
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Dias Parente

The role of an API Gateway in a Microservice Architecture

October 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Dias Parente

The role of an API Gateway in a Microservice Architecture

Master dissertation
Master Degree in Informatics Engineering

Dissertation supervised by
José Carlos Leite Ramalho

October 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

A B S T R A C T

Nowadays, with the development of bigger and more complex applications, the architectural
paradigm for application development is changing from a more traditional Monolithic
approach to an architectural style called Microservices. In this more recent, and increasingly
popular, style of developing applications, a tool that has also become increasingly more
popular is API Gateways. In this thesis I explored these and a few other concepts on various
examples, recording my experience, with the intent to create a guide on how to more
efficiently implement these tools on to your own projects, facilitating the usually long and
arduous process of researching, learning, and implementing new technologies into your
work.

Keywords: Microservices, API Gateway

iii

R E S U M O

Hoje em dia, com o desenvolvimento de aplicações maiores e mais complexas, o paradigma
arquitetural para desenvolvimento de aplicações está a transacionar do estilo Monolítico
tradicional para um estilo de arquitetura chamado Microserviços. Neste mais moderno,
e cada vez mais popular, estilo de desenvolvimento de aplicações, uma ferramenta que
também se tem tornado cada vez mais popular tem o nome de API Gateway. Nesta tese eu
explorei estes e outros conceitos em vários exemplos, documentando a minha experiência,
com a intenção de criar um guia em como o leitor pode mais eficientemente implementar
estas ferramentas nos seus próprios projectos, facilitando o normalmente longo e trabalhoso
processo de pesquisa, aprendizagem, e implementação de novas tecnologias no próprio
trabalho.

Palavras-Chave: Microserviços, API Gateway

iv

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Objectives 2

1.3 Development Approach 2

1.4 Document Structure 2

2 state of the art 3

2.1 Microservices 3

2.2 API Gateways 4

2.3 Kong and other alternatives 6

2.3.1 Kong 6

2.3.2 Amazon API Gateway 6

2.3.3 Apigee 6

2.3.4 WSO2 API Manager 6

2.3.5 Kong vs alternatives 7

3 guide/development 8

3.1 Introduction 8

3.2 Microservices 8

3.3 Docker 9

3.4 Kong 11

3.5 NGINX and the front-end development 14

3.6 HTTPS 16

3.7 Examples 18

3.7.1 Equivalencias App 18

3.7.1.1 Introduction to the app 18

3.7.1.2 Docker 19

3.7.1.3 Kong 24

3.7.1.4 NGINX 25

3.7.1.5 The Approach and Difficulties found 28

3.7.2 Animals Wiki App 35

3.7.2.1 Introduction to the app 35

3.7.2.2 Docker 36

3.7.2.3 Kong 41

3.7.2.4 NGINX and HTTPS 43

3.7.2.5 The Approach and Difficulties found 46

v

contents vi

4 hypatiamat 57

4.1 Introduction to the app 57

4.2 Development of the Web application 58

4.2.1 Hypatiamat Backoffice 58

4.2.2 Kong and JWT tokens 61

4.2.3 Login interface 64

4.3 Outcome 73

5 conclusion 74

L I S T O F F I G U R E S

Figure 1 Monolithic vs Microservices (Faria) 4

Figure 2 Microservices architecture with an API Gateway (api) 5

Figure 3 Docker-compose file example 9

Figure 4 Context and Dockerfile 10

Figure 5 Docker-compose front-end ports 11

Figure 6 Docker-compose Kong 12

Figure 7 kong.yml file 13

Figure 8 Front-end Dockerfile 14

Figure 9 nginx.conf 15

Figure 10 Front-end Dockerfile 16

Figure 11 nginx.conf with HTTPS 17

Figure 12 Request flow 25

Figure 13 Front-end Equivalencias App 29

Figure 14 Equivalencias Microservices Architecture 33

Figure 15 Equivalencias Request Flowchart 34

Figure 16 Request flow 43

Figure 17 Front-end Animals-Wiki App (same as Equivalencias App) 51

Figure 18 Animals-Wiki Microservices Architecture 55

Figure 19 Animals-Wiki Request Flowchart 56

Figure 20 Old vs New - token storage 60

Figure 21 Main Menu 67

Figure 22 Register Menu 68

Figure 23 Backoffice login Menu 69

Figure 24 TPC login Menu 70

Figure 25 Backoffice App 71

Figure 26 TPC App 71

Figure 27 Hypatiamat Architecture 72

Figure 28 User experience flowchart 73

vii

A C R O N Y M S

A

API Application Programming Interface.

AWS Amazon Web Services.

D

DB Database.

H

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

R

REST REpresentational State Transfer.

S

SPF Single point of failure.

SQL Structured Query Language.

U

URL Uniform Resource Locator.

viii

1

I N T R O D U C T I O N

In 2011, the term "Microservices" was first used in a conference of software architects and
was then formally adopted. (Foote) Since then, the style of architecture has become more and
more popular. Microservices are described as a type of architecture where your application is
divided into several smaller and isolated services, communicating and cooperating through
API calls. Each service is independent from each other and is built for specific tasks, allowing
complex applications to be built in a much more simple, flexible and scalable way. (Nemer)
But with these advantages comes a disadvantage, the complexity of API calls needed to
be made for a single request. Because a Microservices architecture is divided into several
services, a single request may need to call a large number of services. But there is a tool
which facilitates this process. API Gateways address this by being a tool capable of managing
these API calls. Acting as a reverse proxy, it redirects all of the calls to the appropriate
services and returns the response. It also has many other functions like rate-limiting, user
authentication, etc. (API)

1.1 motivation

As previously stated, this way of building applications is becoming more and more promi-
nent, but it deals with a lot of foreign concepts for someone who hasn’t had previous
experience in dealing with these concepts and the many tools that I will talk about in the
next sections. Learning how to use these tools is not an easy task and usually takes a lot of
research and trial-and-error.
This thesis attempts to alleviate that process by constructing a sort of "instruction manual"
in how to apply the discussed concepts and tools into your own work. To do this, I will
research and apply the tools into many applications that will serve as a "test" of my newly
acquired knowledge and record my failings and successes as in to help the reader in their
attempts.

1

1.2. Objectives 2

1.2 objectives

In this dissertation I intend to explore these concepts with the aim of leaving a guide in
how to apply an API Gateway in a Microservices architecture. To do this there are a few
objectives that are needed to be fulfilled:

• Research on API Gateways and Microservices architecture

• Building a guide on how to apply API Gateways on discussed architecture.

• Implementation of the guide in several case studies, culminating in its application to
the Hypatiamat app. (Hypatiamat)

1.3 development approach

The following steps are the methodology that I intend to follow in this thesis:

• Experimenting with Kong API Gateway on small, simple applications;

• Using simple applications that are already divided into small services to experiment
and understand the communication in a Microservices network;

• Fusing the two previous steps, using Kong as a reverse proxy for the Microservices
network;

• Researching and experimenting with other technologies like NGINX, Docker, GraphDB,
MongoDB, etc, with the attempt to create more robust applications and get accustomed
to these technologies;

• Protecting the connection to the website application by changing from a HTTP protocol
to HTTPS protocol;

• Make a guide documenting all of the previous steps;

• Using the Hypatiamat application as a "final test" for the constructed guide.

1.4 document structure

This dissertation is divided into several chapters. Chapter 2 "State of the art" is a con-
textualization on the current state of the several technologies and theory that were used
during the writing of this master thesis. Chapter 3 "Guide/Development" and Chapter 4

"Hypatiamat" is where a documentation on the work that was done in the completion of the
thesis is written. This is also where the proposed "guide" will be written. Finally, Chapter 5

"Conclusion" is a reflection on the work made.

2

S TAT E O F T H E A RT

In this chapter I will contextualize and describe the current state of the main topic of this
master thesis, as well as the technologies that I will use that are related to this topic.

2.1 microservices

It wasn’t always the case that Microservices were a possible route when building an appli-
cation, in fact, it was only in the 2010’s that the concept was introduced and adopted in
force. It wasn’t long ago when it didn’t even make much sense to decouple your services
into independent containers. When all you had were desktop applications installed on
your computer why have a complex network of communication between services when it
can perfectly be run as a single unit on your computer? But as web applications became
more popular and the complexity and scale of said applications became bigger and bigger,
such that any change to the code base or error that popped up became a huge ordeal for
the developers, changes needed to be made. And so the concept of Microservices was
introduced.

The Microservices architecture addressed many of the issues that were present in the
Monolithic architecture, which was more popular at that point. Some of these are :

• It became easier to scale up projects;

• New additions to the development team didn’t need as much training to contribute to
the project (instead of understanding the whole application they could focus on the
specific service they were working on);

• It facilitated developers working in parallel, not only code-wise but also time-wise (it’s
fine to work on different services at the same time);

• It is easier to improve performance with less cost (If a service was over-stressed
developers can acquire more servers to alleviate the load on that specific service
while the others remain with the same amount of service power, which becomes more
cost-effective when comparing the Monolithic approach which is to just acquire more
servers for everything);

3

2.2. API Gateways 4

• It severely mitigates the "single point of failure" problem. If a service went down it
could be restarted independently while the application as a whole had no down time.

But there was a cost to this architecture: Complexity in building network communication.
Setting up this network is many times no easy task and can lead to a lot of difficult debugging,
but if managed successfully it makes this choice of architecture make a lot of sense for most
medium to big applications.

Figure 1: Monolithic vs Microservices (Faria)

As it is depicted by the image, the client can communicate with each service and they may
communicate between themselves as well. Another thing that is worth remarking is that it is
very common for a service to have its own dedicated database.

2.2 api gateways

It may be fine to have direct communication from client to the services when dealing with
smaller applications, but when these scale up from using a few services to tens or even
hundreds of services, a few problems arise:

• Securing your services from threats, as all your services have public endpoints;

• It may become hard to manage connections to each service (when updating or replacing
them).

API Gateways address these problems, although not without bringing issues of their
own. API Gateways act as a reverse proxy, redirecting all calls to the appropriate services
returning the consequent result. (api) In doing so, it resolves the previous problems:

2.2. API Gateways 5

• Because it routes every calls to the appropriate service, these no longer need to have
public endpoints to be reached, making them less exposed to possible threats;

• By managing the routing to each service, when a service is updated or replaced,
instead of re-configuring every connection to that service you can correct the issue in
the routing of the Gateway.

It also may have a few other useful features in form of plugins like:

• Authentication;

• Rate-limiting;

• Analytics on service use;

• etc.

Nevertheless, there is a significant drawback to this approach. The API Gateway introduces
a possible single point of failure, meaning that if the Gateway goes down the whole
application fails until it is back up (if there is nothing in place to prevent or circumvent this,
like a second API Gateway for example). Even still, for the purpose of this thesis, I will use
an API Gateway: Kong API Gateway.

Figure 2: Microservices architecture with an API Gateway (api)

2.3. Kong and other alternatives 6

2.3 kong and other alternatives

Kong API Gateway is not the only possible choice when it comes to managing APIs. A
few of the most popular alternatives are: Amazon API Gateway, Apigee and WSO2 API
Manager. (There are many more alternatives and which is best is subjective but for the
purposes of this thesis I will talk about these in specific).

2.3.1 Kong

Kong is an API Management tool that became open-source in 2015. It is widely used by
developers all over the world and is a great choice for anyone looking for a free API Gateway
tool. It runs on Lua and supports plugins like rate-limiting, authentication, load-balancing,
and many others. It also has an enterprise version. (Faren)

2.3.2 Amazon API Gateway

AWS API Gateway (or Amazon API Gateway) is an API Management tool provided by
Amazon. From their website - "Amazon API Gateway is an AWS service for creating,
publishing, maintaining, monitoring, and securing REST, HTTP, and WebSocket APIs at any
scale. API developers can create APIs that access AWS or other web services, as well as data
stored in the AWS Cloud." (AWS). The service is paid (per API call) but a free 12 month trial
is available.

2.3.3 Apigee

"Apigee Edge, the self-service API management platform, enables companies to secure, scale,
manage, and analyze their digital business, and grow API programs to meet the increase in
demand. Edge enables enterprises to design and build the APIs that securely share their
services and data." (Apigee) Apigee is a pay-per-API call solution that is mostly used by
large companies.

