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Featured Application: Railway bridge interventions often requires significant resources. This
work proposes a decision-making procedure where optimization of intervention costs and in-
spections is made through use of Principal Component Analysis (PCA) together with analysis on
value of information (VOI) for data filtering.

Abstract: Quality control (QC) may be applied as a framework for maintenance planning when
assigning different intervention measures to single structural elements or systems. This work pro-
poses a reliability-based maintenance decision-making process for planning visual inspections on
bridges based on the value of information and prior inspection data, and also promotes updating and
improvement cycles for subsequent planning. To that aim, an integration between SHM (Structural
Health Monitoring) data with a multidisciplinary approach is proposed to obtain a reliability index
attending to QC. The data analysis was mainly carried out with respect to an existing measurement
database and structural assessments, which were combined to obtain weighted importance coef-
ficients for each component according to their significance in the structure. The Iranian railway
network has a built stock of nearly 28,200 bridges from which a database obtained from 104 bridges
was studied in this work, considering the data obtained from technical identification checklists. The
results were then calibrated and validated with a dataset of seven bridges, which were inspected
onsite. The inspection comprised the identification and grading of damages and defects on each
element. Observed defects were considered as input for the risk analysis of each component of the
network by considering the probability of detection, occurrence and its likely consequences. Decision
making with inspection and intervention costs optimization was then performed, for a specific case
study, using Principal Component Analysis (PCA) together with the value of information (VOI) for
data filtering. With this approach, several parameters with lower values reduced from inspection and
other valuable data remain for bridge quality assessment with optimum maintenance cost.

Keywords: quality control; decision making; visual inspection; principal component analysis

1. Introduction
1.1. Quality Management

Quality management based on result-oriented performance is being used by main-
tenance managers regarding business analytical approaches [1]. ‘Result-oriented’ is a
term used to express a process and activity plan that focuses on the outcome rather than
the process used to deliver a service, such as maintenance services during the operation
process. While focusing on the results, it also maintains the required process orientation
for quality results and, in particular cases, even contributes to improving the process it-
self [2]. Integrated quality systems are considering the optimized process for inspections
and maintenance activities in terms of quality assurance connected with quality control,
which is a gap in maintenance decision-making and research [3,4]. On the other hand,
cost quality trade-offs are required when decision-makers seek to reduce maintenance
cost and maximize quality or safety [5]. Meanwhile, in recent research, the inspection
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strategies are founded on the relevant failure probability [6]. For example, objects that
have a low probability of a defect may use a sample inspected or without inspection as an
appropriate inspection strategy [7], but a high uncertainty after the pre-inspection should
be checked [8–11]. Therefore, the classification of structural elements and their defects is
vital since risky zones exist in bridges and inspectors must not miss them in favor of safe
elements in their visual tests and maintenance activity.

Consequently, safety enhancement for risk mitigation in operation procedures based
on structural element prioritization is one of the most important results and objectives for
inspection planning and maintenance management. For this manner, finding the interven-
tion action priority, as well as the inspection and maintenance method, is of significant
importance. Meanwhile, the degradation model and life cycle cost based on durability pre-
pare a row database for decision making based on the priority of elements to planning the
maintenance activities [12–14]. According to recent research results, risk analysis and the
value of information can be applied using decision trees together with Bayesian inference
for optimization and updating [15]. Regarding the database measurements, data noise and
outliers may be reduced using the Principal Component Analysis (PCA) to obtain valuable
parameters for the decision support system [16]. The PCA is important for maintenance
decision-makers because the parameter weights will modify and correct according to reality.
To that aim, a visual inspection may provide the raw data for the first step of multi-quality
control and complement it with an accurate structural investigation based on structural
health monitoring (SHM) tools [17]. In addition to PCA, other outlier classification methods
have been noted in recent research for SHM data analysis such as anomaly detection, the
Bayesian dynamic linear model, and the Bayesian dynamic linear model [18].

1.2. Reliability Centered Maintenance (RCM)

Decision making based on Reliability Centered Maintenance (RCM) may be considered
by the use of a quality level to find and select optimized maintenance activities [19]. Hence,
by comparing measured quality levels, it is possible to determine and attribute an index
value to each section of a route in service that will allow the production of a comprehensive
idea on how, where and when this system might fail during its life cycle. On the other hand,
there is a complementary relationship between reliability and risk [20,21]. Calculation
methods with health monitoring tools have also been considered in risk analysis and
combined with other measures to calculate reliability, as detailed in [22].

