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Featured Application: This study proposes a heat generation model for selecting an energy-
efficient design for a rolling bearing cage.

Abstract: Several aspects must be considered in the design of rolling bearing cages. One of the
most important considerations relates to studying and developing a stationary approach for solving
problems of heat and mass transfer during convection. In this context, this paper proposes, among
other achievements, the development and validation of a model of heat generation that is used,
as the basis for an energy-efficient cage design in the context of the roller bearings of axle boxes
for rail transport. The forces of interaction of the cage with the bearing parts are determined. The
energy-efficient design of the cage is performed with modified friction surfaces in the form of convex
contours of the pockets and micro-hollows on the surfaces of the pockets and support rings. On
the basis of a flat model, of the interaction between the cage and the bearing parts, the pressure
forces on the driving and driven rolling elements in the zone of radial loading are determined. The
frictional moment of the bearing has been determined based on the integral design of the cage
without taking into account lubrication during the interaction of the cage with the jumpers and
with the sides of the basing ring. The calculation of the temperature gradient with standard and
improved designs of bearing cages has been performed while taking air blowing into account; results
showed a decrease in the average level and growth rate of the bearings’ temperature gradient with
an energy-efficient cage design. Based on the obtained results, and on the developed heat generation
model, a systematic approach for energy-efficient design of rolling bearing cages is proposed. The
proposed approach, as well as the respective developed models, were validated by obtaining and
analyzing the experimental results.

Keywords: bearing cage; energy-efficient design; rolling bearing; separator; heat generation;
bearing friction

1. Introduction

Rolling bearings are widely used in all branches of industrial production [1,2]. Many
studies are devoted to modifying existing bearings [3,4], and improving their perfor-
mance [5]. One of the most problematic bearing elements is the cage, which is subject
to wear and fatigue failure. Some researchers are therefore seeking other technological
solutions and abandoning bearings [6].

Many other researchers, however, are engaged in improving knowledge and creating
new rolling bearings models, which greatly contribute to the development of the bearing
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industry. In 1960, Jones developed a bearing analysis model based on the static equilibrium
formulation [7]. In [8], a quasi-dynamic model with five degrees of freedom was proposed,
taking into account balls, a cage, and raceways. The mentioned models do not consider
account time-varying transients in bearings and the influence of inertial effects on stability
and impact force. The first model of a dynamic bearing was developed by Walter and
included the balls’ four degrees of freedom and the cage’s six degrees of freedom [9].
Gupta developed models with six degrees of freedom for each element of the bearing to
simulate the dynamic three-dimensional movement of all the bearing elements [10,11]. In
the study presented in [12], a simplified dynamic model was obtained that included the
influence of the gap for various working and geometric conditions of the bearing. In [13],
a mathematical model of a ball bearing with a flexible cage was developed, taking into
account the wear of the cage-pockets. The work presented in [14] shows a simulation of
cage wear over time. Bizarre [15] built a dynamic model with five degrees of freedom
considering the effect of elastohydrodynamic lubrication for an angular contact ball bearing
and investigated the effect of various lubricants on the bearing’s dynamic behavior. The
hydrodynamic friction model proposed in [16] is based on the viscoelastic behavior of
a solid lubricant and a solid material, taking into account the hydrodynamic effect of
cryogenic liquids. In [17], a dynamic model of an angular contact bearing is proposed,
which considers the influence of the lubricant temperature on the slip of the balls and the
impact force of the cage. In [18], a method for determining the internal forces arising in a
beam during its subsequent movement is proposed, with no features (such as: supports,
concentrated inclusions, etc.) which are distant from the bearing undergoing shaking by a
greater distance and cannot affect the maximum value of internal forces in its proximity.

It can be noted that most studies are focused on the effect of load, operating speed, and
lubrication conditions on the dynamic characteristics of bearings. Some studies examined
the effect of lubrication temperature on the stability of the cage. At the same time, little
attention has been paid to the issues of heat generation in bearings, which depends on
many factors: design features of parts, operating conditions, and technical conditions. One
of the most important design factors is the cage, but its influence on heat generation has
not yet been considered analytically considered.

