Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Nuno Azevedo Alves da Cunha

Ulisses NextGen

November 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Nuno Azevedo Alves da Cunha

Ulisses NextGen

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
José Carlos Leite Ramalho

November 2022

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositériUM of University of
Minho.

License provided to the users of this work

©08]

Attribution-NonCommercial
CC BY-NC

https:/ /creativecommons.org/licenses/by-nc/ 4.0/

ii
STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

ACKNOWLEDGEMENTS

I would like to acknowledge and show my warmest thanks to, firstly, my parents and my
family, for their unconditional support, without them this journey wouldn’t have started, let
alone finished.

To my friends in Viana for keeping my spirits high and making sure it wasn’t all about
work, and to my friends in Braga who helped me whenever I struggled and showed me i
wasn’t alone

To my supervisor, José Carlos Ramalho, for his guidance and expertise. Without his input
the project would have never left the drawing board.

To the folks at Untile, for giving me the space and time to work on this dissertation.

And lastly to everyone else who pushed me, even one inch closer, to completing this

journey, it was truly a pleasure having you all accompany me along.

iii

ABSTRACT

Nowadays data can have many different shapes and relations between itself, ontologies try
to formalize the semantics subjacent to this data and make it understandable by humans
and code alike.

While code succeeds at parsing and interpreting this formalization traditional ontology
formats can be tough for a human to understand without previously deepened knowledge
of the ontologic paradigm and, even then, directly analyzing a format like RDF would be,
at the very least, very tedious. This problem is not exclusive to ontologic data either as to
make sense of big datasets, even in famously human readable formats like JSON, humans
need visualizations and abstractions.

This dissertation is a study on graph visualization of ontologic data and how abstractions
can be used to convey information to the end user in meaningful ways

The information gathered is then used to implement an application called "Ulisses
NextGen" that can generate an easily navigable graph visualizing application with a strong
focus to support ontological data but general enough to support any information that can
be abstracted as a graph. The application is served as a javascript package to be used in
anywhere on the web where it can be used best to reach the end user.

Keywords: Ontology; Graph; Data; Visualizations

iv

RESUMO

Hoje em dia os dados podem ter muitas formas e relagdes diferentes entre si, as ontologias
tentam formalizar a semantica subjacente a estes dados e torna-los compreensiveis tanto
para o ser humano como para o cédigo.

Embora o c6digo consiga andlisar e interpretar facilmente esta formalizagdo, os formatos
tradicionais de ontologias podem ser dificeis de entender para um humano sem um con-
hecimento previamente aprofundado do paradigma ontolégico e, mesmo assim, analisar
directamente um formato como o RDF seria, no minimo, muito tedioso. Este problema nao
é exclusivo dos dados ontolégicos, existe tradicionalmente uma grande dificulade por parte
do ser humano em interpretar grandes conjuntos de dados precisando de visualiza¢oes e
abstraccoes.

Esta dissertacdo é um estudo sobre a visualizacdo grafica de dados ontolégicos e como
as abstrac¢des podem ser usadas para transmitir informagdo ao utilizador final de formas
significativas

A informagdo recolhida é entdo usada para implementar uma aplicagdo chamada "Ulisses
NextGen" que gera um grafo facilmente navegavel com um grande foco para suportar
dados ontoldgicos mas geral o suficiente para suportar qualquer informagdo que possa ser
abstraida como um grafo. A aplicagdo é servida como um pacote javascript para ser usado
em qualquer lugar na web onde possa ser melhor utilizada para chegar ao utilizador final.

Palavras-chave: Ontologia; Grafo; Dados; Visualiza¢des

CONTENTS

1 INTRODUCTION

1.1
1.2
1.3
1.4

Motivation

Objectives

Proposed approach to thesis
Document structure

2 STATE OF THE ART

2.1

2.2

2.3

Ontology Visualization
2.1.1 VOWL and WebVOWL
2.1.2 Protégé plugins
Data visualization on the web

Summary

3 PROPOSED APPROACH

3.1
3.2
33
3-4
35
3.6

Technologies

Input format

Graph application
Graph application
Handling ontologic data

Proposal overview

4 DEVELOPMENT

4.1

Definition of the input format

4.1.1 Initial implementation

4.1.2 Evolution of the link format
4.1.3 Evolution of the node format
4.1.4 Expanding the info field
4.1.5 The finalized input format
The graph application

4.2.1 Initial setup

4.2.2 The application architecture
4.2.3 Setting up D3

4.2.4 Graph navigation

4.2.5 Links in ulisses

4.2.6 Filtering and depth limiting
4.2.7 User selected filters

4.2.8 Graph application configuration

RooR

O O O 0 0 N O o1 U &~ W N N

I
R R O

11
13
15
16
17
19
19
20
22
26
29
34
36
37

vi

contents vii

4.3 The turtle translator 38
4.3.1 The translateOntology() function 38

4.3.2 Final considerations for the translator 47

5 BENCHMARKING 49
5.1 Rendering performance 49
5.2 Startup time 50

6 CONCLUSION 51

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

The semantic web tech stack by W3C
The WebVOWL Application
Ulisses State

The selected node

The search drawer

Node information drawer
Link Types

Link information drawer
Depth filter

Links filter

The filters drawer

The Ulisses Prototype
Ontology list

Ulisses list

Datatype property

21
26
27
28
31
34
35
36
37
40
45
45
47

viii

ACRONYMS

A

APl Application Programming Interface.

C

css Cascading Stylesheets.

D
D3 Data-driven documents.

poM Document Object Model.

H

HTML Hyper Text Markup Language.

1

150 International Organization for Standardization.

J

JsoN Javascript Object Notation.

N

NeM Node Package Manager.

(0]

owL Ontology Web Language.

R

RDF Resource Description Framework.

ix

Acronyms X
TTL Turtle.

U

uML Unified Modeling Language.

v

vowL Visual Notation for OWL Ontologies.

W

wsc World Wide Web Consortium.

1

INTRODUCTION

Ulisses was an ontology navigator developed in 2004 at the University of Minho for dis-
playing knowledge defined in the topic maps ISO standard, it was developed as a way
of displaying and analyzing what could be massive information data sets Librelotto et al.
(2004). Since 2004, however, the landscape for concept formalization technologies has evolved
beyond Topic maps to technologies and standards like RDF and OWL Horrocks et al. (2003) .

Taking into account this paradigm shift, the idea for UlissesNextGen is to be a graph data
visualizer, not only for the current standards but to offer a solution that can be applied to
different graph-structured information paradigms. Having this generalization in mind, this
project will be developed with RDF and OWL as its main focus and directly support them as
an input format.

This dissertation is intended to serve not only as an analysis of the currently available
solutions for graph visualization and a description of the relevant technologies to the project
but also as documentation for the development process and usage of UlissesNextGen.

1.1 MOTIVATION

With the very large amount of data available today, there exists a necessity to catalog and
assign meaning to this information so that it can be understood and utilized by both people
and machines in an organized and consistent way.

Ontologies show up in this context as a way of giving meaning and structure to data,
making it much easier to work with. However, when applying an ontology in this kind of
problem, sometimes, there arises a need to display the semantics of the ontology to the user
without requiring intimate knowledge of a formal language like Turtle.

To solve this problem, ontology visualization methods are used to summarize their most
important characteristics and to present them to the user in an organized way, as well as
allowing smooth navigation on the semantics of the ontology and the individuals present
in it. Given the usefulness of these techniques, there exist already some solutions on the
market that look to tackle this issue, however, they generally suffer from scalability and/or

modularity problems.

1.2. Objectives

Given the large number of topics and use cases that could benefit from the use of
ontologies, ontology visualization methods should provide a degree of customization to
better describe each different ontology. Having this in mind, this project will be developed
with modularity and customization as its main focus so that it produces a tool that can be

applied in many different contexts

1.2 OBJECTIVES

The objective of this dissertation is to generate an ontology visualization and navigation
tool capable of communicating efficiently and intuitively to the user the inherent semantics
of the ontology being explored, as well as some of its metadata. The information must be
easily navigated regardless of the size or complexity of the ontology in question. While
ontologies are the main focus of the project the navigator will be developed in a way that it
could realistically be used to display any kind of graph-structured data.

This tool will be implemented as a component that can be included in different projects,
given that, it must be developed with several parameterization options capable of adapting
to ontologies with different characteristics, thus passing its most relevant points to the
consumer, regardless of the project specifications in which it is included.

In short, the expected result of this dissertation is a case study on ontological information
visualization options, in order to implement an adaptable and complete navigation module
that is easily included in any project that makes use of graph-structured data, with special

attention to displaying ontologic data.

