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Abstract: Forest fires are considered one of the major dangers and environmental issues across the
world. In the Cerrado biome (Brazilian savannas), forest fires have several consequences, including
increased temperature, decreased rainfall, genetic depletion of natural species, and increased risk of
respiratory diseases. This study presents a methodology that uses data from the Sea and Land Surface
Temperature Radiometer (SLSTR) sensor of the Sentinel-3B satellite and the Moderate Resolution
Imaging Spectroradiometer (MODIS) of the Terra satellite to analyze the thematic accuracy of burned
area maps and their sensitivity under different spectral resolutions in a large area of 32,000 km2 in the
Cerrado biome from 2019 to 2021. The methodology used training and the Support Vector Machine
(SVM) classifier. To analyze the spectral peculiarities of each orbital platform, the Transformed
Divergence (TD) index separability statistic was used. The results showed that for both sensors,
the near-infrared (NIR) band has an essential role in the detection of the burned areas, presenting
high separability. Overall, it was possible to observe that the spectral mixing problems, registration
date, and the spatial resolution of 500 m were the main factors that led to commission errors ranging
between 15% and 72% and omission errors between 51% and 86% for both sensors. This study
showed the importance of multispectral sensors for monitoring forest fires. It was found, however,
that the spectral resolution and burning date may gradually interfere with the detection process.

Keywords: forest fires; remote sensing; Space-Time Equivalence Coefficient (STEC); machine learning

1. Introduction

A new understanding of how the biota responds to fire events is extremely relevant
for the management and conservation of terrestrial ecosystems, especially in the face of
global environmental changes and the increase in human activities [1]. Vegetation burning
is a global-scale process that affects the distribution of major biogeochemical cycles and the
climate system [2]. The increase in the occurrence and frequency of extreme droughts has
led to an increase in the number of disasters associated with forest fires across the planet [3].
Burning, in addition to altering soil moisture as a function of changes in infiltration rate
and transpiration rate, can consequently alter the soil water stock [4].

The Cerrado biome (Brazilian savannas) occupies an area of 2.03 million km2, about
22% of the national territory, being the second-largest biome in South America, observed in
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the northern, north-eastern, south-eastern, and midwestern regions [5,6]. Cerrado is also
the second-largest biome in Brazil and one of the most species-rich savannas in the world [6].
Currently, the Cerrado biome is under threat from increased human pressure, which has
led to the accelerated conversion of natural ecosystems into areas for cultivation, pastures,
and infrastructure development [7]. These changes in land use and cover have resulted in
various environmental impacts, including loss and fragmentation of the natural habitat,
increasing the risk of species extinction and affecting the hydrological cycle, biogeochemical
processes, and ecosystem function [8]. Fire events are a common and decisive phenomena in
the Cerrado vegetation, which has greatly contributed to the evolution of its flora [9]. These
changes in the fire regime contribute to increased fire frequency and intensity, affecting the
ecosystem’s resilience.

The Sea and Land Surface Temperature Radiometer (SLSTR) from Sentinel-3 and
Moderate Resolution Imaging Spectroradiometer Sensor (MODIS) from the Terra satellite
sensors are some of the most commonly used Earth Observation Satellite (EOS) sensors
for detecting, monitoring, and evaluating forest fires on a regional and global scale [10].
Varying spatial and temporal resolutions of EOS sensors are a critical issue for fire detection.
Satellite revisit frequency and time often affect the effectiveness of emergency monitoring. A
practical alternative solution is to combine several sensors of different spatial and temporal
resolutions to produce fast and reliable estimates of the location and extent of forest fires
in tropical zones. Reducing the time needed to identify wildfires can lead to increased
situational awareness as well as faster decision-making by fire control teams [11], thus
reducing the potential negative impact that a fire outbreak could have in areas with high
biodiversity and fragile ecosystems (e.g., the Cerrado and Amazon biomes).

Global burned area products from the MODIS sensor, aboard the Terra and Aqua satel-
lites provided by the National Aeronautics and Space Administration (NASA), were used
to estimate global emissions, with a coarse ground sampling distance (GSD) (500 m/pixel)
and a specification of 15 days available for download worldwide [12–14]. The SLSTR
sensor attached to Sentinel-3A and 3B satellites is the latest addition to the range of in-orbit
optical sensors launched by the European Space Agency (ESA) in February 2016 and April
2018, respectively. These twin satellites provide images with a GSD of 500 m/pixel and
a range of 1420 km in visible (VIS), infrared (IR), and thermal (TIR) wavelengths, with a
temporal resolution of 1 day at the equator, giving high potential for rapid detection and
tracking of forest fires, as well as for the systematic monitoring of the recovery process
of burned areas [11,15,16]. MODIS is widely used in the Cerrado for mapping burned
areas [17], active fire detection [18], forest fire product quality [19,20] and carbon fluxes [21],
spectral indices, and time series analysis [22–24]. Despite recent research on the use of the
SLSTR in the context of forest fires, it has not yet been used exclusively in the Cerrado
biome; on the other hand, it has been successfully applied in some countries in the southern
hemisphere [11,25]. These products, however, are not suitable for the identification of
small burned areas due to their spatial resolution [26]. Despite the increasing frequency
and intensity of fire events in the Cerrado biome, the products of the burned area and
studies conducted using medium and high spatial resolution are limited to local estimates
or simply to a specific year [27,28]. Automatic mapping for burned areas using images of
different spatial and spectral resolutions and cloud computing is not yet available and is
still a scientific challenge.