The heat generation created by the cage is determined by the interaction forces of the
cage with the bearing parts. The rationally chosen geometry of the friction surfaces and
the rigidity of the cage design elements, under given lubrication conditions, help to reduce
the load concentration over the contact surfaces, redistributing it and reducing friction. An
analytical model of heat generation in a bearing during its operation can be an effective
tool for assessing the design of energy-efficient bearing cages. To develop a model of heat
generation caused by a cage in rolling bearings, it is necessary to determine the forces acting
on the cage and to estimate the frictional moment of the cage that is caused by its design.

The examination in [19] presents a model for calculating the frictional moment in a
gyroscope bearing with detection of the share of various influencing factors. The effect of
the friction caused by the design of the cage is determined by solving the equations of its
dynamics, where six degrees of freedom are taken into account. Based on the numerical
solution of the equations of the cage dynamics and considering friction, the geometric
parameters of the cage are established, i.e., the cross-section of the rings and the gap
between the rolling elements and jumpers. At the same time, it is not known how the
movement of the cage occurs, how the rolling elements interact with the cage, what is the
basis of the cage, and what influence the basis parts have on the operation of the cage.
Calculations and measurements of the frictional moment of air generator bearings are given
in [20]. Two fundamentally different bearing friction models are used. The first model takes
into account only the load on the bearing, while the second considers rolling friction, sliding
friction, sealing friction, and resistance to the movement of lubricant. Comparison of the
results of calculations and experimental measurements showed that none of the models can
reliably predict the moment of friction of the bearing. In addition, neither of these models
take into account the influence of the cage design. The authors of [21] developed a new
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method of calculating bearing friction that included its kinematics based on the model of
the elastohydrodynamic theory of lubrication. Varying the kinematics parameters (speed
of the rolling elements and the cage) directly changes the interaction forces of the bearing
parts, which determine the frictional moment of the bearing. However, this approach
for the calculation does not allow researchers to determine the individual components of
friction in the bearing, which are related to the design of the cage. Employees of the SKF
company [22] proposed a fairly accurate algorithm for calculating the frictional moment
of a rolling bearing, but it was not widely used due to the difficulties of its practical
implementation and a number of unknown empirical parameters. The authors of [23]
propose a numerical simulation and an experimental study of the total friction moment of
a radial bearing. In this case, a simpler model of friction in the bearing is used which takes
into account the effect of load and lubrication but does not consider the design factors of
the bearing, related to the cage. In [24], a friction torque model for tapered roller bearings
concerning the geometric homogeneity of rollers has been proposed, in which the geometric
homogeneity of rollers was represented by the diameter deviation value and distribution
form of rollers with a diameter deviation. In [25], for the first time, a mechanism was
proposed for transferring motion from the rollers to the bearing cage, which utilizes the
fact that the side clearance in the cage pocket decreases gradually and that a multiple of
the rollers are in the radial loading zone as the cage moves. Models of the cage dynamics
are constructed based on studies of the kinematics of a real bearing. Advanced dynamics
models allow for calculating the interaction forces of parts for any operating conditions.
Analyzing studies [19–25] shows that the known theoretical, numerical, and experimental
examinations of the frictional moment in rolling bearings do not fully take into account the
peculiarities of the design and load of cages or are difficult to implement practically.

In this paper, a model of heat generation caused by a cage in rolling bearings is
developed. At the same time, a simplified approach is proposed to determine the value
of the frictional moment of the bearing. Based on the proposed model, by comparing
various design solutions of cages according to the criterion of their heat generation during
interaction with parts, a systematic approach is proposed for choosing an energy-efficient
design of a rolling bearing cage under given operating conditions. The model has been
validated with experimental results.