On one hand, traditional maintenance procedures based on routine visual inspections
with consideration of the complexity of the interrelations between design stress and en-
vironment for failure analysis are not beneficial [23]. On the other hand, a major threat
to the safe operation of a railway system is the existence of visible defects, such as cracks
on railway track components that lead to track geometric irregularities; loosen fasteners;
railhead surface cracks; traverse failures; and ballast pollution, among others. To find these
defects, it is necessary to use a visual inspection or appropriate sensors for data collecting.
To this end, there are several checklists that many railways use to track irregularities, which
are clustered in checklists based on UIC code e712 [21].

1.3. Bridge Inspection

The American Association of State Highway and Transportation Officials (AASHTO)
Manual for Condition Evaluation of Bridges, 1994 describes five types of bridge inspec-
tion [24]. These are: (i) initial inspection, (ii) routine inspection, (iii) in-depth inspection,
(iv) damage inspection and (v) special inspection. Initial inspection with lower cost support
by visual inspection can be performed at several levels of detail, from rapid ones to very
detailed ones when all the elements of the structure are analyzed [25,26]. For the first step
in this research, input data were obtained by initial inspections and visual tests, as well
as questionnaire forms. The results were obtained after analyzing the raw dataset feeding
posterior decision support system for planning routine, in-depth and special inspections.
Categorizing the defects of bridge concrete elements after inspection remains a subjective
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and laborious task. This is important in light of over-aging bridge stock for avoiding
destructive bridge collapses, as happened in 2018 in Genoa, Italy [27].

For routine inspection, the frequency of inspection depends on the condition state and
local features and defects. This study aims at providing a framework for decision-making
to find adequate inspection intervals and valuable data. For in-depth inspection, it is
necessary to plan and perform non-destructive tests (NDT). Therefore, this process will
monitor, probe and measure the material performance based on these tests. The measured
response relies on the analyzed material property and the test object itself. Examples of
the NDT method for bridges are visual inspection, ultrasound tests, thermography, and
electrical resistivity, among others. In this sense, the proposed framework is a tool for
optimizing the planning of inspections and tests that are considered important in attending
to the property or element to be analyzed.

Condition monitoring is used as a framework to derive information for reliability
calculation. In this case, irregularities and damage detection are variables to take into
account within the RCM concept. For instance, recent research has attempted to detect
structural features and analysis of their behavior to measure asset performance during
operation [28–30]. According to the type of material and the consequences of certain
damage, the type of inspection is selected for each element [31]. For instance, damages
make a change in the structural behavior of the element (e.g., change in stiffness) that can
only be analyzed by specific types of inspections. Based on this, measuring the change in
the performance of a given parameter (e.g., loss of stiffness) indicates that the structure may
be affected by specific damage and with that knowledge it is possible to prepare a database
for RCM [32]. In recent research, an attempt to evaluate the relationship between track
damages and stiffness changes was made in [33]. Numerical simulation is another method
that is being used for sensitivity analysis in railway track stiffness and structural behavior
prediction [34,35]. Rail surface damage detection is another subject that is considered in
recent research for RCM based on their damage type [36–38]. After monitoring and damage
detection, the process of RCM is updated with information that has been extracted within
the SHM. Therefore, to obtain the reliability index, it is necessary to consider the probability
of occurrence and the defect consequences based on their location and other technical
features of the structure. Additionally, FEM (Finite Element Method) has been applied for
finding models which are useful for predicting exposures and consequences of a defect in
the future. This model has to be calibrated and validated by experimental data through a
comparison of the real situation (onsite testing and inspection) and the FEM model.