1.3 PROPOSED APPROACH TO THESIS

The objectives outlined in the previous approach will be accomplished by following the
following list of steps in order, with some slight overlap between them.

¢ Bibliographic research of the state of the art

State of the art investigating and testing

Define a development plan and prototype based on research

Develop the project.

Test the developed solution across different use cases

e Discuss results

1.4. Document structure
1.4 DOCUMENT STRUCTURE

This document will take a look at all the development that went into this project. Chapter 1
gave an overview of what the project is trying to accomplish and the motivation behind it.

Chapter 2 will serve mostly as an overview of of the state of the art, taking a look at the
most advanced and popular techniques relating to various relevant areas to this project.

A very brief look will be taken at the proposed development approach in Chapter 3.

Chapter 4 will describe the bulk of the development endeavor of the project.

A small benchmark of the application can be found in Chapter 5 to illustrate its capabilities
and limits.

Finally, in Chapter 6 an overview of the results of the project will be given as well as a

small look into what could be future work to explore.

2

STATE OF THE ART

Ontologies, in the field of computer science, act as a specification of a conceptualization.
Meaning that they are a formalization of a concept, they were first developed in the field of
artificial intelligence. This specification of a conceptualization could be achieved in various
ways, but most commonly a semantic network is used as a basis for the characterization
of the knowledge at hand Gruber (1995). Since this is still a somewhat general aproach to
the problem, there are various formats one could use to describe an ontology. Despite this,
with the inception of the semantic web, where ontologies are a cornerstone, the W3C has
standardized many of the technologies relating to it. Berners-Lee et al. (1998)

The semantic web is an extension of the tradicional web where the information being
shared is readable by both humans and machines. It is supported by a list of technology
standards known as the semantic web tech stack.

Figure 1: The semantic web tech stack by W3C

User Interface & Applications |

Trust I

Proof

Unifying Logic |

Ontology:
OWL
SPARQL

RDF-S I Rule:
RIF

Crypto

RDF

XML |

URI/IRI I

As can be derived from Figure 1 the W3C made ontology web language or OWL the de
facto standard for describing ontologies. OWL is built on top of RDF and is today the most
common way developers describe ontologies, as such this project will focus on supporting it
and the turtle RDF sintax.

2.1. Ontology Visualization

2.1 ONTOLOGY VISUALIZATION

Opposed to the technologies discussed up to this point, there is no defined standard for
visualization, there are however many different projects that aim to tackle this problem.

The challenge of displaying ontologies usually comes from limiting the scope of the
information shown as the ontology scales as well as selecting what are the relevant parts
of that information to show the user based on the characteristics of the ontology. This
means that there is no one-size-fits-all that will get the best results for every case. It could
also be argued that this difficulty extends beyond ontologies to nearly every kind of graph
visualization so any application that tries to implement such a feature has to concern itself
with tackling that issue. Schulz and Schumann (2006)

Despite these challenges, there are a few technologies that try to form a standard that can
be used to display ontologic information completely and cleanly, this section will take a look
at some of these formats and tools and their most important features. Dudas et al. (2018)

2.1.1 VOWL and WebVOWL

This standard was defined alongside WebVOWL, a web application that implements the
VOWL directives and also provides a [SON schema to encode ontologic information. An
OWL ontology can be loaded on the web application where it will be converted to the
provided JSON format and then displayed on to the graph, the converter to this format is

available separately from the web application as a java-archive. Lohmann et al. (2016)

Figure 2: The WebVOWL Application

hasFamily
hasPhylum

[+ o +[¢]

2.2. Data visualization on the web
2.1.2 Protégé plugins

Protégé is a desktop application developed at Stanford University, it was developed as a
tool for knowledge-based systems and is nowadays one of the most popular technologies to
build and extend ontologies Musen (2015). One of the reasons for this popularity is that in
recent years Protégé has enabled its users to extend the program through the use of plugins,
greatly increasing its functionalities through the community, including various options for
visualizing ontologies Gennari et al. (2003).

Two of the most popular plugins for this purpose are OntoGraf and ProtégéVOWL, it is
also worth mentioning OWL2UML. Since ProtégéVOWL is only an implementation of the
already described VOWL format in Protégé, this section will focus only on Ontograf and
OWL2UML.

OntoGraf is a visualization tool that is shipped by default with Protégé, it is very complete,
allowing for visualization of both the ontology schema as well as the individuals included
in it. It also includes a collapsing mechanism and various preset layouts that serve to
highlight different aspects of the ontology and guaranteeing that even larger ontologies can
be correctly displayed, the main limiting factor of this plugin is the fact that it is limited to
be used inside Protégé and can’t be directly included in any other projects.

OWL2UML is a plugin that generates a UML graph from ontologic data. As expected
from the UML format this tool is great at displaying ontologic information to the user when
looking at smaller isolated areas of the graph and showing an individual node’s information,
however, it struggles when trying to navigate the graph because of its long, non-straight

edges. Also, UML quickly becomes unreadable for larger ontologies.

2.2 DATA VISUALIZATION ON THE WEB

Pretty much since the inception of the web as we know it today, there has existed a necessity
to display data to the user in the most varied ways. Today this task is usually accomplished
by using Javascript frameworks to abstract the usually very complex manipulation of the
DOM as well as to provide a basis for many common operations in transforming and
displaying data.

The javascript ecosystem is largely powered by NPM, or node package manager. This
package manager is what allows javascript applications running in the node environment (or
bundled in node to run on the web) to make use of many different frameworks and utilities
to power their own implementations. Having access to this kinds of tools is completely
indispensable when developing larger applications in the language.

Even with the rise of virtual DOM frameworks like React and Vue, the de facto standard
for generating data visualizations like graphs is without a doubt "Data-Driven Documents" or

2.3. Summary

D3. D3 is a massive library composed of functions used to manipulate the DOM based on
input data, as well as plenty of auxiliary methods to transform that data. D3’s abstractions
work fairly close to the DOM and so the developer has full control over what is rendered to
the screen. Bostock et al. (2011)

Comparing this somewhat "low-level" approach to generating visualizations to something
like Chart.js which has eight, somewhat customizable, preset visualizations, we can see that
D3’s code can be a lot more complex, but also allows for much more granular control of the
rendered data. This is, clearly, a trade-off between abstraction and control.

For smaller use cases, tools like Chart.js provide a quick and easy way to generate pleasing
and common data visualizations for the web, however, in the case of this project, given
how much it is expected that a regular graph will be extended to incorporate ontological
semantics, D3 seems like the most logical choice for generating a custom-tailored graph

visualization that can be altered to fit the display of different ontologies.

2.3 SUMMARY

When it comes to the most defining technologies and concepts in the subjects researched in
this section they all share the fact that they were created to simplify the life of the end user,
which is a philosophy that in many ways will guide this thesis. In that regard i'd like to
highlight VOWL and D3 since, in their respective field, they are able to create meaningful
abstractions that can be employed or at least studied to materialize even more useful ideas
and tools. While this whole section will obviously have a direct impact on the development,
these two technologies will be taken in great consideration moving forward.

PROPOSED APPROACH

UlissesNextGen aims to be a general-purpose graph visualizer with a strong focus on
supporting ontologic data. To accomplish this task it needs to propose an input format as
well as a visualization standard, that will work for traditional graphs but can be extended to

accommodate ontologic semantics.

3.1 TECHNOLOGIES

As discussed before the development of a complex graph visualization is best accomplished
by D3, it natively provides directives to generate a force-directed network and doesn’t have
intrinsic ontological constraints while giving the developer a lot of freedom in extending it.
Using D3 means that the project will be integrated in HTML and will be styled with CSS,
this has the added benefit that the program will be easily integrated across the web.

When it comes to the technologies that will be supported out of the box, the project
will focus on accepting OWL ontologies written in the turtle RDF specification while also
providing a traditional Nodes/Links graph input format.

3.2 INPUT FORMAT

The definition of the input format is crucial to the development and is thus a bug focus
of development. Even though OWL ontologies will be directly supported as input, under
the hood, the actual input format to the graph will be a Nodes/Links format extended
to accommodate ontological information, and ontologies will be merely converted to this
format.

This native format draws some inspiration from the VOWL standard, however, it strips
it from its mandatory ontological constraints, leaving only optional and general fields to
be able to provide a more customizable graph rendering from the data. For example, the
VOWL format stores the OWL type of an ontologic node and decides the color it should be
rendered in based on this "type" field, in the case of Ulisses however, the color is not decided

3.3. Graph application

by the type of a node but rather by a "color" field, when translating from an ontology to
the Ulisses format we simply need to set this "color" field to whatever color we want to
associate with that type. This way the graph visualizer does not need to know about what
an ontologic type is, just what color to render the node in.