2.3.4 WSO2 API Manager

WSO2 API Manager was initially released in 2012, and is a completely open-source and
free tool for API management. It has security functionalities with it’s WSO2 Identity Server,
analytics tools with the WSO2 Data Analytics Server and "workflow management capabilities
with human interaction features with WSO2 Business Process Server" (Gunaratne)

2.3. Kong and other alternatives 7

2.3.5 Kong vs alternatives

All of these solutions are great and are definitely reasonable choices for the purposes of this
thesis, but Kong does stand out from the others by being a free alternative with intuitive
use and excellent plugin support. It’s for those reasons that Kong was chosen for the API
Manager role in this dissertation.

3

G U I D E / D E V E L O P M E N T

Learning new technologies when starting new projects can be quite a difficult task. It
involves a lot of research, reading documentation, testing, debugging, etc. Thus, a guide
that focuses on explaining how these technologies work in a technical and practical way,
with a few case studies as examples, might prove to be helpful to someone who never used
said technologies. This thesis is an attempt at creating that guide.

3.1 introduction

This section is composed by a guide to a Microservices architecture followed by a detailed ac-
counting of the experience gained with several web applications, the process of transforming
them into the Microservices architecture and the problems faced. The guide was constructed
along the writing of this thesis and was made with the purpose of assisting those who
hope to transform or make web applications that run on a Microservices architecture and
API Gateway. It is a generalization of the many areas you can address the matter (from
how Microservices work to the set up of the API Gateway) and, as said above, it will end
with a couple of examples of web apps, used as case studies, to transform them into the
Microservices architecture assisted by API Gateway Tools.

3.2 microservices

Before trying to apply an API Gateway in your project, it makes sense to make sure you
have a Microservices Architecture. This is because an API Gateway is a way to manage the
communication and data transferring between different services, so having your application
divided into different services is not only crucial, but almost necessary (if you intend to
make the most out of an API Gateway like Kong). To do this, take your app and try to list
the many different sectors of functionalities it has and run each of them in a different service.
Using a popular example, a website where you buy clothes could have a service dedicated
for the commenting system, one to list the available clothes, and one for a rating system.

8

3.3. Docker 9

It could even use external APIs, for example, an API to handle the money transactions
performed in buying the clothes themselves.

But, it is also important to not divide your app into too many services, as it could make
your service network too complex. As a good rule of thumb, if you have two services that
only communicate with each other and are performing simple tasks that could be done by
only one service, it might be worthwhile to join those two services into only one. It is also
useful (but not necessary) to separate your front-end from your back-end services.

3.3 docker

When deploying an application on a machine it is incredibly useful to use Docker, this
is because Docker creates containers, independent from the machine and OS (Operating
System) it runs on, equipped with only the necessary software to fulfill its purpose, which is
specified by the developer. This makes it possible for any application to run on any machine.

Therefore, it is important to run every service in your application in its own container.
Here is an example of a docker-compose file:

Figure 3: Docker-compose file example

3.3. Docker 10

The docker-compose file is a config file which dictates what containers will be run when
running the command docker-compose up and how they will run. In this example there
are three containers that will be run: a front-end container (front-end-animals) which a user
can communicate with through his/her browser, a back-end container (auth) which handles
authorization, and a database container (mongo-users) which will store the users.

Going through each container, starting with mongo-users, this container uses an image of
MongoDB, a document-oriented NoSQL database. An image is the software in each you
will be basing your container. The application that is deployed with this docker-compose
file uses a MongoDB database so naturally the image for this particular container will be
mongo. This container is also using something called volumes which, in short, allow for data
persistence in a container, even if it goes down and has to be restarted.

Because of how Docker works, when, for whatever reason, Docker fails and has to restart
its containers, the data stored while it was running is lost. This because when the container
fails and shuts down, the container no longer exists and the data created while it was
running does not persist, even if it restarts automatically because it will start as a fresh
instance of the container. To combat this we use Docker volumes. Docker volumes create
a connection between the containers virtual file system and the hosts file system, so when
data is written in the container it is also written in the hosts file system, and vice-versa,
therefore making it so when a container is started with a fresh instance of the container, it
automatically gets populated with the data it had from the hosts file system, thus having
data persistence. The way volumes can be set up in a docker-compose file is like this:

1 − host_path : conta iner_path

Meaning before the colon you have the path to the folder in your host machines file
system, and after the colon you have the path in your containers virtual file system.

The next container would be auth. In this container it is worth noting the "build" segment.
Context indicates the path for the folder in which the rest of the "building" settings will be in
relation to. Dockerfile indicates the path to the Dockerfile.

Figure 4: Context and Dockerfile

3.4. Kong 11

The Dockerfile is another file used in building the container, besides the docker-compose.yml
file. From the official Docker documentation "Docker can build images automatically by
reading the instructions from a Dockerfile. A Dockerfile is a text document that contains all
the commands a user could call on the command line to assemble an image." meaning it
allows us developers to build our containers with even more detail, facilitating the whole
process of deploying an application.

Lastly, in front-end-animals it is worth mentioning the "ports" segment. This defines
what port to expose our container to in our machine. Since users will only be directly
communicating with the front-end container through the browser, this is the only container
the needs to expose ports. In this case, since the application is running on port 443 inside
the container, and on the client side we want to be able to connect to the application through
port 12090, ports were configured this way.

Figure 5: Docker-compose front-end ports

It is also worth mentioning that in all containers the "restart: always" setting was enabled,
which makes sure whenever a container goes down for any reason it immediately restarts
making sure there are essentially no down-times.

3.4 kong

Kong is the API Gateway that will be showcased in this guide, but any API Gateway works
and they almost all of them work essentially on the same principles.

Kong can be deployed in many different ways, but because we already have Docker
running it makes sense to use Docker to deploy Kong as well. When deploying with Docker,
you also have the choice to run Kong with two modes: with a Database or without a
Database (DB-less mode). These choices are up to you, the developer, and you can and
should look at the documentation when setting up Kong (Documentation). In this guide, we
will be going with DB-less mode.

To deploy Kong this way, we will need to set up two documents: the docker-compose file,
which we already have and will be adding Kong on to it, and a kong.yml config file, with
the configuration for Kong.

3.4. Kong 12

Figure 6: Docker-compose Kong

There is not much need to change this but the documentation elaborates on why it is set
up this way. But it is worth noting that because we are running Kong inside a container,
Kong’s configuration file must also be inside the container. We could go about this in
two ways: copying the file over to the container, or mapping the config file which is the
host’s file system onto the config file created in the container’s file system, through volumes.
In this case, its the latter. (Also, the kong.yml file has to be on the same folder that the
docker-compose file is, because of how the volume is set up)

3.4. Kong 13

Figure 7: kong.yml file

This is configuration for a basic kong.yml file. It lists the services, which each have a
name (up to the developer) , a URL to the service (in this case the Kong container can
communicate with the other two containers through those URLs, but these don’t have to
be other containers, they can lead to external APIs if you wish), and routes, which also
have a name and a path. This path is what our front-end will use to communicate with
the other services through Kong. For example, when attempting to communicate with the
Animals API, instead of communicating directly through http://api:7777, our front-end
will communicate through http://kong:8000/animals-api.

In this configuration file there is also plugins, which is a big benefit of Kong because it
has a huge library of plugins to choose from (Plugins). In this case, we are using the plugin
"Key Authentication", which has the name "key-auth" (this name is NOT up to the developer,
it depends on the plugin), and are applying it on a specific service, but you can also apply it
to a specific route or apply it globally.

3.5. NGINX and the front-end development 14

3.5 nginx and the front-end development

From the NGINX website "NGINX is an open source software for web serving, reverse
proxying, caching, load balancing, media streaming, and more." (NGINX-Website). It is not
obligatory but is definitely very useful in the building and deploying of any web application.

To run your front-end container with NGINX you need two documents:

• A Dockerfile (like previously discussed, it allows us to specify how we want our
container to be built);

• A config file (nginx.conf)

Figure 8: Front-end Dockerfile

The first half of the Dockerfile, the build stage, is just setting up the server as normal, first
getting Node.js, then installing dependencies and finally running the server. (It is important
to run it as a build for NGINX to work)

On the other hand, the second half is setting up NGINX. First it gets NGINX in production-
stage mode and then removes the existing default configuration. Then it copies some files,
including the next file we will be addressing, the nginx.conf file, which is our custom
configuration file. The last two "COPY" lines can be ignored for now, as they are for setting
up a HTTPS server (the EXPOSE 443 line is also for HTTPS, here you can write EXPOSE 80,
which is the normal port used in an NGINX server). Finally, it runs NGINX.

3.5. NGINX and the front-end development 15

Figure 9: nginx.conf

A NGINX config file is bigger than this, but the default values are fine, the server block is
where you want to change things. Firstly, the listen 80 line means that the web application
will be run in port 80, meaning you can connect to it omitting the port number (example:
instead of connecting to http://website:80 you can connect to http://website). The root
block is fine as is. The first location block is saying if you go to http://website/ you will
just go to the website itself, which is what you normally want. On the other hand, the next
location block is saying that if you send a request to http://website/kong, that request
will be routed to http://kong:8000. In these location blocks is where you would normally
establish communication with other services, but, as we are using Kong, having those last
two location blocks is enough, as our front-end will never communicate directly with other
services, only with Kong. You may also note the "rewrite" line inside the location blocks. That
makes it so our request doesn’t send the "/kong/" part in a request like "/kong/animals-api",
only the "/animals-api" part, as that is what Kong is expecting for on its side.

3.6. HTTPS 16

3.6 https

If you decide to host your web app on a dedicated server, it might be a good step to
change from HTTP to HTTPS. With HTTPS, the data sent to and from the server will be
encrypted and, therefore, more secure to potential attacks. Doing this change is relatively
straightforward but at first can be confusing, so hopefully this part of the guide can help in
this process.

The way to do this is by getting a SSL certificate from a trusted source, one that can say
your website is trustworthy, which will then make it so accessing your website is done in a
secure way by encrypting each data transfer with a public private key pair encryption. One
such trusted source is the free certificate authority Let’s Encrypt (Lets-Encrypt).

After hosting your web application on your dedicated server you can request a certificate
from Let’s Encrypt and then, simply tell NGINX where that certificate is and your connection
will now be made through HTTPS.

It is worth remembering that NGINX is running in a container so when you obtain the
SSL certificate (usually a few files that end with cert, crt, key, etc) you need to copy these
into the file system of the container, so, backtracking, that is what the final two "COPY"
lines were doing in this Dockerfile. (Also, port 443 is the usual port reserved for HTTPS
connections, as port 80 is the usual port for HTTP connections)

Figure 10: Front-end Dockerfile

3.6. HTTPS 17

The last step is now telling NGINX where these certificates are located (inside the contain-
ers file system).

Figure 11: nginx.conf with HTTPS

As the image indicates, the only differences with this file is the listen 80 line which was
changed to listen 443 ssl, and the next four lines, of which the first two indicate the location
of the certificate files and the last two just are the default configuration in the documentation
for HTTPS with NGINX.

3.7. Examples 18

3.7 examples

Although these "instructions" on how to set up a Microservices Architecture with an API
Gateway may be helpful, a real life example should prove even more useful. To that end, a
few case studies were undertook to explore the practicality of this Architecture philosophy.
The first two apps, which would serve as an introduction to the new technologies used, were
the "Equivalencias" app and the "Animals Wiki" app.

3.7.1 Equivalencias App

This first app was a simple web app that ran fully with Express on Node.js and was connected
to a database in MongoDB, and its purpose was purely to store the grades of students that
were changing courses and/or universities, more specifically, the grades that would have
equivalents in the other courses.

3.7.1.1 Introduction to the app

The intention with this app was to see if it is possible and/or recommended to have your
entire main app in a single service (in this case, both the back-end and front-end were in one
service) while having a separate service designed for the authentication of the user, which
would be needed to be cleared to access the main app.

