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R E S UM O

Interpretação Automática de Ultrassom Pulmonar Point-of-Care
A ultrassonografia pulmonar point-of-care (POCUS) é uma modalidade de imagem médica se-

gura, portátil e de baixo custo, útil em contextos de urgência para uma rápida examinação à cabeceira

do paciente. Apesar de limitado pela presença de ar, o ultrassom pulmonar (LUS) tem demon-

strado ser um recurso prestável na avaliação de doenças crónicas ou agudas, dependendo da in-

terpretação de fenómenos de ultrassom, assim como de artefactos associados aos mesmos. Atual-

mente, com a situação pandémica criada pela COVID-19, a necessidade de uma interpretação de

imagens médicas e correspondente diagnóstico célere tornou-se mais clara. Coincidentemente, a

presença de soluções baseadas em métodos de deep learning (DL) na área da imagem médica têm

aumentado, com resultados bastante promissores. Não obstante o seu potencial, a utilização destas

metodologias em POCUS pulmonar permanece subexplorado.

Este trabalho propõe uma framework de DL para a interpretação de vídeos de POCUS pulmonar,

cujos resultados são os achados presentes num dado vídeo (tais como linhas A, linhas B, consolid-

ações, entre outros). A metodologia, baseda numa arquitetura 3D, inicializa-se com uma rotina de

pré-processamento para a padronização dos dados. Sendo que os dados são escassos mas essen-

ciais para treinar um modelo de DL eficaz, duas abordagens são exploradas : aprendizagem super-

visionada e semi-supervisionada. O trabalho culmina com a proposta de uma estatégia inovadora

de ensemble de modelos, que combina os resultados de modelos treinados para prever anotações

distintas, bem como uma rotina de pós-processamento opcional e específica para o dataset, ambas

com o intuito de potencializar a hierarquia inerente à interpretação de LUS.

A framework proposta e os seus módulos constituintes foram avaliados através de um conjunto

extenso de testes, considerando tanto modelos multi-classe como multi-label, para contextos super-

visionados e semi-supervisionados. Os resultados comprovam a versatilidade da

framework, possibilitando uma combinação customizável dos diferentes elementos da proposta

de acordo com a tarefa pretendida. Num conjunto independente de dados de teste, a proposta

categórica, útil para uma triagem célere, obteve uma média de valores de F1 de 92.61%, enquanto

a proposta multi-label, vantajosa para o acompanhamento e encaminhamento do paciente, obteve

uma média de valores de F1 de 70.45% quando considerados cinco achados de LUS relevantes.

De modo global, a proposta demonstra-se promissora numa área subexplorada, abrindo caminho

para uma interpretação automática e precisa de ultrassom pulmonar em contexto clínico.

Palavras chave: Aprendizagem semi-supervisionada, Análise de vídeo, Deep learning, Ultra-

sonografia pulmonar
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A B S T R A C T

Automatic Interpretation of Point-of-Care Lung Ultrasound

Point-of-care ultrasound (POCUS) is a safe, portable and low-cost imaging technique useful in

emergency rooms for a rapid bedside patient examination. Although being limited by the presence

of air, lung ultrasonography (LUS) has proven to be a helpful resource in the evaluation of acute

and chronic conditions, relying on the interpretation of ultrasound phenomena and associated image

artifacts. Currently, with the COVID-19 pandemic, the necessity for an expeditious image interpret-

ation and associated diagnosis has become clearer than ever. Coincidentally, deep learning-based

solutions have increased their presence in the medical imaging field, with alluring results. Notwith-

standing their potential, the usage of these techniques in lung POCUS remains underexplored.

This work proposes a flexible deep learning (DL) framework for the interpretation of lung POCUS

videos, whose outputs are the finding(s) present in said video (such as A-lines, B-lines, consolidations,

among others). The pipeline, based on a 3D architecture, is initialised with a pre-processing routine

for video standardisation. Since data is scarce but a core necessity to train a successful DLmodel, two

learning strategies are investigated: supervised and semi-supervised scenarios. The work culminates

with the proposal of a novel model ensembling strategy, which aggregates the outputs of models

trained to predict distinct label sets, and an optional dataset-specific post-processing routine, both

aimed at leveraging of the hierarchy inherent to LUS interpretation.