3.3 GRAPH APPLICATION

The graph visualizer is the biggest facet of this project and thus is where most of the

development time will be spent. The main requirements for this application are as follows:
¢ Navigable: The graph generated need to be easily navigable by any user.

¢ Complete: The graph should include many versatile features so that any type of data

can be appropriately rendered.

¢ Performant: While limited by the context of a browser the application should run

without a hitch for even moderately sized ontologies.

With these requirements in mind the development will leverage D3 and other more

common web technologies to produce a result that can cater to the complete specification.

3.4 GRAPH APPLICATION

The graph visualizer is the biggest facet of this project and thus is where most of the

development time will be spent. The main requirements for this application are as follows:
* Navigable: The graph generated need to be easily navigable by any user.

¢ Complete: The graph should include many versatile features so that any type of data
can be appropriately rendered.

¢ Performant: While limited by the context of a browser the application should run

without a hitch for even moderately sized ontologies.

With these requirements in mind the development will leverage D3 and other more
common web technologies to produce a result that can cater to the complete specification.

3.5 HANDLING ONTOLOGIC DATA

As mentioned previously, supporting ontologic data will be a big focus for this project,
however, since the visualizer needs to be ignorant of the type of data being fed to it in order
to remain generalist ontologies will be supported through the use of a translator.

3.6. Proposal overview

This translator will serve as a bridge between data and the previously discussed input
format by leveraging all of its features to make semantics shine trough to the user and
simplify many of the more abstract ontologic concepts.

Development for the translator will be almost completely separate from the graph visual-
izer application and both will be available independently, meaning this will qualify more as
an add on rather than a straight up feature.

Javascript will be the choice for developing this tool to allow simple integration with the
visualizer. This option also makes sense as performance will not be a great concern since the

bottleneck in that regard is likely to be the graph application anyway.

3.6 PROPOSAL OVERVIEW

As a summary of this chapter, this section will describe the proposed approach in a more
broad sense.

There are two main components firstly the graph visualizing app, to be developed in
javascript by leveraging the D3 framework, this graph application will also specify an input
format for the graphs it accepts.

Secondly, with the completed input format, a translator from the turtle format to it will
be produced, this translator will utilize the features provided by the visualizer through the
input format to generate an ontology graph.

The outlined proposed approach largely serves as a guideline for the development of the

project, but does not constrain it when the situation calls for a change of plans.

10

DEVELOPMENT

The development phase is the longest phase of the project, but for the most part, the
planning and proposed approach were followed and executed. The project can be split into
two distinct development phases, the graph application and the ontology translator with the
input format of the graph serving as the bridge between them.

Given the importance of the input format specification, it was worked on first, suffering
only mild extensions as the project grew to accommodate more features, nevertheless, its
tirst iteration served as the basis upon which the rest of the program was produced.

While the graph application and ontology translator had some overlap in their develop-
ment time, the visualizer was the focus at first while the translator was finished later using
the full features of the completed application to visualize the ontology semantics.

4.1 DEFINITION OF THE INPUT FORMAT

As mentioned previously the input format is the basis for the rest of the project, however,
the project, in turn, affected and changed the format as new features were added.

While simple, it was imperative for the format type to be available to developers in a
clear manner so that anyone could provide solutions for visualizing all kinds of data in the
application, as such the format was defined in typescript and used along with it in the rest
of the project.

4.1.1 Initial implementation

It was important for the initial implementation to be clear on what was needed of the format,
as well as supporting every field present in a D3 force simulation input, while it will be
looked at more in-depth in subsequent chapters it is relevant in this section to mention that
the input format for the simulation is given in a list of nodes and then, separately, a list of
edges between those nodes.

11

4.1. Definition of the input format

Given the constraints defined by d3, the minimum implementation for a nodes/edges

input format would be as follows:

1 type UlissesNode extends D3SimulationNodeDatum {
id: string

5 type UlissesLink extends Dj3SimulationLinkDatum {
source: string,
7 target: string

Obviously, however, it would be completely impossible to display semantics using only
this information and as such the initial implementation expanded this bare-bones format

into the following;:

type UlissesNode extends SimulationNodeDatum {
2 color?: string;
id: string;
info?: {
[x: string]: number|string | Array<string Inumber>|null | undefined;

6 Je

type UlissesLink extends SimulationLinkDatum<UlissesNode> {
10 color?: string;
label: id;
12 source: string,
target: string

This was the starting point for the format, it allowed for very simple customization of
the visualizations through its fields. Firstly the node object was intended to be used in the

following way:
¢ color: The color the node in the visualization.
¢ id: The id of the node for the d3 simulation (This field must be unique).

¢ info: This field is an object that can include any key/value pair to make sure nodes

can contain information.

12

4.1. Definition of the input format

The link object, on the other hand, contained more limiting features, please note the
missing “info” field which makes it so links could not be “weighted”, meaning, they could
not contain information besides their direction and label. As such the fields of a link object

were as follows:

e color: The color the link in the visualization.
e Jabel: The label of the link.

e source: The id of the source node of the link.

¢ target The id of the target node of the link.

This specification, while somewhat simple and limiting, served as the basis for making a
functional prototype and as a canvas upon which future features were added as the project
expanded. In the following subsections, it will be discussed how both the nodes and links
specification evolved, focusing on the purpose of each field added.

4.1.2 Evolution of the link format

The evolution of the link format was very gradual, in this section, this evolution will be
explored showing how each change was meant to affect the visualization. It is worth
mentioning that there also exist a few fields, to be mentioned later, which are not required
for the input format but are generated from it when it is first fed to the graph application.

The relations field

The link object is used to represent the space between two nodes in one direction, please

consider a link with the following structure as an example:

source: "node_id_1",
target: "node_id_2",
label: "relation_1"

This structure would represent a link from node “node_id_1" to node "node_id_2" with the
“relation_1" label.

While this is the desired output from this object, consider that there may exist a “relation_2"
that is also between “node_id_1" and "node_id_2", where would this relation fit? One possible

13

4.1. Definition of the input format

solution would be to add another link to the list with the exact same source and target while
changing the label, while this approach would include all the information in the input, from
a visualization standpoint these two objects represent the exact same space between nodes
meaning they would overlap. Given these circumstances, the source/target pair should be
unique between every link provided, so how do we deal with multiple relations in the same
space?

That is where the relations field comes in, replacing the label field, and represented as

such:

relations: string][]

This means that instead of a single label, links now support an array of labels to represent

N relations between any two nodes.
The "info” field

As mentioned before, to start with, the graph’s links could not be "weighted", meaning they
contained no more information than their direction and a name. in the case of representing
ontologies this didn’t come across as a problem since properties (The equivalent of links)
can not carry more information. However, since this application was meant for more that
just visualizing ontologies there was a need to consider the option that relations could carry
any amount of information.

To answer this necessity, the exact same approach used in the case of the nodes information
tield was applied. This information field, much like in the nodes, is shaped as such:

[x: string]: numberlstring|Array<string |Inumber>|null |undefined;

This means that the information field is an object where information is stored in key/value
pairs.

This solution, however, runs into the exact same problem as the label field had, meaning
there could be two relations with different information between the same two nodes, luckily,

we can easily surpass this by expanding the relations field in this way:

14

4.1. Definition of the input format

relations: {
label: string;
info: {
[x: string]: number|string|Array<string |number>|null |undefined;

Now, instead of being just a list of strings to accommodate relations with different labels
this field is a list of objects that contain both a label and an information field. Using this
solution, between any two nodes, there can exist many different relations with different

names and details.

The color and width fields

Both color and width share the distinction of simplest field added. They are very self

explanatory in the sense that they are meant only to affect the visual rendering of the links.

The color field affects the color in which the link will be rendered, it accepts any valid CSS
color, while the width field controls the thickness of the line. Both of this fields are optional

and the application should provide defaults in case they are not present.

2 color?: string,
width ?: number

4.1.3 Evolution of the node format

In a similar fashion to links, the node format also organically evolved in order to support
more features along with the graph visualizer, in this case however the changes were much
more mild as we'll discuss in this sub-section. Much like in the case of links, it is worth
mentioning that a few extra fields, to be discussed later, are generated in the nodes from the

initial input.

15

4.1. Definition of the input format

The label field

The label field was introduced to store the text to be displayed on the node when visualizing
it.

