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Abstract: The increase in life expectancy has led to a growing demand for Home Health Care (HHC)
services. However, some problems can arise in the management of these services, leading to high
computational complexity and time-consuming to obtain an exact and/or optimal solution. This
study intends to contribute to an automatic multi-criteria decision-support system that allows the
optimization of several objective functions simultaneously, which are often conflicting, such as costs
related to travel (distance and/or time) and available resources (health professionals and vehicles) to
visit the patients. In this work, the HHC scheduling and routing problem is formulated as a multi-
objective approach, aiming to minimize the travel distance, the travel time and the number of vehicles,
taking into account specific constraints, such as the needs of patients, allocation variables, the health
professionals and the transport availability. Thus, the multi-objective genetic algorithm, based on the
NSGA-II, is applied to a real-world problem of HHC visits from a Health Unit in Bragança (Portugal),
to identify and examine the different compromises between the objectives using a Pareto-based
approach to operational planning. Moreover, this work provides several efficient end-user solutions,
which were standardized and evaluated in terms of the proposed policy and compared with current
practice. The outcomes demonstrate the significance of a multi-criteria approach to HHC services.

Keywords: multi-criteria optimization; home health care; planning; metaheuristic; decision-support system

MSC: 90B50; 90B36; 90C27; 90C29

1. Introduction

The growth in life expectancy has increased the demand for Home Health Care
(HHC) [1,2]. HHC services primarily serve the elderly, disabled, or chronically ill and are
largely dependent. In order to provide a full range of care, caregivers or health professionals
are usually staffed by nurses, who may vary according to the needs of the patient [3]. In
Portugal, health units provide home care services to the population, and they need to
optimize and reorganize their operation to meet the rising demand for HHC services [4].
This is often due to manually scheduling home visits, making it a time-consuming and
difficult procedure that frequently leads to an inefficient solution. In the context of HHC,
the problem is to determine the schedule and route of vehicles with nurses to support
the patients [5], considering the travel time and/or distance, treatments required and the
number of vehicles available to provide the service that patients need.

Currently, multi-objective optimization techniques have been used to target research
in HHC [6–8]. Many real situations may consider multiple objectives, such as to reduce
costs, increase performance, increase reliability, among others [9]. However, these are
challenging yet doable issues [10]. In HHC challenges, the objectives are considered to
conflict with each other, and improving one objective function may produce unacceptable
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solutions in relation to the other objectives without worsening the overall solution. The
idea of Pareto optimality becomes crucial when there are conflicting objectives, such as
cost, time or unforeseen events, because it is typically impossible to find a single solution
that optimizes all objective functions simultaneously [11]. To assist the decision-maker
choose the best solution based on his/her preferences, the Pareto optimal solutions are
incomparable and form a Pareto front representing the trade-offs in the objective space [12].

A theoretical and practical approach to optimize the sustainable HHC process is
developed in this work to achieve environmental, social and governance (ESG) goals.
ESG goals, namely in the social dimension, are issues that have an increasing impact on
today’s society and, in turn, on the investment and decision-making by public or private
health organizations. Thus, the motivation of this study is linked to the development of an
automatic multi-criteria decision-support system to obtain a solution for scheduling and
routing home care visits carried out by health professionals, reducing costs related to travel
times and distances traveled by vehicles.

This study proposes the formulation of the HHC scheduling and routing problem as a
multi-objective approach, taking into account the patients needs, the availability of health
care professionals and vehicles. The goal of this approach is to obtain a sustainable HHC
process optimal service route solution based on a compromise between three objectives: the
total travel time, the travel distance and the vehicles available. Then, a real-world problem
of an HHC planning is optimized using the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [13]. The NSGA-II algorithm was chosen and implemented to deal with this
approach due to its explicit diversity preservation mechanism, which favors sustainable
multi-criteria formulations.

The main contribution of this work is the characterization of the trade-off between the
three objectives, proving that they are conflicting measures. The purpose of this research is
to identify the Pareto optimal set, a set of feasible compromise solutions that simultaneously
minimize (or maximize) the objectives. The data were provided by a Portuguese health
institution interested in this study, whose objectives were validated as the most relevant
for its operational management. Using a Pareto-based methodology, decision-makers are
provided with a wide range of options so they can examine the benefits and create daily
operating plans.

2. Literature Review

Home Health Care is an extremely complex system, where management usually
pays less attention to managing and planning the operation and is more concerned with
increasing the standard of medical care. These health services are commonly related to
multi-objective needs to support decision-making.

A multi-criteria system may require identifying decision-making priorities taking into
account the multiple factors in order to assist the decision-maker to effectively select the
most appropriate solutions based on their importance and impact on public health [14].

Recent literature reviews by Cissé et al. [15] and Fikar and Hirsch [1] make an effort to
highlight the generality of the formulations and approaches under study, as well as real
application situations. The literature considers several objectives for the HHC problem.
As a result, the most frequently addressed objectives are those related to vehicle routing
and the cost or duration of nurses’ travel. Additionally, and in a more recent perspective,
other objectives such as overtime work, service quality, workload balancing, optimal
matching and sequencing tasks and/or patient preferences or priorities have been taken
into account. For this reason, many works consider the HHC problem as a multi-objective
approach. Table 1 includes references where the HHC problem is handled as a multi-
objective perspective, whose assumptions by the decision-maker are based on the patient
needs, nurse skills, available resources and synchronization issues.
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Table 1. Overview and assumptions regarding multi-objective approaches in Home Health Care.