Prioritization is one of the most important tools for optimizing decision making. To
make a decision without wasting resources, it is necessary to act based on the conditions.
Using the rigid technical limit states according to the standards and manuals without
considering the statistical database and conditions leads to waste of resources. Contingent
decisions with mathematical tools provide the possibility of optimization in the direction
of managing limited resources. This research makes an attempt to represent a frame-
work for infrastructure maintenance decision-making with regard to resources limitation
and passenger demands for safe operation through the railway network, and avoiding
destructive crises such as catastrophic bridge collapses in the past. This contingent decision-
making optimizes technical standards for inspection planning, with consideration of local
parameters that will affect operation risk. The local situation of the environment, the age
of equipment, and several other local parameters have to be considered in maintenance
activities such as inspection planning to operate safely. The rigid time base maintenance
(TBM), or attaching sensors to elements for condition base maintenance (CBM), are not the
optimum approach for maintenance. With this approach, pre-posterior analysis based on
statistical tools prepares the priority of equipment according to operation risk by keeping
an important equipment database and reducing some elements with useless data from
routine checks to keep the value of data during the inspections.
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2. Methodology

The present work proposes the development of a decision-making framework based
on a quality index for railway network assets. Decision makers use the quality index and
their impact to prepare an effective ranking list of components for maintenance activi-
ties. These structural elements work together in series or parallel in a network and it is
desirable to analyze the impact of each element’s risk on the operation interruption due
to probable failures. In this section, the fundamental conceptions related to continuous
improvement are investigated, the developed algorithm reliability is presented and the
required mathematical tools, such as PCA, are introduced.

To that aim, the Deming cycle process concept was considered for the continuous
improvement of the decision-making process framework. This process, also known as
the PDCA cycle (Plan, Do, Check, Act) is a continuous quality improvement model [23].
Each activity of this research is denoted by each part of the PDCA framework. Meanwhile,
this research method attempts to prepare a decision support system for optimizing these
activities based on mathematical tools and statistical methods. Therefore, the overview of
the research method based on the PDCA framework was divided into the main contribution
with subsections, as presented in Figure 1.
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Figure 1. Maintenance planning with continuous improvement.

According to Figure 1, the result of this method would be extracting the reliability at
the end stage, which will be updated during each cycle based on the new condition (i.e.,
new information). This dynamic index will update with the new input data to improve
inspection effectiveness for the next cycle of maintenance.

2.1. Overview of the Case Study

Based on structural features and material type, a clustering process has been made for
a dataset of bridges from the Iranian railway network in order to obtain a prioritization
system. There are several types of bridge in the Iranian railway network, and they are
clustered and defined in Table 1. For this clustering analysis, 104 bridges were considered
from the Iranian railway network, considering Line 5 of the Tehran transportation network.
The frequency distribution of bridge types in that case is shown in Figure 2. After the
clustering analysis, the most frequent type of bridge FB (Fer béton) has been selected for
the further analysis process. Bridges were selected specifically from the Tehran suburban
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railway network due to the availability of inspection data. Within that cluster, a dataset
consisting of seven Reinforced Concrete (RC) bridges were selected due to their location
near critical intersections and due to their heavy traffic flow.

Table 1. Bridge types.

Type Name Description

D Daloot This type of bridge is made of concrete with a
rectangular shape and width of fewer than 4 m.

FB Fer béton Deck and column in these bridges are made of
reinforced concrete.

AV Aqueduc voûte (masonry
and concrete)

Arch bridge with one span constructed by
concrete and masonry.

Avs Aqueduc voûte Surbaissé Arch bridge with a single span constructed with
concrete and masonry with low height arch.

Viaduct Viaduct This type is constructed with the several spans
with arch shape on a deep valley.

PV Poly voûte
These bridges are constructed with steel arch,

truss, arch, steel beam, and plate as well as beam
and plate.
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2.2. Initial Input Data

The initial data gathering, along with the empirical study, has been performed, taking
into account the available dataset (FB bridges), with both macro (global) and micro (local)
approaches. The micro approach was focused on the components’ condition state within
each bridge, whereas the macro level corresponds to the quality index as an indicator
for the condition state of each bridge in an overall view. This is an adequate tool for
the comparison of the bridges in terms of quality in a railway network. The quality
feature measurement method based on the Mahalanobis distance is used to evaluate the
reliability of data samples [36]. The standard deviation concept is capable of calculating the
highest valuable variable for comparison and maintenance decision making. Obtaining the
quality index for condition rating of the bridge requires analyzing raw data with regard to
valuable variables.