2. Materials and Methods
2.1. Heat Generation Model

Energy losses due to the design of the cage in the rolling bearing are more convenient
for determining the effect of heat generation on the friction surfaces by calculating the
temperature gradient [26]:

∆T = Tb − Te = Pf r/KT , (1)

where Tb, Te—respectively, the temperature of the bearing and the environment, KT—cooling
factor, Pf r—power loss due to friction, Pf r =

Mc·n
9550 , where n—cage rotation frequency.

The frictional moment due to the design of the cage Mc, without taking into account
losses in lubrication and sealing, can be defined as the sum of the frictional moment that
is caused by the contact of the cage with the sides of the bearing base ring Mbr and the
frictional moment that is caused by the contact of the rolling elements with the jumpers of
the cage Mj [27,28]:

Mc = Mbr + Mj, (2)

where

Mbr = 1.38·10−4·Wc· fb·n2·dout·ε
(

do − Dw· cos α

do

)2
, (3)

Mj =
do

4

(
1− D2

w
d2

o
cos2 α

)
· sin

[
α + arctg

(
Dw· sin α

2·rg

)]
Wc· fc. (4)
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where Wc—cage weight, fb—cage with the ring friction coefficient, fc—cage with the rolling
element friction coefficient, ε—cage eccentricity, dout—outer ring diameter, do—rolling
element center diameter, Dw—rolling element diameter, rg—bearing ring groove radius,
α—bearing contact angle.

The obtained expressions take into account the cage weight, the main geometric
parameters of the bearing parts, the rotation frequency of the cage, and the friction coef-
ficients of the parts. At the same time, the forces of interaction between the cage and the
parts of the bearing are not considered. Such expressions can be used for calculations of
light-load bearings.

Taking into account the forces of interaction between the driving and driven rolling
elements with the jumpers of the cage in the radial load zone of the bearing Fc(ϕ), F′c(ϕ),
the frictional moment of the bearing that is caused by the design of the cage, without taking
into account losses in lubrication and sealing, can be written:

Mc = 0.5dbs· fb
[
Fc(ϕ) + F′c(ϕ)]cos ϕ− 0.5Dw· fc[Fc(ϕ) + F′c(ϕ)

]
, (5)

To determine the corresponding pressure forces on the driving and driven rolling
elements in the radial load zone, a flat model of the interaction of the rolling elements with
the cage is proposed (Figures 1 and 2).
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Figure 1. The scheme of the interaction of rolling elements with the cage. 

Figure 1. The scheme of the interaction of rolling elements with the cage.



Appl. Sci. 2023, 13, 1144 5 of 12

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

О

y

x

n
αi

αi

k

АrFψ

y1

x1

2

6

3

4

1

5

gmð

)φ(ccFf

)φ(cF

b (φ)F

b (φ)F

(φ)foutF

(φ)finF

(φ)routF

(φ)rinF

φ

φ

 

Figure 2. The scheme of force interactions in zone A: 1, 2—outer ring and a rib; 3, 4—inner ring and 

a rib; 5—rolling body; 6—cage. 

When determining the forces, we relied on the bearing kinematics model developed 

in [20]. The flat model is built in the zone of the bearing’s radial load, where the transfer 

of motion from the rolling elements to the cage occurs intermittently because of the grad-

ual reduction of the gaps in the windows of the cage. The transformation of the brake 

(driven) rolling element, which relies on the movement of the cage, into the driver, which 

pushes the cage, is carried out in the radial load zone of the bearing. The intermittent 

nature of the cage’s movement that is caused by the relative difference in the speeds of 

the cage and the rolling elements leads to shock loading of the cage. This determines the 

internal dynamics of the rolling bearing. 