Reference Approach Objectives Patient
Needs

Nurse
Skills

Available
Vehicles

Matching/
Synchronization

Braekers et al. [16] Local Search and
Pareto based 2 3 3

Bredström and
Rönnqvist [17] Heuristic Solution 3 3 3

Decerle et al. [3] Pareto based 3 3 3 3

En-nahli et al. [18] MILP using
CPLEX 4 3 3

Fathollahi-Fard et al. [6] Heuristic and
Red Deer Algorithm 3 3 3 3

Hiermann et al. [19] CP and
metaheuristics 13 3 3

Mankowska et al. [20] MILP formulation
and heuristic 3 3 3 3

Nickel et al. [2] CP and
(meta-)heuristics 4 3 3

Rasmussen et al. [21] Branch-and-price
algorithm 3 3 3

Yang et al. [7] Bee colony
metaheuristic 3 3 3 3

Yan Li et al. [22] Fuzzy and
Grey wolf optimizer 2 3 3 3

Our approach NSGA-II and
Pareto based 3 3 3 3 3

In the recent global economic slowdown, especially due to COVID-19, it is increasingly
important to describe and select criteria in the decision-making process, such as time
windows, periodicity, demand volatility, interruptions, government measures, continuity,
customer satisfaction, among others [23].

With the knowledge and review strategy previously presented by some studies, new
approaches and applications emerged in the topic under study. Sun et al. [24] proposed an
important work in the response of patient and resource allocation between hospitals in a
healthcare network through mathematical models to optimize multi-objectives such as time
and distance during a pandemic. The time preferences of patients are taken into account in
the procedure reported by Mankowska et al. [20], together with a powerful heuristic as a
resource for the solution. Hiermann et al. [19], in turn, presented an application for solving
a real-world multimodal HHC scheduling using different metaheuristics.

There are also many hybrid approaches using evolutionary algorithms, such as genetic
or annealing approaches, for effective and intelligent solution of multi-objective models of
allocation, routes and schedules on the topic of HHC [25–27]. Braekers et al. [16] developed
a bi-objective model that assesses the trade-offs between costs and patient inconveniences
using a metaheuristic based on a multi-directional local search algorithm using real data.
In this segment, there are also authors who proposed more “precise” approaches, such
as the use of goal programming and mixed-integer programming models presented in
the Cappanera et al. [28], or even the work presented by En-nahli et al. [18] which uses
CPLEX to solve a multi-objective mixed-integer linear programming problem in order to
enhance decision-making in the assignment and routing problem in HHC. On the other
hand, many works use constraint programming (CP) and (meta-)heuristics to solve multi-
objective approaches [2,19,21]. Furthermore, Jérémy et al. [3] suggested a model that uses a
multi-objective memetic algorithm to minimize the overall working time of the caregivers
while optimizing the quality of care and reducing the maximum working time difference
among nurses.

Moreover, some reference works were found that report many works developed on the
emerging topic of HHC. In light of some of the bibliographical production, some research
progress has resulted from Sharma and Mathew [29] work on multi-objective network
design models to solve transportation networks in terms of health-damage costs resulting
from vehicle emissions as well as the system travel time. In this work, the Pareto-optimal
solution is generated, considering the trade-offs between travel time and emissions in
a sustainable approach. Furthermore, much of the evolution of research emerged from
the work of Nickel et al. [2] and Rasmussen et al. [21], where the routing and scheduling
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problems, in the context of HHC, began to be seen as an emerging need, and preference-
based visit clustering, operational research on planning and scheduling as future trends,
respectively. Recently, some works published in the last two years continue to enhance
multi-objective approaches in HHC applications [6,7,22].

The evolution and growth in the training of health decision-making systems according
to multi-objectives, often conflicting, demands that the literature of the scientific areas
involved be highlighted so that more recent research is sustained with greater efficiency in
multiple approaches. In this sense, a brief bibliometric analysis was carried out to validate
the literature review involved with keywords such as “Multi-objective optimization”,
“Health”, and “Scheduling/Planning”. Between 2010 and 2021, searches using the same
keywords in the Scopus and Web of Science (WoS) databases produced 314 papers from
various sources, including journals, books, and conference proceedings. After selecting
the dataset, a pre-processing process was carried out to remove duplicate documents,
where 67 papers were found. Thus, the current count of documents for review totals
247 papers. Regarding the final dataset, it is possible to analyze the annual scientific
production presented in Figure 1. The geometric progression rate, which in this case
provides a consistent rate of scientific production in both databases over time, is known as
the compound annual growth rate in the business world.

Figure 1. Annual scientific production related to keywords “Multi-objective optimization”, “Health”,
and “Scheduling/Planning”.

In multi-objective optimization related to HHC applied in scheduling/planning, the
rate of scientific production shows sustained growth, confirming that these domains are
increasingly emerging, especially in recent years. Furthermore, it is possible to verify some
jumps that can be associated with turning points, representing the high growth of works
and applications in the topic of keywords over the years [30]. It is expected that the same
behavior will continue due to the emerging need for resource optimization in the health
area, whether human or material, and with one or more objectives.

The proposal presented in this work intends to contribute to the scientific community
with three objective functions that characterize the patient’s needs, the nurse’s skills, and
the available vehicles, allowing the optimization the three measures using a multi-objective
approach to solve a real problem arising from a Portuguese National Institution.

3. Optimization System

A growing area in the social/medical service (solidarity institutions or public/private
health units) is HHC, which refers to nurses, caregivers or specific health professionals who
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visit patients in their homes. It should be kept in mind that health centers and/or private
companies employ health professionals who are partially dedicated to the treatment of
patients at home who reside anywhere in the area under the control of the health center,
requiring the allocation of different resources and the assignment of scheduling/routing
services. A health care facility must provide the schedules of all nursing teams working on
tasks/responsibilities inside and outside the facility on a given day, but may also require
the operating plans for available vehicles.