The validation of remote sensing products provides critical information to help
users determine if the data meet their needs and benchmark algorithm improvements.
The Earth Observation Satellite Working Group on Calibration and Validation (https:
//lpvs.gsfc.nasa.gov/) (accessed on 15 October 2022) defines validation as the process of
independently evaluating the quality of data products derived from the system. Hawbaker
et al. [29] recommend, for the validation of coarse-resolution global burned area products,
the collection of reference data from images that: (a) have higher spatial resolution and suffi-
cient spectral resolution to identify burned areas; (b) span the time period of products being
validated; and (c) can be paired to separate recently burned areas from older burned areas,

https://lpvs.gsfc.nasa.gov/
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avoiding confusion with other types of changes. Validation of global coarse-resolution
burned area products following these protocols typically uses pairs of Landsat images to
develop reference data [30].

The methods used to generate burned area products from optical satellite images
are numerous and can be categorized according to various aspects. For example, object-
or pixel-based approaches; the use of a post-fire scene only (monotemporal approach) or
the additional integration of pre-fire data and/or time series (multitemporal approach);
and the classification algorithms applied, such as Random Forest [31], Support Vector
Machine [32], or K-Nearest Neighbor [33]. More recently, there have been major efforts
to automate the process of classifying/mapping specific targets using Deep Learning
algorithms, described in LeCun et al. [34] as the Deep Neural Network (DNN), which
includes a learning algorithm based on an artificial neural network.

This study describes the spatial and spectral capabilities and limitations of SLSTR
and MODIS sensors in relation to observations of burned areas, pioneered in the Cerrado
biome, analyzing the quality of their detection through the parameters of thematic precision,
time sensitivity, and fire size. This study aims to establish a supervised methodological
approach to analyze the thematic accuracy of the detection of burned areas in a large
portion of the Cerrado biome, in three fires during the dry period from 2019 to 2021. For
that, we used Support Vector Machine (SVM) and images of the same spatial resolution
and different spectral resolutions from the Sentinel-3/SLSTR and Terra/MODIS satellite
sensors and compared them to official burn mapping products. The application of Machine
Learning to this spatial data analysis will benefit researchers, managers, and users of
environmental agencies.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The study area comprises the extension of the Landsat orbit/point grid (221/66) with
approximately 32,000 km2, fully inserted in the Brazilian state of Piauí and located in the
Cerrado biome, close to the Caatinga biome (Figure 1).

According to Embrapa [35], Cerrado is the richest tropical savannah in the world
because it contains about 5% of all the diversity on the planet. The Cerrado is home
to 30% of the different living beings identified in Brazil, where its flora is composed
of 12,385 plant species and 4400 of them are endemic [35]. Cerrado is the biome with
the highest number of active fires detected in Brazil, losing to the Amazon biome. For
example, in 2020, 631,800 hotspots were detected in Cerrado, representing approximately
28.16% of the total hotspots observed in Brazil [36]. According to the Instituto Nacional
de Pesquisas Espaciais (INPE) [36], most active fires occur between June and November,
the period with the lowest amount of precipitation received. In the dry season, the risk
of fire propagation and dispersion is expected to increase, affecting nearby forest areas
and causing forest degradation, which is an important source for the REDD+ (Reducing
Emissions from Deforestation and Forest Degradation) program (https://redd.unfccc.int,
accessed on 15 October 2022), since these areas remain as forest areas, but with great loss of
ecosystems [36].

https://redd.unfccc.int
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Figure 1. Location of the study area in the south of the state of Piauí and in the north of the Cerrado
biome (Brazil) (coordinates in WGS84—EPGS:4326).

2.1.2. Satellite Data

In order to generate maps of spatial distribution and spectral detection of the burned area,
three pairs of images from orbital sensors were used, such as the SLSTR and MODIS/Surface
Reflectance 8-Day L3 Global (MOD091A1), aboard the Sentinel-3A and Terra satellites,
respectively.

The SLSTR is a dual-scan temperature radiometer in low Earth orbit (800–830 km
altitude), aboard the Sentinel-3 satellite RBT-1B mode. It employs the scanning technique
along the dual vision range (nadir and backward oblique) for 9 channels in the VIS, TIR,
and shortwave infrared (SWIR) spectrum (Table 1). The Level 1B pre-processing bands
include the calculation of radiometric measurements for each SLSTR channel and various
tests relating to surface signaling, clouds, determination of pixel properties, geographic
position, 500 m spatial resolution, and a revisit period of 1.9 days at the equator [37]. In
this study, the SLSTR images were made available through the Sentinel Data Hub platform
(https://scihub.copernicus.eu/, accessed on 15 October 2022) for the months between
September and October of the years 2019 to 2021 (Table 2). SLSTR data in 1B-RBT mode
were converted from radiance to ToA (Top of Atmosphere) reflectance using the software
SNAP 8.0. Due to noise problems found in the S4 band for all years, this band was removed
from the analyses.

https://scihub.copernicus.eu/
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Table 1. Characteristics of the images obtained by the MODIS (MOD09A1) and SLSTR (RBT-1B)
sensors used in this study. Source: adapted from Vermote [38] and Sentinel-3 [37] (https://sentinel.
esa.int/web/sentinel/user-guides/sentinel-3-SLSTR, accessed on 15 October 2022).

Spectral Band
Spectral Resolution (nm) Spatial Resolution

(m)MOD09A1 SLSTR

Blue 459–479 -

500

Green 545–565 530–570
Red 620–670 630–670
NIR 841–876 840–880

SWIR1 1230–1250 -
SWIR2 1628–1652 1550–1670
SWIR3 2105–2155 2200–2300

Table 2. SLSTR and MODIS image dates and Aq30m data.