Previously the id of the node was displayed instead of a label, however it is not always
the case that the id of the node identifies it in a human readable way, the id field also needs
to be exclusive meaning that there could not exist two nodes with the same text, to answer
these problems the label field was added to, if it exists, it replaces the id in these scenarios.

label?: string,

The visible field

The visible field, as the name implies, determines weather or not the node is visible in the
initial visualization, it is worth mentioning that this field can be overwritten in the app by
filtering and search functions, it only guarantees that initially, with no filtering active, the
node will not be rendered.

This field also affects the links related to the respective node as links are only shown in
the graph if both their source and target nodes are visible.

This field is represented by a boolean value as such:

visible ?: boolean

4.1.4 Expanding the info field

The info field is present in both the nodes and links input shapes, as discussed before this
field is comprised of an object with string keys and values that can either be typed as strings,
numbers or an array of either.

From an information storing perspective this approach did the job, however, a new feature
as envisioned that when this information was rendered in the application the values could
be clicked to link to a node in the graph (The effects of this “linking” will be discussed in

16

4.1. Definition of the input format

further chapters). With this new feature in mind, the possible types for the values of the info
object were expanded from strings and numbers to also include the InfoLink type.

. type InfoLink = {
label: string | number,
linkId: string

This type functions having the label field store the text to be used when displaying the
information and the linkId field storing the id of the node to be linked to when cliking the
label. This feature will be discussed in detail in the following chapters but in respect to the
information field of the input format, it ends up like so:

2 info?: {

[x: string]: numberlstring |InfoLink | Array<string |number|InfoLink>|null|
undefined ;

4 }s

4.1.5 The finalized input format

To summarize this section we will discuss the complete input format going over links and
nodes and very briefly mentioning the typing of every field in the formats.

The full input format is an object storing both an array of links and an array of nodes.

i type UlissesInput = {
nodes: UlissesNode[],
links: UlissesLink[]

17

4.1. Definition of the input format
Starting with the nodes format, it’s final configuration is as follows:

type UlissesNode extends SimulationNodeDatum {

2 color?: string;
id: string;
4 label?: string;

info?: UlissesInfoType;
6 visible: boolean;

While the link format looks like so:

i type UlissesLink extends SimulationNodeDatum {
color?: string;
relations: {
[id: string]: {
label: string;
info?: UlissesInfoType;
7 bz
¥
9 source: string;
target: string;

To finish up, the information field in both nodes and links is typed as such:

1 type InfoLink = {
label: string | number,
linkId: string

type UlissesInfoType = {
7 [x: string]: numberlstring |InfoLink | Array<string |number|InfoLink>|null|
undefined ;

}s

18

4.2. The graph application

4.2 THE GRAPH APPLICATION

The graph application is the actual engine that consumes the input format previously
described and generates a complete graphical visualization from it. This chapter will
discuss in detail the usage of the visualizer, how the input format is used and how each
of the features were implemented, going over both application architecture and technical
implementation. Firstly the necessary set up to begin the app will be touched on followed
by a description of the evolution from that set up.

As the program was built there were also a few implementations made to ease development
and expansion of it in the future, these will be discussed in the end as a way to further
improve the application should one desire to do so.

4.2.1 Initial setup

In order to start development on UlissesNextGen the first step was to initialize a NPM package
to house the app. This step is crucial as it not only allows us to use all of the npm ecosystem
it also provides liberty in customising run and deploy scripts with the package.json file.

Typescript

After having initialized the package the next step was to install typescript, as discussed
before, given the importance of the input format specification, this was a requirement.

Typescript is superset of javascript that transpiles directly to it Bierman et al. (2014). It
allows the developer to specify the types to be used in the project, which is the main appeal
of the technology in this case, but it also enforces those types at transpile time, making
sure that bugs don't slip through. When instaled Typescript comes with or the Typescript
Compiler that can be used to perform the aforementioned transpilation according to a
configuration provided in a JSON file.

Build scripts

After having the package initialized and Typescript correctly installed we need to set up a
script that will build the application converting it to javascrit to be used in browsers. as such
the followig configuration was added to the package.json file:

"build": "npx tcs -b"

19

4.2. The graph application

When this build script is ran the Typescript compiler takes the typescript code in the
source directory of the project and generates clean javacript code in the lib directory which
functions as the entry point for the package when imported by other NPM apps, making

sure it can be used in the browser.

4.2.2 The application architecture

The application was developed with ease of use in mind, as such it was designed to be used
with only a target div and the calling of a function passed the graph input as an argument
along with some optional configuration.

With this in goal in mind the UlissesNextGen package exposes only a single function that

initializes the graph and returns a graph object with very limited operations beyond that.

The drawGraph function

Continuing with the previous point, the functionality of this function will be discussed right
here, on a very surface level.

When called the function will first store the div configured by the user to receive the graph
and adapt to it’s size, after that it will take the input provided and generate the Uilisses
application state which will store the not only the state of the data in the app but also the
state of the DOM used for rendering it as well as all the logic linking the two.

To finish up, the function will simply return a wrapper to UlisseState with a clean up
functionality to stop the execution of the graph.

20

4.2. The graph application 21

The Ulisses State

The previously mentioned UlissesState can be summarized without much detail by this

image:

Figure 3: Ulisses State

As represented above the ulisses state holds the state for the data in the app, this includes
the following fields:

* Selections: This field stores the parts of the DOM that are used in the app as well as
methods to manipulate them. It efectively renders the application.

* Graph: The graph field store the input information provided to the application, in the

previously discussed input format.

¢ Visible Graph: Similarly to the previous entry this stores information in the input
format, it is the subset of the graph currently being rendered to the screen.

e Simulation: This field includes the information for the force simulation that decides

the position the nodes should be rendered in.

4.2. The graph application

¢ Filtering: Filtering deals with, as the name implies, how to filter the input and decide
what nodes and links get rendered or not. It includes fields such as graph depth, and

links to consider.

¢ Current Node: The current node indicates the node that is currently in focus by the

application, this node is where the whole navigation in the graph stems from.

* Center: The current center of the graph display, important for the position to render

the nodes to.

The application operates basically in the same loop stemming from this state object, once
any of the data is updated, a method in the selections field is called and passed the updated
data rendering it to the DOM.

4.2.3 Setting up D3

In order to implement most of the functionality on the app there will be a requirement to
perform major manipulation to the DOM, this would be a major hurdle using the native
browser API. D3 is a javascript library made with the purpose of rendering data in HTML,
it also comes equipped with many utils for manipulating a positioning that same data,
considering this it is the perfect tool for a project such as Ulisses.

After installing D3 from NPM, there are 3 relevant aspects of the framework that will come
into play in the development, the selections API along with the Enter and Exit functionality,
the dynamic properties API, and the force simulation module. All of these will be discussed
in detail right ahead.

Selections

Selections are a feature in d3 that allow developers to select DOM nodes and store them in
variables to be manipulated

Given the nature of this project selections are crucial to render information to the user,
this is possible because D3 selections are actually capable of being linked to data, making
sure that the DOM is updated according to changes to that same data, this is enabled as
mentioned before, because of the Enter and Exit functionality. For example take a look at the

following piece of code:

22

4.2. The graph application 23

: const nodes = graphSelection
.selectAll ("#node")
.data(visibleNodes, node => node.id);

s nodes. enter ()
.append('circle ')

7 .attr('id ', 'node ")

nodes. exit ()

.remove ()

This is a simplified excerpt from the application’s code, it deals with rendering the nodes
according to the data in the variable visibleNodes. As you can see, we first select every DOM
node with id node and link the visibleNodes array to that selection.

Once we have the selection with linked data we can use the enter() and exit() methods
to decide what to do when data (as the name implies) enters or exits the array. s In this
case if a new node appears in the array we simply append a circle DOM node with id node,
and if an element is removed from the array we remove the DOM node associated with the
missing data.

To sumarize, selections are the way the application interacts with the DOM, acting as a
view, to power the entire visualization shown to the user, in addition with the power of the
Enter and Exit API the application can easily and intuitively update the view according to
changes in the subjacent data. In Ulisses this will mainly be used to manipulate the elements
that represent the graph.

Dynamic properties

Dynamic properties are the way D3 influences attributes in the HTML, in this application it
is used mostly to add content and css styling to the app, but it also has other uses, please
take a look at the code bellow.

const nodes = graphSelection
2 .selectAll ("#ulisses")

4+ nodes. text ('Node text')
nodes. style ('background ', 'blue')
6 nodes.("href', '#'")

4.2. The graph application

In the snippet shown, we can take a look at 3 ways D3 handles dynamic properties.

Firstly all the DOM nodes with id ulisses are gathered in the nodes selection and then

various methods can be called on it to apply these dynamic properties to every node in that

same selection.