Two types of raw datasets have been considered to define the quality level of the
bridge and its operation risk estimation, namely structural identification (SI) and probable
defects (PD).
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2.2.1. Structural Identification

SI datasets are here considered as information that may define a structure since its
design, such as construction location and global geometry features of the structure. This
database is of importance for a risk assessment in terms of structural features that may
impact on the failure type and its effects (consequences of failure, CoF). As they depict
the overall features of the structure itself, they do not change significantly over time and
during the operation. This dataset is prepared through questionnaire forms filled out by
expert inspectors based on designer documents [39].

2.2.2. Probable Defects

The PD dataset was obtained through calculations based on visual inspection results.
Visual inspection is a traditional condition monitoring method that is still considered as a
main source of information for asset management. In this case, this method applies as a
double—check alongside the mechanized method. This paper focused on visual inspection
as an ordinary method for pre-analysis, and then the results develop a decision process for
finding the frequency of inspections for each element, not only for the traditional inspection
method but also for modern inspection tools and NDT methods. Since the structure
degrades throughout its lifespan, this dataset should be updated during the operation
time for each structural element. The structural elements’ state was evaluated between 0
and 5, with 0 being the best condition and 5 representing damaged components, with the
defect severity being based on handbooks and standards [29,40]. For this specific purpose,
failure is considered as the loss of structural function for the specific structural element
based on probable defects. If failure extends to the overall structure it will overcome the
structure limit state and lead to structural failure. Therefore, the PD database (extracted
from defects) is extended to failure when the defect is critical, thus allowing us to also infer
the Probability of Failure (PoF).

2.3. Output Data

Often, carrying out specific maintenance activities and their management is strongly
related to the usage of limited resources. Thus, it is crucial to consider the existing resources
during the operation and maintenance as an output parameter. This framework prepares a
database for implementing RCM to choose the best interventions attending to those needs.

2.4. Updating Input Data

After the first QC based on the initial input database using visual inspection data, it is
desirable to update the input database and related costs for considering its consequences
for further steps. Analysis of variance simultaneous component analysis (ASCA) was made
by combining analysis of the variance (ANOVA) and PCA tools. This method was used
to update the initial input database for further steps according to the result of a statistical
analysis process.

The new priority of components after remedial actions and the new condition status
was assigned to each element. There may be several critical elements monitored by the
NDT method according to the initial QC plan.

2.5. Components

The risk assessment must take into account the consequences of a given element
leading to the stopping of other elements. A defect in a given element may affect other
elements’ performance and, thus, the outcome depends on all dependent elements’ status
in the structure. To trace that dependency, Figure 3 presents a hierarchic chart relating
elements of a bridge.
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Figure 3. Bridge components within a railway network.

2.6. Quality Control Process

Unreliable conditions interpret risk for each component. Indeed, in a simple descrip-
tion, reliability may be connected with risk according to the following equations if they are
considered for structural elements [41].

Reliability = 1− Risk (1)

Risk = PoF× CoF (2)

PD database
De f ect density estimation⇒ PoF (3)

SI data base
PCA Analysis⇒ CoF (4)

The PD database has been processed according to a multivariate Kernel estimation to
extract PoF [42]. Meanwhile, this method may easily be applied to multivariate situations
based on the volume of material and its damages. Based on this method, the density
distribution of PoF has been calculated. For CoF, it is necessary to extract the weighted
index based on the SI database and the PCA analysis method.

The reliability index was then extracted based on structural risk as considered in
Equation (1). For the next step, it is necessary to extract the overall risk for the bridges in
the macro approach, according to the local information obtained at the micro level (based
on the components detailed in Figure 3).

3. Results and Outputs

The presented framework, applied to the case study, is presented in the Figure 4 and
following topics step by step.

3.1. Data Gathering and Pre-Posterior Analysis (Step 1)

Creating a comprehensive database is the first step of a multi-dimensional QC. For this
purpose, an analysis was made to assess a bridge using questionnaire forms and inspection
checklists, which were filled by an expert inspector according to the existing technical
standards [43,44], and to prioritize the elements considering their structural performance
and dependency on other elements [45,46].
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3.1.1. SI Database

These qualitative data comprise the SI dataset based on the Section 2.2.1 explanation
and will prepare CoF, which has been obtained based on inspector observation and their
checklist items. This qualitative dataset has been organized by a matrix, which has 35 pa-
rameters (reduced to 23 due to local reasons) for comprising SI for seven RC bridges and
extracting the weight based on the CoF extraction step. Therefore, this framework for other
cases may differ. These 23 parameters are comprised of items, which are then clustered into
the following items: location, construction process, elements interaction quality, environ-
mental features and geometrical features. Additionally, seven rows illustrate seven case
studies corresponding to bridges in the railway network.

