apl_arg L1 N1 · (App M2 N1 :: [])) · (Apl_fun L2 M2 · (App M2 N2 :: []))).

254 apply concatenate_assoc.

255 rewrite→ H5. trivial.

256

257 (*RDX case: *)

258 assert (H10: name_eval_t M1 (Abs M2)).

259 apply equiv_name_eval. trivial.

260 destruct IHstandard_red.

261

262 (* H1 : subst N M2 = P *)

263 dependent induction H10.

264 (* Reflexive case: *)

265

266 right.

267 exists ([]). simpl.

268 pose proof RDX' as pp.

269 apply pp.

270 apply beta_name_eval.

271 apply single_list_srs.

272

273 (* Base/transitive case: *)

274 right.

275 assert (H2: App N0 N = subst N M2 ∨ (exists L : term_list, standard_red_seq(App N0 N :: L ·

276 (subst N M2 :: [])))).

277 specialize IHname_eval_t with (M2).

278 apply IHname_eval_t.

279 apply equiv_name_eval. trivial. trivial. trivial. trivial.

280 destruct H2.

281

282 (* H2 : App N0 N = subst N M2 *)

283 rewrite← H2.

133

APPENDIX F.

284 exists ([]). simpl.

285 pose proof RDX' as pp.

286 apply pp.

287 apply app_red_name_eval_1. trivial.

288 apply single_list_srs.

289

290 (* H2 : exists L : term_list, standard_red_seq (App N0 N :: L ·(subst N M2 :: [])) *)

291 destruct H2 as [L1].

292 exists (App N0 N :: L1). simpl.

293 pose proof RDX' as pp.

294 apply pp.

295 apply app_red_name_eval_1. trivial. trivial.

296

297

298 (* H1 : standard_red_seq (subst N M2 :: L1 ·(P :: [])) *)

299 destruct H1 as [L1].

300 dependent induction H10.

301 (* Reflexive case: *)

302 right.

303 exists (subst N M2 :: L1).

304 simpl.

305 pose proof RDX' as pp.

306 apply pp.

307 apply beta_name_eval. trivial.

308

309 (* Base/transitive case:*)

310 right.

311 assert (H3: App N0 N = P ∨

312 (exists L : term_list, standard_red_seq (App N0 N :: L · (P :: [])))).

313 specialize IHname_eval_t with (M2).

314 apply IHname_eval_t.

315 apply equiv_name_eval. trivial. trivial. trivial. trivial.

316 destruct H3.

134

APPENDIX F.

317 (* H3: App N0 N = P *)

318 exists ([]).

319 simpl.

320 pose proof RDX' as pp.

321 apply pp.

322 rewrite← H3.

323 apply app_red_name_eval_1. trivial.

324 apply single_list_srs.

325

326 (* H3 : exists L : term_list, standard_red_seq (App N0 N :: L ·(P :: [])) *)

327 destruct H3 as [L2].

328 exists (App N0 N :: L2).

329 simpl.

330 pose proof RDX' as pp.

331 apply pp.

332 apply app_red_name_eval_1. trivial. trivial.

333

334 Qed.

335

336 (*---*)

337

338 (*------------- Auxiliar Lemmas to prove s.r.s. implies ⇒ n -------------*)

339

340

341 Lemma aux_1 : forall M N : lambda, forall L0 L : term_list, Abs_list L0 = M :: N :: L →

342 exists M0 : lambda, M = Abs M0 ∧ (exists N0 : lambda, N = Abs N0 ∧ (exists L2 : term_list, L

343 = Abs_list L2 ∧ L0 = M0 :: N0 :: L2)).

344 Proof.

345 dependent induction L.

346 intros.

347 dependent induction L0.

348 inversion H.

349 inversion H.

135

APPENDIX F.

350 exists (M0). split. trivial.

351 dependent induction L0.

352 inversion H2.

353 inversion H2.

354 exists (M1). split. trivial.

355 exists (L0). split. trivial. trivial.

356 intros.

357 dependent induction L0.

358 inversion H.

359 inversion H.

360 exists (M0).

361 split. trivial.

362 dependent induction L0.

363 inversion H2.

364 inversion H2.