In other words, when accessing the app, you are confronted with a login page that runs
on an isolated service and after clearing it you would be redirected to the proper web page
that also ran on its own service (this approach was later heavily used in the last app worked
on, the biggest and most complex of them all). Also, the back-end for the authentication
part was managed by Kong but the purpose of that was familiarity could be gained with
Kong and not managing the communication with that service (because Kong’s purpose is to
manage a network of communication with many services, managing only one service just
isn’t necessary), however, doing this allowed Kong to also be partially responsible for the
authentication process itself.

3.7. Examples 19

3.7.1.2 Docker

Going by the order of the previous section of this guide, to deploy this app Docker was used
with the following docker-compose configuration:

1

vers ion : " 3 . 7 "
3 s e r v i c e s :

kong :
5 container_name : kong

r e s t a r t : always
7 image : kong : l a t e s t

volumes :
9 − ./ kong . yml :/ usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml

environment :
11 − KONG_DATABASE= o f f

− KONG_DECLARATIVE_CONFIG=/usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml
13 − KONG_PROXY_ACCESS_LOG=/dev/stdout

− KONG_ADMIN_ACCESS_LOG=/dev/stdout
15 − KONG_PROXY_ERROR_LOG=/dev/ s t d e r r

− KONG_ADMIN_ERROR_LOG=/dev/ s t d e r r
17 − KONG_ADMIN_LISTEN= 0 . 0 . 0 . 0 : 8 0 0 1 , 0 . 0 . 0 . 0 : 8 4 4 4 s s l

mongo−equi :
19 container_name : mongo−equi

r e s t a r t : always
21 environment :

MONGO_INITDB_DATABASE: e q u i v a l e n c i a s
23 image : mongo

volumes :
25 − ./mongo−volume :/ data/db

− ./ bds/e q u i v a l e n c i a s . j s :/ docker −entrypoint − i n i t d b . d/mongo− i n i t . j s : ro
27 equi :

container_name : equi
29 build :

contex t : ./ app
31 d o c k e r f i l e : ./ D o c k e r f i l e

r e s t a r t : always
33 l i n k s :

− kong
35 − mongo−equi

ports :
37 − " 12091 :3018 "

networks :
39 d e f a u l t :

a l i a s e s :
41 − e q u i v a l e n c i a s

auth :
43 container_name : auth

3.7. Examples 20

build :
45 contex t : ./ auth

d o c k e r f i l e : ./ D o c k e r f i l e
47 r e s t a r t : always

l i n k s :
49 − mongo−equi

networks :
51 d e f a u l t :

a l i a s e s :
53 − auth

i n t e r f a c e −auth :
55 container_name : i n t e r f a c e −auth

r e s t a r t : always
57 build :

contex t : ./ auth − i n t e r f a c e
59 d o c k e r f i l e : ./ D o c k e r f i l e

por ts :
61 − " 12090 :80 "

l i n k s :
63 − kong

− equi
65 − auth

− mongo−equi
67 networks :

d e f a u l t :
69 a l i a s e s :

− auth

As the file shows, there are five components that make up this app:

The main app - equi, which contains both the front-end and back-end, as previously stated,
an interface for user authentication - interface-auth, its back-end - auth, which serves as the
connection to the database - mongo-equi, where both the users for authentication and the
data for the main app is stored. Finally, there is - Kong, which is both acting as a reverse
proxy redirecting the authentication interface’s calls to the back-end and is also helping in
the authentication process itself by providing a unique key in the act of a successful login
that the browser saves in a cookie. This makes it so that while in the main app if the user
does NOT have this key, they will be automatically redirected to the authentication interface.

3.7. Examples 21

Going deeper into each component’s set-up in the docker-compose file:

kong Kong’s set-up is the default one that has been used up until now.

mongo-equi This is the container for the database, for which MongoDB was used. Here
we are setting up the database name as an environment variable, "equivalencias", and also
setting up two volumes:

• mongo-volume to take care of data persistence on eventual container restarts;

• equivalencias.js file which has all of the data to populate the database on the first time
the container is run

equi This container holds the main app. Here docker is instructed to run the app, which
is running on port 3018 on the container, on port 12091 on the machine. Docker is also
instructed to wait for Kong and mongo-equi to start running before starting this container.
Lastly, Docker is informed that there is a Dockerfile to run when building the container.
Here is that Dockerfile:

1

#Image
3 FROM node : 1 5

5 # Create f o l d e r
WORKDIR /equi

7

#Copy app and i n s t a l l packages
9 COPY package . j son /equi/

COPY package−lock . j son /equi/
11 RUN npm i n s t a l l

COPY . /equi/
13

#Expose port
15 EXPOSE 3018

17 #Run app
CMD ["npm" , " s t a r t "]

Here the image for node is pulled, the app is copied over to the created folder in the
container and then the app is run on port 3018.

3.7. Examples 22

auth This section of the docker-compose file, similarly to the previous container, is only
instructing Docker to build this container after mongo-equi is built and also declares the
path to the Dockerfile which is inside the "auth" folder. Here is the Dockerfile:

1

#Image
3 FROM node : 1 5

5 # Create f o l d e r
WORKDIR /auth

7

#Copy app and i n s t a l l packages
9 COPY package . j son /auth/

COPY package−lock . j son /auth/
11 RUN npm i n s t a l l

COPY . /auth/
13

#Expose port
15 EXPOSE 9000

17 #Run app
CMD ["npm" , " s t a r t "]

This Dockerfile works the exact same way as the previous container, which makes sense
as it is also a server running on Express.

3.7. Examples 23

interface-auth Once again, this container works in a similar way to the previous
containers in the way that the docker-compose file is only instructing Docker of the following:
the port to which app will be exposed to, the order in which to built this container, and
where the Dockerfile is located. However, this time the Dockerfile is different to the previous
containers’ Dockerfiles:

1

bui ld s tage
3 FROM node : l t s −a lp ine as build −stage

WORKDIR /front −end
5 COPY package * . j son /front −end/

RUN npm i n s t a l l
7 COPY . /front −end/

RUN npm run build
9

production stage
11 FROM nginx : s t a b l e −a lp ine as production −stage

RUN rm / e t c /nginx/nginx . conf / e t c /nginx/conf . d/ d e f a u l t . conf
13 COPY −−from=build −stage /front −end/ d i s t /usr/share/nginx/html

COPY ./ nginx . conf / e t c /nginx/
15 EXPOSE 80

CMD [" nginx " , "−g " , "daemon o f f ; "]

The first half of this Dockerfile works like the other Dockerfiles, getting the image for
node, copying the app and installing packages and then running it. However, this particular
front-end will also be run using NGINX, so in the second half the following happens:

• The image for NGINX is pulled;

• The default configuration is removed;

• The app is copied from the build stage;

• The custom NGINX configuration is copied over (this particular file will be covered in
a later section);

• The port is exposed;

• NGINX is run.

Finally, it is worth noting that in all of the containers the option "restart: always" is enabled,
which, as previously mentioned, makes it so in case the container shuts down for any reason
it will restart automatically, avoiding down-times.

3.7. Examples 24

3.7.1.3 Kong

As previously stated, Kong’s job in this particular app’s architecture is not only to act as
a reverse proxy between the authentication interface and it’s back-end, but also to try and
manage, in some capacity, part of the authentication process itself, by providing a unique
key to the client (which then saves that key in his/her cookies) and then checking if the user
is in the possession of said key. If the user does not have the key that means he/she tried to
bypass the authentication process.

To this end, the following configuration was implemented for Kong:

1 _format_version : " 2 . 1 "

3 s e r v i c e s : <−−−−−
− name : auth_serv ice

5 u r l : ht tp : //auth : 9000

routes :
7 − name : auth −route

paths :
9 − /auth

11

consumers : <−−−−−
13 − username : user1

keyauth_credent ia l s : <−−−−−
15 − consumer : user1

Here exactly two things are happening:

• A service was defined, meaning that to reach http://auth:9000 (the authentication
back-end container) one can use the path "/auth" in conjunction with Kong’s url:
http://kong:8000/auth

• A "consumer" and his credentials were created. A consumer is what consumes the
service, so adding it to the configuration allows Kong to identify the user, which
would in turn make it possible so that by attaching plugins to said consumer Kong
becomes able to control the user with said plugins, like more complex authentication
or rate-limiting.

In this case though, no plugins are being used, because the app is only looking for the
generated key which is in the consumers credentials. After a successful login a request
will be made to http://kong:8001/consumers/user1/key-auth (user1 being the created
consumer) which will return the consumer object with the key inside.

3.7. Examples 25

3.7.1.4 NGINX

NGINX is absolutely not necessary for the success of this app, but because it would be
crucial in the development of the next app, it was used in this much more simple app so it
later could be used much more naturally. Nevertheless, NGINX is also working as a reverse
proxy, this time between the user’s machine and the front-end itself, making it so this is the
actual flow of a request call:

Figure 12: Request flow

3.7. Examples 26

Particularly in this web application, NGINX is redirecting all calls made to specific paths
to the appropriate services, in this case Kong. This was achieved by modifying the NGINX
config file - nginx.conf :

1 user nginx ;
worker_processes auto ;

3

e r r o r _ l o g /var/log/nginx/ e r r o r . log n o t i c e ;
5 pid /var/run/nginx . pid ;

7

events {
9 worker_connections 1024 ;

}
11

13 http {
inc lude / e t c /nginx/mime . types ;

15 defaul t_ type a p p l i c a t i o n /o c t e t −stream ;

17 log_format main ' $remote_addr − $remote_user [$ t i m e _ l o c a l] " $request " '
' $ s t a t u s $body_bytes_sent " $ h t t p _ r e f e r e r " '

19 ' " $ht tp_user_agent " " $http_x_forwarded_for " ' ;

21 a c c e s s _ l o g /var/log/nginx/a c c e s s . log main ;

23 s e n d f i l e on ;
tcp_nopush on ;

25

keepal ive_t imeout 6 5 ;
27

gzip on ;
29

inc lude / e t c /nginx/conf . d/* . conf ;
31

server {
33 l i s t e n 8 0 ;

35 root /usr/share/nginx/html ;
index index . html index . htm ;

37

l o c a t i o n / {
39 root /usr/share/nginx/html ;

t r y _ f i l e s $ur i /index . html ;
41 }

43

3.7. Examples 27

45 l o c a t i o n /kong { <−−−−−
rewr i te /kong / (. *) /$1 break ;

47 proxy_set_header X−Real −IP $remote_addr ;
proxy_set_header X−Forwarded−For $proxy_add_x_forwarded_for ;

49 proxy_set_header X−NginX−Proxy true ;
proxy_pass ht tp ://kong : 8 0 0 0 ;

51 proxy_set_header Host $ht tp_host ;
proxy_cache_bypass $http_upgrade ;

53 }

55 l o c a t i o n /kong−auth { <−−−−−
rewr i te /kong−auth / (. *) /$1 break ;

57 proxy_set_header X−Real −IP $remote_addr ;
proxy_set_header X−Forwarded−For $proxy_add_x_forwarded_for ;

59 proxy_set_header X−NginX−Proxy true ;
proxy_pass ht tp ://kong : 8 0 0 1 ;

61 proxy_set_header Host $ht tp_host ;
proxy_cache_bypass $http_upgrade ;

63 }
}

65 }

This configuration file is quite similar to the default configuration for an NGINX server,
however it does have a crucial difference: the last two location blocks. These two blocks are
what redirects the calls made to those specific url paths:

• /kong will redirect those calls to http://kong:8000, the actual kong service that acts
as a reverse proxy.

• /kong-auth will redirect those calls to http://kong:8001, which is the admin port
for Kong, having many functionalities but in this case it is used to get the consumer’s
credentials.

3.7. Examples 28

3.7.1.5 The Approach and Difficulties found

Having visited every part of what makes this web application function in a microservices
environment, in this section we will discuss how the idea for the architecture was conceived,
the process of implementing it and the difficulties found along the way.