The force interactions of the cage with the parts of an ideal geometric shape (Figure 1) 

were considered in the following zones: A—pressing of the driving rolling element on the 

jumper by force 𝐹c(𝜑); B—lack of contact between the rolling elements and the cage; C—

pressing the brake (driven) rolling element on the jumper by force 𝐹′
c(𝜑); D—braking of 

the movement of the cage by rolling elements that are not loaded with radial forces and slide 

along the raceways under the action of resistance from centrifugal forces 𝐹p. 

The rolling element of mass 𝑚𝑟, driven by the friction force from the side of the mov-

ing inner ring 𝐹𝑓in, perceives the resistance of the friction force from the side of the sta-

tionary outer ring 𝐹𝑓out, the forces of interaction with the cage jumper 𝐹c(φ), 𝑓c ⋅ 𝐹c(φ), and 

moments from the components of the external load 𝐹b(φ) ⋅ (𝐷𝑤 − ℎb), 𝑘 ⋅ [𝐹𝑟in(φ) +

𝐹𝑟out(φ)] ⋅ cosα𝑖. The system of equations of motion of such an element at the exit from 

area A of zone ψ
𝐹𝑟

 (see Figure 2) can be written as follows: 

𝑚𝑟 ⋅ 𝑥̈ = 𝐹𝑓in(φ) − 𝐹𝑓out(φ) + 𝑚𝑟 ⋅ 𝑔 ⋅ sinφ − 𝐹c(φ) + [𝐹𝑟in(φ) + 𝐹𝑟out(φ)] ⋅ sinα𝑖 , (6) 

𝑚𝑟 ⋅ 𝑦̈ = 𝑚𝑟 ⋅ 𝑔 ⋅ cosφ + [𝐹𝑟out(φ) − 𝐹𝑟in(φ)] ⋅ cosα𝑖 + 𝑓c ⋅ 𝐹c(φ), (7) 

𝐼r ⋅ φ ¨ = [𝐹𝑓in(φ) + 𝐹𝑓out(φ)] ⋅
𝐷𝑤

2
− 𝑘 ⋅ [𝐹𝑟in(φ) + 𝐹𝑟out(φ)] ⋅ cosα𝑖 − 𝐹b(φ) ⋅ (𝐷𝑤 − ℎb) − 𝑓c ⋅ 𝐹c(φ) ⋅

𝐷𝑤

2
, (8) 

3

16
𝑚r ⋅ 𝐷𝑤

2 (ωp1
2 − ωp0

2 ) = 𝑚r𝑔 ⋅ (cosφ ‘
0

− cosφ ‘
1

)
𝑑0

2
+ [𝐹𝑓in(φ) + 𝐹𝑓out(φ)]𝑆 −

𝑘 ⋅ 𝑆

𝐷𝑤

[𝐹𝑟out(φ) + 𝐹𝑟in(φ)] ⋅  

cosα𝑖 − −𝐹b(φ) ⋅ (𝐷𝑤 − ℎb)
𝑆

𝐷𝑤
+ [𝐹𝑟in(φ) + 𝐹𝑟out(φ)] ⋅ 𝑆 ⋅ sinα𝑖 − 𝐹c(φ) ⋅ 𝑆, (9) 

𝐹𝑓з(φ) ≤ 𝑓r ⋅ (𝐹𝑟in(φ) ⋅ cosα𝑖 − 𝑚r ⋅ 𝑔 ⋅ cosφ − 𝐹c(φ) ⋅ 𝑓c), (10) 

Expressions (6)–(8) are the differential equations of rolling elements motion, expres-

sion (9) is the equation of the change in kinetic energy of the rolling element during the 
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rib; 5—rolling body; 6—cage.

When determining the forces, we relied on the bearing kinematics model developed
in [20]. The flat model is built in the zone of the bearing’s radial load, where the transfer of
motion from the rolling elements to the cage occurs intermittently because of the gradual
reduction of the gaps in the windows of the cage. The transformation of the brake (driven)
rolling element, which relies on the movement of the cage, into the driver, which pushes
the cage, is carried out in the radial load zone of the bearing. The intermittent nature of the
cage’s movement that is caused by the relative difference in the speeds of the cage and the
rolling elements leads to shock loading of the cage. This determines the internal dynamics
of the rolling bearing.