365 exists (M1). split. trivial.

366 exists (L0). split. trivial. trivial.

367

368 Qed.

369

370 Lemma aux_2 : forall M N : lambda, forall L : term_list, standard_red_seq (M :: N :: L) →

371 standard_red_seq (N :: L).

372 Proof.

373 intros.

374 dependent induction H.

375

376 (* VAR' case: *)

377 (* impossible *)

378

379 (* ABS' case: *)

380 pose proof aux_1 as pp.

381 assert (H1: exists M0 : lambda, M = Abs M0 ∧ (exists N0 : lambda, N = Abs N0 ∧

382 (exists L2 : term_list, L = Abs_list L2 ∧ L0 = M0 :: N0 :: L2))).

136

APPENDIX F.

383 apply pp. trivial.

384 destruct H1 as [M0].

385 destruct H0.

386 destruct H1 as [N0].

387 destruct H1.

388 destruct H2 as [L2].

389 destruct H2.

390 rewrite→ H1.

391 rewrite→ H2.

392 assert (H4: Abs_list (N0 :: L2) = Abs N0 :: Abs_list L2).

393 simpl. trivial.

394 rewrite← H4.

395 pose proof ABS' as ABS'.

396 apply ABS'.

397 apply IHstandard_red_seq with (M0). trivial.

398

399 (* APL' case: *)

400 dependent induction L1.

401 simpl in x.

402 dependent induction L2. simpl in x.

403 (* L1 = [] ∧ L2 = [] *)

404 inversion x. (* impossible*)

405

406 (* L1 = [] ∧ L2 = N' :: L2' *)

407 simpl in x.

408 inversion x.

409 pose proof APL' as pp.

410 assert (H5: standard_red_seq ((Apl_arg [] M · (App M0 M :: [])) · Apl_fun L2 M0)).

411 apply pp. trivial.

412 apply IHstandard_red_seq2 with (N0). trivial.

413 simpl in H5. trivial.

414

415 (* L1 = M :: L1' ∧ L2 = L2*)

137

APPENDIX F.

416 simpl in x.

417 dependent induction L1.

418 (* L1' = []*)

419 simpl in x.

420 inversion x.

421 pose proof APL' as pp.

422 assert (H5: standard_red_seq ((Apl_arg [] N0 · (App M0 N0 :: [])) · Apl_fun L2 M0)).

423 apply pp. simpl. apply single_list_srs. trivial.

424 simpl in H5. trivial.

425

426 (* L1' = M0 :: L1 ∧ L2 = L2*)

427 simpl in x.

428 inversion x.

429 pose proof APL' as pp.

430 assert (H5: standard_red_seq ((Apl_arg (M0 :: L1) N0 · (App M1 N0 :: [])) · Apl_fun L2 M1)).

431 apply pp. apply IHstandard_red_seq1 with (M). trivial. trivial.

432 simpl in H5. trivial.

433

434 (* RDX ' case: *)

435 trivial.

436

437 Qed.

438

439 Lemma aux_3 : forall L : term_list, forall M : lambda, Abs_list L = M :: [] →

440 exists N : lambda, M = Abs N ∧ L = N :: [].

441 Proof.

442 dependent induction L.

443 intros.

444 simpl in H. inversion H.

445 intros.

446 simpl in H.

447 inversion H.

448 destruct L.

138

APPENDIX F.

449 exists (M).

450 split. trivial. trivial.

451 rewrite→ H2.

452 exists (M).

453 split. trivial.

454 inversion H2.

455 Qed.

456

457 Lemma aux_4 : forall M N : lambda, name_eval M N → red M N.

458 Proof.

459 intros M N H.

460 induction H.

461 apply one_step_red.

462 induction H.

463 apply beta.

464 apply app_red_l. trivial.

465 apply refl_red.

466 apply trans_red with (N); trivial.

467 Qed.

468

469 Lemma aux_5 : forall L1 L2 : term_list, forall M N P : lambda, L1 · (M :: []) · (N :: · L2)

470 = P :: [] → False.

471 Proof.

472 dependent induction L1.

473 intros. simpl in H.

474 inversion H.

475 intros.