These methods can be described as follows:

The text() method: This method is used to add actual content to the DOM nodes, for
reference the call in the example above would result in this html:

<div id="wulisses"> Node text </div>

The style() method: The style method is used as the name implies to add CSS styling
to the node in the selection, this style is added inline to the html, This approach is great
because instead of providing actual CSS files to style the app it can all be done with
just javascript. Taking a look at the example of this method above, it would produce
the following HTML.

<div id="ulisses" style="background: blue;" />

The attr() method: This method can be utilized to set DOM node attributes besides
style. It is useful for setting attributes like href and the properties of various svg
elements that can only be styled that way.

<div id="ulisses" href="#" />

Force simulation

Now with the knowledge that D3 can handle the rendering of information to the screen how

can we correctly decide the position of the nodes so that the graph is correctly rendered?

Luckily D3 also provides us with the force simulation module, this module is capable of

generating a simulation of a force directed graph.

In the simplest terms this feature takes the graph input format as input and maps the

nodes with position coordinates of where they shoukd be rendered in the graph according

to a force directed simulation. This simulation can support various forces but we’ll take a

look at the ones actually used in Ulisses.

24

4.2. The graph application 25
Bellow is included the actual code for the generating the Ulisses simulation

ulissesState .simulation = d3.forceSimulation(ulissesState.visibleNodes)
.force("link", d3.forceLink ()
.id ((node: UlissesNode) => node.id)
.links (ulissesState . visibleLinks)
.distance(250)
.strength (0.2)

)
.force("charge", d3.forceManyBody () .strength ((d: UlissesNode) => {
if (d.id == ulissesState._currentNode.id)
return -10000
return -5000

1))
.force("x", d3.forceX(width / 2).strength(0.3))
.force("y", d3.forceY (height / 2).strength(o.3))

As you can see, there are 4 forces that govern the graph in the application, they will all be

explained in detail in this section.

* The link force: This force has the job of making sure that nodes connected together by
links get strongly attracted to eachother, it is programed to take priority over other
forces in the graph that could separate linked nodes.

* The charge force: The charge force gets it’'s name because it makes nodes behave as
if they had a magnetic charge, which we can use in this case to guarantee that nodes
dont clump together by giving them all a negative charge which will cause them to

repel from eachother.

* The x force: This force as the name implies makes it so the nodes are attracted to a
certain X coordinate in the graph. It is used in this case so that the nodes spread from
the middle of the graph.

* The y force: This force behaves much like the previous one with the exception that it

influences the node’s y coordinate. It also has the exact same use here.

With all four of these forces we can guarantee that an easily navigable graph will be
produced. where the nodes will be placed close to the center (thanks to the x/y forces) but
will not overlap (because of the charge force repulsion) and nodes with links between them

will clump together for easy navigation (on account of the link force).

4.2. The graph application

4.2.4 Graph navigation

As the main proposition of the graph application, ease of navigation was a top priority
when building it. In the end, the navigation method chosen relies on a centered node in
the visualization from where the rest of the graph flows, this centered node can then be
accessed to consult its information or another node can be selected to take it’s place shifting
the graph.

With the previous paragraph in consideration, the selected node is, in essence, the way
ulisses handles navigation in the graph, so in this next section we’ll take a look at why this

was a necessity, what it entails, and how it was implemented in the app.

The selected node

The selected node is, as mentioned before, a central concept to ulisses, bellow is an image of

what it looks like in the graph application.

Figure 4: The selected node

As you can see, one of the nodes is the largest and centered in the screen, that marks it as
the selected node, unlike other nodes it has a fixed position, meaning it is not affected by the
force simulation that moves nodes around it while still affecting them, meaning that nodes
with links to the selected node will also be dragged close to the center by the simulation.

Nodes linked to the selected node being close to the center is relevant because navigation
in the graph is handled by clicking any node other than the currently selected one and
making it the centered node, this is made in this way because when navigating a graph you

26

4.2. The graph application

usually want to check information in relation to the node you are currently visualizing and
this approach provides a very natural way of doing it. You can also note that nodes get
smaller as they get farther away from the center, in a variation of the fish-eye effect, this is
based on the same assumption as before that nodes that are not closely linked to the current
node are not as relevant to the user.

When a node is clicked, the current selected node is unfixed from the center of the
simulation (meaning the force simulation can now act on it), and the clicked node is set as
the new selected node, what this means is that it is no longer affected by the simulation
and will be artificially dragged to the center of the canvas (along with every node linked to
it). This creates an experience where the user can easily traverse the graph just by clicking
linked nodes on the screen.

While this approach was a great success in producing easily navigable graphs it overlooks
one situation. This strategy was developed under the assumption that nodes closer in the
graph to the selected one are more likely to be navigated to by the user but this may not
always be the case, sometimes the user may elect to jump to a completely unrelated node
in the screen. While there is no constraint in the graph that forbids the use from clicking a
node farther away from the center this is not ideal, especially because the user may have
a specific node in mind that would be hard to find just by searching the small nodes far
away from the center. In order to solve this problem, the following feature was added to the
graph:

Figure 5: The search drawer

Search

|]

https: v nuno-aae github do/ontologia/advogados

https:wwwnuno-aac github do‘ontologia/advogados=Advogado

hittps:wwwnuno-aac. github fo/ontologia/advogados=Pessoa

hitps:www nunc-aac github io'ontologia/'advogados=Al -

This small drawer in the top of the graph provides the user with a search bar that can be

used to search for any node in the graph, when any of the options is clicked the drawer is

27

4.2. The graph application

closed and the node associated with that option is set as the selected node. This gives the

user an alternative to the local navigation in the graph

Node information

While the selected tool is a great asset for navigating the graph we discussed before that
nodes could be weighted, as a refresher here is the information field on the node input

format:
info?: {
[x: string]: InfoLink|numberl|string|Array<string |number|InfoLink>|nulll
undefined ;

}s

As you can see there is information stored in the nodes in the form of an object with key
value pairs. Where these values can be typed as a number, a string, an InfoLink (which is
just a number or string with a different node id associated) or an array of any of those.

So where is this information object in the graph? As it turns out the selected node has a
part to play in this matter as well. While clicking any other node in the graph causes it to
shift, if the centered node is clicked it actually opens a drawer in the application that renders

this information.

Figure 6: Node information drawer

Node info:

name: Paul
age: 31
devices: = Phone
« Computer

city: Braga

28

4.2. The graph application

Represented in the example above are the 4 types of data the drawer can render, firstly a
string with the name of the person represented by the user, then a number representing the
age, an array for the devices belonging to the person and a LinkNode that not only presents
the person’s city, it will make it so when the link is clicked the drawer will close and the
selected node will be replaced by city of Braga’s node.

Here we can also analyze the true value of the LinkNode type, imagine a graph where one
of the nodes is linked to almost every other (like every person lives in Braga), instead of
polluting the graph visualization with many links that all have the same meaning you can

instead opt to store that connection in each individual nodes information.

Rendering nodes

Rendering the nodes to the screen is actually a very simple task since in the DOM the nodes
are respresented with just a colored circle element and a bit of text. Bellow you can find an
example of a node in the DOM:

<g id="node" transform="scale(1)" style="transform-origin: 326px 425px opx;">
<circle r="75" style="fill: rgb(135, 75, 130);" cx="326" cy="425" />
<text alignment-baseline="middle" text-anchor="middle" x="326" y="425">
Node Text
</text>
</g>

As you can see a node contains only an group with two elements. This minimalist
approach actually has the benefit of improving performance for ontologies with a large
number of nodes.

4.2.5 Links in ulisses

Links play a big part in the visualization of the graph, not only are they obviously very
important for navigation they also have the ability to be weighted and contain information
of their own. They also present unique challenges when rendering them to the user.

With the last paragraph in mind the following section will take a look at how links are
handled in Ulisses.

Preprocessing links

Unlike nodes, links have a few particularities when in comes to their rendering and require

a bit of manipulation before they are ready to be fed to the application.

29

4.2. The graph application

Firstly, links lack the visible property present in nodes that decides if they should be
rendered in the graph, instead, the condition for rendering a link is actually both nodes
connected to it being visible themselves, it would make no sense to have a link leading from
nothing or to nothing.

Another important aspect is that links need to have awareness of other links in the graph
while nodes can be completely self contained. To understand why this is the case please

consider the following 2 nodes and links

const noder = {
id: 1

const node2
id: 2

I
=

const linki2 = {
source: 1

target: 2

const link21 = {
source: 2

target: 1

In this case, the two nodes have links between them going in opposite directions, however
if the two links ignore eachother’s existence there will be two overlapping lines between the
nodes, which does not represent to the user the two links that exist in reality.