Urban places, such as Bragança in Portugal, have extensive land areas and challenging
access to many villages and smaller parts of the city, making them complex socio-ecological
systems. Due to the great need for HHC by the growing elderly population that needs
social and health support, these services need to innovate and optimize their resources to
balance the provision of care. In order to keep up with the needs of the elderly population
and contribute to a more personalized service, the health and social support units carry out
constant visits to the patient’s homes. Usually, these visits involve allocations and routes
defined in manual planning performed by managers or chief nurses without computational
support. In this sense, the problem arises when optimization mechanisms are not given
to the service objectives, which often conflict with supply and demand management. The
above conflicting objectives prevent from finding the best solution that satisfies all of them.
So, imagine a decision-maker wanting to optimize k objectives, which are not comparable
and without an explicit and clear preference for some objectives over others, it is difficult
to achieve the best solution.

For this challenge, from a conceptual point of view, the architecture of Figure 2 has a
disruptive approach and computational decision mechanisms according to several criteria,
encouraging operational competitiveness as well as strategic and tactical planning to ensure
the effectiveness of the number of vehicles employed, improved resource allocation, task
balancing and, finally, optimization of routes and schedules.

Health Unit

Metaheuristics
Multi-Objective Optimization
Mathematical Formulation

Health professionals

Vehicles

Workload balancingOptimal Routes Best Allocation Scheduling Management

Support Decision making in:

Strategical Planning
Tactical Planning

Operational Planning

Patient's Home

Home Health Care Optimization

Home Care Visits

Figure 2. Architecture to support decision-making in HHC.

The idea of this conceptual architecture is to enhance its emerging application in home
care visits, in the need to properly allocate health professionals and vehicles to optimized
routes (minimizing one or more objectives). More specifically, it is intended to automate the
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operational process and the management of home visits in a real HHC problem through
a multi-criteria approach, where three objective functions are simultaneously optimized,
that is, the time and distances spent, as well as a better workload-balance of available
vehicles. In this study an evolutionary multi-objective algorithm is used to determine
useful trade-offs between conflicting objectives to produce a set of non-dominated solutions,
which constitute the Pareto-optimal front [11]. In the end, the Pareto-optimal solutions
are analyzed to represent the best trade-offs between decision-maker preferences and
operational planning management, enabling the institution to allocate resources better,
optimize routes and schedules, and improve the quality and response time.

4. Multi-Criteria Approach

The HHC planning is one of the most difficult systems from the point of view of
decision-making with multiple objectives, thus becoming prone to inefficiency in the final
solution. For that reason, multi-criteria planning becomes a tool to assist in this difficult
decision-making process. The methodology used to generate the Pareto-optimal front
is shown in Figure 3, which starts from an initial procedure based on a multi-objective
evolutionary approach. The basic idea is to discard the dominated solutions from the
results to get the Pareto-optimal solutions. The process of representation (visualization
tool) helps the validation of Pareto-optimal solutions.

Definition of multi-objective 
optimization formulation 

 
min F(x) = { f1(x), f2(x), ..., fm(x) }

Design of Experiments 

Input data
Trade-off Analysis

Evolutionary Algorithm 

NSGA-II to generate
Pareto-optimal solutions

Dominance Check 

Pareto-Optimal Front

Representation and validation of
solutions in functional space -

visualization tool

Optimization objectives & constraints

Identify the import parameters Sensitivity coefficient between
inputs and outputs

Selection of an appropriate optimization
algorithm

Selection the final optimal core designs
- Users decision making process

Discard dominated solutions

Figure 3. Multi-criteria optimization procedure.

In the first phase, the optimization system will be specified, directly linked to the
actors of the decision-making process, and designed to consider the multi-criteria model
to simplify the decision problem with multiple objectives. In this sense, to coordinate
and enable the system, the multi-objective formulation (sets, parameters, constraints, and
objectives) that will support the computational system is presented in the second phase.

4.1. Multi-Objective Problem Formulation

There are some difficulties in the HHC services, such as poor planning of resources
and poorly planned times for home visits, causing a long time to obtain the solution
and increasing the costs of the Health Units. To overcome these difficulties, a computer
support system is needed to assist in the vehicle scheduling for home visits used by nurses,
according to the treatment needs, the patients, and the time and distances of the trips to
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be planned and performed. The number of vehicles employed, the health professionals
involved, the patients who request home care and, implicitly, the treatments necessary for
patients and provided by nurses, as well as the time and distance to which the various
scheduling routes are subject, must be modeled due to the complexity of the problem.

It is crucial to define the properties and/or general assumptions of the problem, such
as the HHC planning process, which includes geographical area, resource dimension
and their different instances. Thus, thinking about the Health Unit in Bragança (HUB)
with qualified home care personnel, the following information is considered (including
mathematical model sets):

• the locations of all patients, where L = {l1, . . . , lnl} is the set of nl ∈ N places for home
care visits, such that {1, . . . , nl} is the corresponding index set;

• the trip’s duration between the different locations, where cnl×nl is the time matrix
between the nl locations and cij represents the travel time from node i to node j, for
i, j ∈ L;

• the distance traveled between the different locations, where dnl×nl is the distance
matrix between the nl locations and dij represents the travelled distance from node i
to node j, for i, j ∈ L;

• each patient’s treatment plan are known (given by HUB), where T = {t1, . . . , tnt} is
the set of nt ∈ N treatments that patients are expected to receive, such that {1, . . . , nt}
is the corresponding index set;

• the available treatments and the average execution time are known, where Q is the
vector with treatments duration, Q ∈ Rnt;

• the number of patients assigned to days of HHC visits, where P = {p1, . . . , pnp} is the
set of np ∈ N patients who need to receive home visits, such that {1, . . . , np} is the
corresponding index set;

• the number of vehicles available, where V = {v1, . . . , vnv} is the set of nv ∈ N vehicles
(with nurse allocated) used as the travel resources in the HHC, such that {1, . . . , nv} is
the corresponding index set.