476 simpl in H. inversion H.

477

478 dependent induction L1. simpl in H2. inversion H2. inversion H2.

479 Qed.

480

481 Lemma aux_6 : forall M N : lambda, standard_red_seq (M :: (N :: [])) → standard_red M N.

139

APPENDIX F.

482 Proof.

483 intros.

484 dependent induction H.

485 (* VAR' case: *)

486 (* impossible *)

487

488 (* ABS' case: *)

489 dependent induction L. simpl in x. inversion x.

490 simpl in x.

491 inversion x.

492 assert (H3: exists N1, N = Abs N1 ∧ L = N1 :: []).

493 pose proof aux_3 as pp.

494 apply pp.

495 trivial.

496 destruct H3 as [N1].

497 destruct H0.

498 rewrite→ H0.

499 pose proof ABS as pp.

500 apply pp.

501 apply IHstandard_red_seq.

502 rewrite→ H3. trivial.

503

504 (* APL' case: *)

505 (* Problema com as çõfunes! *)

506

507 (* RDX' case: *)

508 Focus 2.

509 apply one_step_name_eval in H.

510 apply aux_4 in H.

511 apply standardization. trivial.

512

513

514

140

APPENDIX F.

515 dependent induction L1. simpl in x.

516 (* L1 = [] *)

517 dependent induction L2. simpl in x.

518 (* L2 = [] *)

519 inversion x.

520 (* L2 = M :: L2' *)

521 dependent induction L2. simpl in x.

522 (* L2' = [] *)

523 inversion x.

524 (**)

525 pose proof APL as pp.

526 apply pp.

527 apply rule_1.

528 apply IHstandard_red_seq2. trivial.

529 (* L2' = M0 :: L2'' *)

530 simpl in x.

531 inversion x.

532 (* L1 = M :: L1' *)

533 dependent induction L2.

534 (* L2 = [] *)

535 dependent induction L1.

536 (* L1' = [] *)

537 simpl in x.

538 inversion x.

539 pose proof APL as pp.

540 apply pp.

541 apply IHstandard_red_seq1. simpl. trivial.

542 apply rule_1.

543 (* L1' = M0 :: L1'' *)

544 simpl in x.

545 dependent induction L1.

546

547 simpl in x. inversion x.

141

APPENDIX F.

548 inversion x.

549 simpl in x.

550 inversion x.

551 pose proof aux_5 as pp.

552 assert (H4: (Apl_arg L1 N0 · (App M1 N0 :: [])) · (App M1 M0 :: Apl_fun L2 M1) = N :: [] →

553 False).

554 apply pp.

555 assert (H5: False).

556 apply H4. trivial. contradiction.

557 Qed.

558

559 Lemma aux_7 : forall M : lambda, forall L1 L2 : term_list, Abs_list L1 = M :: L2 →

560 exists M0 : lambda, M = Abs M0 ∧ exists L3 : term_list, L2 = Abs_list L3.

561 Proof.

562 dependent induction L1.

563 intros.

564 inversion H.

565 intros.

566 inversion H.

567 exists (M0).

568 split. trivial.

569 exists (L1). trivial.

570 Qed.

571

572 Lemma aux_8 : forall L1 L2 : term_list, Abs_list L1 = Abs_list L2 → L1 = L2.

573 Proof.

574 dependent induction L1.

575

576 (* L1 = [] *)

577 intros.

578 dependent induction L2.

579 (* L2 = [] *)

580 trivial.

142

APPENDIX F.

581 (* L2 = M :: L2' *)

582 inversion H.

583

584 (* L1 = M :: L1' *)

585 dependent induction L2.

586 (* L2 = [] *)

587 intros.

588 inversion H.

589 (* L2 = M0 :: L2' *)

590 intros.

591 inversion H.

592 assert (H3: L1 = L2).

593 apply IHL1. trivial.

594 rewrite← H3. trivial.

595

596 Qed.

597

598 Lemma aux_9 : forall L1 L2 : term_list, forall M : lambda, Abs_list L1 =

599 Abs M :: Abs_list L2 → L1 = M :: L2.

600 Proof.

601 dependent induction L1.

602 intros.

603 inversion H.