The proposed framework and its building blocks were evaluated in an extensive set of experiments,

considering bothmulti-class andmulti-label models, for both supervised and semi-supervised settings.

The results show the framework’s versatility, allowing for a custom combination of the multiple pro-

posed blocks accordingly to the task in question. In a held-out test set, the categorical proposal,

which is useful for an expedite triage, achieved an average F1-score of 92.61%, while the multi-label

proposal, helpful for patient management and referral, achieved an average F1-score of 70.45% when

considering five relevant LUS findings.

Overall, the proposal shows promise in an underexplored field, paving the way for an accurate

computer-assisted lung ultrasound interpretation in clinical practice.

Keywords: Automatic video analysis, Deep learning, Lung ultrasonography, Semi-supervised

learning
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1

INTRODUCTION

1.1 L u n g s ’ t o p o g r a p h y a n d me ch a n i c s

The lungs are the core organs of the respiratory system and, in tandem with the respiratory tract,

contribute to homeostasis by being responsible for the exchange of gases between the atmospheric

air and the bloodstream, and from the latter to the tissue cells.

The basic structures of the respiratory system can be divided according to their location or func-

tionality. Concerning the former, the upper respiratory system contains the nasal cavity, pharynx,

and associated structures, while the lower respiratory system refers to the larynx, trachea, bronchial

tree, pulmonary alveoli, and lungs. Similarly, the system is divided into two parts based on function:

the conducting zone and the respiratory zone. The first consists of an ensemble of interconnected

cavities and tubes responsible for transporting gases to and from the pulmonary alveoli. The second

comprehends the tissues within the lungs responsible for gas exchange, such as the bronchioles,

alveolar ducts, alveolar sacs, and alveoli.

To perform the task of transfusion, the respiratory system must fulfil several requirements regard-

ing the corporeal aspect and the composition of its various components. When the air enters the

nasal or oral cavity, it is filtered, warmed, and humidifies on its way to the lungs. This purification

is the result of the passage of air in the coarse hairs in the nostrils, the cilia, and the mucus, while

the warming is due to the heat emanating from the blood vessels near the surface of the lining of

the airways. For these transformations to take place, the fluid exchange must occur deep within the

body, hence the conductive zone. Moreover, to facilitate the process, the membrane of the alveoli,

where most of the diffusion occurs, must be thin-walled and selectively permeable, while moisture

is maintained by the extensive capillary structure to provide the ideal environment for the dissolution

of oxygen and carbon dioxide. Air must be constantly renewed, so the system must incorporate an

effective ventilation mechanism [1–3].

The lungs are paired, large, spongy, and conical organs enclosed in the thoracic cavity (Figure

1). The heart and mediastinum form a division between these structures. Each lung lies against the

ribs anteriorly and posteriorly, just above the clavicle, and extends to the diaphragm, the muscle that

separates the thoracic cavity from the abdominal one. Each lung precisely conforms to the contour

1



1.1. Lungs’ topography and mechanics 2

Figure 1: Lungs and the branching of airways from the trachea.
Adapted from [2].

of the thoracic cavity. The broad underside of the lung, called the base, has a concave shape and

fits the convex dome of the diaphragm. In contrast, the apex is the narrow upper part of the lung,

also named cupola, which extends above the clavicle. The costal surface of the lung which abuts

the membranes covering the ribs conforms to the rounded curvature of these bones. In its turn, the

mediastinal surface of the lung is also slightly concave and contains the hilum, a depression through

which pulmonary blood and lymphatic vessels, nerves and bronchi pass [2, 3].

The left and right lungs, although largely mirror images, have one significant difference: the left

lung is 10% smaller than the right due to an indentation called the cardiac notch, or cardiac impression,

the site in the medial surface that accommodates the heart. In like manner, the right lung is not only

wider and thicker but also shorter since the diaphragm is slightly higher on that side, to make space

for the liver that lies inferiorly.