SLSTR MODIS Aq30m

16 September 2019 21 September 2019 22 September 2019
16 September 2020 15 October 2020 17 September 2020

21 October 2021 15 October 2021 21 October 2021

Additionally, in the same time range as the SLSTR data (Table 2), scenes from the
MODIS sensor obtained from the surface reflectance product MOD09A1, made available
by the Distributed Active Archive Center of the Oak Ridge National Laboratory (ORNL
DAAC) (Global Subset Tool) were used: MODIS/VIIRS Land Products (https://modis.
ornl.gov/cgi-bin/MODIS/global/subset.pl, accessed on 15 October 2022). These data have
a spatial resolution of 500 m and provide spectral surface reflectance of the MODIS/Earth
bands 1–7 (Table 1) corrected for atmospheric conditions (e.g., gases, aerosols, and Rayleigh
scattering) at 8-day intervals. The criteria for choosing the pixel include cloud and solar
zenith. When the various acquisitions met the criteria, the pixel with the minimum value
of channel 3 (blue) was used [38]. The satellite image dates and the reference data for each
of the three selected burned areas (Aq30m) are presented in Table 2.

2.2. Methods
2.2.1. Separability Analysis

Statistical separability indices are statistical measures to quantify the separability of
membership and non-membership classes under different bands or spectral indices [39].
Several separability statistics are used in remote sensing, for example, the Jeffries–Matusita
(JM) and Transformed Divergence (TD) indices. In this study, the separability between
classes was calculated using TD statistics [40]. The highest value in particular, on a scale
of 0 to 2, denotes high dissimilarity between the burned and unburned classes. A value
of less than 1 indicates low spectral correspondence between the classes [41]. The TD
index is a commonly used form of separability measure designed to predict the best
channel combinations for the multispectral classification of terrestrial features [40–42]. This
separability statistic uses a saturating transformation to reduce the dimensionality of the
datasets and provide information on the relative degree to which burned areas can be
accurately classified against the spectral bands of the SLSTR and MODIS sensors.

The TD statistic also provides insight into which channels can be used to obtain the
best classification results and quantify the separability of burned and unburned areas.
Therefore, it is based on the weighted covariance distance between the class means to
determine whether the class signatures are separable [42], through Equation (1):

TD = 2
[
1− exp

(
−D

8

) ]
,

D = 1
2 tr
[
(C1 − C2)

(
C−1

1 − C−1
2

)]
+ 1

2 tr
[(

C−1
1 − C−1

2

)
(µ1 − µ2)(µ1 − µ2)

T
] (1)

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-SLSTR
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-SLSTR
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
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where TD is the Transformed Divergence between class 1 and class 2, C1 and C2 are the
covariance matrices of class 1 and class 2, µ1 and µ2 are the average vectors of class 1 and
class 2, tr is the matrix trace function, and T is the matrix transposition function. The
separability calculation was performed in the RStudio Desktop software (Version 1.4.1717)
using the ‘spatialEco’ package [43].

2.2.2. Training and Classification by Support Vector Machine (SVM)

SVM is based on statistical learning theory and aims to determine the location of
decision limits that produce optimal class separation [44]. According to Vapnik [44], in the
case of a two-class pattern recognition problem in which the classes are linearly separable,
among the infinite number of linear decision limits, SVM selects the one that minimizes the
generalization error. Thus, the decision boundary selected will be the one that leaves the
largest margin between the two classes, where the margin represents the distance between
the hyperplane and the support vectors. SVM analysis attempts to position the margin so
that the space between it and the SVM support vectors is maximized [44]. The data points
closest to the hyperplane are used to measure the margin; therefore, these data points are
called ‘support vectors’ [44]. If the two classes are not linearly separable, SVM tries to find
the hyperplane that maximizes the margin while minimizing an amount proportional to
the number of misclassifications [45]. In general, SVM works by considering each pixel as a
vector in a multidimensional system, where each class has a pixel as a support vector to
establish the class boundary. When the data do not fit an obvious hyperplane, the point
of view must be shifted to a higher dimensional space. In this way, SVM allows users to
choose a kernel function that best suits the data they are working with.

In studies of the classification of burned areas, according to Dragozi et al. [46] and
Pereira et al. [47], the Radial Base Function (RBF) kernel of the SVM classifier is commonly
used and performs well. Therefore, in this study, the RBF kernel was used to implement
the SVM algorithm, although there are two parameters that need to be configured when
applying the SVM classifier with the RBF kernel: the optimal cost parameters (C) and the
kernel width parameter (γ), also called “gamma” [48]. Parameter C decides the size of
the classification error allowed for non-separable training data, which makes it possible
to adjust the rigidity of the training data. The kernel width parameter (γ) affects the
smoothing of the shape of the class division hyperplane [49]. Larger values of C can lead
to an overfitting model while increasing the value of γ will affect the shape of the class
division hyperplane, which can affect classification accuracy results [50].

To perform the classification, a training step is needed to allow the classifier to learn
the process through examples that indicate the correspondence between a training sample
and a class [51]. Following the studies by Li et al. [52] and Noi and Kappas [50] to find the
ideal parameters for SVM, five values of C (1, 5, 10, 50, 100) and four values of γ (0.1, 1, 5,
10) were selected. The best pre-established C and γ combination was evaluated with the
number of iterations from 1 to 1000. Finally, the SVM classification was performed for the
entire SLSTR and MODIS dataset using the best values of the trained hyperparameters. The
selection of training samples was performed in the QGIS 3.10 software. Hyperparameter
and classification tests were performed in the RStudio Desktop 1.4.1717 software using the
package ‘e1071′ [53].

2.2.3. Validation

The validation of remote sensing data is usually based on measurements taken from
field campaigns, which are viewed as a reference on-site. In many cases, the validation
process is carried out by remote sensing products provided by official institutions or by
sensors with high spectral and spatial resolution.