604 intros.

605 simpl in H.

606 inversion H.

607 assert (H3: L1 = L2).

608 apply aux_8. trivial.

609 rewrite← H3. trivial.

610 Qed.

611

612 Lemma aux_10 : forall M N : lambda, forall L : term_list, standard_red_seq (M :: N :: L) →

613 standard_red_seq (M :: N :: []).

143

APPENDIX F.

614 Proof.

615 intros.

616 dependent induction H.

617

618 (* VAR' case: *)

619 (* impossible *)

620

621 (* ABS' case: *)

622 dependent induction L0. simpl in x. inversion x.

623 simpl in x.

624 inversion x.

625 assert (H3: exists N0 : lambda, N = Abs N0 ∧ (exists L3 : term_list, L = Abs_list L3)).

626 apply aux_7 with (L0). trivial.

627 destruct H3 as [N0].

628 destruct H0.

629 destruct H3 as [L3].

630 rewrite→ H0.

631 assert (H4: Abs_list (M :: N0 :: []) = Abs M :: Abs N0 :: []).

632 simpl. trivial.

633 rewrite← H4.

634 pose proof ABS' as pp.

635 apply pp.

636 rewrite← H1 in x. rewrite→ H0 in x.

637 apply IHstandard_red_seq with (L3).

638 rewrite→ H3 in x.

639 rewrite→ H0 in H2.

640 rewrite→ H3 in H2.

641 apply aux_9.

642 simpl. trivial.

643

644 (* APL' case: *)

645 dependent induction L1. dependent induction L2.

646 (* L1 = [] ∧ L2 = [] *)

144

APPENDIX F.

647 (* This subcase is impossible. *)

648 inversion x.

649 (* L1 = [] ∧ L2 = M :: L2' *)

650 simpl in x.

651 inversion x.

652 pose proof APL' as pp.

653 assert (H5: standard_red_seq ((Apl_arg [] N0 · (App M0 N0 :: [])) · Apl_fun (M :: []) M0)).

654 apply pp. trivial. apply IHstandard_red_seq2 with (L2). trivial.

655 simpl in H5. trivial.

656 dependent induction L2.

657 (* L1 = M :: L1' ∧ L2 = [] *)

658 dependent induction L1.

659 (* L1' = [] *)

660 simpl in x.

661 inversion x.

662 pose proof APL' as pp.

663 assert (H5: standard_red_seq ((Apl_arg (M :: []) N0 · (App M0 N0 :: [])) · Apl_fun [] M0)).

664 apply pp. trivial. trivial. simpl in H5. trivial.

665 (* L1' = M :: M0 :: L1'' *)

666 simpl in x.

667 inversion x.

668 pose proof APL' as pp.

669 assert (H5: standard_red_seq ((Apl_arg (M :: []) N0 · (App M0 N0 :: [])) · Apl_fun [] M0)).

670 apply pp. simpl. apply IHstandard_red_seq1 with (L1 · (M1 :: [])). simpl. trivial.

671 trivial. simpl in H5. trivial.

672 (* L1 = M :: L1' ∧ L2 = M0 :: L2' *)

673 dependent induction L1.

674 (* L1' = [] *)

675 simpl in x. inversion x.

676 pose proof APL' as pp.

677 assert (H5: standard_red_seq ((Apl_arg (M :: []) N0 · (App M1 N0 :: [])) · Apl_fun [] M1)).

678 apply pp. trivial. apply single_list_srs.

679 simpl in H5. trivial.

145

APPENDIX F.

680 (* L1' = M :: M0 :: L1'' *)

681 simpl in x. inversion x.

682 pose proof APL' as pp.

683 assert (H5: standard_red_seq ((Apl_arg (M :: []) N0 · (App M0 N0 :: [])) · Apl_fun [] M0)).

684 apply pp. apply IHstandard_red_seq1 with (L1 · (M2 :: [])). simpl. trivial.

685 apply single_list_srs. simpl in H5. trivial.

686

687

688 (* RDX ' case: *)

689 pose proof RDX' as pp.

690 apply pp. trivial.

691 apply single_list_srs.