In addition, some assumptions of the problem are also considered:

• all visits start and end at the HUB (depot);
• patients with various profiles may reside in the HUB area;
• the patient’s profile is known;
• all patients admitted to home care visits must be assigned to a group of nurses or

vehicles in order to ensure that all patients assigned to a working day are covered;
• the average travel time for different patients in the same location or residential area

(defined by the health unit) is considered;
• the average travel distance for different patients at the same location or residential

area (defined by the health unit) is considered;
• only one health professional is allocated to each vehicle.

Considering a routing network G = (L0, A) with nodes L0 = {0, 1, 2, . . . , nl} (node 0 is
the healthcare unit and the others are patient locations) and A = {(i, j) : i, j ∈ L0, i 6= j}
is the set of routes. The travel time cij and travel distance dij occurs for each arc (i, j) ∈ A
needed to carry out the care and go back to the beginning location. The following parameters
are used to define a problem instance:

• wik: equal to 1 if patient i ∈ P can be visited by vehicle (matching between treatment
requested and nurse skill) k ∈ V; 0 otherwise;

• MQt: maximum time duration of any vehicle route (maximum nurse shift duration);
• MQd: maximum distance of any vehicle route (limited distance per day).

This work suggests a formulation for mixed integer flow with three sets of deci-
sion variables:

• xijk—binary variable, 1 if the vehicle k ∈ V goes from i ∈ L0 to visit patient at location
j ∈ L0; 0 otherwise.
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• yijk—real variable, used to quantify the time spent on travel from location i to location
j by vehicle k.

• zijk—real variable, used to quantify the distance traveled from location i to location j
by vehicle k.

Moreover, another decision variable is used to eliminate subtours, uk
i is an integer

corresponding to the place in the visit sequence of vehicle k for the location/patient i.
The HHC problem optimization involves three objective functions that can be de-

scribed as:

Tmax = max
i∈L,k∈V

yi0k (1)

Kmmax = max
i∈L,k∈V

zi0k (2)

Cmax = ∑
i∈L

∑
k∈V

xijk (3)

where Tmax in (1) is the maximum value of the total amount of time spent by the caregivers
(health professionals), Kmmax in (2) is the maximum value of the total amount of distance
spent by the vehicles and Cmax in (3) is the number of vehicles used among those available.
The goal of the three objective functions is to achieve the minimization of the longest
route, both in terms of time (minutes) and distance (kilometers), as well as to accomplish
optimization of the vehicles usage, by considering the details of the assumptions, sets and
parameters. More details can be found in [31].

As the objective is to identify the strengths and the best vehicle scheduling strategy
that simultaneously reduces the visit times and distances, the proposed optimization model
is then mathematically expressed in the following concise manner.

min
{

Tmax, Kmmax, Cmax
}

(4)

s.t. ∑
i∈L

x0ik = 1, ∀k ∈ V (5)

∑
i∈L

xi0k = 1, ∀k ∈ V (6)

∑
i∈L

∑
k∈V

xijk = 1, ∀j ∈ L (7)

∑
j∈L

∑
k∈V

xijk = 1, ∀i ∈ L (8)

∑
i∈L

xijk = ∑
i∈L

xjik, ∀j ∈ L, ∀k ∈ V (9)

yijk ≤ MQt · xjik, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ V (10)

zijk ≤ MQd · xjik, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ V (11)

y0ik = x0ik · c0i, ∀i ∈ L0, ∀k ∈ V (12)

z0ik = x0ik · d0i, ∀i ∈ L0, ∀k ∈ V (13)

∑
i∈L

yjik −∑
i∈L

yijk = ∑
i∈L

xjik
(
cji + qj

)
, ∀j ∈ L, ∀k ∈ V (14)

∑
i∈L

zjik −∑
i∈L

zijk = ∑
i∈L

xjik
(
dji + qj

)
, ∀j ∈ L, ∀k ∈ V (15)

∑
i∈L

xijk ≤ wjk, ∀j ∈ L0, ∀k ∈ V (16)

uk
j ≥ uk

i −M(1− xk
ij) + 1, ∀i, j ∈ L; ∀k ∈ V; i 6= j (17)

xijk ≥ 0 and integer, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ V (18)

yijk ≥ 0, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ V (19)

zijk ≥ 0, ∀i ∈ L0, ∀j ∈ L0, ∀k ∈ V (20)
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Constraints (5) make sure all vehicles begin in the depot, while constraints (6) ensure
all vehicles arrive at the depot. On the other hand, constraints (7)–(8) state that each patient
is visited exactly once and by only one vehicle, respectively. The constraints (9) state that
the same vehicle arrives and leaves a given patient node. Constraints (10) and (11) impose
an upper bound on the flow in the arcs. Constraints (12) and (13) initialize flow in the arc
from the depot to the first patient to equal the travel time and distance traveled. After that,
constraints (14) and (15) are flow conservation equations and ensure that the flow on each
arc accumulates trips, service times and distances from all previous visits on a route. Finally,
constraints (16) ensure every patient is visited by a specific vehicle (synchronization of
care requested and nurses’ skills), according to the compatibility coefficients. The subtour
elimination constraints are expressed by (17) ensuring that the solution contains no cycles
disconnected from the depot (M is a large number). Constraints (18), (19), and (20) define
the lower bounds and types for the variables. There will be a number of variables that,
if the compatibility matrix between patients and vehicles is too strict (16), will be bound
and set to zero by constraints, thereby removing the variables from the formulation. The
number of constraints is in the order of nl × nv2, most of them being the bounds on real
variables imposed by the constraints (10) and (11). In addition, the health unit allocates
only one health professional to each vehicle, considering the skills and route (it can be your
personal vehicle or not). These constraints are related to the limitations imposed by the
HUB to guarantee the feasibility of the service without overloading other activities.