The force interactions of the cage with the parts of an ideal geometric shape (Figure 1)
were considered in the following zones: A—pressing of the driving rolling element on
the jumper by force Fc(ϕ); B—lack of contact between the rolling elements and the cage;
C—pressing the brake (driven) rolling element on the jumper by force F′c(ϕ); D—braking
of the movement of the cage by rolling elements that are not loaded with radial forces and
slide along the raceways under the action of resistance from centrifugal forces Fp.

The rolling element of mass mr, driven by the friction force from the side of the moving
inner ring Ff in, perceives the resistance of the friction force from the side of the stationary
outer ring Ff out, the forces of interaction with the cage jumper Fc(ϕ), fc·Fc(ϕ), and moments
from the components of the external load Fb(ϕ)·(Dw − hb), k·[Frin(ϕ) + Frout(ϕ)]·cos αi.
The system of equations of motion of such an element at the exit from area A of zone ψFr

(see Figure 2) can be written as follows:

mr·
..
x = Ff in(ϕ)− Ff out(ϕ) + mr·g·sin ϕ− Fc(ϕ) + [Frin(ϕ) + Frout(ϕ)]·sin αi, (6)

mr·
..
y = mr·g·cos ϕ + [Frout(ϕ)− Frin(ϕ)]·cos αi + fc·Fc(ϕ), (7)

Ir·ϕ =
[

Ff in(ϕ) + Ff out(ϕ)
]
·Dw

2
− k·[Frin(ϕ) + Frout(ϕ)]·cos αi − Fb(ϕ)·(Dw − hb)− fc·Fc(ϕ)·Dw

2
, (8)

3
16

mr·D2
w

(
ω2

p1 −ω2
p0

)
= mrg·(cos ϕ ‘0 − cos ϕ ‘1)

d0

2
+
[

Ff in(ϕ) + Ff out(ϕ)
]
S− k·S

Dw
[Frout(ϕ) + Frin(ϕ)]·
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cos αi −−Fb(ϕ)·(Dw − hb)
S

Dw
+ [Frin(ϕ) + Frout(ϕ)]·S·sin αi − Fc(ϕ)·S, (9)

Ff 3(ϕ) ≤ fr·(Frin(ϕ)·cos αi −mr·g·cos ϕ− Fc(ϕ)· fc), (10)

Expressions (6)–(8) are the differential equations of rolling elements motion, expression
(9) is the equation of the change in kinetic energy of the rolling element during the move-
ment from the middle of area B to the beginning of area A (see Figure 1), and expression
(10) corresponds to the condition of no slippage of the rolling element.

Taking into account that the cage perceives the greatest loads at the beginning of the
sliding of the rolling element and having adopted the following designations: ϕ∗—the
angle of the beginning of sliding of the rolling element in the zone ψFr ; and ϕ ‘0, ϕ ‘1—the
angular positions, ωp1, ωp2—the angular velocities of the rolling element at the beginning
and at the end of the movement. By solving the equation of the change in the kinetic energy
of the cage during the cycle of its load during the 2S movement, the pressing forces of the
driving and driven rolling elements on the jumpers were obtained:

Fc(ϕ∗) = 1
(

k· fc
Dw − fr · fc− 2

3 fc+0.5)
[ fr(Frin(ϕ∗)·cos αi −mr·g·cos ϕ∗) + mr ·D2

w
32S (ω2

p1 −ω2
p0)

−mr ·g·d0
12S (cos ϕ ‘0 − cos ϕ ‘1)−

mr g
3 sin ϕ ‘− Frin(ϕ∗)·sin αi +

Fb(ϕ∗)
Dw

(Dw − hb)

− k
Dw

(2Frin(ϕ∗)·cos αi +
mr ·ω2

p1·d0

2 −mrg·cos ϕ∗)]

(11)

F′c(ϕ∗) =
1

1− fb· dbs
d0
·cos ϕ∗

[(
1 + fb·

dbs
d0
·cos ϕ∗

)
·Fc(ϕ∗)− Ir

2S
·
(

ω2
p1 −ω2

p0

)
− Fp·(z− zn)

]
. (12)

The obtained expressions allow to analytically calculate the energy losses that are due
to the design of the cage in the rolling bearing.