692

693 Qed.

694

695 (*---*)

696

697 (*--------------------- Theorem 2: s.r.s. implies ⇒ n ---------------------*)

698

699 Lemma standard_red_2 : forall L : term_list, forall M : lambda, standard_red_seq (M :: L)

700 → (L=[] ∨

701 (exists N : lambda, exists L' : term_list, L = L' · (N :: []) ∧ standard_red M N)).

702 Proof.

703 intros.

704 dependent induction L.

705 (* L = [] *)

706 auto.

707 (* L = M :: L' *)

708 assert (H1: L = [] ∨ (exists (N : lambda) (L' : term_list),

709 L = L' · (N :: []) ∧ standard_red M N)).

710 apply IHL.

711 apply aux_2 with (M0). trivial.

712 destruct H1.

146

APPENDIX F.

713 (* L = [] *)

714 right.

715 exists (M). exists ([]). simpl.

716 rewrite← H0.

717 split. trivial.

718 rewrite→ H0 in H.

719 apply aux_6. trivial.

720 (* L = L' · (N :: []) ∧ standard_red M N) *)

721 destruct H0 as [N].

722 destruct H0 as [L'].

723 destruct H0.

724 right.

725 exists (N). exists (M :: L'). simpl.

726 rewrite→ H0.

727 split. trivial.

728 apply rule_9 with (M).

729 apply aux_6.

730 apply aux_10 with (L). trivial.

731 trivial.

732

733 Qed.

734

735 (*---*)

736

737 (*----------- Auxiliar Lemmas to prove the equivalence ⇒ n and s.r.s. ----------*)

738

739 Lemma aux_11 : forall M : lambda, forall L : term_list, [] = L · (M :: []) → False.

740 Proof.

741 simple induction L.

742 simpl.

743 intro.

744 inversion H.

745 intros.

147

APPENDIX F.

746 inversion H0.

747 Qed.

748

749

750 Lemma aux_12 : forall M M' : lambda, forall L L' : term_list, L · (M :: []) =

751 L' · (M' :: []) → L = L' ∧ M = M'.

752 Proof.

753 intros.

754 dependent induction L.

755 dependent induction L'.

756 (* L = [] ∧ L' = [] *)

757 simpl in H. inversion H.

758 split.

759 trivial. trivial.

760 (* L = [] ∧ L' != [] *)

761 simpl in H.

762 inversion H.

763 pose proof aux_11 as pp.

764 assert (H3: [] = L' · (M' :: []) → False).

765 apply pp.

766 contradiction.

767 dependent induction L'.

768 (* L != [] ∧ L' = [] *)

769 simpl in H.

770 inversion H.

771 pose proof aux_11 as pp.

772 assert (H3: [] = L · (M :: []) → False).

773 apply pp.

774 assert (H4: False).

775 apply H3.

776 rewrite→ H2. trivial.

777 contradiction.

778

148

APPENDIX F.

779 (* L != [] ∧ L' != [] *)

780 inversion H.

781 assert (H3: L = L' ∧ M = M'). apply IHL. trivial.

782 destruct H3. rewrite→ H0.

783 split. trivial. trivial.

784

785 Qed.

786

787

788 (*----------------- Corollary: ⇒ n equivalent to s.r.s.------------------*)

789

790 Lemma s_r_s_equiv: forall M N : lambda, standard_red M N ↔

791 (M = N ∨ exists L : term_list, standard_red_seq (M :: L · (N :: []))).

792 Proof.

793 intros.

794 split.

795 intro.

796 apply standard_red_1. trivial.

797 intro.

798 destruct H.

799 rewrite← H. apply rule_1.

800 destruct H as [L].

801 pose proof standard_red_2 as pp.

802 assert (H1: L · (N :: []) = [] ∨ (exists (N' : lambda) (L' : term_list), L · (N :: []) =

803 L' · (N' :: []) ∧ standard_red M N')).

804 apply pp. trivial.

805 destruct H1.

806 dependent induction L.

807 simpl in H0. inversion H0.

808 simpl in H0.

809 inversion H0.

810 destruct H0 as [N'].

811 destruct H0 as [L'].

149

APPENDIX F.

812 destruct H0.