It was known when first experimenting with web applications in this thesis that the end
result was a Microservices architecture, so the natural first step in the transformation of
this web app was the Dockerization of the main app "equivalencias" so it becomes a service
capable of running on any machine. At the same time, the other objective was introducing
Kong into this network of services, so in addition to the main app the default configuration
of Kong was added to the docker-compose file and a simple service was set up. However, at
this point there were no services defined in the kong.yml file as there were no services that
we could define in the kong.yml file (except maybe the main app but the reason that was not
done will be discussed later in this thesis). After setting up these two services this was the
docker-compose file.

1 vers ion : " 3 . 7 "
s e r v i c e s :

3 kong :
container_name : kong

5 r e s t a r t : always
image : kong : l a t e s t

7 volumes :
− ./ kong . yml :/ usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml

9 environment :
− KONG_DATABASE= o f f

11 − KONG_DECLARATIVE_CONFIG=/usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml
− KONG_PROXY_ACCESS_LOG=/dev/stdout

13 − KONG_ADMIN_ACCESS_LOG=/dev/stdout
− KONG_PROXY_ERROR_LOG=/dev/ s t d e r r

15 − KONG_ADMIN_ERROR_LOG=/dev/ s t d e r r
− KONG_ADMIN_LISTEN= 0 . 0 . 0 . 0 : 8 0 0 1 , 0 . 0 . 0 . 0 : 8 4 4 4 s s l

17 equi :
container_name : equi

19 build :
contex t : ./ app

21 d o c k e r f i l e : ./ D o c k e r f i l e
r e s t a r t : always

23 l i n k s :
− kong

25 ports :
− " 12091 :3018 "

27 networks :
d e f a u l t :

29 a l i a s e s :

3.7. Examples 29

− e q u i v a l e n c i a s

Although the goal of this thesis was to see how Kong behaves in a Microservices architec-
tural environment, one of the main goals for this particular experiment was to see if it was
possible to have a separate, isolated, authentication service to the app itself, of which Kong
would be used to make sure the user was authenticated for the main app itself. To this end,
a web interface with Vue.js was created, which was based on another app, one that would
also be used later in this thesis - Animals Wiki. The homepage for that app with a simple
login form was then used as an authentication interface.

Figure 13: Front-end Equivalencias App

For the back-end, Express was used, a Node.js web application framework, to quickly set
up a server that handled user authentication. To do this, a MongoDB database was set up,
it was then connected to the back-end and then the back-end checked if the user existed and
the password matched, and if both of those conditions were true it returned a code status
201 (meaning a successful login), and if not it returned a code 403 (meaning the credentials
were incorrect).

router . post (' / log in ' , funct ion (req , r es) {
2 User . c o n s u l t a r (req . body . username)

. then (dados => {
4 i f (! dados) re s . s t a t u s (4 0 3) . jsonp (f a l s e)

3.7. Examples 30

e l s e i f (req . body . password != dados . password) r es . s t a t u s (4 0 3) . jsonp (f a l s e)
6 e l s e re turn r es . s t a t u s (2 0 1) . jsonp (t rue)

})
8 . ca tch (e r r => re s . s t a t u s (5 0 0) . jsonp ({ e r r : e r r }))

})

After this, these two services were added to the docker-compose file to introduce them to
the network.

However, Kong still had to be used in the authentication process, so two tasks were
defined: First, define a service for the back-end component, just so Kong would be used
as a reverse proxy thus increasing the developer’s understanding of how the API Gateway
works. Second, the consumer credentials would be used to provide a unique key to the user
so that only in possession of said key they would be able to access to the main app. This is
what the kong.yml file became:

1 _format_version : " 2 . 1 "

3 s e r v i c e s :
− name : auth_serv ice <−−−−−

5 u r l : ht tp : //auth : 9000

routes :
7 − name : auth −route

paths :
9 − /auth

11 consumers : <−−−−−
− username : user1

13 keyauth_credent ia l s : <−−−−−
− consumer : user1

3.7. Examples 31

And this function handles the login on the front-end saving the unique key in a cookie:

getkey : funct ion () {
2 ax ios ({

method : ' post ' ,
4 u r l : ' /kong/auth/users/log in ' ,

data : {
6 username : t h i s . username ,

password : t h i s . password
8 }

})
10 . then (data => {

i f (data . data) {
12 ax ios

. get (' /kong−auth/consumers/user1/key−auth ')
14 . then (response => {

−−−−−> Vue . $cookies . s e t (" key " , response . data . data [0] . key , " 1d")
16 t h i s . $router . push (' / ')

})
18 }

})
20 . ca tch (e r r => console . log (e r r))

After setting up the main app and the authentication service, a database system had
to be set up for both storing the data that the main app uses, but also the users for the
authentication system. Consequently, the configuration for MongoDB was added to the
docker-compose file:

mongo−equi :
2 container_name : mongo−equi

r e s t a r t : always
4 environment :

MONGO_INITDB_DATABASE: e q u i v a l e n c i a s
6 image : mongo

volumes :
8 − ./mongo−volume :/ data/db

− ./ bds/e q u i v a l e n c i a s . j s :/ docker −entrypoint − i n i t d b . d/mongo− i n i t . j s : ro

However, it is worth nothing the last block of code regarding volumes. Volumes in Docker
are used for data persistence.

3.7. Examples 32

Circling back to the volumes block in the docker-compose file, we then have these two
lines:

• ./mongo-volume:/data/db is responsible for the data persistence in this container
because mongo-volume is the folder with all of MongoDB’s data in the host system
and /data/db is the path in the container where the data is stored by default.

• ./bds/equivalencias.js:/docker-entrypoint-initdb.d/mongo-init.js:ro however, is
only responsible for the initial import of data if the container has never been run.

When this app was first tackled it already had a lot of data, so a way to import all of it to
the container had to be figured out. After some research, it was discovered that the code
in the docker-entrypoint-initdb.d folder is only executed if the container has never been
run before, so the equivalencias.js file which would import all of the existing data into the
database was created.

Subsequently to setting up the database, we had:

• The main app

• The front-end and back-end to the authentication service

• Kong

• The Database MongoDB

Previously we discussed the possibility of defining a service in Kong for the main app, and
the initial plan to ensure the user was authenticated was to get the main app to be a service
and protecting it with an authentication plugin from Kong, but quickly it became clear that
that would be very unpractical. It is very possible to set it up as a Kong service and initially
getting on the main app itself would be very simple. But because when traversing the main
app it would reference itself and not Kong’s service version of itself, the whole application
would have to be restructured so when traversing it one would not go to http://equi:12091

but instead to http://kong:8000/main-app. As a result, a different approach was taken
to resolve this problem. Instead of this initial method, a key would be attributed to a user
that passed the login phase, and every time that user attempted to access the main website
with any and all requests, the server would contact Kong and check if the user’s key was
correct. If it failed the check the user would be immediately prohibited from the website
and redirected to the login page.

3.7. Examples 33

This became then, the definite version of the Microservices Architecture for this web
application:

Figure 14: Equivalencias Microservices Architecture

3.7. Examples 34

And this is a flowchart of the user experience:

Figure 15: Equivalencias Request Flowchart

3.7. Examples 35

3.7.2 Animals Wiki App

This second app tackled a previously talked about project: Animals-wiki. It consisted on
a sort of library of animals, where one could look up their description, where they can
be found, their predators and prey, etc. This information was taken from another website,
AZ_Animals, and then transformed into Turtle and imported into GraphDB.

3.7.2.1 Introduction to the app

This particular web application had a few objectives:

• Using Kong’s functionalities to a bigger extent than the previous app, mainly having
more Kong services and using plugins for authentication;

• Try to set up the website with a HTTPS connection, making the connection more
secure, and hosting it on a dedicated server.

It is worth noting that, contrary to the last app, this web app runs its front-end in a single
Docker container that handles the authentication process and the animals-wiki app itself. It
is all a single application. To sum up, there is a single front-end container for the whole app,
this container talks to a back-end service that handles authentication and a back-end service
that handles the animal data, both of which are reached through Kong. Additionally, the
service that handles the animal data can only be reached if the authentication handled with
the plugin is cleared.

This website is being run on a dedicated server with HTTPS here: (Animals-Wiki)

3.7. Examples 36

3.7.2.2 Docker

Once again, the docker-compose configuration used in the deployment of this app is as
follows:

1 vers ion : " 3 . 7 "
s e r v i c e s :

3 kong :
container_name : kong

5 r e s t a r t : always
image : kong : l a t e s t

7 volumes :
− ./ kong . yml :/ usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml

9 environment :
− KONG_DATABASE= o f f

11 − KONG_DECLARATIVE_CONFIG=/usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml
− KONG_PROXY_ACCESS_LOG=/dev/stdout

13 − KONG_ADMIN_ACCESS_LOG=/dev/stdout
− KONG_PROXY_ERROR_LOG=/dev/ s t d e r r

15 − KONG_ADMIN_ERROR_LOG=/dev/ s t d e r r
− KONG_ADMIN_LISTEN= 0 . 0 . 0 . 0 : 8 0 0 1 , 0 . 0 . 0 . 0 : 8 4 4 4 s s l

17 mongo−users :
container_name : mongo−users

19 r e s t a r t : always
environment :

21 MONGO_INITDB_DATABASE: Animals−auth
image : mongo

23 volumes :
− ./mongo−volume :/ data/db

25 api :
container_name : api

27 build :
contex t : ./ API

29 d o c k e r f i l e : ./ D o c k e r f i l e
r e s t a r t : always

31 l i n k s :
− graphdb

33 networks :
d e f a u l t :

35 a l i a s e s :
− front −end−animals

37 auth :
container_name : auth

39 build :
contex t : ./ a u t e n t i c a c a o

41 d o c k e r f i l e : ./ D o c k e r f i l e
r e s t a r t : always

43 l i n k s :

3.7. Examples 37

− mongo−users
45 networks :

d e f a u l t :
47 a l i a s e s :

− auth
49 f ront −end−animals :

container_name : f ront −end−animals
51 r e s t a r t : always

bui ld :
53 contex t : ./ front −end/animals

d o c k e r f i l e : ./ D o c k e r f i l e
55 ports :

#− " 1 2 0 9 0 : 8 0 "
57 − " 12090 :443 "

l i n k s :
59 − kong

− api
61 − auth

− mongo−users
63 − graphdb

networks :
65 d e f a u l t :

a l i a s e s :
67 − auth

graphdb :
69 container_name : graphdb

image : k h a l l e r /graphdb− f r e e : 9 . 1 0 . 0

71 ports :
− " 9200 :7200 "

73 build :
contex t : ./ graphdb

75 d o c k e r f i l e : ./ D o c k e r f i l e
r e s t a r t : always

In this app, there are six components that make up this app: - Kong, acting as a reverse
proxy, as per usual, and also being responsible for protecting the core part of the website
from being reached by unauthenticated users, - mongo-users and graphdb, where the data
for the users and animal data is being stored, respectively, - auth and api, the back-end
services, running on Express, for the user authentication and the core app respectively, and
lastly - front-end-animals, the front-end of the whole web app, running on Vue.js. It is
worth noting that, as always, every one of these containers will restart in case of failure.

3.7. Examples 38

Diving deeper into each container:

kong Kong’s set-up is the default one that has been used up until now.

auth This container is mainly built through the Dockerfile, but it is worth mentioning
the links block because it is setting up the build so that this container will only start after
mongo-users is up and running, as it expresses dependency between the services as well as
links them.

Going through the Dockerfile:

Base Image
2 FROM node : 1 5

4 # Create work d i r e c t o r y
WORKDIR /auth

6

#Copy the app and i n s t a l l dependencies
8 COPY package . j son /auth/

COPY package−lock . j son /auth/
10 RUN npm i n s t a l l

COPY . /auth/
12

#Expose port
14 EXPOSE 9000

16 # S t a r t the app
CMD ["npm" , " s t a r t "]

As is documented, here the app is being copied to the container, dependencies are being
installed and finally the app is being run on the exposed port.

api This container functions the exact same way as the previous one.
Here is the Dockerfile:

1 # Base Image
FROM node : 1 5

3

Create work d i r e c t o r y
5 WORKDIR /api

7 #Copy the app and i n s t a l l dependencies
COPY package . j son /api/

9 COPY package−lock . j son /api/
RUN npm i n s t a l l

3.7. Examples 39

11 COPY . /api/

13 #Expose port
EXPOSE 7777

15

S t a r t the app
17 CMD ["npm" , " s t a r t "]

mongo-users This is the default configuration for a MongoDB based container, with
the name for the database being Animals-auth and a volume for data persistence being set
up through - ./mongo–volume:/data/db

graphdb GraphDB is not a very common choice for a database, so setting up this
container was not very straightforward. Firstly, it is a graph oriented database which is
already not the most popular type of database. Secondly, even between graph oriented
databases GraphDB is not the top choice. This makes it so there might not be as much
resources available online, like Docker support. There is an official Docker image for
GraphDB provided by Ontotext on Dockerhub, but not for the free version of GraphDB.
However, there is a Dockerfile for the free version on their Github, but this Dockerfile was
not quite what was being looking for. Instead, Khaller’s image for GraphDB was used as it
allowed for an easy way to initialize repositories.