In this work, the reference validation product was the annual burned area in the
years 2019 to 2021 from the database made available by the National Institute for Space
Research (INPE) through the INPE Fire Database (BDQueimadas—Aq30m) available at
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http://queimadas.dgi.inpe.br/queimadas/aq30m/, accessed on 15 October 2022. Data
were made available in vector polygon format covering the entire study area.

This monitoring uses images from the Landsat series with 30 m spatial resolution,
which operationally and automatically estimates the burned surface, generating digital
maps, temporal comparisons, and products to support the management and assessment of
the impact of the use of fire on vegetation. The period of the images used for SLSTR and
MODIS was carefully chosen in accordance with the data (Aq30m) to be as short as possible
and, as shown in Table 2, considering that this parameter depends on the imaging cycle
of the satellites, avoiding possible spatial inconsistencies due to changes in the burn scar
and ground cover. However, problems with clouds were the main cause for time intervals
different from those recommended by the literature (29 days) [17].

2.2.4. Accuracy Analysis

The quality of a given thematic map, which is derived from remote sensing data, is
generally evaluated by systematic comparison with other maps also derived from remote
sensing. The quality assessment is generally performed on the basis of verification measures
derived from confusion matrices [54]. The cross-tabulation approach is the most common
way of assessing thematic accuracy. In this context, a comparison and analysis of the quality
of the maps of burned areas obtained by the SLSTR and MODIS images in the years 2019 to
2021 were carried out.

The polygon of the burned area obtained from the BDQueimadas map was used
as a spatial reference in this study for analysis in a confusion matrix. Following the
terminology presented by Fawcett et al. [55], baseline data (true class) were referred to as
positive (burned) or negative (unburned). The omission errors (OE) and commission errors
(CE) provide information about the reliability and discrimination power of the developed
classifier. For these statistics, an inconsistent ranking exhibits a trend value equal to 0%,
while a higher trend (reaching 100%) indicates that the events were ranked well. The
Dice Coefficient (DC) ranges between 0 and 1 and measures the overlap fraction of pixels
classified as burned to those actually burned in the reference map [17].

2.2.5. Regression Analysis by Proportion of Burned Area in 5 × 5 km Cells

A certain degree of OE and CE is due only to the presence of mixed pixels [56]
and the confusion matrix does not distinguish between these unavoidable errors due to
misclassification [26]. For this reason, the confusion matrix and derived accuracy metrics
were complemented by a regional scale accuracy assessment, based on regression metrics.
The proportion of 5 km resolution grid cells detected as burned by the SLSTR and MODIS
products is compared to the proportion of area detected by the reference data; the slope
and displacement of the regression line are indications of the accuracy of detection of the
burned area, while the coefficient of determination (R2) is an indication of the precision [26].

2.2.6. Space-Time Equivalence Coefficient (STEC)

To assess the daily recurrence of errors in classification in relation to periodicity with
the reference product, the Space-Time Equivalence Coefficient (STEC) was implemented
(Equation (2)). This coefficient is capable of measuring the stability of spatial errors in
relation to the recording time of data obtained by remote sensing, using the usual elements
of confusion matrices in binary cases, through adaptations of normalization precision
equations found in Strötgen [57] and Barsi et al. [58].

STEC = ln(TP) ∗

√
ln(a∗FN∗b∗FP)

ln(∆t + 1)
(2)

when the test product date is n days before that of the reference product, then a = ln(n) and
b = 1 and when the test product date is n days after the reference product date, then a = 1
b = ln(n). If the difference between dates is one day before or after the reference date then

http://queimadas.dgi.inpe.br/queimadas/aq30m/
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a = 1 and b = 1. True positive(TP) is the test result that correctly indicates the presence of a
condition or characteristic, False negative(FN) is the test result that erroneously indicates
that a specific condition or attribute is absent, False Positive(FP) is the test result that
erroneously indicates that a specific condition or attribute is present, and ∆t is the number
of days between the evaluation data and the reference data (∆t 6= 0 and ∆t < 0). The STEC
ranges from 0 to 2. Values below 1 are considered to be low interference from time in
relation to spatial errors and values above 1 are considered to be high interference from
time in relation to spatial errors. Values above 2 are considered discrepant; in this case, it is
recommended to perform the analysis with the smallest possible ∆t.

In this article, the analysis is based exactly on the ∆t between the recording of the
SLSTR and MODIS images and the date marked on the Aq30m reference product, and,
additionally, on a variation of 30 days, since the fire response in the land cover of the
Cerrado biome can persist up to 30 days after the fire.

3. Results
3.1. Separability Analysis for SLSTR and MODIS Bands

Initially, the separation between burned and unburned areas in the different bands
of SLSTR and MODIS was evaluated, as shown in Figure 2. It was observed that different
bands presented different separability performances.
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Note that for the VIS bands, there was a lower discriminatory power, with separability
estimates below 1 (except for the MODIS red band), although for the SLSTR green band,
the separability estimates were slightly higher. The NIR band, as expected, showed a
high estimate of separability in both sensors, with values above 1.7, even in the MODIS
NIR band. For MODIS, in the SWIR range, it presented higher separability performance
in relation to the SLSTR and the VIS bands, thus enhancing its ability to detect burned
areas, although estimates have focused on values below 1.2. Overall, the reflectance in
SWIR1 decreases after burning, due to the removal of water-retaining vegetation by fire [59].
For longer wavelength bands (SWIR1), the spectral reflectance of unburned dry vegetation
(proportion of green vegetation absorbing radiation due to water content) and burned
surfaces can be equally high, increasing the separability estimate (higher values of TD).
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3.2. Effects of Adjustment Parameters on Classification Precision