813 pose proof aux_12 as aux_12.

814 assert (H2: L = L' ∧ N = N').

815 apply aux_12. trivial.

816 destruct H2.

817 rewrite→ H3. trivial.

818 Qed.

150

Bibliography

[1] T. Altenkirch. “A formalization of the strong normalization proof for System F in LEGO.” In: TLCA

1993: Typed Lambda Calculi and Applications. Ed. by M. Bezem and J.F.Groote. Vol. 664. Lecture

Notes in Computer Science. Springer, 1993, pp. 13–28.

[2] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, and B. C. Pierce. “Mechanized Metatheory

for the Masses: The POPLMARK Challenge.” In: Lecture Notes in Computer Science 3603 (2005),

pp. 50–65.

[3] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. “Engineering Formal Metathe-

ory.” In: ACM SIGPLAN Notices 43 (2008), pp. 3–15.

[4] H. Barendgregt, W. Dekkers, and R. Statman. Lambda Calculi with types. Cambridge University

Press, 2013.

[5] H. P. Barendregt. The Lambda Calculus Its syntax and Semantics. NORTH-HOLLAND, 1981.

[6] H. Barendregt. “The impact of the lambda calculus in logic and computer science.” In: Bulletin of

Symbolic Logic 3 (1997), pp. 181–215.

[7] H. Barendregt and E. Barendsen. “Introduction to Lambda Calculus.” In: (1994). url: https :

//www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf.

[8] S. Berghofer and C. Urban. “A Head-to-Head Comparison of de Bruijn Indices and Names.” In:

Electronic Notes in Theoretical Computer Science 174(5) (2007), pp. 53–67.

[9] N. de Bruijn. “Lambda calculus notation with nameless dummies, a tool for automatic formula ma-

nipulation, with application to the Church-Rosser theorem.” In: Indagationes Mathematicae (Pro-

ceedings) 75(5) (1972), pp. 381–392.

[10] C. Clack, C. Myers, and E. Poon. Programming with Miranda. Prentice Hall, 1995.

151

https://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf
https://www.cse.chalmers.se/research/group/logic/TypesSS05/Extra/geuvers.pdf

BIBLIOGRAPHY

[11] E. Copello, N. Szasz, and Á. Tasistro. “Formal metatheory of the Lambda calculus using Stoughton’s

substitution.” In: Theoretical Computer Science 685 (2017), pp. 65–82.

[12] M. Copes. A machine-checked proof of the Standardization Theorem in Lambda Calculus using

multiple substitution. MSc Thesis, Universidad ORT Uruguay, 2018.

[13] T. Coquand. An algorithm for testing conversion in Type Theory. Cambridge University Press, 1991.

[14] B. Goldberg. “Functional Programming Languages.” In: ACMComputing Surveys 28 (1996), pp. 249–

251.

[15] G. Gonthier. “Formal Proof—The Four- Color Theorem.” In: Notices of the AMS 5 (2008).

[16] F. Guidi. “Standardization and Confluence in Pure Lambda-Calculus Formalized for the Matita The-

orem Prover.” In: Journal of Formalized Reasoning 5(1) (2012), pp. 1–25.

[17] P. G. Harrison and A. J. Field. Functional programming. Addison-Wesley, 1988.

[18] G. Huet. “Residual Theory in lambda-Calculus: A Formal Development.” In: Journal of Functional

Programming 4(3) (1994), pp. 371–394.

[19] F. Joachimski and R. Matthes. “Standardization and Confluence for a Lambda Calculus with Gen-

eralized Applications.” In: RTA 2000: Rewriting Techniques and Applications. Ed. by L. Bachmair.

Vol. 1833. Lecture Notes in Computer Science. Springer, 2000, pp. 141–155.

[20] R. Kashima. “A Proof of the Standardization Theorem in λ-Calculus.” In: RIMS Kokyuoroku 1217

(2001), pp. 37–44.

[21] A. Laretto. Formalizations of the Church-Rosser Theorem in Agda. BSc Thesis, Università degli Studi

di Torino, 2020.

[22] R. P. N. Lazarom. “Strong normalization in a typed lambda calculus with lambda structures types.”