3.1.2. PD Database

The PD database was prepared to obtain the PoF based on defect density probabil-
ity in elements. To this end, the damages on each RC element have been detected and
registered, distinguishing those related to environmental conditions (e.g., carbonation,
corrosion, concrete layer detachment) and structural reasons (e.g., cracks due to overload or
fatigue) [47]. Therefore, it is necessary to analyze surface damages to assess defect exposure.
Meanwhile, the durability feature directly links surface defects [12]. However, the tradi-
tional method relies on subjective interpretation based on visual inspection. Consequently,
image-processing software monitors the rate of defect expansion without any human error
disorder [14]. Through this tool, it is possible to assess structures in terms of quality in their
lifetime based on quantitative measurements of the defect.

Eventually, the geometry of all elements was considered by their approximate volume
to estimate the defect density. To separate segments with and without defects, a value of
0 was given to intact RC material and for a defect segment the value was 1. Meanwhile,
for segments with a high level of defects, a value of 2 was assigned. For this research case,
according to Eurocode 2 and ACI 224R-01 [48], the limit state of crack width was considered
to be 0.3 mm. Hence, 0.3 mm for cracks was the limit state for these RC elements. Moreover,
the coefficient of these defects was 1 until the rebar was exposed through that type of crack,
leading to a value of 2 if higher. This grading is summarized in Table 2.
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Table 2. Defect exposure for RC elements.

Damage Type Component State

Cracks Exposure Factor Rating

Intact element 1 0 Nothing
Crack without exposed rebar or other RC damage 1 Moderate

Crack with exposed rebar 2 High
1 Crack width limit state = 0.3 mm.

The exposure factor is a subjective value that the inspector assessing risk must define
based on Table 2 in pre-posterior analysis. After data gathering (PD and SI), the dataset
was analyzed based on the following step by calculating two types of grades for bridge
comparison and their quality index. These grades have been calculated in steps 2 and 3
based on the case study database.

3.2. PoF Grade Extracting (Step 2)

After dataset preparation, the first step for bridge comparison is extracting the proba-
bility of failure (PoF). Since defects have been detected by inspection in each element of the
bridge, it is necessary to convert these data from micro to macro vision for data analysis.
Macro vision is an approach for comparison of the bridges in a network as a whole rather
than only focusing on their components. Therefore, it is necessary to apply the PD database
for extracting PoF and then extracting the quality index in each case. Then, it is possible
to compare the bridges based on the final extracted index. There are seven cases of RC
bridges that have been studied in this research.

The process to obtain the defect density is given in Table 3, and a detailed explanation
is given as follows:

A-Table 3: in this column, the total of the observed defects in each case has been
illustrated by considering their exposure factor based on Table 2 and structural limitations.

B-Table 3: the fourth column consists of defect density, calculated according to
Equation (5), where F denotes the failure observed of each element over the approximate
volume V of these elements.

Fd =
ΣF∫
Vdv

(5)

V = Volume, F = Failure, Fd = Failure density

C-Table 3: defect density was then normalized using Equation (6). This column shows
the results of this step for finding the PoF grade. This process would be completed after all
bridge comparisons, based on calculating the quality index to reach the research aims.

Fdn =
Fd
ΣFd

n

(6)

F = Failure, Fd =Failure density, Fdn = Overall failure density for “n” elements, n = number of observed elements

Table 3. Normalization of defect density.

Bridge Number Failure = Defect ×
Exposure Factor (A)

Approximate Volume of
Material Defect Density (B) Normalized Defect

Density (C)

1 6 748.8 0.008 0.28
2 4 712.92 0.005 0.2
3 12 5653.44 0.002 0.07
4 4 709.8 0.006 0.2
5 5 6652.8 0.0007 0.03
6 4 854.568 0.005 0.16
7 1 684.936 0.001 0.05
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3.3. CoF Grade Extracting (Step 3)

After data gathering, it is necessary to analyze the SI dataset. SI has 35 parameters for
seven bridges in the case study. Therefore, all these 35 items have been measured for seven
bridges and then the CoF grade was extracted based on statistical analysis and their weight
according to the principal component, as follows.