Taking into account the mathematical modeling presented and to guide and support
the operational planning, an approach was developed to solve the HHC problem using an
evolutionary multi-objective optimization method, the NSGA-II, which has been used to
solve a variety of optimization problems, including routing and scheduling problems [32].
In complex problems belonging to non-deterministic classes, evolutionary multi-objective
optimization methods are promising algorithms for searching for fast and good solutions,
which is why it was one of the reasons for choosing the NSGA-II.

This kind of work frequently takes into account unrealistic assumptions, which are
typically established using datasets in multi-objective scenarios (e.g., it is a popular belief
that one unit of travel distance equals one unit of time traveled, although this may not
be true, especially when on-the-road distance is given instead of Euclidean distance).
Currently, precise information about the travel time and distance between two locations
is gathered using Google Maps. These distinct and asymmetric data show a reasonable
trade-off between travel time and distance. Examples of distinctions between urban and
rural settings (travel time is high compared to the corresponding distance if access is via
motorway or secondary roads, traffic, obstructed lanes, or one-way roads, among others).
The assessment of multi-objective optimization is significantly more accurate under this
assumption since the trip duration is not directly related to the distance traveled.

4.2. Multi-Objective Genetic Algorithm

The popular metaheuristic genetic algorithm (GA) is especially effective for this
class of problems, such as scheduling, allocation and routing problems [26,33,34]. By
incorporating techniques to encourage solution variety and employing specific fitness
functions, traditional GA are modified to account for multi-objective issues. When it
comes to multi-objective optimization, there are two general methods. The first, called
scalarization methods, consists of aggregating all the objective functions into a single
function (e.g., weighted sum method, min-max technique) or including all but one objective
function in the constraint set (ε-constraint method). The single-objective problem can
be solved using trade-offs in the first scenario but choosing the right weights or utility
functions to describe preferences in decision-making is a challenge. The second broad
strategy, on the other hand, entails approximating the complete Pareto optimal solutions set
or selecting a representative subset. A set of solutions that are non-dominated concerning
any other workable alternative is known as a Pareto optimal set [35].
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A second approach was adopted in this work, the elitist non-dominated genetic sorting
algorithm, NSGA-II, proposed by Deb et al. [13]. It is an upgraded version of NSGA [36].
This multiple objective evolutionary algorithm mimics how species evolves naturally. Groups
of individuals created at random are the basis of evolution. Each individual is a relevant
solution to a multi-objective optimization problem. In NSGA-II, crowding metrics and Pareto
rank are used to score each member of the current population. First, all non-dominated
individuals in the current population are assigned the best rank. The highest ranked solutions
will be removed from the current population. All non-dominated solutions in the remaining
population are ranked second best. This assigns a rank to all solutions in the current population.
The most suitable (“fittest”) individuals are more likely to be selected by genetic operators
to create new individuals. In order to choose a set of coverage solutions, binary tournament
selection is used by NSGA-II and is based on crowding distance and non-dominant rank.
If two solutions are selected, preference will be given to the solution with the lowest non-
domination rank. Otherwise, when the two solutions have equal ranks, the one with the largest
crowding distance is chosen. After then, a population of offspring is produced via genetic
operators like recombination and mutation. To establish a new population that is structured
along various non-dominated fronts, the two populations are combined. All members of the
first non-dominated frontier are chosen as the new population if their size is smaller than the
existing population. From the subsequent non-dominant fronts, the remaining population
members are chosen in rank order.

5. Real-Case Scenario

This work aims to use the developed multi-objective model to address essential
logistics in the Health Unit of Bragança, namely in optimizing the HHC service. The Health
Care Center of Bragança provided the information that was used (selected by the institution
and represented a typical workday in the center). The information provided by the HUB
refers to a single day in March 2020.

The case under study is associated with a real day of home care visits to be carried out
by the assigned nurses (proportional to the number of vehicles) of the HUB. The Health
Unit has five vehicles available (nv = 5) to visit 22 patients in their homes for home care
(np = 22). Out of five possible therapies (treatments), each patient needs a particular one
(care strategy followed by the health unit, nt = 5). Each treatment is performed with
associated average time, in minutes, as shown in Table 2.

Table 2. Information about the patients and average time associated with each treatment.

Patients Avg. Time

T.1 1, 2, 3, 6, 7, 8, 9, 17, 21, 22 30
T.2 4, 5 60
T.3 13, 14 75
T.4 11, 12, 15, 16, 18, 19, 20 60
T.5 10 60

The information about the different treatments required by the patients to be provided
by the nurses is presented in the following points. This data, also presented in Alves et al. [37]
describes and characterizes different treatments performed by the health organization in
Bragança, information that is still current and in a standard version that is still practiced in the
service. Therefore, the description and characterization of the treatments include:

• Treatment 1 (Curative)—Treatments for pressure ulcers, venous ulcers, surgical wounds,
traumatic wounds, ligaments, suture removal, burns, assessment and dressing of
wound dressings are a few examples. Average time of 30 min.