The test results to find the best parameters of the SVM classifier of the combination C
and γ of the RBF function, as well as the number of iterations in relation to the squared
error in the pre-classification process of the burned area, are presented in Figures 3 and 4.
The analysis was based on the training samples extracted from the satellite datasets. This
type of analysis of adjustment of the classification model is important since it allows users
to know and simultaneously change the flexibility of the classification limits of the SVM
model.
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The results obtained in Figure 3 show that the accuracy is weakly influenced by the
variable C and is very sensitive to the gamma parameter. Decreasing gamma (increased
complexity) to training accuracy monotonously increased up to 100%, that is, up to the
perfect precision model. Considering the dependencies presented in Figure 3, it can be
assumed that the selection of adequate and optimal values of the gamma and C coefficients
consists of which validation accuracy is the highest with the most effective possible training
model. In this case, among the configurations with the highest learning accuracy, the best
hit value was obtained for the gamma parameter equal to1000 and C parameter equal
to 0.001. Therefore, these values were considered optimal. Thus, they are used as input
parameters in the classification process.

The behavior of the dataset presented corroborates the theory of Mountrakis et al. [60]
and of Bahari et al. [61]. For a very large gamma, the radius of the area of influence of the
support vectors includes only the support vector itself and no regularization with C, being
able to avoid overfitting. This produces more segmented boundaries, which are narrower
around the support vectors. The predictor is therefore more likely to fit all of them. Then,
the final evaluation metrics of the model were iteratively adjusted from 1 to 1000 times.

Figure 4 shows that the highest iteration number resulted in the lowest error estimates
for both data sets. In this way, more iterations cover a wider search space and reduce the
chances of overfitting, although this causes an increase in execution time. Therefore, a
number of iterations in which there was a low variation or stabilization of the training error
was chosen, that is, 1000 iterations, where the lowest RMSE estimate based on this number
in the determined interval is found.

3.3. SLSTR and MODIS Accuracy Analysis

After the SVM classification and comparison with the reference data, Figure 5 shows
the spatial distribution of OE and CE for the classification of burned and unburned areas
for the SLSTR and MODIS sensors.

It can be seen in Figure 5 that MODIS obtained more consistent OE and CE than SLSTR.
For MODIS, the largest CE estimate was found for the year 2020 (56%), reaching 568.6 km2

of area incorrectly classified as burned. In 2019, it presented the lowest estimate (15%), with
an overestimation of 92.2 km2. For the SLSR, the largest CE were also found in 2020 (72%).

The OE exceeded the CE, which was already expected since the reference data were
dated on the same day and after the MODIS and SLTR detection, in addition to the finer
spatial resolution (30 m), where smaller burned areas (25 km2) were not detected by the
coarser resolution sensors (500 m/pixel GSD). The maps generated by the SLSTR sensor
showed the largest OE, reaching values above 80% for the year 2020, with approximately
2872.60 km2 of areas incorrectly classified. In general, MODIS presented slightly lower
values of OE in relation to SLSTR.

The results found confirmed the findings of previous studies in the Cerrado biome
on the underestimation of burned areas from global remote sensing due to the omission
of small fires that often occur mainly close to agricultural areas. Table 3 shows the Dice
Coefficient values.
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Table 3. Data Coefficient (DC) Values after validation of MODIS and SLSTR burned area maps.

Period MODIS SLSTR

2019 0.38 0.33
2020 0.43 0.30
2021 0.56 0.26

The DC presented values in agreement with the errors, with the lowest estimates
for the SLSTR sensor. However, it is important to note that MODIS also presented low
estimates, with a small increase for the year 2021 (0.56), in total disparity with the same year
for the SLSTR sensor, which presented the lowest estimate of the dataset (0.26). Overall,
MODIS had an average DC of 0.45 and SLSTR of 0.29.

In general, the classifications present low estimates of DC coefficient as summarized in
Table 3; that is, there was a discontinuous adherence with the reference data for the class of
presence of burned area since this parameter is quite sensitive to false alarms and missing
pixels. The values found for the DC coefficient allow us to partially summarize that in
the annual variability in the OE/CE of the annual maps of burned areas from SLSTR and
MODIS, for the entire data series, MODIS obtained an average OE and CE of 60% and 34%
and the SLSTR of 60% and 76%, respectively.
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3.4. Proportion of Burned Areas per 5 × 5 km Cells

Considering the coefficients of determination of the estimated regression lines, it is
possible to observe the highest correlations for MODIS in relation to SLSTR (Figure 6),
highlighting the year 2019, both with an accuracy of R2 = 0.49. This shows greater spatial
adequacy of MODIS with the reference data, mainly for the largest and densest scars
(>25 km2), compensating for CE and OE.
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Figure 6. Regressions of the proportion of burned area in each 5 × 5 km square grid of the maps
generated by the SLSTR and MODIS sensors and the reference map derived from the Aq30m during
the fire season for the years (a,d) 2019, (b,e) 2020, and (c,f) 2021.

According to Figure 6, all linear regressions were significant for p < 0.05, according
to the Student’s t-test. For the SLSTR, the accuracies were concentrated between 0.3 and
0.34, and the highest coefficient of determination was found for the year 2020 (R2 = 0.34), in
accordance with the lowest estimates of EC and OE shown in Figure 5. The slopes of the
regression lines are similar in both sensors, although for MODIS, the slopes were slightly
higher and, added to the positive intercepts, indicate that, for a cell size of 5 km2, the maps
generated by MODIS correctly mapped a larger proportion of the burned landscape in
the study area. In the burned areas detected by MODIS, approximately 89% of the cells
presented values lower than 5 km2; for the SLSTR it was 77%. This indicates patterns
of burned area corresponding to small scars in greater numbers, probably leading to a
decrease in spatial adherence with Landsat data.