3.3.1. Posterior Analysis of Datasets

Analysis of variance (ANOVA) is a standard method for describing and estimating
heterogeneity among the means of a response variable [49]. Datasets and extracted variables
based on environment and structural features, with higher variance, have more value of
information. According to the national standard [47], 35 items are important for quality
assessment. In this case study, several items have been eliminated as follows tables due to
posterior analysis where it was found that their importance compared to the other variables
was low. Moreover, the reasons for selection and elimination are provided as follows
Tables 4 and 5.

Table 4. Selected items for quality index.

Valuable Items Selection Reason

Importance in network There are three different levels of importance
imaginable for cases of bridges [40].

Expansion Joint, Drainage, RCC surface,
Curing quality

Differences in quality level leading to different
states for RCC bridges as a case study in

this research.

Liquefaction, land slide, rockfall, the density
of soil

According to the various soil material and
features, this event probability is valuable for

the comparison bridges in this research
case study.

Thunderstorm, flood, climate
Since these bridges are located in a suburban
area and pass over from a city, geographical

parameters effect the environment’s features.

Span number, abutment height and others.
Bridge length and their structural system

designing are defining the geometrical items
which are important for the quality index.

Table 5. Removed items for quality index.

Non-Significant Items for Comparison Elimination Reason

Approximate million gross tons (MGT) This item is the same for all cases because the
operation period is the same for all cases.

Probability of earthquake

Since the bridges are located in the same area
in terms of earthquake classification, the

probability of earthquake for these bridges is
the same.

3.3.2. Creating the Correlation Matrix

In this case, 23 items are mentioned as a sample in Table 4, remaining after normaliza-
tion and elimination of useless data. Therefore, it is necessary to create a matrix 23∗23 for
calculating the covariance, as given in Equation (7).

∑23∗23 = (
1
n
)xTx (7)

n = 7 = Number of observed bridges

x = Matrix of the indexes, with 23 items for seven bridges in this case study
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In this research, “n” is equal to the number of bridge cases for this study and raw data,
with 23 parameters. Therefore, the matrix for this step has seven cases and 23 parameters.

3.3.3. Extracting the Principal Component

The weighted criteria matrix is a valuable decision-making tool that relies on the
variance of items. Since the variance is dependent on the value of information, it is
necessary to calculate the variance for datasets in each item. Meanwhile, the dataset has
a big dimension that comprises items based on Tables 4 and 5, and therefore filtering the
dataset is vital for decision-makers. If the amount of variance is low, this item would be
neglected for the final quality index. Large eigenvalues correspond to large variances and
good value of information. In this step, finding the best combination of items based on their
weight in each index is important for extracting the quality index. In this manner, the matrix
was rotated to extract the weight of items in several attempts. Here, after 10 iterations, the
results converged to maximize the value of information. Consequently, six components
were extracted with an eigenvalue higher than one. These components will reduce the
items for inspection and, therefore, the cost of inspection will optimize. Since the rotation of
variable items in this matrix is necessary for determining their weight, Promax was chosen
with Kappa equal to four. Promax is an oblique rotation method that begins with Varimax
(orthogonal) rotation and then uses the Kappa measure. Kappa is the multicollinearity
measure which is defined as the square root of the ratio for the largest eigenvalue divided
by the smallest eigenvalue. Figure 5 illustrates the results of the software after analyzing
the data. Based on this figure, six components were extracted by the PCA method. The
weight of each parameter illustrates its value in bridge comparison after index extraction.
In this extracted quality index, the contribution of the item from the data in each principal
component is shown in Table 6.

The distance parameter has been estimated by measuring the kilometers between the
bridge and the closest central station (Gare). For the other qualitative parameters, values
were given between [0, 5], [0, 4] or [0, 3] according to specific standard ranges [50] and were
defined by expert judgment during the initial field studies.

The matrix represented in Table 7, with symmetrical shape, is proper for the compari-
son of all available components based on the main diagonal which contains the variances.
In the next table (Table 8), the variance of each principal component has been compared.

Based on Table 8, if the first principal component is chosen for the quality index, 31.6%
has been considered for the value of information. Moreover, if six principal components are
considered for the quality index, 100% value of information has been taken into account.
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Table 6. Coefficient of Quality index items and CoF grades.