• Treatment 2 (Surveillance and Rehabilitation)—Evaluation, execution and patient
surveillance. Average time of 60 min.
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• Treatment 3 (Curative and Surveillance)—Wound care, bandage supervision, fre-
quency, and tension monitoring, patient education regarding complications and
pathologies. Average time of 75 min.

• Treatment 4 (Surveillance)—Evaluate patient habits, self-care needs, the risk of falls
and the provider’s understanding. Height, stress and heart rate are all monitored.
Dietary and medical routines of patients. Average time of 60 min.

• Treatment 5 (General)—Assess, encourage and impart knowledge on mourning. Aver-
age time of 60 min.

The patients are distributed throughout the region of Bragança in nine distinct places
(nl = 9). Table 3 lists each patient’s place in relation to the locations of domiciliary visits
(abbreviated for confidential data protection).

Table 3. Information on each patient’s location.

Locations

A B E Ml Mo P Rd Sm Sd

Patients 11, 12 1, 2, 3, 5, 6, 7,
13, 15, 16, 19, 20 4 22 21 9 8, 10 14 17, 18

Table 4 illustrates the travel time (in minutes) between the nl locations, where the
diagonal value represents the typical amount of time (defined by 15 min) needed to travel
between two patients in the same area. On the other hand, Table 5 provides the distances,
in kilometers, between the nl locations. The diagonal value of 10 km is the travel distance
between two patients in the same area.

These values on the diagonals, both in Tables 4 and 5, are assigned by the HUB in
which the institution prefers higher average values (time and distance) between locations
in the same area (that are not always realistic) in order to ensure that they are not exceeded
by unexpected events.

Table 4. The time between locations (in minutes).

A B E Ml Mo P Rd Sm Sd

A 15 16 25 21 18 29 18 15 30
B 16 15 17 18 16 29 15 15 29
E 25 17 15 33 25 36 23 25 37

Ml 21 18 33 15 23 35 26 21 36
Mo 18 16 25 23 15 15 16 15 18
P 29 29 36 35 15 15 24 24 31

Rd 18 15 23 26 16 24 15 15 25
Sm 15 15 25 21 15 24 15 15 26
Sd 30 29 37 36 18 31 25 26 15

Table 5. Distance between locations (in kilometers).

A B E Ml Mo P Rd Sm Sd

A 10 14 24 21 16 28 14 11 33
B 14 10 16 21 19 31 15 11 36
E 24 16 10 35 25 36 21 20 42

Ml 21 21 35 10 30 30 28 22 47
Mo 16 19 25 30 10 12 12 12 21
P 28 31 36 30 12 10 19 24 23

Rd 14 15 21 28 12 19 10 14 25
Sm 11 11 20 22 12 24 14 10 29
Sd 33 36 42 47 21 23 25 29 10
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The real data also reveal some constraints, which affect the objective functions and
limit time and distance in the domiciliary service. Thus, the shifts for home care activities do
not exceed 480 min (MQl

tmax ≤ 480), that is, 8 h of daily work and 200 km (MQl
dmax ≤ 200)

to be covered by each vehicle per day (maximum estimated distance in the region). These
constants represent imposed or estimated limitations to allocate the health team to HHC
without overloading activities in the HUB.

The main goal is to find the best vehicle planning solutions based on all available
data (variables and constraints), taking into account the trade-offs between the objectives
in order to optimize the number of vehicles used, the total time and the total distance,
essentially to perform the treatments the patient needs and then return to the starting point.

6. Results and Discussion

Simulations were run on an Intel(R) Core (TM) M-5Y71 CPU running at 1.4 GHz
with 8.0 GB of RAM in an effort to automatically plan the schedules by solving the multi-
objective problem. The multi-objective GA algorithm used in this study is the gamultiobj
function [13], implemented in the Global Optimization Toolbox of MatLab®, that is a
variant of the elitist NSGA-II, This function allows users to customize the random key
parameters, algorithm properties and termination criteria. Even if they have a lower fitness
value, a controlled elitist GA promotes individuals who can help improve the population
diversity [38]. The default values for the population size and the maximum number of
generations were set to 50 and 500, respectively. Due to the algorithm’s stochastic behavior,
30 separate runs with a random initial population were carried out, and the maximum
number of generations was used as the stopping condition, which was set at 1000. Since
the Pareto proportion is 0.35 by default, specific solutions are discovered for each run
(0.35× population size).

The optimization of the multi-objective approach involves the construction of the
Pareto optimal front, finding the set of feasible trade-off solutions to facilitate the decision-
maker in choosing his/her best option. Then, after obtaining all solutions, a smart and
personalized routine that uses efficient computational methods must be created to allow
the collection of non-dominated solutions [39]. This strategy will allow the performance
and efficiency of the multi-criteria approach, allowing the quick removal of dominated
and/or duplicated solutions.

From this perspective, having identified and defined the set of non-dominated solu-
tions in the objective space, it is possible to use graphs to represent and visualize the Pareto
front (Pareto optimal set solutions). A blue dot represents all solutions found among the
30 independent runs in all graphs. From this overall set of results, the non-dominated solu-
tions that form the Pareto front were identified with a red circle. It should be noted that the
solutions were obtained in a reasonable time, in the average order of 30 s and never more
than 1 min. Figure 4 depicts the Pareto front, showing the dominated and non-dominated
solutions obtained when the three objective functions are optimized simultaneously, i.e.,
solving the multi-criteria problem (4).