Thus, in the docker-compose file the image is being pulled from khaller/graphdb-
free:9.10.0. Also, port 9200 is being exposed in the host machine from port 7200 in the
container. This so the Workbench mode could be reached. However, the image was not
enough as the repository would have to be set up and the existing data would have to be
imported. Therefore, this Dockerfile was configured:

1 FROM k h a l l e r /graphdb− f r e e : 9 . 1 0 . 0

3 ENV GDB_HEAP_SIZE=2G

5 RUN mkdir −p / r e p o s i t o r y . i n i t /Animals

7 RUN mkdir −p /temporary − f o l d e r

9 COPY animals −complete . t t l / r e p o s i t o r y . i n i t /Animals/toLoad/animals −complete . t t l

11 COPY conf ig . t t l / r e p o s i t o r y . i n i t /Animals/conf ig . t t l

3.7. Examples 40

In here the heap size is being set to two gigabytes because the file with the animal data
was so big the container would crash while trying to import it. Then, two folders are being
created - repository.init is of special importance. According to the image documentation
from khaller, this folder is where the repository initialization must happen. Inside the
/repository.init/Animals folder the config file for the repository must be present, and also
another folder called toLoad must be present with the Turtle file with all of the animal data
inside. Hence, the last two lines.

Lastly, looking inside the repository configuration file:

1 # Configurat ion template f o r a GraphDB−SE r e p o s i t o r y
#

3 @prefix r d f s : <ht tp : //www. w3 . org /2000/01/ rdf −schema # >.
@prefix rep : <http : //www. openrdf . org/conf ig/ r e p o s i t o r y # >.

5 @prefix s r : <ht tp : //www. openrdf . org/conf ig/ r e p o s i t o r y / s a i l # >.
@pref ix s a i l : <ht tp : //www. openrdf . org/conf ig/ s a i l # >.

7 @prefix owlim : <http : //www. o n t o t e x t . com/ t r r e e /owlim# >.

9 [] a rep : Repository ;
rep : repos i toryID " animals " ; <−−−−−

11 r d f s : l a b e l " Animals repo " ; <−−−−−
rep : reposi toryImpl [

13 rep : repositoryType " graphdb : F r e e S a i l R e p o s i t o r y " ;
s r : s a i l I m p l [

15 s a i l : sa i lType " graphdb : F r e e S a i l " ;

17 # r u l e s e t to use
owlim : r u l e s e t " empty " ;

19

d i s a b l e contex t index (because my data do not uses
c o n t e x t s)

21 owlim : enable −context −index " f a l s e " ;

23 # indexes to speed up the read quer ies
owlim : e n a b l e P r e d i c a t e L i s t " t rue " ;

25 owlim : enable − l i t e r a l −index " t rue " ;
owlim : in −memory− l i t e r a l − p r o p e r t i e s " t rue " ;

27]
] .

This is a default configuration for a GraphDB repository, everything expect for the
repositoryID and label, which define the id and name of the repository, respectively.

3.7. Examples 41

front-end-animals Lastly, the container for the front-end of the app. It is note-
worthy to look at the links block as it is set up so front-end-animals will wait for every other
container to be up and running before starting. The port is also being exposed to 12090

to the host machine from 443 in the container. It’s 443 because that is the default port for
websites running on a HTTPS connection, contrary to HTTP servers which run on port 80.
Going through the Dockerfile:

bui ld s tage
2 FROM node : l t s −a lp ine as build −stage

WORKDIR /front −end
4 COPY package * . j son /front −end/

RUN npm i n s t a l l
6 COPY . /front −end/

RUN npm run build
8

production stage
10 FROM nginx : s t a b l e −a lp ine as production −stage

RUN rm / e t c /nginx/nginx . conf / e t c /nginx/conf . d/ d e f a u l t . conf
12 COPY −−from=build −stage /front −end/ d i s t /usr/share/nginx/html

COPY ./ nginx . conf / e t c /nginx/
14 COPY ./ c e r t s / _ _ e p l _ d i _ u m i n h o _ p t _ c e r t i f i c a t e . cer / e t c / s s l /

COPY ./ c e r t s /epl . di . key / e t c / s s l /
16 #EXPOSE 80

EXPOSE 443

18 CMD [" nginx " , "−g " , "daemon o f f ; "]

The first half is as usual, installing the Vue.js app and running it. Although, in the second
half NGINX is being set up. The details for this configuration will be explored further ahead
but, aside from the two COPY ./certs/ lines which will also be explored further ahead in the
HTTPS section, this configuration is default and the one used in the previously discussed
app.

3.7.2.3 Kong

Kong in this web app functions, as usual, as a reverse proxy. But, contrary to the last app -
equivalencias, this time it is being used to a bigger extent. Last time it only served as a sort
of middle-point between the front-end and the back-end of the authentication service. This
time however, it now deals with two services, the back-end of the authentication service
and the back-end of the core app, the service that deals with the retrieval of the animal data.
Furthermore, Kong will also use one of the plugins from its extensive library to build a
"authentication wall" between the front-end and the back-end of the core app, so a user can
only access that information if they are indeed authenticated.

3.7. Examples 42

To this end, the following configuration was implemented for Kong:

_format_version : " 2 . 1 "
2

s e r v i c e s :
4 − name : animals − s e r v i c e <−−−−−

u r l : ht tp : //api : 7777

6 routes :
− name : animals −route

8 paths :
− /animals −api

10 − name : auth_serv ice <−−−−−
u r l : ht tp : //auth : 9000

12 routes :
− name : auth −route

14 paths :
− /auth

16

plugins :
18 − name : key−auth <−−−−−

s e r v i c e : animals − s e r v i c e
20 conf ig :

key_names :
22 − apikey

key_in_body : t rue
24 key_in_query : t rue

consumers :
26 − username : user1

keyauth_credent ia l s :
28 − consumer : user1

As is customary, the services block details Kong’s services and, in this case, as was said,
the services for the authentication back-end and core app back-end are present. These
could be reached by accessing http://auth:9000 for the authentication back-end and
http://api:7777 for the core app back-end. Instead however, they can now be reached
through http://kong:8000/auth and http://kong:8000/animals-api respectively.

Also, a new block can be observed: the plugins block. Here one has to define:

• The id of the service, in this case the Key_Authentication plugin was used, which has
the id key-auth;

• The specific service it is targeting (it can also target an individual route or be applied
globally to all services and routes);

3.7. Examples 43

• The configuration for the plugin. In this case, it was defined that the variable name
for the key would be apikey and when sending a request the key must be either in the
body or in the query.

Lastly, exactly as it was in the previous app, there is a consumers and credentials block,
which is necessary for a plugin like Key Authentication to work.

3.7.2.4 NGINX and HTTPS

As was said in this section on the equivalencias app, NGINX was crucial in the development
of this app, this because it (or another server like Apache) is absolutely necessary if one
intends to set up an HTTPS connection. Evidently, an HTTPS connection is in no way
necessary for an app to function, but if the intent is for it to be used by anyone, getting a
domain and hosting it on a server is a necessary step, as is protecting the connection between
the client and the server with an HTTPS protocol. Nevertheless, NGINX still functions as
the usual reverse proxy and so, the request call flow is still this:

Figure 16: Request flow

3.7. Examples 44

Diving deeper into the NGINX configuration file - nginx.conf :

user nginx ;
2 worker_processes auto ;

4 e r r o r _ l o g /var/log/nginx/ e r r o r . log n o t i c e ;
pid /var/run/nginx . pid ;

6

8 events {
worker_connections 1024 ;

10 }

12

http {
14 inc lude / e t c /nginx/mime . types ;

defaul t_ type a p p l i c a t i o n /o c t e t −stream ;
16

log_format main ' $remote_addr − $remote_user [$ t i m e _ l o c a l] " $request " '
18 ' $ s t a t u s $body_bytes_sent " $ h t t p _ r e f e r e r " '

' " $ht tp_user_agent " " $http_x_forwarded_for " ' ;
20

a c c e s s _ l o g /var/log/nginx/a c c e s s . log main ;
22

s e n d f i l e on ;
24 #tcp_nopush on ;

26 keepal ive_t imeout 6 5 ;

28 # gzip on ;

30 inc lude / e t c /nginx/conf . d/* . conf ;

32 server {
l i s t e n 8 0 ;

34

−−−−> l i s t e n 443 s s l ;
36 −−−−> s s l _ c e r t i f i c a t e / e t c / s s l / _ _ e p l _ d i _ u m i n h o _ p t _ c e r t i f i c a t e . cer ;

−−−−> s s l _ c e r t i f i c a t e _ k e y / e t c / s s l /epl . di . key ;
38 −−−−> s s l _ p r o t o c o l s TLSv1 TLSv1 . 1 TLSv1 . 2 ;

−−−−> s s l _ c i p h e r s HIGH : ! aNULL : !MD5;
40

42

root /usr/share/nginx/html ;
44 index index . html index . htm ;

46 l o c a t i o n / {

3.7. Examples 45

root /usr/share/nginx/html ;
48 t r y _ f i l e s $ur i /index . html ;

}
50

−−−−> l o c a t i o n ~ ^/\. well −known/acme−chal lenge /([− _a−zA−Z0−9]+) $ {
52 defaul t_ type t e x t /pla in ;

re turn 200 " $1 . lnFOHBDi0bOZuZYejG−6m1It5J −xVCzsyL5X0yLJKIc " ;
54 }

56 l o c a t i o n /kong {
rewr i te /kong / (. *) /$1 break ;

58 proxy_set_header X−Real −IP $remote_addr ;
proxy_set_header X−Forwarded−For $proxy_add_x_forwarded_for ;

60 proxy_set_header X−NginX−Proxy true ;
proxy_pass ht tp ://kong : 8 0 0 0 ;

62 proxy_set_header Host $ht tp_host ;
proxy_cache_bypass $http_upgrade ;

64 }

66 l o c a t i o n /kong−auth {
rewr i te /kong−auth / (. *) /$1 break ;

68 proxy_set_header X−Real −IP $remote_addr ;
proxy_set_header X−Forwarded−For $proxy_add_x_forwarded_for ;

70 proxy_set_header X−NginX−Proxy true ;
proxy_pass ht tp ://kong : 8 0 0 1 ;

72 proxy_set_header Host $ht tp_host ;
proxy_cache_bypass $http_upgrade ;

74 }
}

76 }

As it was in the previous app, most of the configuration is the default configuration for an
NGINX server, with the addition to the two location blocks: the /kong and /kong-auth location
blocks. This time however, a few other lines of code or added for the set up of the HTTPS
server:

• The listen 80; line was commented and substituted by listen 443 ssl; as this is the
customary port for a HTTPS connection;

• The ssl_certificate, ssl_certificate_key, ssl_protocols and ssl_ciphers were added. These
lines of code are part of a HTTPS NGINX default configuration and can be consulted
here (NGINX_HTTPS), and, most importantly, the ssl_certificate and ssl_certificate_key
define where the certificate and certificate key are located;

3.7. Examples 46

• The location ~^/\.well-known/acme-challenge/ block was added. In this app, to get HTTPS
certificates Lets-Encrypt was used, and Let’s Encrypt uses something called an ACME
challenge to figure out if we, the developer, are in control of the domain name we
intend to host our server on. To do this, Let’s Encrypt provides the ACME client
with a token and places a file on http://<YOUR_DOMAIN>/.well-known/acme-
challenge/<TOKEN>. A validation will then start where Let’s Encrypt will try to
retrieve this file and, if successful, the HTTPS connection will be established. So, to
allow for this validation, this location block was added.