2.2. An Energy Efficient Cage Design

With the help of the obtained model, an energy efficiency analysis and modernization
of the cage of the cylindrical roller bearing type 2726, installed in the support nodes of the
wagons, were carried out. An improved design of the polymer cage was proposed [29]. The
cage of a cylindrical roller bearing that contained two rings 1, with cavities 2, and transverse
partitions 3, the number of which is equal to the number of pockets 7, partitions 4 with
stepped protrusions 5, which is distinguished by the fact that all sides of the seats 7 have a
three-wave contour 6, and the convex surfaces of the contours are located in the middle of
the cylindrical surfaces and the ends of the rollers, and two or more micro-indentations 8
are made on the friction surface 9 of the rings on the side of each pocket (Figure 3).

When analyzing the energy losses that are due to the design of the cage, temper-
ature gradients for typical and improved cage structures were determined. The calcu-
lation of the cooling factor KT was performed, taking into account the forced external
flow of air (blowing) in a single-phase environment with convective heat transfer ac-
cording to the recommendations [30]. At a given environmental temperature (in sum-
mer) t = 20 ◦C, the speed of the train V = 27.8 m/s (100 km/h) or the rotation fre-
quency of the internal ring n = 558.44 rpm, the height of the axle box l0 = 0.32 m.
Based on the tabular values of the physical properties of dry air: kinematic viscosity
υ = 15.06·10−6m2/s; thermal conductivity λ = 3.57·10−2W/m· ◦C; the number of
Prandtl Pr = 0.7, were received: Reynolds number Re = V·l0

υ = 27.8·0.32
15.06·10−6 = 590, 704;

the average Nusselt number Nu = 0.023·Re0.8·Pr0.4 = 0.023·590, 7040.8·0.70.4 = 825; the
heat transfer coefficient α = Nu· λl0 = 825· 3.57·10−2

0.32 = 92 W/m2· ◦C; the cooling factor
KT = α·A = 92·0.4 = 36.8 W/ ◦C . At the speeds of the train, respectively V = 55.6 m/s
and V = 83.4 m/s (200 km/h and 300 km/h ) or the rotation frequency of the internal
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ring n = 1116.88 rpm and n = 1675.32 rpm the cooling factor and KT = 64 W/ ◦C and
KT = 91 W/ ◦C.
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3. Results and Discussion

The results of calculations of the temperature gradient in the rolling bearings ∆T,
caused by structural changes in the cage, and corresponding to various operating conditions:
mr = 0.326 kg; fr = 0.1; fb = 0.07; (brass on steel); fc = 0.04; (polyamide on steel);
Dw = 0.032 m; dbs = 0.190 m; ψ = 60◦ are given in Table 1 and in Figure 3.

Table 1. The temperature gradient in the rolling bearings, caused by structural changes in the cage
and corresponding to various operating conditions.

Fr kN Fa kN Fc(ϕ)∗ N F
′
c(ϕ)∗ N Mc

∗ N·mm ∆T∗ ◦C
(V=27.8)

∆T∗ ◦C
(V=55.6)

∆T∗ ◦C
(V=83.4)

30

5 110/98 99/85 578/289 0.9/0.5 1.1/0.5 1.2/0.6
10 147/133 139/120 791/400 1.3/0.6 1.5/0.7 1.6/0.8
15 182/167 175/156 987/510 1.6/0.8 1.8/0.9 1.9/1.0
20 197/179 191/168 1073/548 1.7/0.9 2.0/1.0 2.2/1.1