3.5. Assessment of Spatial-Temporal Sensitivity in Fire Detection Based on the STEC Coefficient

Figure 7 shows the sensitivity of the spatial detection of the burned area in relation to
the temporal discrepancy between the SLSTR and MODIS imaging date with respect to the
reference product based on the STEC coefficient. The orbital sensors are represented with a
red dashed line and the average 30-day STEC coefficient with a blue dashed line.
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The schematic graphs of the daily STEC coefficient showed a significant variation
between the years, with the highest values seen for MODIS in the years 2020 (1.42) and
2021 (0.72). The SLSTR had more stable daily STEC coefficient values, especially for the
year 2019 (0.64). The better performance of SLSTR was expected since its ∆t was slightly
lower compared to MODIS. On the other hand, the average STEC coefficient showed
stable values close to 1.0 for both sensors, mainly the SLSTR, which may be related to
the mismatch between the low ∆t and the high OE and CE found for this sensor. Only
MODIS/2021 showed a slightly higher average STEC value (1.35), corresponding to high
detection errors, even with a ∆t of 5 days.

3.6. Analysis of the Accuracy and Linear Regression by Proportion 5 × 5 km for Small and Large
Fires in the Year 2021

Due to the importance of remote sensing forest fire analysis and to establish a relation-
ship between fire size and detection errors, OE and CE were shown in Figure 8 based on
small fires (<5 km2) and large fires (>5 km2) for the year 2021 for the SLSTR and MODIS
maps (Figure 5).

For large fires (>5 km2) a CE of 46% and an OE of 31% were marked for MODIS, which
represent approximately 831.3 km2 of correct classification and a DC coefficient of 0.64.
SLSTR presented slightly higher error estimates compared to MODIS, with a CE of 78%,
OE of 67%, and a DC coefficient of 0.28. In spatial terms, even for the SLSTR, the estimates
resulted in an underestimation of the burned area of approximately 1203.63 km2 and an
accuracy of 332.78 km2, corresponding to a percentage difference of 43% in relation to the
total area mapped, with MODIS showing a difference of 56%.
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Figure 8. Representation of OE and CE for small (<5 km2) and large (>5 km2) fires for SLSTR and
MODIS in the year 2021. (a,b) for MODIS. (c,d) for SLSTR.

In smaller fire events (<5 km2), for both sensors, there was low spatial correspondence
in relation to the reference product, with a DC coefficient of 0.277 for MODIS and 0.27 for
SLSTR. For the SLSTR, the classifier erroneously detected approximately 1145 km2 of
unburned area, causing an OE of 66% and a CE of 84%. MODIS also showed a high
estimate of CE (85%), with 176.8 km2 of correctly classified burned areas, while the SLSTR
correctly classified 40.3 km2. Overall, SLSTR showed greater sensitivity in the accuracy
analysis for small and large fires, with slightly higher error estimates compared to MODIS,
especially for small fires. Figure 9 shows the linear regression analysis by a 5 × 5 km
proportion for small and large fires in the year 2021.

It was observed that the regressions for the analysis of large fires stood out in relation
to small fires. This statement is encouraged by the values of R2 and linear coefficient, being
slightly better for the estimates of burned areas in large fires with emphasis on MODIS.
The SLSTR presented low R2 estimates, and high linear coefficient values for both analyses,
while the MODIS showed a good performance with a high R2 value in the analysis for large
fires and moderate R2 for small fires in addition to the linear coefficient values practically
reaching zero.
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4. Discussion
4.1. Sensitivity and Separability of Detection Based on Spectral Characteristics

Differences in spectral separability performance for targets after wildfire events were
observed by Lasaponara [62] and Pacheco et al. [31]. The separability estimates shown in
Figure 2 are similar to those based on examining data from polar-orbiting satellites [63].
Thus, Lasaponara [62] suggested that these observations may be due to the different types
of land cover affected by the fire. Despite this complexity, the most common change is a
decrease in reflectance associated with the deposition of black coal which has an almost flat
spectrum from VIS to SWIR and contrasts with the reflectance of vegetation and soil [47,64],
although white ash deposition and exposure to highly reflective soil can increase post-fire
reflectance [65].

Regarding the VIS bands, as discussed in the literature and seen in the separability
results shown in this work, the VIS wavelengths have a very poor performance in distin-
guishing between burned and unburned areas [17,59,66,67]. This is well established, since
in this spectral region, the reflectance of dead or senescent vegetation is similar to that of
burned vegetation [32,64], in addition to sensitivity to smoke dispersion and other types of
aerosols [68], although some studies find them useful for monitoring post-fire regeneration,
particularly in areas with bright soils [69].

In the separability analysis, the IR band in both MODIS and SLSTR showed high
performance in discrimination of burned areas. The high discriminatory power of the NIR
is consistent with the studies by Veraverbeke et al. [70], Smith et al. [64], Pereira [47], and
Pacheco et al. [31]. This spectral region has been widely regarded as the best region to detect
and map burned areas [67], as this range is strongly reflected by the removal or burning of
vegetation, which implies a significant drop in reflectance. Thus, the separability values
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presented in Figure 3 were expected for both sensors, since the NIR, both numerically
and visually, can detect patterns of abrupt change in vegetation from recent fires. Briefly,
the reflectance of burned surfaces is the result of a mixture of exposed soil, unburned
vegetation, ash, and coal that are present on the surface after the fire event. In the NIR,
vegetation combustion significantly influences the spectral signature of the burned target,
generally decreasing the reflectance and consequently increasing the difference in relation
to unburned conditions [71,72]. The importance of NIR for discrimination of burned areas
is explored in Lizundia-Loiola et al. [73]. The authors implemented an algorithm based on
only a single MODIS reflectance band (NIR) to take advantage of the best ground sampling
distance of this dataset (250 m/pixel), at the cost of reducing the potential benefits of using
other spectral bands, since NIR reflectance has the added benefit of extending the range
of sensors for which our algorithm should be suitable for, as the vast majority acquire
NIR reflectance (Landsat OLI, MODIS, Sentinel-2 MSI, Sentinel-3 OLCI, Envisat-MERIS,
Probe -V).