This begs the question however, how to get a certificate from Let’s Encrypt. In this particular
case, the website was being hosted on UMinho’s servers which already had certificates issued
for *.epl.di.uminho.pt (the website is hosted on gate.epl.di.uminho.pt so this certificate was
valid), but new certificates can easily be issued by using the Certbot ACME Client (Certbot)

3.7.2.5 The Approach and Difficulties found

Just like for the last app, in this section we will dive deeper into how the architecture was
conceived, the development process and the problems that had to be overcome. The main
goals this time, as previously said, were to take more advantage of Kong’s capabilities
by using plugins and managing more services. So, like last time, the first step was the
Dockerization of the app and, with the experience gained from the last app, this was mostly
straightforward. As always, the default configuration for Kong was added to the docker-
compose file as it is always the same, and a kong.yml file that could later be modified to
take full advantage of Kong was also created. The configuration for the already existing
app animals-wiki was also added, both the front-end and the back-end (at this point it only
consisted of a menu that would take you to the list of animals):

vers ion : " 3 . 7 "
2 s e r v i c e s :

kong :
4 container_name : kong

r e s t a r t : always
6 image : kong : l a t e s t

volumes :
8 − ./ kong . yml :/ usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml

environment :
10 − KONG_DATABASE= o f f

− KONG_DECLARATIVE_CONFIG=/usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml
12 − KONG_PROXY_ACCESS_LOG=/dev/stdout

− KONG_ADMIN_ACCESS_LOG=/dev/stdout
14 − KONG_PROXY_ERROR_LOG=/dev/ s t d e r r

− KONG_ADMIN_ERROR_LOG=/dev/ s t d e r r
16 − KONG_ADMIN_LISTEN= 0 . 0 . 0 . 0 : 8 0 0 1 , 0 . 0 . 0 . 0 : 8 4 4 4 s s l

3.7. Examples 47

api :
18 container_name : api

bui ld :
20 contex t : ./ API

d o c k e r f i l e : ./ D o c k e r f i l e
22 r e s t a r t : always

networks :
24 d e f a u l t :

a l i a s e s :
26 − front −end−animals

f ront −end−animals :
28 container_name : f ront −end−animals

r e s t a r t : always
30 build :

contex t : ./ front −end/animals
32 d o c k e r f i l e : ./ D o c k e r f i l e

por ts :
34 − " 12090 :80 "

l i n k s :
36 − kong

− api
38 networks :

d e f a u l t :
40 a l i a s e s :

− auth

As expected, the Dockerfiles are consistent as with every other configuration addressed in
this thesis. This is the Back-end’s Dockerfile:

1 # Base Image
FROM node : 1 5

3

Create f o l d e r
5 WORKDIR /api

7 #Copy app and i n s t a l l packages
COPY package . j son /api/

9 COPY package−lock . j son /api/
RUN npm i n s t a l l

11 COPY . /api/

13 #Expose port
EXPOSE 7777

15

#Run app
17 CMD ["npm" , " s t a r t "]

3.7. Examples 48

And this is the Front-end’s Dockerfile:

1 # bui ld s tage
FROM node : l t s −a lp ine as build −stage

3 WORKDIR /frontend
COPY package * . j son /frontend/

5 RUN npm i n s t a l l
COPY . /frontend/

7 RUN npm run build

9 # production stage
FROM nginx : s t a b l e −a lp ine as production −stage

11 RUN rm / e t c /nginx/nginx . conf / e t c /nginx/conf . d/ d e f a u l t . conf
COPY −−from=build −stage /frontend/ d i s t /usr/share/nginx/html

13 COPY ./ nginx . conf / e t c /nginx/
EXPOSE 80

15 CMD [" nginx " , "−g " , "daemon o f f ; "]

Obviously though, this website needs a database to store the animal information. This,
however, revealed itself to be more problematic than first thought. The database software
that was used when the original website was first created was GraphDB, a graph-oriented
database with not a lot of online information, besides Ontotext’s documentation. This made
debugging, especially when having Docker also involved, really difficult. The resources
were scarce and every other error encountered had basically no answers to be found on
the internet. After a lot of research, a Dockerhub image for the free version of GraphDB
was found, which was created by the user Khaller, so that configuration was added to the
docker-compose:

1 graphdb :
container_name : graphdb

3 image : k h a l l e r /graphdb− f r e e : 9 . 1 0 . 0

ports :
5 − " 9200 :7200 "

bui ld :
7 contex t : ./ graphdb

d o c k e r f i l e : ./ D o c k e r f i l e
9 r e s t a r t : always

3.7. Examples 49

Dockerfile:

1 FROM k h a l l e r /graphdb− f r e e : 9 . 1 0 . 0

3 RUN mkdir −p / r e p o s i t o r y . i n i t /Animals

5 RUN mkdir −p /temporary − f o l d e r

7 COPY conf ig . t t l / r e p o s i t o r y . i n i t /Animals/conf ig . t t l

The documentation on the Dockerhub Image’s page was quite helpful and allowed for
proper initialization of a GraphDB repository using a config.ttl file:

1 #
Configurat ion template f o r a GraphDB−SE r e p o s i t o r y

3 #
@prefix r d f s : <ht tp : //www. w3 . org /2000/01/ rdf −schema # >.

5 @prefix rep : <http : //www. openrdf . org/conf ig/ r e p o s i t o r y # >.
@prefix s r : <ht tp : //www. openrdf . org/conf ig/ r e p o s i t o r y / s a i l # >.

7 @prefix s a i l : <ht tp : //www. openrdf . org/conf ig/ s a i l # >.
@pref ix owlim : <http : //www. o n t o t e x t . com/ t r r e e /owlim# >.

9

[] a rep : Repository ;
11 rep : repos i toryID " animals " ;

r d f s : l a b e l " Animals repo " ;
13 rep : reposi toryImpl [

rep : repositoryType " graphdb : F r e e S a i l R e p o s i t o r y " ;
15 s r : s a i l I m p l [

s a i l : sa i lType " graphdb : F r e e S a i l " ;
17

r u l e s e t to use
19 owlim : r u l e s e t " empty " ;

21 # d i s a b l e contex t index (because my data do not uses
c o n t e x t s)

owlim : enable −context −index " f a l s e " ;
23

indexes to speed up the read quer ies
25 owlim : e n a b l e P r e d i c a t e L i s t " t rue " ;

owlim : enable − l i t e r a l −index " t rue " ;
27 owlim : in −memory− l i t e r a l − p r o p e r t i e s " t rue " ;

]
29] .

3.7. Examples 50

However, at this point another problem was encountered, importing the existing data.
GraphDB has a built-in Workbench Mode that allows the user to set up repositories, import
data, run SPARQL queries, etc, but when using Docker to set up GraphDB it seems these
functions are not as convenient and easy to use. For example, when the container inevitably
has to restart for any reason, the container should, ideally, automatically import all the data
again, so going into Workbench Mode and importing the data manually just is not practical.
Thankfully, this was solved by adding a line to the Dockerfile that copied the .ttl file with all
of the data to a specific folder in the container. This because Khaller constructed the image
in a way that data files inside the toLoad directory inside the corresponding repository folder
could be preloaded when the container starts.

1 COPY animals −complete . t t l / r e p o s i t o r y . i n i t /Animals/toLoad/animals −complete . t t l

Yet, this led to the biggest problem faced in this implementation. The container was
crashing right in the middle of the preload process with seemingly almost no debugging
information available. After a lot of trial and error, it was discovered that the file had so
much information Docker was crashing due to not having enough Heap Memory available.
To fix this another line was added to the Dockerfile:

1 ENV GDB_HEAP_SIZE=2G

And also, because the Docker instance being used in the development of this app was
being run on Windows and Docker Desktop (Windows’ way to run Docker) runs on WSL2,
a line to the .wslconfig file had to be added to match the RAM that was allocated to Docker:

1 [wsl2]
memory=2GB

3 processors =2

With these fixes GraphDB was now working properly and the final Dockerfile configuration
was as follows:

1 FROM k h a l l e r /graphdb− f r e e : 9 . 1 0 . 0

3 ENV GDB_HEAP_SIZE=2G

5 RUN mkdir −p / r e p o s i t o r y . i n i t /Animals

7 RUN mkdir −p /temporary − f o l d e r

3.7. Examples 51

9 COPY animals −complete . t t l / r e p o s i t o r y . i n i t /Animals/toLoad/animals −complete . t t l

11 COPY conf ig . t t l / r e p o s i t o r y . i n i t /Animals/conf ig . t t l

At this point, it was time an authentication system to the website was implemented, so
one could later utilize Kong to its full potential. To go about implementing this, like it was
stated in this section on the previous app, an interface with Vue.js that introduced a simple
login system was created.

Figure 17: Front-end Animals-Wiki App (same as Equivalencias App)

As for the back-end of this authentication system, again, like the previous app, the Express
framework was used to set up a server that could handle login requests, returning a success
code if the username and password matched or a 403 prohibited if they did not. These users
were of course stored in a MongoDB database quickly set up with the configuration from the
previous app. Consequently, the configuration for the back-end and MongoDB was added
to the docker-compose file.

1 mongo−users :
container_name : mongo−users

3 r e s t a r t : always
environment :

5 MONGO_INITDB_DATABASE: Animals−auth

3.7. Examples 52

image : mongo
7 volumes :

− ./mongo−volume :/ data/db
9 auth :

container_name : auth
11 build :

contex t : ./ a u t e n t i c a c a o
13 d o c k e r f i l e : ./ D o c k e r f i l e

r e s t a r t : always
15 l i n k s :

− mongo−users
17 networks :

d e f a u l t :
19 a l i a s e s :

− auth

After establishing the front-end of the app, the respective back-ends for the core app and
authentication system, and the respective databases in GraphDB and MongoDB, it was time
to configure Kong. First Kong services were defined for said back-ends and credentials
for consumers were established. Then, because a relatively simple but solid authentication
plugin was preferred, the Key_Authentication plugin was used and the core app back-end
service (which would be called animals-service) was protected with said plugin. This is the
resulting kong.yml file:

_format_version : " 2 . 1 "
2

s e r v i c e s :
4 − name : animals − s e r v i c e

u r l : ht tp : //api : 7777

6 routes :
− name : animals −route

8 paths :
− /animals −api

10 − name : auth_serv ice
u r l : ht tp : //auth : 9000

12 routes :
− name : auth −route

14 paths :
− /auth

16

plugins :
18 − name : key−auth

s e r v i c e : animals − s e r v i c e
20 conf ig :

3.7. Examples 53

key_names :
22 − apikey

key_in_body : t rue
24 key_in_query : t rue

consumers :
26 − username : user1

keyauth_credent ia l s :
28 − consumer : user1

As stated previously, in the plugin configuration the name apikey was chosen for the name
of the key it must contain in a request to get a successful response and it was also decided
that that key must be in either the body of the request or contained in the query. With this
implemented, like before, the code of the front-end had to be changed to store the key in the
user’s cookies.

getkey : funct ion () {
2 ax ios ({

method : ' post ' ,
4 u r l : ' /kong/auth/users/log in ' ,

data : {
6 username : t h i s . username ,

password : t h i s . password
8 }

})
10 . then (data => {

console . log (data . data)
12 i f (data . data) {

ax ios
14 . get (' /kong−auth/consumers/user1/key−auth ')

. then (response => {
16 −−−−−−> Vue . $cookies . s e t (" key " , response . data . data [0] . key , " 1d")

t h i s . $router . push (' / ')
18 })

}
20 })

. ca tch (e r r => console . log (e r r))

3.7. Examples 54

However, contrary to the previous app, when the user gets to the animal listing, i.e. the
core app, instead of manually checking with Kong if the key is correct, the requests are
simply made with the key in the query, and if the user does not possess the key or the key is
incorrect the app does not return the data and the user can not view the animal listing.