The positions of the non-dominated solutions express the compromises between the
objectives, particularly: the time in minutes in the Tmax axis, the distance in kilometers in
the Kmmax axis, and finally, the number of vehicles is represented in Cmax axis. It can be
seen, from Figure 4, the set of the most interesting solutions, comprising fourteen different
non-dominated solutions. These are the solutions that must be considered since they are
optimal in terms of the objectives, and each solution shows a trade-off that needs to be
carefully considered and explored.

Table 6 displays the collection of non-dominated solutions, whose first column iden-
tifies the solution number, and the other three columns refer to the value obtained for
each objective. The solutions were ordered from lowest to highest value using the Tmax
objective value as an example. In this manner, it is easier to analyze the various trade-offs
between the solutions in the context of the objectives.
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Figure 4. Pareto front with non-dominated (red circle) versus dominated solutions (blue points).

Table 6. Values of the non-dominated solutions for the three objectives.

#Sol. Tmax Kmmax Cmax

#1 309 96 5
#2 335 92 5
#3 345 90 5
#4 366 86 5
#5 389 124 4
#6 392 122 4
#7 399 116 4
#8 402 110 4
#9 419 85 5
#10 420 109 4
#11 424 105 4
#12 454 104 4
#13 455 102 4
#14 469 100 4

Since no single solution optimizes all the objectives simultaneously, the set of non-
dominated solutions shows the non-trivial nature of the multi-objective optimization
problem. A solution is said to be non-dominated or Pareto optimal if none of the objective
functions can be improved without degrading some of the other objective values. Thus, as
much as there is a set of finite and optimal solutions, it is important to mention that without
a subjective information preference, all of them are considered equally good. However,
these solutions make it possible to present and quantify some trade-offs between different
objectives, possibly focusing on the insights gained from the difference. In a posterior
analysis, these solutions allow the decision-maker to choose a preferred solution from
the set of solutions, which can correspond to an extreme point that minimizes one of the
objectives (for example, Tmax) or a solution weighted in the three objectives that best
translate an approximation to the optimal point (intermediate or elbow point solution).

Note that the non-dominated solutions have a number of vehicles, Cmax, equal to
4 and 5. This is due to the fact that solutions with less than four vehicles would exceed the
imposed and estimated constraints that regulate the health unit in terms of working time.

In this sense, a representative, non-dominated solution, solution #1, was chosen in
order to discuss the trade-offs between the objectives and to identify the characteristics
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of this solution. The scheduling management of this solution that best characterizes the
objective Tmax is illustrated (Gantt chart) in Figure 5.

# Vehicle Start

5 Vehicle 5 9:00 AM

4 Vehicle 4 9:00 AM

3 Vehicle 3 9:00 AM

2 Vehicle 2 9:00 AM

1 Vehicle 1

Scheduling management  

P 10 - T.5

P 3 - T.1

9:00 AM

P 9 - T.1 P 12 - T.4 P 20 - T.4

P 4 - T.2 P 7 - T.1 P 19 - T.4 P 21 - T.1

P 8 - T.1 P 18 - T.4 P 17 - T.1 P 13 - T.3

P 2 - T.1 P 11 - T.4 P 16 - T.4 P 1 - T.1 P 22 - T.1

P 5 - T.2 P 6 - T.1 P 14 - T.3 P 15 - T.4

Time Travelling
Pat. Treatment time

Return to HU

96

309 

5

Tmax Objective

Kmmax Objective

Cmax Objective

Figure 5. Planning management of the non-dominated solution #1.

The selected solution fell on those that best represent the Tmax objective, i.e., those that
best characterize the time spent on home care visits (solution #1). This solution concerns
the extreme point that represents the best result according to the objective Tmax (value of
309), but on the other hand, it is not so good in the remaining two objectives (it requires
a maximum of 96 km to end the day of visits, and it needs the five vehicles available).
Figure 5 shows the allocation of patients to each vehicle, presenting the routes that best
configure and characterize the minimization of the time spent. The management of this
scheduling presents a good workload balancing among all vehicles.

Analyzing the non-dominated solutions in a 3D graph is challenging (see Figure 4).
Thus, Figure 6 shows the two-dimensional projections of the Pareto fronts to make it easier
to analyze and understand the non-dominated solutions (red circle).

Typically, the best solutions for a single objective function, but the worst for the other
objectives, are referred to as the extreme points of the Pareto front. From Figure 6a, where
Tmax and Cmax solutions are designed, it is possible to distinguish nine non-dominated
solutions for 4 vehicles and 5 non-dominated solutions that use 5 vehicles. When using
4 vehicles, the extreme solutions for the time spent on HHC are Tmax = 389 (solution
#5 of Table 6) and Tmax = 469 (solution #14). For a selection of 5 vehicles, Tmax = 309
(solution #1) and Tmax = 419 (solution #9) are the extreme points. Regarding Figure 6b,
which displays the 2D projections of the Pareto front in terms of Kmmax and Cmax, the
distance in kilometers varies from Kmmax = 100 (solution #14) to Kmmax = 124 (solution
#5) when 4 vehicles are used, and between Kmmax = 85 (solution #9) to Kmmax = 96
(solution #1) for 5 vehicles. Figure 6c shows the compromise between the combinations of
the Tmax and Kmmax when 4 and 5 vehicles are selected.

The solutions from Table 6 will be displayed in a path graph value to give the decision-
maker better knowledge and understanding of the problem. The goal is to give the decision-
maker a visualization tool with several optimal alternatives and details on the trade-offs
between objectives. The relevant compromises among the non-dominated solutions were
normalized according to the values obtained in each objective function. The need to
harmonize scales made it possible to normalize the values of the objectives and thus adapt
the scales to build graphs that aggregate all the information in an objective way (easy to
understand for the common user), helping the decision-making.