Because of this scenario, when first loading the links to the application they are prepro-
cessed to determine if they have an opposite peer and, if they do, we add a hasOpposite field
with a value of true to the link. This adds some negligible overhead to the graph loading,
however the value of this field can also be set beforehand in the input and the application

configured to ignore this step.

Rendering links

With the preprocessing out of the way and the input passed on to the visualization the main
challenge is rendering the links on screen. While nodes are basically circles with a few

added details, links actually have a lot more complexity to them.

30

4.2. The graph application 31

When it comes to information for rendering the links there are really only two points to
go off from and they are the position of the respective start and target nodes, now if all that
was needed was a line between these two points the task would be completed but this is not

the case, bellow we can find an example of the types of links actually rendered in the graph.

Figure 7: Link Types

As you can see not only do the links need to represent direction they also need to curve if
they have another link opposite to them, and curve differently if their respective nodes have
different sizes. So how can we achieve this from the the information available to us? The
answer is a bit of geometry, without getting into actual mathematics bellow you can follow
the approach taken for each problem

* Rendering direction

In order to represent direction in the links we can observe small chevrons pointing in

the desired direction.

To achieve this effect first we had to find the middle point between the two nodes, after

that we generate a vector with the size desired for the arrow and rotate it to find the

4.2. The graph application

position for the two tips of the chevron. After having the position of these tips we just
have to draw a line from the middle of the link to the generated points.

Curving the links

As mentioned before when there are two links with opposite direction there exists a
need for them not to overlap, in addition to that, since the nodes change sizes in order
to highlight the ones closer to the center with the fisheye effect, the links also have to
accommodate that difference in size between them.

To tackle these challenges ulisses uses the power of bezier curves, in the case the nodes
match in size the vectors used for the curve will be equal size but rotated in opposite
ways, on the other hand, if one of the nodes is bigger, the vector from that side will
also grow and rotate more compared to the smaller side.

Besides the size difference, the angle of the vector will also be affected by the distance
of the nodes. Here is a graphical example of all these techniques:

In case of self referencing links, whose source and target are the same node a shifted

circle will instead be used to represent the curve

Link information

When discussing the input format in the previous section it was determined that the link

format was not meant to directly represent relations between the nodes but rather the space

between them in the graph. As a reminder here is the UlissesLink format.

type UlissesLink extends SimulationNodeDatum {

color?: string;
relations: {
[id: string]: {
label: string;
info?: UlissesInfoType;
};
bs
source: string;
target: string;

32

1

4.2. The graph application

As you can see the actual information for the relations between two nodes is actually
stored in the relations (to differentiate them from links) field. This field is actually an array

that can contain multiple different relations, for example:

{

source: "Personi",
target: "Book",
relations: [

{
label: "Owns",

info: {
ammount: 1

label: "Read",
info: {
readings: 2

In these example is represented a link between two nodes Person1 and Book, this link
includes two relations, Owns and Read, these relations are also weighted to show that the
book was read 2 times but the person only owns 1 copy. But where is this information
represented in the graph application?

Much like the nodes clicking a link in the graph causes a drawer to open, using the
previous example as a base, if the link was clicked the following would be presented to the

user:

33

4.2. The graph application

Figure 8: Link information drawer

Link info:
e read:
readings: 2

* OWNS:

ammount: 1

As you can see this drawer functions very similarly to the previously discussed node
drawer, except it can render multiple info objects if more than one relation in the clicked
link includes it.

4.2.6 Filtering and depth limiting

As discussed before the graph application runs completely the client side, initially this raised
some performance concerns, especially about rendering larger graphs, this will be looked at
in greater detail in the benchmarking chapter further ahead. Another problem with bigger
graphs is the fact that a large number of nodes and, especially, links can make the ontology
completely unreadable on the screen.

Since the large number of nodes and links presents more of a challenge to the rendering
rather than preprocessing and storing the input, a solution was implemented that focuses
on limiting and curing the information shown on screen to the user.

To achieve a more limited scope of information, a concept called a subgraph was used. A
subgraph is a subset of the original graph’s edges and nodes. This is an important concept

because we can use it to avoid showing excessive information to the user on larger graphs

by instead selecting only the relevant information and rendering it in place of the full graph.

The next challenge is how to actually select this subset.

34

4.2. The graph application

The subgraph is always generated from the currently selected node since it is assumed to
be the most relevant to the user at the time, from there we can use different techniques to
reduce the graph.

Depth limiting

When it comes selecting which information is more relevant it is usually safe to assume that
nodes positioned farther away from the selected node or not connected to it at all, will be
less relevant than those more closely connected. Depth limiting comes to the rescue as a
way to show only information close to the selected node.

The depth limiting filter works by only selecting nodes that are separated by an arbitrary
number of links from the selected node. Bellow you can find an example of how different
values of depth limiting affect a graph.

Figure 9: Depth filter

Depth filter: 1 Depth filter: 2

As you can see depending on the needs of the user the filter can be tailored to show more

or less information

Link filtering

While depth limiting is usually really effective at limiting the size of the graph on screen it
can actually be remarkably ineffective in one particular scenario, that is if a node has a very
large amount of links connecting directly to it.

35

4.2. The graph application

When dealing with a situation such as this one the graph also supports link filtering
where certain links can be excluded from the filtering process. For example, the graph can
be configured to ignore all but the filters with id blue

Figure 10: Links filter

Without filter With filter

Besides the benefits in limiting the size of the graph, this filter also has great value as a
semantic filter for the user to easily navigate the graph and find the required information.

4.2.7 User selected filters

Now that we’ve established what filters are in place how can the user actually apply them to
their specific use case? This feature is handled by a button in the app that causes a drawer
to be opened that gives the user direct control over the filtering.

36

6

There is also an option to configure the graph with some preset filters so that the end-user

Figure 11: The filters drawer

4.2. The graph application

Configuration

Depth:
® 1

Relations Filter:

Apply

does not have to manage that himself.

4.2.8 Graph application configuration

The drawGraph() function actually accepts a bit more than just the Ulisses input format, it can

also accept a small configuration object shaped like so:

{

filter?: |
depth?: number,
links ?: string[]
b,
defaultNode?: string

37

1

4.3. The turtle translator

The filter field can be used to preset the graph filters as described in the previous section
while the defaultNode describes what node should be the selected node when the graph first
loads

4.3 THE TURTLE TRANSLATOR

Since Ulisses was made as a general purpose graph visualizer there is no direct support
for accepting ontologies as an input format. However the beauty of a general purpose
application is that it can be used for anything, with correct translating of the ontology to the

UlissesInput format the visualizer is more than capable of rendering that kind of information.

The turtle translator is an add-on to Ulisses, it was built as a completely separate package
that as the name indicates can translate from the turtle (.tt/) format to UlissesInput. In this
section we’ll go over how the translator makes use of the several features of the visualizer to
render an ontology to the user.

It is worth noting that this translator is not an absolute truth for rendering ontologies, as
discussed before, different ontologies can have wildly different configurations, and users are
encouraged to leverage the UlissesFormat to cater to their own needs. What the provided
translator means to achieve is a balanced ontology rendering method that will work well for
as many ontologies as possible, but you will usually be able to do better when working with

a specific example..

4.3.1 The translateOntology() function

Similarly to the graph visualizer package, only a single function is exported by the ontology
translator, the apropriately named translateOntology function. This function takes in a single
parameter that should be a valid ttl string.

Parsing the ontology with N3

Inside the function once we have access to the passed string we make use of one of the
fastest ontology parsing packages in the ecosystem. This package is called N3.js and it no
only validates the provided argument as a valid ttl string it also returns a stream of triples
that can be parsed and translated into the Ulisses format. Here is a small snippet from an

example ontology.

:PersonA :likes :PersonB;
:height "180ocm".

38

20

26

4.3. The turtle translator 39

This snippet includes a PersonA that likes PersonB an is 18ocm tall, and here is the output
from passing it through N3.js.