1 handler (n) {
l e t v = '& '

3 i f (! n) v = ' ? '
−−−−−> axios . get (' /kong/animals −api/animals ' + n + v + ' apikey= ' +

Vue . $cookies . get (" key "))
5 . then (dados => {

. . .
7 })

. ca tch (e r r => console . log (e r r))

3.7. Examples 55

With all of these moving parts now working together, this became the definite version of
the Microservices Architecture of this web app:

Figure 18: Animals-Wiki Microservices Architecture

3.7. Examples 56

And this the flowchart of the user experience:

Figure 19: Animals-Wiki Request Flowchart

4

H Y PAT I A M AT

Hypatiamat is an education website dedicated to help students of all ages with Mathematics.
It contains exercises, mini-games, resources on the curriculum and so much more that could
potentially help the student. It is also a platform where a professor is capable of managing
their classes, give out homework to their students, etc, and the student can complete their
homework or compete in "tournaments", motivating the student to study. It is truly an all
encompassing app that helps students and professors alike in the subject of Mathematics.
Additionally, because it is composed of several different services, all of them isolated from
each other, it became the perfect test to the developed architecture philosophy.

4.1 introduction to the app

After experimenting with a few apps, doing a lot of research and recording the whole
experience, it was finally time to tackle Hypatiamat.

However, the architecture on which the app is built could be, in some ways, considered
outdated and in need of a re-work. Because the Hypatiamat "app" is actually several different
apps that students would need to log-in to individually and were isolated from one another,
this website would actually be, as said above, the perfect app to take everything that was
learned up until this point and test if it would work on a large app acting on an even larger
scale. Specifically, two of the many apps this whole website is built upon, Hypatiamat
Backoffice and Hypatiamat TPC would be transformed into a Microservices Architecture
while Kong would be used to set up a general authentication system, avoiding the individual
login per app problem just discussed.

In this next section we will discuss: how the architecture was come up with, the process
of implementing the idea for the app, the problems faced and the solutions that had to be
come up with.

57

4.2. Development of the Web application 58

4.2 development of the web application

As previously said, two services were tackled, Hypatiamat Backoffice and Hypatiamat TPC and
the idea was to put them on a Microservices network and develop a separate, isolated and
global Authentication service that allowed users to login to any app by only entering their
credentials once. So, as the idea was to substitute the already established login systems the
apps had, it was decided to first run these apps and see how that system worked, with the
intention of making the fewest possible changes to these apps in this architecture transition.

Thus, the first step was to run Hypatiamat Backoffice.

4.2.1 Hypatiamat Backoffice

First things first, a docker-compose file was created and added the already existing configu-
ration from the Backoffice app to it:

vers ion : ' 3 . 0 '
2

s e r v i c e s :
4 api −dados :

bui ld :
6 contex t : ./ apiDados

container_name : api −dados
8 image : api : l a t e s t

por ts :
10 − " 3050 :3050 "

i n t e r f a c e −app :
12 build :

contex t : ./ i n t e r f a c e
14 container_name : i n t e r f a c e −app

image : i n t e r f a c e : l a t e s t
16 depends_on :

− " api −dados "
18 ports :

− " 8080 :8080 "

This file was going to be where the configuration for ALL services was but at that moment
it only had Backoffice’s configuration because it was important to see how that specific app
worked.

Here are the Dockerfiles for the back-end (api-dados) and the front-end (interface-app)
respectively:

1 FROM node : a lp ine

4.2. Development of the Web application 59

3 WORKDIR /app

5 COPY package * . j son ./

7 RUN npm i n s t a l l

9 COPY . .

11 EXPOSE 9000

13 CMD ["npm" , " s t a r t "]

1 FROM node : l t s −a lp ine

3 WORKDIR /app

5 COPY package * . j son ./

7 RUN npm i n s t a l l

9 COPY . .

11 EXPOSE 8080

13 CMD ["npm" , " run " , " serve "]

This is the usual set-up we’ve been accustomed to, with the only difference being in the
front-end’s Dockerfile as it does not use NGINX so those lines of code are not present.

Before moving on, it is worth talking about WampServer. WampServer is a Windows soft-
ware that allows users to create web applications with Apache, PHP and most importantly,
a MySQL database. This is important because all of the existing data for the Backoffice
and TPC app is in SQL files so importing that into WampServer’s MySQL database was a
necessary step.

Coming back to the Hypatiamat Backoffice app, with this Docker set-up the app was
successfully ran but upon experimenting with the login system it was discovered a massive
problem. The authentication worked with JWT tokens, and these tokens were being stored
in LocalStorage. Now, when your app is running on a single domain this is no problem
whatsoever, however, the authentication system works across multiple subdomains (or in
this specific case across multiple ports as the whole app was run in localhost): one for the

4.2. Development of the Web application 60

login, one for the Backoffice app, and one for the TPC app. The problem is LocalStorage
uses a same-origin policy which sandboxes its data, meaning if, for example, our token is on
sub1.website.com and we go to sub2.website.com we can not access our token across the
subdomains. There is a natural fix for this problem which is storing your JWT tokens on
browser cookies, which can be accessed across multiple subdomains. Unfortunately though,
this meant a refactoring of both Hypatiamat Backoffice and Hypatiamat TPC was needed to
store its tokens in cookies. Thankfully, a solution that would make a re-write of the entire
code for these apps not necessary was come up with. Instead of completely erasing the
LocalStorage usage and its entire logic, we would keep that logic as is and change only
the part where the app gets the token. In other words, instead of getting the token from
LocalStorage, the app would search for it in the cookies (because that is where it would be
stored in the login) and only then store it in the LocalStorage from the cookies and let the
app check if the token is valid or not. Here is a graph that might help visualize the process:

Figure 20: Old vs New - token storage

After implementing this in the Backoffice app the same was done for the TPC app.

4.2. Development of the Web application 61

4.2.2 Kong and JWT tokens

When this point was reached, Kong was introduced into the mix and, because the app was
using JWT tokens, the JWT plugin was opted for. This is the kong.yml file:

1 _format_version : " 2 . 1 "

3 s e r v i c e s :
− name : b a c k o f f i c e −api

5 u r l : ht tp : //host . docker . i n t e r n a l : 3050

routes :
7 − name : b a c k o f f i c e −api −route

paths :
9 − /b a c k o f f i c e −api

− name : tpc −api
11 u r l : ht tp : //host . docker . i n t e r n a l : 3052

routes :
13 − name : tpc −api −route

paths :
15 − /tpc −api

17 plugins :
− name : jwt

19 s e r v i c e : b a c k o f f i c e −api
enabled : t rue

21 conf ig :
s e c r e t _ i s _ b a s e 6 4 : f a l s e

23 run_on_pref l ight : t rue
key_claim_name : kid

25 c l a i m s _ t o _ v e r i f y :
− exp

27 − name : jwt
s e r v i c e : tpc −api

29 enabled : t rue
conf ig :

31 s e c r e t _ i s _ b a s e 6 4 : f a l s e
run_on_pref l ight : t rue

33 key_claim_name : kid
c l a i m s _ t o _ v e r i f y :

35 − exp
− name : cors

37 conf ig :
o r i g i n s :

39 − " * "
methods :

41 − GET
− POST

4.2. Development of the Web application 62

43 − PUT
− DELETE

45 headers :
− Accept

47 − Accept −Version
− Content −Length

49 − Content −MD5

− Content −Type
51 − Date

− X−Auth−Token
53 − Authorizat ion

exposed_headers :
55 − X−Auth−Token

c r e d e n t i a l s : t rue
57 max_age : 3600

p r e f l i g h t _ c o n t i n u e : f a l s e
59

consumers :
61 − username : user123

63 j w t _ s e c r e t s :
− consumer : user123

65 s e c r e t : YOUR_SECRET

Unpacking this config file one block at a time, first we have the services: here is where the
Kong services were defined for the back-ends of the Backoffice app and the TPC app. Next,
the plugins: here we have two instances of the JWT plugin, one for each back-end service,
and the CORS plugin. In the JWT plugin block there are a few things happening: obviously
the name is the name of the plugin and service is the targeted service. enabled just means the
plugin is active and config contains a few options you might decide to enable depending on
your application. In this case, namely key_claim_name and claims_to_verify are important: the
second one defines what fields the plugin will check that are valid, in this case exp or, in
other words, the expiration date, but the first one, key_claim_name, will define the name of
the unique key that every token must be signed with to be valid. It works very similarly to
the key in Key Authorization from the previous app, in the way that it tracks which consumer,
or user, is associated with the token, so it can be verified. Another thing that the token must
be signed with is the secret. This is obviously up to the developer and should not be shared.
It can be defined in the last block of the kong.yml config file, jwt_secrets.

4.2. Development of the Web application 63

Here is the function that signs the tokens (this function would only be created later but it
shows how the signing of the token works):

1 const s e c r e t = YOUR_SECRET

3 generateToken = async funct ion (user , time) {
t r y {

5 . . .
const kid = await ax ios . get (' ht tp :// host . docker . i n t e r n a l :8001/ consumers/

user123/jwt ') ;
7 const token = jwt . s ign ({ user , kid : kid . data . data [0] . key } , s e c r e t , {

algorithm : " HS256 " ,
9 e x p i r e s I n : time ,

})
11 re turn token

} catch (e r r) {
13 // Handle Error Here

console . e r r o r (e r r) ;
15 }

}

Circling back to the plugins, the CORS plugin is only present because the kong requests
were being made across sub-domains, so CORS policy errors were obviously encountered.
Thankfully, Kong developed a plugin to help with that.

When testing sending requests to the Backoffice app through Postman, an API platform
capable of creating and sending complex API requests to any url as well as get a detailed
response, the request call succeeded if a signed token was sent through the Bearer Authenti-
cation header. However, both the Backoffice app and the TPC app already had their API
calls defined, so, to not refactor every single request the front-end makes to the back-end of
these applications, the code was changed so when the app first obtains the token it sets it as
the Bearer Authentication token globally:

i f (Vue . $cookies . isKey (" token ")) {
2 l e t tokenTemp = Vue . $cookies . get (" token ")

l o c a l S t o r a g e . se t I tem (" token " , tokenTemp)
4 ax ios . d e f a u l t s . headers . common[' Authorizat ion '] = ' Bearer ' + l o c a l S t o r a g e .

getItem (' token ') ;
}

4.2. Development of the Web application 64

This seemed to work, although at this point another problem appeared. When storing the
token from the cookies into LocalStorage the app thought the token was incorrect, deleted
it and kicked the user from the app. This was because the order of instructions for the
transition from cookies to LocalStorage was wrong and not very robust, so then it was
changed so first the app would check if the token cookie exists and if it did store it in
LocalStorage and then set the global header. Also, when logging out of the app, it would
delete the token cookie and empty the LocalStorage. This because when logging back into
the app or even going from Backoffice to TPC or vice-versa the app would throw an error
and kick out the user. After re-working and cleaning up that logic the app worked perfectly.

4.2.3 Login interface

At this point, both apps were working, one could traverse them and go from one to the other
without problems, sending every request call through Kong with the token in the Bearer
Authorization header. However, there were no means of logging in and signing a token
easily, they were being signed manually. Therefore, it was time for the final piece of this
Microservices Architecture "puzzle": The authentication interface.