From the total of non-dominated solutions, a clever selection was performed based on
the representation of the most interesting solutions, which can be extremes of the Pareto
optimal front or “elbow or knee” solutions, leading to a reduction in the analysis space.
To achieve the “elbow” solutions, a simple metric, mean ideal distance, that measures
the average of distances from an ideal (“optimal”) point was used (e.g., point [0, 0] for
a problem with two objectives). In this sense, this metric was tested in the set of 2D
projections in Figure 6 to facilitate its implementation and select, more or less, 2 solutions
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for each projection, obtaining a total of 6 solutions. Some of these solutions represent points
of faster change between the objective functions and can give the decision-maker a sense of
where there might be a useful solution “compromise solution” or the “ideal point”. The
path value graph for a selection of six non-dominated solutions (out of a total of 14) in
terms of the three objectives is presented in Figure 7.
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Figure 6. 2D Projections of the multi-objective Pareto front.
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Figure 7. Path value graph for six selected non-dominated solutions.
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The standardized target values for different trade-offs are represented by horizontal
lines. Since they reflect non-dominated solutions, all horizontal lines naturally intersect.
The lowest standardized objective values identify the best solutions because all objective
functions are minimized. Figure 7 shows that using five vehicles, solution #1, is the best
option for Tmax. On the other hand, solution #9, which also uses five vehicles, is the
optimal solution in terms of Kmmax, although a large value of Tmax. In addition, solutions
#5, #8, and #14 has the best Cmax value, meaning that using four vehicles implies spending
more time and more kilometers carrying out home care visits. Solutions #2 and #8 show a
balanced compromise between all objectives.

This visualization tool guides the decision-maker to implement and support the pre-
ferred policy for the HHC service. Knowing these types of services are complex procedures
and generally performed manually, these results significantly benefit and optimize the
profitability of the plans and schedules currently in force at the Health Unit. It had al-
ready been verified that even in single-objective approaches, simplifying and optimizing
the scheduling management and route allocation for HHC visits through metaheuristics
allowed good results with very fast response rates. Therefore, the results obtained in terms
of the three objectives (multi-criteria approach) reached a saving rate of approximately 30%,
both in the maximum time and in the distance covered in the route, as well as showing a
workload balance between the vehicles, when compared to the existing schedules in the
health institution (manually planned or using single-objective approaches).

To make a choice on a daily HHC plan, decision-makers need take into account vari-
ables including personal or group preferences, benefits, and trade-offs. Furthermore, the
multi-objective approach provided alternative optimal solutions to assist decision-makers in
choosing an appropriate schedule for home visiting tasks and demonstrated the effective-
ness of a multi-criteria optimization strategy. In addition, the improvement of the benefit
for the HHC service planning is clear, compared to the current one, which is manual and
time-consuming, in the ease of being able to standardize an emerging decision-making process
and reduce variations in results to improve response rates and solutions of the organizational
system itself, with inherent advantages for everyone involved (including patients).

The HHC strategy used in this study can be flexible, useful and realistic for other health
and emergency institutions or social solidarity organizations, as well as for implementation
in other domains, such as industry, business and financial management, tourism, among
others. In addition, the optimized solution obtained in the sustainable HHC process allows
to reduce transportation costs and resource allocation times, which can help the National
Health Service to invest the savings in other healthcare sectors, such as new sustainable
transport system and better environmental effects.

7. Conclusions

A multi-criteria decision-support system based on the scheduling of health profession-
als and routing of vehicles to perform home care visits was implemented. Thus, in this
work, a multi-objective approach was developed to simultaneously minimize the number
of vehicles available, travel time and travel distance to carry out the home care visits.

A real-world problem from a Health Unit in Bragança was optimized using the NSGA-
II method in order to have a sustainable HHC planning process. Five vehicles were available
and 22 patients required services from five different treatments.

The experimental results presented a Pareto front containing 14 non-dominated so-
lutions using 4 and 5 vehicles. The analysis of the 2D projections of the Pareto front con-
tributed to the understanding and identification of trade-offs between the non-dominated
solutions, highlighting the extreme and/or “elbow” points with interesting solutions to be
analyzed. In addition, a visualization tool was used to show a smart selection of optimal so-
lutions to assist the decision-maker in choosing the most interesting and attractive solution
from the Pareto set according to his/her preferences. Furthermore, all the non-dominated
solutions were validated by the HUB institution, which positively reinforced the automated
multi-criteria strategy in terms of competitiveness and efficiency.
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In this multi-objective optimization approach, the planning management revealed a
good allocation of resources, both in terms of logistics and associated costs, supporting new
managerial insights for better strategic, tactical and operational planning. The practical
implications of the solutions obtained in this work, allow the HUB institution to incorporate
the ESG goals into its strategy and purpose, assuming more responsible policies in terms of
its social domain, namely in the chain of operations, improving the workload and response
rates, reinforcing optimization, sustainability and impact initiatives in the community.

In the future, multi-criteria decision-making methods will be used, considering the
relationships between decision elements and the ability to apply quantitative and qualita-
tive attributes. It will also be interesting to use methodologies that consider a sensitivity
analysis of the number of criteria considered and approaches that make use of methods to
reduce the number of influencing factors in decision-making.

To generalize the findings, other objective functions may be added to the sustainable
home care process, such as the introduction of priority factors among patients, risk assess-
ment, outsourcing and patient satisfaction. Furthermore, solving larger real instances is a
future challenge.
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