40

5 143/127 134/115 766/382 1.2/0.6 1.4/0.7 1.5/0.8
10 180/161 173/150 976/491 1.6/0.8 1.8/0.9 1.9/0.9
15 215/196 210/186 1175/604 1.9/0.9 2.1/1.1 2.3/1.2
20 230/210 226/200 1261/648 2.0/1.0 2.3/1.2 2.4/1.3

50

5 177/155 170/143 959/471 1.5/0.8 1.8/0.9 1.9/0.9
10 213/191 208/181 1164/588 1.9/0.9 2.1/1.1 2.2/1.1
15 248/224 245/214 1363/692 2.2/1.1 2.5/1.3 2.6/1.3
20 263/239 261/230 1449/741 2.3/1.2 2.7/1.4 2.8/1.4

*—in the numerator for a typical bearing with 14 rollers (z = 14), in the denominator for a modernized bearing
with 16 rollers (z = 16).

Calculations of the heat generation caused by the separator of typical and modernized
bearings for the study range of operation showed both a decrease in both the average
level of the temperature gradient and the growth rate of the temperature gradient of the
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modernized bearings (Figure 4). The temperature gradient of the modernized bearings is
0.4–1.4 ◦C less than the temperature gradient of typical bearings. Therefore, modernized
roller bearings of box cars with an improved cage design maintain a positive tendency to
decrease the temperature.
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Figure 4. The temperature gradients diagrams for a typical design of a cylindrical roller bearing
(region R, z = 14) and a modernized one (region E, z = 16): curve 1—Fr = 50 kN, V = 200 km/h; curve
2—Fr = 30 kN, V = 100 km/h.

In order to confirm the obtained data, temperature tests were carried out on axle boxes
with modernized bearings in one wheel pair of a passenger car attached to the train 59/60
Kharkiv-Odesa (Figure 5). The studies were carried out during a month of train operation
along a given route (24 trips).
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Figure 5. Graphs of generalized temperature functions T °C depending on the distance L of the 

passenger car of the Kharkiv-Odesa and Odesa-Kharkiv trains in forward and reverse directions, 

obtained during a month of research (curve 1—for the typical design of a cylindrical roller bearing; 
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Figure 5. Graphs of generalized temperature functions T ◦C depending on the distance L of the pas-
senger car of the Kharkiv-Odesa and Odesa-Kharkiv trains in forward and reverse directions, obtained
during a month of research (curve 1—for the typical design of a cylindrical roller bearing; 2—for the
modernized design; 3—environment (air); 4—the temperature gradient of the typical design and the
environment; 5—the temperature gradient of the modernized design and the environment.

The proposed heat generation model predicts the value of the temperature gradient in
the most loaded part (the upper part of the bearing, in the zone of radial loading). Therefore,
during experimental studies, thermocouples were installed in the upper part of the axle box,
where the action of the maximum radial loads occurs. Thermocouples (copper/constantan)
with a temperature range of −185÷+300 ◦C have been used. The welded ends of the
thermocouples were placed in a grease-lubricated hole in the upper part of the box, as close
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as possible to the outer ring of the bearings, and a clamping bolt was used to ensure they
would not fall out.

Generalized experimental temperature measurements confirmed a 20–60% lower
thermal stress compared to the basic analogue. The generalized results of measuring the
temperature of the axle box in one of the test trips are shown in Table 2 and in Figure 5.

Table 2. The temperature gradient in the rolling bearings. Generalized experimental results.