"subject": {
"termType": "NamedNode",
"value": "http://www.semanticweb.org/ant niocarvalho/ontologies/
animals#PersonA"

I
"predicate": {
"termType": "NamedNode",

"value": "http://www.semanticweb.org/ant niocarvalho/ontologies/
animals#likes"
b
"object": {
"termType": "NamedNode",
"value": "http://www.semanticweb.org/ant niocarvalho/ontologies/
animals#PersonB"
}
I
{
"subject": {
"termType": "NamedNode",
"value": "http://www.semanticweb.org/ant niocarvalho/ontologies/
animals#PersonA"

I
"predicate": {
"termType": "NamedNode",
"value": "http://www.semanticweb.org/ant niocarvalho/ontologies/

animals#height"

b

"object": {
"termType": "Literal",
"value": "18ocm"

Here you can see the type of triples returned by N3, they contain a subject, a predicate,
and an object, the translation of the ontology is performed by looping through these same
triples. Each triple is then run through a decision tree to determine how to correctly translate

them to the Ulisses input format. Here is a high level overview of this decision tree

4.3. The turtle translator

Figure 12: The Ulisses Prototype

(]
(&4}

Triple
Subject is Subject is not
Property Property
Object is Literal Object is not Object is Literal Object is not
Literal Literal
Predicate has Predicate is Predicate has Predicate is
special regular special regular

semantics semantics

Every node in this tree will be analized in detail in the following sections along with the
way OWL and RDF specific semantics were handled.

Is subject a property?

When a triple is received by the translator the first decision to make is whether or not the
subject of the triple is typed as an OWL property. It can be either a DataProperty or an
ObjectProperty.

It is important to make this distinction between properties and other nodes because
properties need to include a domain, and possibly a range, it also make sense to represent
them as links in the graph (even though they are indeed node in the turtle format), because
they can be used to link individuals to other individuals or literals. If the domain is not
provided it is assumed to be owl:Thing

If the subject is not a property it will be added as a node linked by the predicate to the
object of the triple.

So to summarize we can look at an example of both these cases being converted to the
Ulisses format:

:likes a owl:ObjectProperty;
owl:Domain :Person;

40

4.3. The turtle translator

The output of translating these object property triples would be as follows:

2 nodes: [{ id: "Person" }, { id: "Thing" }],
links: [{
4 source: "Thing",

target: "Person",
6 relations: [{
label: "Likes",
8 info: {
type: "ObjectProperty"

As you can see, this object property generates 2 nodes, one for the range (assumed to be
owl:Thing) one for the domain (specified to be :Person and the actual information for the
object property is stored as a relation in the link between them.

We can also take a look at the opposite example where the subject of the triple is not a

property.

: :PersonA :likes PersonB;

In the Ulisses format output for these two triples we find

1
nodes: [{ id: "PersonA" }, { id: "Person B" }]
links: [{
source: "PersonA",
target "PersonB",
relations: [{ id: "likes" }]

Similarly to the first example it generates two nodes and a link, however, this time the
information is stored in the subject node and the link serves only as a semantic connection

between the nodes, without any weight to it. Note that the link from this example is

41

4.3. The turtle translator

completely separate from the previous one even though they share an id in their relations,
what uniquely identifies a link is the source and target fields as a compound key.

Now that we’ve established the importance of separating these two types of triples the
next step will evaluate the object of the triple.

Is object a literal?

The object of a triple can be of two distinct types, it can be a node in case the predicate is an
object property or it can be a literal in case the predicate is a datatype property. The triple is
handled differently based on this type.

If the object is a literal then that object will be added to the info field of the subject. Other
wise the predicate will be added as a link between the subject and object node. This can be
made clear looking at an example.

:PersonA :likes :PersonB;
:eats "Cake"

These two triples would translate to the following format:

nodes: [{
id: "PersonA"
info: {
eats: "cake"

id: "Person B"

H

links: [{
source: "PersonA",
target "PersonB",
relations: [{ id: "likes" }]

As you can see the first triple is reflected as a link between person A and B with the
relation "likes", meanwhile the second triple (with a literal object) was instead added to the
PersonA info field with a key equal to the predicate and a value equal to the object.

42

4.3. The turtle translator

With this section and the previous one we can understand how triples translate into the
graph format, but a list of triples is not an ontology so we’ll take a look at how actual OWL
and RDF semantics translate into our graph.

Is predicate from OWL/RDF?

While most triples are handled simply by the previously discussed sections sometimes
OWL/RDF semantics get involved and the can be represented in a more appealing way
given their importance to the semantic meaning of the triple.

A easy example to give in terms of the relevance of these semantics to the rendering of
the graph comes from the rdf:type object property. Usually a relation like this would produce
a link between two nodes however does that make sense every time?

The most numerous type of node in an OWL ontology are usually the named individuals,
so if we accept the previously discussed technique all of them would link with a rdf:type link
to the owl:NamedIndividual node, this could easily be thousands of links coming from the
same node for certain ontologies, which is completly unworkable for rendering purposes.
So how do we translate semantics like this to the graph?

Translating rdf:type

With the described problem in mind, the way Ulisses handles node typing is by not repre-
senting it as a link in the graph, instead this information is stored in the respective nodes
info field, if the object happens to be one in the list, the color of the node will be adjusted
accordingly:

¢ owl:Class: Yellow
¢ owl:NamedIndividual: Purple

¢ owl:DatatypeProperty: Green

Perhaps you noticed that ObjectProperties are missing from this list, this is due to the fact
that ObjectProperties are not represented by nodes but rather only by links as discussed
before.

As an example of how this relation is handled in translation we can look at the following

snippet and it’s output.

:PersonA rdf:type owl:NamedIndividual,
:Person.

43

4.3. The turtle translator

nodes: [{
id: "PersonA"
info: {
type: ["NamedIndividual", {
label: "Person"
linkId: "Person"

3
}

color: "purple"

id: "Person"

4
links: []

As you can see the output produces no links and the type information is instead stored in
the info field for the PersonA node. It should be noted that while the link is omitted from
the input format the type (if not from owl semantics like NamedIndividual) is stored as an
InfoLink that will allow direct navigation to the type node from the information drawer in the
app. This maintains ease of navigation without sacrificing information and the readability

of the graph (even improving it).

Translating lists

Lists are a very particular form of writing rdf data, when a list is used it is actually
represented in triples as a linked list. This is much more obvious graphically so bellow you

can find an example for the following snippet

:Person :eats (:Cake :Banana :Apple).

The way this snippet is translated to triples is very much as a linked list, a representation

of the graph generated by the previous snippet can be found bellow:

44

4.3. The turtle translator

Figure 13: Ontology list

Anonymous Anonymous

Node

Anonymous
Node

Person

/
N

/\/\/\

{ Cake Banana \ f Apple)

\/\/\/

As you can see this representation is powered by anonymous nodes and greatly hinders
readability, in Ulisses lists are represented as groupings of nodes this loses the order of
the list but for the most part lists are used to group RDF objects together rather that to
order them. So by sacrificing a small amount of information we can produce a much more
readable output.

Figure 14: Ulisses list

This example is the output from feeding the snippet above to ulisses.

Translating DatatypeProperties

While we discussed properties earlier in the document it is worth exploring here how a
datatype is represented in the graph since it differs from every other type.

45

1

4.3. The turtle translator

Before it was discussed that Properties end up represented as links instead of nodes in the

graph, this is the case because ObjectProperties require a domain and a range, even if implicit.

This is not the case for DatatypeProperties since they only require a domain (that once again

may be implicit).

The consequence is that while the link related to the property will always have a source, a

target may not be present so, instead, a node is created to fill that purpose. This node will

simply replicate the information of the link.

The range while not required can be included and will stem from the DatatypeProperty

generated node.

Here is an example of all of these features in action from the following snippet:

:eats a owl:DatatypeProperty;
:description "What a person eats";
owl:domain :Person;

owl:range xsd:string.

This TTL specifies a datatype property with a domain of Person and a range that accepts
string, it also provides a small description of the property. The translator would handle this

input and return these nodes and links:

nodes: [{

id: "Person"
b o
{

id: "eats",

info: {

description: "What a person eats"

}

color: "green"

id: "string"
4
links: [{
source: "Person",
target: "eats",
relation: [{
id: "eats",
info: ({
description: "What a person

eats"

46

24

26

4.3. The turtle translator

bo A

source: "eats",
target: "string",
relation: [{ id: "range" }]

And this input would translate graphically to:

Figure 15: Datatype property

4.3.2 Final considerations for the translator

With the full overview for the translator package it is now fair to take a look at it’s effective-
ness in rendering ontologies, even according to some benchmarking ontologies.

The translator takes on the difficult job of not only reproducing the semantics of the
ontology in graph form but also rendering its individuals, Usually, ontology visualizers and
benchmarks concern themselves with only one of the sides, but here we try to somewhat
unify these two aspects to cover as many ontology types as possible.

With a very generalist approach no information is lost in the converting from TTL to the
Ulisses format. What this means is that both semantic ontology benchmark and individual
visualizers validate the way Ulisses renders ontologies, however, they do so by compromising
on actual specialization on either of these, this causes some cases where the user would
want a focus on a specific aspect of an ontology and finds the graph polluted by all the
information that a generalist solution has to provide.