Despite the SWIR2 and SWIR3 bands presenting moderate performance separability
in both sensors (Figure 2), in the literature, the uses of these bands are essential to increase
the accuracy and detection in fire mapping by remote sensing. The SWIR1 band in this
study presented the best performance in relation to the SWIR2 and SWIR 3 bands, which
corresponds to the studies by Schepers et al. [67], Lizundia-Loiola [73], and Pleniou and
Koutsias [74], but differs from Veraverbeke et al. [70] and Van Wagtendonk et al. [75]. The
SWIR region is strongly absorbed by the water content in vegetation or soil [76]. After a
fire, burned areas show high reflectance and transmittance in the SWIR region [77]. Thus,
detection using SWIRs (short and long SWIR) tends to decrease, as the distinct spectral
signatures of water and burned areas decrease beyond the NIR region. There, water tends
to absorb longer wavelengths almost completely, while the reflectance of the burned forest
remains fairly constant or shows a slightly increasing trend [78,79]. In implementing the
SWIR band for the detection of multi-temporal forest fires in the Rocky Mountains in
Mexico, it was observed to have high discriminatory power in changes in post-fire recovery,
while Alcaras et al. [80] observed excellent SWIR performance, both in the case of the
unitemporal (post-fire) and bitemporal (pre-fire and post-fire in comparison) approaches.

In the studies by Roy et al. [63], the authors observed high separability between burned
and unburned observations throughout the day and concluded that the SWIR bands are
less affected by the atmosphere than the VIS bands due to their longer wavelengths, in
addition to the long provenance for mapping burned area from a variety of sensors in
polar orbit (e.g., [41,81,82]). On the other hand, the band separability power of SWIR in the
temporal shift detection algorithm has also been widely exploited as an indicator of burn
severity, although the sensitivity of these bands has been found to vary geographically [83].

4.2. Analysis of Detection Errors and Relationship with Other Studies in the Mapping of Burned
Areas by Satellite

The errors found in the classification of the burned areas were caused by several
factors, one of them being the spectral similarity of the burned areas with other surface
elements, mainly low albedo bodies. Furthermore, the spatial accuracy of MODIS and
SLSTR images was an important agent in reducing data performance when compared
to finer resolution images (Landsat). Therefore, this section will discuss the influence of
spectral, temporal, and spatial resolution for detecting variability and spatial errors found
in MODIS and SLSTR burned area maps.

Some existing results in the literature using images of coarse spatial resolution were in
accordance with those obtained in this study. Pulvirenti et al. [84] proposed an automated
algorithm based on spectral indices for Sentinel-2 data on forest areas and obtained an
average CE of 6.3% and an OE of 12.7%. Likewise, Smiraglia et al. [85] obtained a CE of
33% and an OE of 24% when also exploring the spectral indices. Seydi et al. [86] mapped
burned areas with a random forest algorithm, with CE of 8.7% and OE of 9.2%. Libonati
et al. [17], using an automatic classification model using MODIS images in the Cerrado,
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obtained a CE of approximately 80% and an OE of 30%. Ramo et al. [87] obtained a CE of
99.2% and OE of 95.5% for post-fire sparse vegetation. Santana et al. [88], using MODIS
images and its derived products in all Brazilian biomes, found a CE of 42.01% and an OE of
78.03%. Pacheco and Silva Júnior [89] obtained, in the state of Maranhão, OE and CE values
of approximately 80%. Franquesa et al. [90] obtained an estimated CE and OE of 19% and
49%, respectively using MODIS MCD64 data, while Katagis and Gitas [91] obtained greater
OE (52%) but lower CE (19%) than FireCCI51 (OE = 0.36 and CE = 0.40) in Mediterranean
ecosystems. Similarly, Boschetti et al. [56] estimated that MCD64C6 had a CE of 40% and
OE of 73%, based on 16-day sampling units in a global analysis.

Van Dijk et al. [92] and Goodwin and Collett [93] reported that the main problems
with the incorrect classification of the burned area are related to the spectral variability
present in the satellite images due to land use change in relation to agricultural crops,
frequently flooded lands, and variations in moisture and soil cover in dark soils. This
problem is exacerbated when considering the different numbers of bands between SLSTR
and MODIS. This was quite evident in the classification with SLSTR images, since, for this
sensor, only four bands (green, red, NIR, and SWIR) were used in the classification. That is,
when fewer spectral resources for feature detection are available, the increase of false alarm
pixels and overestimations is favored in relation to MODIS, considering the results found
that MOD09A1 scenes provide the blue band and four wavelength ranges present in the
IR, which probably influenced the lower CE in relation to the SLSTR. Van Dijk et al. [92]
found that the NIR and SWIR bands performed exceptionally in reducing false positives,
although Filipponi [94] got a CE of around 25% and an OE of around 40% in classifying
burned areas in Italy and attributed these estimates due to SWIR variability resulting from
charcoal removal and vegetation restoration. On the other hand, Hawbaker et al. [29] using
MODIS and Landsat showed that the use of red, NIR, SWIR1, SWIR2, and thermal bands
were repeatedly effective to map burned areas and fire severity in the USA, with CE and
OE rates of 28% and 40%, respectively, when validated with Landsat-derived reference
data and 19% and 41%, respectively, when validated with high-resolution commercial
satellite imagery.