Typical Bearing Modernized Bearing
%

Mean ∆T∗ ◦C Standard Deviation Mean ∆T∗ ◦C Standard Deviation

Poltava 2.96 0.43 0.92 0.12 68.9
Kremenchuk 4.12 0.45 1.97 0.16 52.2
Znamyanka 4.94 0.89 3.08 0.36 37.6
Voznesensk 5.92 0.69 3.02 0.5 48.9

Odesa 4.98 0.45 1.81 0.14 63.6
Voznesensk 2.12 0.29 0.81 0.11 61.8
Znamyanka 3.57 0.6 2.8 0.52 21.5
Kremenchuk 5.07 0.93 2.78 0.4 45.1

Poltava 6.39 0.56 3.43 0.57 46.3
Kharkiv 8.87 1.5 6.32 1.08 28.7

When comparing the results of the temperature gradient calculations of typical and
modernized bearings with the results of their tests in the axle box, one should take into
account the many factors that influenced the measurement results. When modeling heat
generation in a bearing, the effect of the environment’s static state is taken into account
with a constant value of the cooling coefficient (approximately considering the bearing unit)
and constant humidity, and the calculated friction forces between the parts have constant
values. Under actual operating conditions, the above factors are variable (with unknown
laws of change). In the process of testing, new factors of influence on heat generation in
the bearing appear, with the most common being: attached masses to the axle box, where
there are no longer one, but two bearings; the variable nature of the movement of the car,
and hence the cooling of the bearings; different technical condition of the track sections
in the forward and reverse directions; variable environmental conditions (temperature,
humidity, and pressure). The complexity of considering these many insufficiently studied
factors of operational influence does not allow a correlation to be established between the
theoretical and experimentally obtained values of heat generation in the bearing. However,
the continuing trend of an accelerated increase in the temperature gradient of a typical
bearing compared to a modernized one allows us to assert the adequacy of the proposed
model for assessing heat generation in a bearing.

At the first stage of the study, a flat model of the bearing was considered. A more
accurate calculation is possible if the bearing is imagined as a 3D model. In the 3D model of
the bearing, it is possible to take into account the eccentricity of radial and axial loads due
to assembly inaccuracies and deformation of parts, to investigate the distortions of not only
the rolling elements, but also the design of the cage. These features of load and work will
affect the kinematics and dynamics of the bearing. In addition, expressions (11) and (12)
are obtained under assumptions about the ideal geometric shape of all parts of the bearing.
The results obtained that also use the proposed model require experimental verification.
Therefore, special research that considers the above-mentioned factors is required, which
may be the subject of the authors’ next publication.

4. Conclusions

The analytical model for evaluating the heat generation of rolling bearings, which is
caused by the design of the cage, has been developed. This allows researchers to evaluate
the effectiveness of structural improvements and materials, and to establish their effect on
the friction forces in the bearing.
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With the help of the developed model for assessing heat generation in bearing assem-
blies, using the example of a cylindrical roller bearing for wheel pairs of passenger cars, a
positive trend in reducing the temperature of the axle boxes that is due to the proposed
design changes in the bearings is confirmed by increasing the number of rollers, improving
the design and replacing the cage material (brass with glass polyamide).

For the studied load range Fr = 30, . . . , 50 kN, Fa = 5, . . . , 20 kN) and air blowing
speeds V = 100, 200, 300 km/h, the temperature gradient of the upgraded bearings 0.4, . . . ,
1.4 ◦C are less than the temperature gradient of typical bearings.

The experimental results allowed for conclusions about the reliability and valida-
tion of the developed model because of the number of experiments that have already
been performed.
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Abbreviations

KT Cooling factor
n Cage rotation frequency
Wc Cage weight
fb Cage with the ring friction coefficient
fc Cage with the rolling element friction coefficient
fr Rolling element with the ring friction coefficient
Dw Rolling element diameter
do Rolling element center diameter
rg Bearing ring groove radius
dout Outer ring diameter
din Inner ring diameter
dbs Base ring edge diameter
hb Ring thickness
k Rolling friction coefficient
αi Bearing contact angle
Fb(ϕ) Force of the rolling element with ring interaction
Frin(ϕ) Radial force component from the inner ring
Frout(ϕ) Radial force component from the outer ring
Ir Second moment of inertia
ε Cage eccentricity
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