In: Studies in Logic and the Foundations of Mathematics 133 (1973), pp. 389–468.

[23] R. Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-98-381, LFCS, Univ.

of Edinburgh, 1998.

[24] J. Maraist, M. Odersky, D. N.Turner, and P. Wadler. “Call-by-name, call-by-value, call-by-need and

the linear lambda calculus.” In: Electronic Notes in Theoretical Computer Science (1995), pp. 370–

392.

152

BIBLIOGRAPHY

[25] J. McKinna and R. Pollack. “Pure Type Systems Formalized.” In: Typed Lambda Calculi and Applica-

tions, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The

Netherlands, March 16-18, 1993. Ed. by M. Bezem and J. Groote. Springer Berlin, 1993, pp. 289–

305.

[26] J. McKinna and R. Pollack. “Some Lambda Calculus and Type Theory Formalized.” In: Journal of

Automated Reasoning 23 (1999), pp. 373–409.

[27] T. Nipkow. “More Church–Rosser Proofs.” In: Journal of Automated Reasoning 26 (2001), pp. 51–

66.

[28] M. Pereira and S. M. de Sousa. Introdução à Programação Funcional em OCaml. Universidade da

Beira Interior, 2012.

[29] F. Pfenning and C. Elliot. “Higher-order abstract syntax.” In: ACM SIGPLAN Notices 23(5) (1988),

pp. 199–208.

[30] G. D. Plotkin. “Call-by-name, call-by-value and the λ-calculus.” In: Theoretical Computer Science

1(2) (1975), pp. 125–159.

[31] E. Post. “Formal Reductions of the General Combinatorial Decision Problem.” In: American Journal

of Mathematics 65(2) (1943), pp. 197–215.

[32] R. Rojas. “A Tutorial Introduction to the Lambda Calculus.” In: arXiv:1503.09060 (2015).

[33] J. E. Santo, L. Pinto, and T. Uustalu. “Modal Embeddings and Calling Paradigms.” In: 4th Interna-

tional Conference on Formal Structures for Computation and Deduction (FSCD 2019). Ed. by H.

Geuvers. Vol. 131. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 18:1–18:20.

[34] J. E. Santo, L. Pinto, and T. Uustalu. “Plotkin’s call-by-value λ-calculus as a modal calculus.” In:

Journal of Logical and Algebraic Methods in Programming 127 (2022), p. 100775.

[35] P. Sestoft. “Demonstrating Lambda Calculus Reduction.” In: The Essence of Computation. Ed. by

T. Mogensen, D. A. Schmidt, and I. H. Sudborough. Vol. 2566. Lecture Notes in Computer Science.

Springer, 2002, pp. 420–435.

[36] N. Shankar. “A mechanical proof of the Church-Rosser theorem.” In: Journal of the ACM 35(3)

(1988), pp. 475–522.

[37] M. H. B. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. ELSEVIER, 2006.

153

BIBLIOGRAPHY

[38] A. Stoughton. “Substitution Revisited.” In: Theoretical Computer Science 59(3) (1988), pp. 317–

325.

[39] T. C. D. Team. “The Coq Proof Assistant Reference Manual.” In: (2022). url: https://github.

com/coq/coq/releases/tag/V8.16.0.

[40] R. Viehof. call-by-name, call-by-value and abstract machines. Radboud University Nijmegen, 2012.

[41] F. Wiedijk. “Formal proof – getting started.” In:Notices of the American Mathematical Society 55(11)

(2008).

154

https://github.com/coq/coq/releases/tag/V8.16.0
https://github.com/coq/coq/releases/tag/V8.16.0

	List of Figures
	Introduction
	Background on -Calculus
	-terms and substitution
	-reduction
	Call-by-name and call-by-value

	-calculus and the Standardization Theorem
	Call-by-name evaluation
	Standardization relation and admissible rules
	Standardization Theorem

	Formalization in Coq of the Standardization Theorem
	A -calculus with De Bruijn indices
	The Substitution Lemma
	Standard reduction relation and admissible rules

	Standard Reduction Sequences
	Theory
	Formalization in Coq

	Conclusion
	Appendices
	
	
	
	
	
	
	Bibliography