No Topic Name Parameter 1 2 3 4 5 6

1
Location

Distance from the main station A 0.014 0.001 −0.007 0.301 −0.012 0.008

2 Importance in network B 0.014 0.001 −0.007 0.301 −0.012 0.008

3

Construction
process

RCC surface quality C −0.007 −0.005 0.206 0.011 0.001 −0.001

4 Curing quality D 0.118 −0.083 0.037 −0.108 0.080 0.227

5 Overall quality before
an operation E −0.007 −0.005 0.206 0.011 0.001 −0.001

6
Elements’

interaction quality

Drainage F 0.002 0.209 0.002 0.001 −0.010 −0.002

7 Expansion Joint G −0.042 −0.041 −0.075 −0.083 0.285 0.115

8 Foundation Isolation H 0.002 0.209 0.002 0.001 −0.010 −0.002

9

Geotechnical
features

Liquefaction I 0.002 0.209 0.002 0.001 −0.010 −0.002

10 Land slide J 0.013 −0.013 0.021 0.034 0.006 −0.417

11 Rock fall K 0.031 −0.131 0.056 0.063 −0.214 −0.088

15 Density of soil L −0.138 −0.023 0.095 0.185 0.140 −0.117

16 Distance from an
underground void M −0.177 −0.003 −0.011 −0.021 −0.037 0.057

12
Environmental

features

Thunderstorm N −0.128 −0.016 −0.172 0.171 0.140 −0.115

13 Flood O 0.007 0.005 −0.206 −0.011 −0.001 0.001

14 Climate P 0.002 0.209 0.002 0.001 −0.010 −0.002

17

Geometrical
features

Span number Q 0.138 0.023 −0.095 −0.185 −0.140 0.117

18 Span length R 0.043 −0.030 0.046 0.108 0.300 −0.086

19 Abutment height S 0.012 −0.010 0.052 0.085 0.014 0.300

20 Pier height T 0.208 −0.017 −0.029 0.038 −0.117 0.104

21 Bridge width U −0.030 0.113 0.166 −0.025 0.223 −0.233

22 Bridge length V 0.171 0.007 0.014 0.013 0.053 −0.059

23 Deck area W 0.157 0.011 0.046 0.051 0.098 −0.104

Table 7. Component score covariance matrix.

Component 1 2 3 4 5 6

1 1.246 0.050 1.740 −0.986 0.207 2.286
2 0.050 1.221 0.209 0.012 2.098 0.109
3 1.740 0.209 2.892 −0.949 0.928 2.156
4 −0.986 0.012 −0.949 1.016 −0.317 0.587
5 0.207 2.098 0.928 −0.317 4.119 −0.686
6 2.286 0.109 2.156 0.587 −0.686 4.543

Table 8. Total Variance Explained.

Component
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative % Total % of
Variance Cumulative % Total % of

Variance Cumulative %

1 7.277 31.638 31.638 7.277 31.638 31.638 4.851 21.091 21.091
2 5.171 22.48 54.122 5.171 22.48 54.122 4.776 20.766 41.85
3 4.364 18.97 73.096 4.364 18.97 73.096 4.530 19.695 61.55
4 2.426 10.549 83.645 2.426 10.549 83.645 3.274 14.235 75.787
5 2.076 9.028 92.673 2.076 9.028 92.673 3.128 13.599 89.38
6 1.685 7.327 100.00 1.685 7.327 100.00 2.441 10.614 100.0
7 1.012 × 10−5 4.398 × 10−15 100.00
8 5.881 × 10−16 2.557 × 10−15 100.00
9 4.575 × 10−16 1.989 × 10−15 100.00

10 3.096 × 10−16 1.346 × 10−15 100.00

Based on the recent method and the importance level of a bridge it is necessary to
keep the value of information during the operation and inspections. Additionally, based
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on Table 8, items’ contribution in each principal component has been shown by their
weight. It is desirable to choose an optimized principal component and also items in each
principal component by their weight. These weighted grades will apply to the CoF index
in multi-dimensional QC. Therefore, based on Table 6, the CoF index is as follows:

CoF = 0.01(A + B + S + J + D) + 0.04(G) + 0.13(J) + 0.31(K) + 0.14(L + Q)
+ 0.18(M) + 0.13(N) + 0.04(R) + 0.2(T) + 0.03(U) + 0.17(V)
+ 0.16(W)

(8)

It is necessary to mention that items in Equation (9) with a coefficient weight lower than
0.009 have been eliminated when being selected from Table 6. According to the obtained
CoF index, it is necessary to focus on geotechnical features, especially on bridges’ elements
that relate to rockfall, and to monitor the soil behavior concerning to these parameters.
Rockfall has the highest weight compared to the remaining items, taking into account
their consequences.