4.3. Influence of Spatial Resolution and Fire Size

Given the relevance of the fire size, the analysis of this factor is based on general
measurements of accuracy and mainly by comparing the accuracy standards for fire sizes
above and below 5 km2. The comparison between the best detection between SLSTR and
MODIS sensors, namely for a higher DC and R2, showed that a finer spectral resolution is
advantageous for mapping small and large fires. More importantly, the results of this paper
show that fire size plays a crucial role in reported accuracy, which is particularly serious for
coarse-resolution sensors. Therefore, it is important that the validation of the classification
of burned areas includes an assessment of the fire size distribution, as this is very relevant
for interpreting accuracy estimates.

The OE, being represented by pixels wrongly classified as unburned areas, presented
significant and well-distributed values for the maps generated by both sensors. Fire
features with an area smaller than 5 km2 mapped by Landsat images were identified as
one of the variables for the spatial discrepancy in the comparison between 30 and 500 m.
Unburned areas within a fire polygon are common and can significantly alter the differential
reflectance when 500 m/pixel GSD imagery is used. In this case, small fragments that are
detected as unburned at 30 m/pixel GSD, embedded in the burned area, may be considered
as burned at 500 m/pixel GSD, resulting in larger estimation errors. The same behavior
happens in isolated pixels of burned areas of the reference product. The very large pixel
size may underestimate burned areas detected in finer spatial resolution image pixels, since
they may be attenuated by the ground cover inserted in the 25 km2 grid. For example, in
the case of SLSTR and MODIS, the low spatial resolution of the images generated by the
SLSTR and MODIS sensors tended to miss fires that have a fast recovery of vegetation, in
addition to spectral mixing problems commonly found at the edges of scars. Therefore, fast
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recovery events are the main source of OE in Landsat images. This is true when comparing
imaging dates (Table 2) and the spatial distribution of OE and CE (Figure 5), although some
singular disparities are important to note. The first one is for the year 2021, which despite
the same day of recording the scene for SLSTR and Landsat, there was a higher estimate of
OE and CE compared to the MODIS scene.

4.4. Temporal Influence of Recording of SLSTR and MODIS Scenes Compared to Aq30m

The temporal variability between the imagery of the burn between the SLSTR, MODIS,
and the reference data can also cause significant OE and CE. The vegetation of the Cerrado
biome has a high capacity for post-fire regeneration, which results in the lowest spectral
signal of the burned vegetation received by the sensor, especially when imaging occurs
many days after the start of the fire. Briefly, the scars of lower intensity detected by orbital
sensors can be identified as the vegetation affected by the fire that recovered quickly during
the several months after the beginning of the fire. On the other hand, the deposition of
charcoal detected by dimming in satellite images is a very specific consequence of the low
spectral signal of the burned vegetation; however, it is relatively short-lived. Charcoal is
mitigated by wind dispersion or washed off by rain, over a period of a few weeks to a few
months after the fire. In 2019, SLSTR recorded the study area 5 days prior to the validation
product date, while MODIS recorded 1 day prior. The high estimate of OE found for the
SLSTR may be linked to this delay in temporal detection after burning recorded by Landsat,
being quantified by the STEC of 0.76. In 2020 and 2021, there was unusual behavior. The
temporal proximity of the SLSTR, being represented by a STEC close to zero, was not
able to reduce the OE and CE, while the MODIS, with high values of STEC, presented
smaller estimates of errors. This behavior may be related to atmospheric conditions such
as shadows, cirrus clouds, or aerosols, which interfered in the visibility and detection of
the burned area in the SLSTR mosaic, unlike MODIS, where there was probably greater
spectral persistence of the vegetation scar signal despite the products being known for
atmospheric contamination.

5. Conclusions

The detection of burned areas through the MODIS reflectance product (MOD09A1)
showed better performance, which may be related to the greater number of bands used
in the classification compared to the SLSTR, being possible to observe through the STEC
coefficient that the spectral resolution proved to be the most important parameter compared
to the temporal proximity between the burn persistence and the reference product. On the
other hand, both sensors showed considerable OE and CE, mainly due to small fires not
being detectable in the coarser resolution satellite images.

It was found that the SVM classifier, characterized by its self-adaptability, efficient
learning pace, and the adjustment of limited training requirements as the hyperparameters
change, was quite reliable in the intelligent processing of data acquired by remote sensing
in forest fire studies. It is noteworthy, however, that the interference caused by smoke and
other atmospheric conditions adds considerable variability to the spectral characteristics of
the burned pixels. This often results in spurious fire events if there is an active fire signal in
the spatial vicinity, causing confusion in the algorithm.

The influence of fire spans a wide range of temporal and spatial scales, as well as
interpretations of causal factors. Therefore, ecological responses are a challenge for both
research and management. However, classifying measurements through remote sensing
digital image processing as active or post-fire characteristics is still challenging as fire effects
vary temporally and with topography and vegetation, although multiple sources of current
remote-controlled sensing data continue to accumulate and increasingly sophisticated
techniques are being employed. The methodology used can be useful to map regions of
native vegetation affected by fire and the impacts generated by it, in addition to improving
methods for monitoring the natural resources of the Cerrado, which may be extended to
other biomes. Therefore, research remains on how to infer post-fire land cover charac-
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teristics to improve the detection of burned areas under the different specifications and
limitations of remote sensing data. For future studies, it is interesting to use and improve
techniques for the thermal and fire saturation bands from SLSTR and MODIS data.
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