Following the pattern of previous apps, the front-end was designed in Vue.js and the
Backoffice’s back-end, made with Express, was used as a mold for the Login system’s
back-end, as it already defined the routes and configuration for its original login system. To
accomplish this, the configuration for these two services was added to the docker-compose
file, making this the final version of that file:

1 vers ion : ' 3 . 0 '

3 s e r v i c e s :
#KONG

5 kong :
container_name : kong

7 r e s t a r t : always
image : kong : l a t e s t

9 volumes :
− ./ kong . yml :/ usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml

11 environment :
− KONG_DATABASE= o f f

13 − KONG_DECLARATIVE_CONFIG=/usr/ l o c a l /kong/ d e c l a r a t i v e /kong . yml
− KONG_PROXY_ACCESS_LOG=/dev/stdout

15 − KONG_ADMIN_ACCESS_LOG=/dev/stdout
− KONG_PROXY_ERROR_LOG=/dev/ s t d e r r

17 − KONG_ADMIN_ERROR_LOG=/dev/ s t d e r r
− KONG_ADMIN_LISTEN= 0 . 0 . 0 . 0 : 8 0 0 1 , 0 . 0 . 0 . 0 : 8 4 4 4 s s l

19 ports :
− " 8001 :8001 "

4.2. Development of the Web application 65

21 − " 8000 :8000 "

23 #BACKOFFICE BACK−END
api −dados :

25 build :
contex t : ./ Hypatiamat−BackOff ice/apiDados

27 container_name : api −dados
r e s t a r t : always

29 image : api : l a t e s t
por ts :

31 − " 3050 :3050 "

33 #BACKOFFICE FRONT−END
i n t e r f a c e −app :

35 build :
contex t : ./ Hypatiamat−BackOff ice/ i n t e r f a c e

37 container_name : i n t e r f a c e −app
r e s t a r t : always

39 image : i n t e r f a c e : l a t e s t
depends_on :

41 − " api −dados "
ports :

43 − " 8080 :8080 "

45 #AUTH BACK−END
api −auth :

47 build :
contex t : ./ Auth/backend

49 container_name : api −auth
r e s t a r t : always

51 ports :
− " 9000 :9000 "

53

#AUTH FRONT−END
55 auth −app :

bui ld :
57 contex t : ./ Auth/frontend

container_name : auth −app
59 r e s t a r t : always

depends_on :
61 − " api −auth "

ports :
63 − " 12090 :12090 "

65 #TPC FRONT−END
tpc −app :

67 build :

4.2. Development of the Web application 66

contex t : ./ Hypatiamat−TPC/frontend
69 container_name : tpc −app

r e s t a r t : always
71 depends_on :

− " s t r a p i "
73 ports :

− " 8081 :8081 "
75

#TPC BACK−END
77 s t r a p i :

container_name : s t r a p i
79 r e s t a r t : always

bui ld :
81 contex t : ./ Hypatiamat−TPC/backend

ports :
83 − " 3052 :3052 "

For this system’s back-end, as was just stated, the back-end of the Backoffice app was
copied over, and every part of the API that did not correspond to the login and register
features was deleted. This was so the original login system’s logic could be kept as much as
possible, so a transition from the original system to the new system would be as seamless as
possible.

4.2. Development of the Web application 67

As for the front-end, when designing the login interface it was known there were two
services one could go to, so this main menu was devised, where one could register, or
choose the Backoffice or TPC app to login to.:

Figure 21: Main Menu

4.2. Development of the Web application 68

This is the register menu:

Figure 22: Register Menu

Originally there was a login menu and only then the user would choose if they wanted to
go the Backoffice app or TPC app, which would make sense as the login is supposed to be
global, i.e. independent from which app they want to access, however, the Backoffice has
two extra login options: logging in as a temporary student or as a temporary professor.
This is so a user can explore the app without having an account. But these options do not
exist in the TPC app so it was decided that the design of the main menu would be as it is
now. This is not to say the login is not global, it is and a user can freely and effortlessly
go from Backoffice to TPC or vice-versa by logging in only once, but it was felt that this
distinction in the menus had to be made for a more intuitive experience.

4.2. Development of the Web application 69

Here is the Backoffice login menu:

Figure 23: Backoffice login Menu

4.2. Development of the Web application 70

And here is the TPC login menu:

Figure 24: TPC login Menu

4.2. Development of the Web application 71

Upon entering the Backoffice app this is what a user would see:

Figure 25: Backoffice App

Entering the TPC app this is what a user would see:

Figure 26: TPC App

4.2. Development of the Web application 72

With the login interface done the app was now completely functional. This is the final
version of the architecture:

Figure 27: Hypatiamat Architecture

4.3. Outcome 73

And this is a flowchart of the user experience:

Figure 28: User experience flowchart

It is worth noting that the new authentication system is very scalable and if one wishes to
add more apps to the system they would only need to add a button and a login form and
the login should work right away, assuming the new app stores its tokens in the cookies. If
not, a similar refactoring done to Backoffice and TPC would need to be done to that app as
well.

4.3 outcome

After undertaking these case studies it is possible to say that the changes made to the
original apps definitely are beneficial the functionality of the app as a whole and the
knowledge acquired in the process of implementing these changes most certainly helped in
the understanding of Kong, Microservices Architectures and the logic of login systems, as
well as several other technologies and paradigms addressed in the making of this thesis.

5

C O N C L U S I O N

With the completion of this thesis the main goal was achieved: constructing a guide that
could help the reader applying some or all of the technologies talked about in their own
work. A few other goals were also achieved, like creating a general login system for every
and any frontend service in the application, as well as attaining a deep understanding of API
Gateways, Microservices, HTTPS passport configuration and authentication token handling.

To accomplish this, we experimented on several case studies, first two smaller apps to
create familiarity with the technologies and later a real life case with a considerably bigger
and more complex application called "Hypatiamat".

Reflecting on the progress made, it is possible to assert that Kong as an API Gateway is
definitely one of the better options, as it is free and has many features, such as a huge library
of plugins that can be easily and seamlessly implemented into any project, and it is also
possible to assert that in huge applications with many services Kong can certainly be a strong
asset because it allows for a better management of the service-to-service communication.
However, it is worth noting that in small applications it might not be worth it to have
this extra step in communication because managing that communication tends do be quite
simple, or even big applications it might not be worth it if the plugin functionality is not
being used, as something like NGINX is also capable of managing the communication
network as Kong does.

In conclusion, Kong can most certainly be a huge help in many applications, but, as most
things, it really depends on the app and its function in that app.

In future iterations of the work done in the Hypatiamat application we could add more
applications to the login system as it is done in a scalable way that could easily introduce
similar apps to its communication network. We could also take more advantage of the
plugin system because, as of the writing of this document, only the JWT plugin is being
used. We could take advantage of a rate-limiting plugin or an analytics plugin to gather
data on the website’s users.

74

B I B L I O G R A P H Y

What does an api gateway do? URL https://www.redhat.com/en/topics/api/

what-does-an-api-gateway-do.

What is amazon api gateway? URL https://docs.aws.amazon.com/apigateway/latest/

developerguide/welcome.html.

The api gateway pattern versus the direct client-to-microservice communi-
cation. URL https://docs.microsoft.com/en-us/dotnet/architecture/

microservices/architect-microservice-container-applications/

direct-client-to-microservice-communication-versus-the-api-gateway-pattern.

Animals-Wiki. URL https://gate.epl.di.uminho.pt/.

Apigee. Apigee reviews, rating and features 2022. URL https://www.peerspot.com/

products/apigee-reviews.

AZ_Animals. URL https://a-z-animals.com/.

ACME Certbot. URL https://letsencrypt.org/docs/client-options/.

Kong’s CORS. URL https://docs.konghq.com/hub/kong-inc/cors/.

Docker. URL https://www.docker.com/.

Kong Documentation. URL https://docs.konghq.com/gateway/latest/.

Express. URL https://expressjs.com/.

Faren. Kong — the microservice api gateway. URL https://medium.com/@far3ns/

kong-the-microservice-api-gateway-526c4ca0cfa6.

André Faria. Melhores livros sobre microservices (microserviços). URL https://blog.

andrefaria.com/melhores-livros-sobre-microservices-microservicos.

Keith D. Foote. A brief history of microservices - dataversity. URL https://www.dataversity.

net/a-brief-history-of-microservices/#.

GraphDB Dockerfile Github. URL https://github.com/Ontotext-AD/graphdb-docker.

GraphDB. URL https://graphdb.ontotext.com/.

75

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern
https://gate.epl.di.uminho.pt/
https://www.peerspot.com/products/apigee-reviews
https://www.peerspot.com/products/apigee-reviews
https://a-z-animals.com/
https://letsencrypt.org/docs/client-options/
https://docs.konghq.com/hub/kong-inc/cors/
https://www.docker.com/
https://docs.konghq.com/gateway/latest/
https://expressjs.com/
https://medium.com/@far3ns/kong-the-microservice-api-gateway-526c4ca0cfa6
https://medium.com/@far3ns/kong-the-microservice-api-gateway-526c4ca0cfa6
https://blog.andrefaria.com/melhores-livros-sobre-microservices-microservicos
https://blog.andrefaria.com/melhores-livros-sobre-microservices-microservicos
https://www.dataversity.net/a-brief-history-of-microservices/#
https://www.dataversity.net/a-brief-history-of-microservices/#
https://github.com/Ontotext-AD/graphdb-docker
https://graphdb.ontotext.com/

BIBLIOGRAPHY 76

Imesh Gunaratne. Wso2 api manager in a nutshell. URL https://medium.com/scalable/

wso2-api-manager-in-a-nutshell-eaac20812f0c.

Hypatiamat. Hypatiamat website. URL https://www.hypatiamat.com/.

Official Docker image for GraphDB. URL https://hub.docker.com/r/ontotext/graphdb/.

Kong’s JWT. URL https://docs.konghq.com/hub/kong-inc/jwt/.

Kong’s Key_Authentication. URL https://docs.konghq.com/hub/kong-inc/key-auth/.

GraphDB Khaller. URL https://hub.docker.com/r/khaller/graphdb-free.

Lets-Encrypt. URL https://letsencrypt.org/.

Lua. URL https://www.lua.org/.

MongoDB. URL https://www.mongodb.com/.

Joe Nemer. Advantages and disadvantages of microser-
vices architecture. URL https://cloudacademy.com/blog/

microservices-architecture-challenge-advantage-drawback/.

NGINX. URL https://www.nginx.com/.

NGINX-Website. URL https://www.nginx.com/resources/glossary/nginx/.

NGINX_HTTPS. URL http://nginx.org/en/docs/http/configuring_https_servers.

html.

Kong Plugins. URL https://docs.konghq.com/hub/.

Postman. URL https://www.postman.com/.

Syntax Turtle. URL https://en.wikipedia.org/wiki/Turtle_(syntax).

WampServer. URL https://www.wampserver.com/en/.

Docker WSL2. URL https://docs.docker.com/desktop/windows/wsl/.

https://medium.com/scalable/wso2-api-manager-in-a-nutshell-eaac20812f0c
https://medium.com/scalable/wso2-api-manager-in-a-nutshell-eaac20812f0c
https://www.hypatiamat.com/
https://hub.docker.com/r/ontotext/graphdb/
https://docs.konghq.com/hub/kong-inc/jwt/
https://docs.konghq.com/hub/kong-inc/key-auth/
https://hub.docker.com/r/khaller/graphdb-free
https://letsencrypt.org/
https://www.lua.org/
https://www.mongodb.com/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://www.nginx.com/
https://www.nginx.com/resources/glossary/nginx/
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html
https://docs.konghq.com/hub/
https://www.postman.com/
https://en.wikipedia.org/wiki/Turtle_(syntax)
https://www.wampserver.com/en/
https://docs.docker.com/desktop/windows/wsl/

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Development Approach
	1.4 Document Structure

	2 State of the Art
	2.1 Microservices
	2.2 API Gateways
	2.3 Kong and other alternatives
	2.3.1 Kong
	2.3.2 Amazon API Gateway
	2.3.3 Apigee
	2.3.4 WSO2 API Manager
	2.3.5 Kong vs alternatives

	3 Guide/Development
	3.1 Introduction
	3.2 Microservices
	3.3 Docker
	3.4 Kong
	3.5 NGINX and the front-end development
	3.6 HTTPS
	3.7 Examples
	3.7.1 Equivalencias App
	3.7.1.1 Introduction to the app
	3.7.1.2 Docker
	3.7.1.3 Kong
	3.7.1.4 NGINX
	3.7.1.5 The Approach and Difficulties found

	3.7.2 Animals Wiki App
	3.7.2.1 Introduction to the app
	3.7.2.2 Docker
	3.7.2.3 Kong
	3.7.2.4 NGINX and HTTPS
	3.7.2.5 The Approach and Difficulties found

	4 Hypatiamat
	4.1 Introduction to the app
	4.2 Development of the Web application
	4.2.1 Hypatiamat Backoffice
	4.2.2 Kong and JWT tokens
	4.2.3 Login interface

	4.3 Outcome

	5 Conclusion