Meanwhile, the quality ranking of the bridges demands an index for prioritization
based on their probability and the consequences of failure.

Moreover, this extracted reliability index and QC approach will apply for future bridge
design located in this area.

For example, for calculating PoF in the worst condition, it is necessary to suppose
the minimum length and lowest width of the bridge to increase the failure density and
calculate the highest PoF among other existing cases.

0.01(0.8 + 2.2 + 1.5 + 2.2 + 1.7) + 0.04(2.3) + 0.13(2.2) + 0.31(2.2) + 0.14
(2.2 + 1.6) + 0.18(1.5) + 0.13(1.6) + 0.04(1.5) + 0.2(1.3) + 0.03(1.2)+

0.17(1.2) + 0.16(1.4) = 2.9 = CoF; PoF = 0.4
(9)

On the other hand, the best conditions would be considered for this dataset of case
studies, and based on the highest and lowest level of quality it is necessary to apply the
K-means for clustering them in the risk matrix as follows. The K-means method will
prepare the thresholds for risk management and QC index interpretation [51,52].

If the estimated risk comprises PoF and CoF located in the green area or red cells based
on Figure 6, the decision maker may act differently. The green cells show the best quality in
bridges assuming their structural nodes [53], based on lower expected risk accounting for
their CoF and PoF. The bridge with a quality index that has been clustered in this area may
continue with ordinary and preventive maintenance. The yellow cell illustrates that the
bridge is near to high-risk area and it is necessary to focus on its preventive maintenance,
emphasizing frequent inspections to avoid entering the emergency state. The red area
relates to damaged bridges, thus those in an emergency state. If the operation of a bridge,
which its quality index, is located in this area, is not safe and emergency intervention is
necessary. These thresholds for bridge quality index and the colored areas are determined
by the K-mean method and experiments of inspectors during the operation, which are
provided by multivariate statistical process monitoring [52].
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4. Conclusions

This research proposed the application of the estimation output based on probable risk
concerning input data (SI and PD) to assign maintenance or intervention actions for bridges
associated with different condition levels. This process, clustering bridges in different
groups by asset and element, has increased the optimization process for gathering data
when variance analysis supports the filtering of useless data. Meanwhile, the traditional
maintenance method did not consider the output of inspection and maintenance activities
to evaluate the consequence of decision making during the operation. Maintenance activity
comprises inspection, remedial actions and data analysis to extract the QC index. Based
on this research, it was possible to review the maintenance planning based on outputs
through the comparison according to the inspection by input datasets, diagnosis and
assessment results.

With this approach, several parameters were reduced for inspection and six compo-
nents remain as valuable items in terms of technical aspect for bridges’ quality assessment.
Data gathering is a costly action in maintenance activities, and this study attempts to
prepare a framework to rely on the quality index for clustering and prioritization, as well
as noise reduction for inspection objects. In this framework, the reduction of worthless
data in ordinary routine inspection and NDT for other types of inspection is considered.
Decision-making with the proposed framework is applicable to improve the precision and
efficiency of inspection, because reducing irrelevant data related to structural components
during maintenance will save the required project resources, such as time, cost, and human
labor. Meanwhile, risky elements and their related index with the higher variance have
more value of information for operators, among the others. Focusing on important elements
leads to increasing the safety of structures. The proposed framework was validated and
considered a specific dataset of railway bridges, but may be extended and applicable to
other studies if prior information on inspections is given.

Applying Bayes’ rule for developing statistical investigation is notable for future
research work. This tool will provide the possibility of risk assessment for all network
components and prepare a decision-making framework in geographic priorities with the
combination of PCA. Additionally, the use of artificial intelligence algorithms to collect
and record structural information and compare experimental test results with numerical
models to extract quality indicators is a valuable database for developing decision support
system databases in future research.
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