47

4.3. The turtle translator

With the previous paragraph in mind, this translator is very good at doing what it
was designed to do which is, given and ontology it will produce a navigable, human
understandable, graph in a format that can be ingested by the visualizer. It also works as a
basis for developers looking to develop their own translator more fitting for their own use

case. In this this respect, we can conclude the translator was a success.

48

BENCHMARKING

One of the requirements outlined at the start of development for the grpah application was
that it was performant, meaning that it should be able to handle even moderately sized
graphs. This section will take a look at if and how well this specification was met.

All the tests in this section were run on a single desktop device and are averaged from the
3 most popular browsers (that all yielded pretty similar results).

There are two metrics from which we can measure the performance of the application,
tirstly we have the rendering performance, this metric refers to the amount of information
that can be displayed at once on the screen. On the other hand we can take a look at startup
time for the application, since Ulisses needs to perform some expensive manipulation to the
data at load time this can take some time. Both of these metrics will be analyzed separately.

5.1 RENDERING PERFORMANCE

As mentioned before, the rendering performance test measures how many nodes can be
rendered at once on screen. When developing the app, this was one of the main concerns
even trying to improve the performance by adding some overhead when loading the data.
This section will take a look at if these efforts paid off.

The test was performed by gradually increasing the amount of nodes on screen and assess-
ing the behaviour of the application, in this case the metric used to measure performance
was usability.

The findings suggest that the application behaves seamlessly until about 200 nodes and
links on screen. After 200, performance begins slowly deteriorating but the graph remains
usable until around 500 nodes and links on screen, after that point the stuttering becomes
unbearable with the graph freezing for up to 5 seconds at a time. As a curiosity if the nodes
reach about 650 (at most) the browser tab crashes.

These results are very encouraging since with the filtering and depth limiting techniques
employed, the upper limit we found sounds like an excessive amount of information to be

rendering at one time (if using the application correctly) anyway.

49

5.2. Startup time

5.2 STARTUP TIME

As mentioned before in order to improve rendering performance and keep the simplicity of

the input format Ulisses need to perform some operations on the data when first loading it.

This metric is not critical to the functioning of the app itself but very heavy load times are
obviously undesirable if the application is destined to be shown to an end user.

The test was performed by generating bigger and bigger datasets and feeding them to
the graph while mesuring the time from calling the drawGraph() until the graph is actually
rendered.

The previously described test yielded the following results:

Number of nodes/links Load time

20000 Less than 1 second
40000 5 seconds

70000 10 seconds

100000 30 seconds

200000 90 seconds

Taking a look at these results we can see that the startup overhead is quite heavy. Still
100000 nodes/links confortably fits the description that the app should handle moderately
sized graphs. What loading time is acceptable is a question that needs to be answered on a
case by case basis.

With this in mind, this overhead does the job it is supposed to do and even with 200000
nodes loaded to the graph it runs very smoothly as long as the number of nodes currently
visible on the display is manageable.

50

CONCLUSION

In conclusion to this thesis I would like to take a look at the state of the finished project with
it’s successes and challenges, evaluating both the graph visualizer and the turtle translator
for their own merits as well as speaking a bit about the continued work that could be done
to improve the current state of the app.

Considering the initially proposed approach, I'd say the the project was a resounding
success, the final product includes a graph visualizer application with a well defined input
format to access it’s features, these same features allow for very diverse manipulation of the
rendered data. This freedom to cater the input data to render very different types of data
was one of the main specifications outlined at the start.

The other main focus for the visualizer was ease of navigation, through various techniques,
the project manages to hit this mark as well, making sure that the information is intuitively
available to even none developers using the app. Although making sure that these techniques
take effect is the responsibility of the developer who generates the input format as a misuse
of it can lead to hard to navigate graph.

On the subject of generating input graphs, the ontology translator does just that, it was
developed as an add-on to the UlissesNextGen graph visualiser but is available as a completely
separate package.

It takes on the difficult task of converting ontologies to a relevant and navigable graph.
Due to the nature of this purpose the translator takes a very generalist approach to generating
this graph, for simpler ontologies this is great and for the most part they can be handled
very well, but as ontologies grow in specificity and/or complexity the disadvantages of this
approach becomes apparent, as massive graphs with redundant information start to appear.

While the translator does what it is proposed to do there is an argument to be made
against it’s actual usefullness, for real use cases most of the users of the application will very
much prefer to develop a translator tailored to their own ontology. Even so the provided
turtle translator can serve as a strong foundation that can be refined to fit different situations.

With this overview of the project, we can conclude that the successes outweigh the
challenges, as even where Ulisses struggles it gives space and tools to the users to provide

their own solutions and ideas.

51

Taking a look at how Ulisses could be expanded in the future, there is a clear direction to
take expanding variety of the rendering capabilities of the graph even further. This would
obviously empower the application but should not be done at the expense of the relative
simplicity of the input format.

In relation to the translator any expansion to it’s current iteration would probably distance
it from it’s generalist intent. However in order to expand this facet of the project there could
be added a solution to ease the development of other translators from ontologies to the

input format, as a sort of framework for developers to cater to their own use cases.

52

BIBLIOGRAPHY

Tim Berners-Lee et al. Semantic web road map, 1998.

Gavin M. Bierman, Martin Abadi, and Mads Torgersen. Understanding typescript. In
ECOOQOP, 2014.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D?® data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301-2309, 2011. doi: 10.1109/
TVCG.2011.185.

Marek Dudés, Steffen Lohmann, Vojtéch Svéatek, and Dmitry Pavlov. Ontology visualization
methods and tools: a survey of the state of the art. The Knowledge Engineering Review, 33,
07 2018. doi: 10.1017/50269888918000073.

John H Gennari, Mark A Musen, Ray W Fergerson, William E Grosso, Monica Crubézy,
Henrik Eriksson, Natalya F Noy, and Samson W Tu. The evolution of protégé: an
environment for knowledge-based systems development. International Journal of Human-
Computer Studies, 58(1):89—-123, 2003. ISSN 1071-5819. doi: https://doi.org/10.1016/
S1071-5819(02)00127-1. URL https://www.sciencedirect.com/science/article/pii/
$1071581902001271.

Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing? Int.]. Hum. Comput. Stud., 43:907-928, 1995.

Ian Horrocks, Peter Patel-Schneider, and Frank Harmelen. From shiq and rdf to owl: the
making of a web ontology language. Web Semantics: Science, Services and Agents on the
World Wide Web, 1:7-26, 07 2003. doi: 10.1016/j.websem.2003.07.001.

Giovani Librelotto, José Carlos Ramalho, and Pedro Rangel Henriques. Ulisses: Um naveg-

ador conceptual para topic maps. 01 2004.

Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. Visualizing ontologies with

vowl. Semantic Web, 7:399—419, 05 2016. doi: 10.3233/SW-150200.
Mark Musen. The protégé project. AI Matters, 1:4-12, 06 2015. doi: 10.1145/2757001.2757003.

Hans-Jorg Schulz and H. Schumann. Visualizing graphs - a generalized view. volume o,
pages 166— 173, 08 2006. ISBN 0-7695-2602-0. doi: 10.1109/1V.2006.130.

53

https://www.sciencedirect.com/science/article/pii/S1071581902001271
https://www.sciencedirect.com/science/article/pii/S1071581902001271

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Proposed approach to thesis
	1.4 Document structure

	2 State of the Art
	2.1 Ontology Visualization
	2.1.1 VOWL and WebVOWL
	2.1.2 Protégé plugins

	2.2 Data visualization on the web
	2.3 Summary

	3 Proposed Approach
	3.1 Technologies
	3.2 Input format
	3.3 Graph application
	3.4 Graph application
	3.5 Handling ontologic data
	3.6 Proposal overview

	4 Development
	4.1 Definition of the input format
	4.1.1 Initial implementation
	4.1.2 Evolution of the link format
	4.1.3 Evolution of the node format
	4.1.4 Expanding the info field
	4.1.5 The finalized input format

	4.2 The graph application
	4.2.1 Initial setup
	4.2.2 The application architecture
	4.2.3 Setting up D3
	4.2.4 Graph navigation
	4.2.5 Links in ulisses
	4.2.6 Filtering and depth limiting
	4.2.7 User selected filters
	4.2.8 Graph application configuration

	4.3 The turtle translator
	4.3.1 The translateOntology() function
	4.3.2 Final considerations for the translator

	5 Benchmarking
	5.1 Rendering performance
	5.2 Startup time

	6 Conclusion