The lungs comprise a series of lobes and lobules separated by fissures (Figure 2). The right lung

has three lobes while the left lung has only two lobes. An oblique fissure is present in both lungs,

vertically symmetrical, and divides each lung into two sections, with the right lung having an additional

horizontal fissure. In the left lung, the oblique fissure forms the superior and inferior lobes. Regarding

the right lung, the upper part of the horizontal fissure gives rise to the superior lobe, while the oblique

fissure separates the inferior and middle lobes. Each lobe comprehends its own secondary lobar

bronchus, i.e. the right primary bronchus produces three secondary bronchi (superior, middle, and

inferior), while the left primary bronchus originates the superior and inferior secondary lobar bronchi.

The secondary bronchi themselves give rise to the tertiary bronchi, each lung having ten of these

structures. These structures supply a segment of tissue called the bronchopulmonary segment.

Within, there are a series of small lobules enveloped in elastic connective tissue and containing a

lymphatic vessel, an arteriole, a venule, and a branch of a terminal bronchiole. The latter diverges
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Figure 2: Lateral view of the right and left lungs.
Adapted from [2].

into microscopic branches, the respiratory bronchioles, which then culminate in the alveolar ducts

that lead to the pulmonary alveoli [2, 3].

The lungs are surrounded by a double-layered serous membrane, the pleurae, that lines the

thoracic cavity and protects its organs. The visceral pleura adheres to the lungs themselves and

covers each of the interlobar fissures. The parietal pleura lines the wall of the thoracic cavity and

the thoracic surface of the diaphragm. The pleural cavity, i.e. the small space between the pleurae,

contains a lubricating fluid that allows membranes to slide easily over one another during breathing

and reduces friction. In addition, the fluid helps the two membranes adhere to each other, while also

adhering to the thoracic wall. The pulmonary ligaments help support the lungs, extending downward

from the pleural layers. These two structures are responsible for the constant contact of the lungs

with the thoracic wall, which causes the lung to change size as it expands and contracts according

to the movement of the rib cage during breathing [2, 3].

Basic respiration is an involuntary mechanism of the human body that can be summarised in

three fundamental steps: pulmonary ventilation, i.e. the breathing per se; external respiration, i.e.

the transfer of gases from the alveoli into the bloodstream; and internal respiration, i.e. the exchange

of gases between blood and tissue cells. In this project, one will focus primarily on the first step,

which involves movement, hence its detailed description below.

Pulmonary ventilation is the passage of air from the atmosphere to the lungs, and comprises two

steps: inhalation and exhalation, also termed inspiration and expiration (Figure 3). The airflow is a

pressure-induced process, i.e. it occurs due to the coordinated changes in three different pressures:

atmospheric pressure, intraalveolar or intrapulmonary pressure, and intrapleural pressure [1, 3].

Inhalation, the process of breathing in, is the active phase of ventilation, during which the thoracic

cavity enlarges by contraction of the diaphragm and the external intercostal muscles, lowering the

pressure inside the alveoli. Contraction of the diaphragm causes it to flatten, lowering its dome and

increasing the diameter of the thoracic cavity vertically as the rib cage moves upward and outward.

As the lung volume increases, the intrapleural pressure decreases and a partial vacuum is created.

At this point, the alveolar pressure is lower than the atmospheric pressure. As air flows from an area

of high pressure into a space of lower pressure, the air enters the lungs by extending a continuous
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Figure 3: Inspiration vs. expiration.
Adapted from [1].

column of air from the pharynx to the alveoli. Note that, while the inhalation process is the active

phase of breathing, the flow into the alveoli is passive; air is not forced into the lungs, it enters the

lungs because they are expanded [1, 3].

Exhalation is largely a passive process, that occurs when the muscles, once contracted during

inhalation, relax. Unlike inhalation, exhalation results from the elastic recoil of the chest wall and

lungs, causing the diaphragm to return to its dome shape. All these phenomena combine to de-

crease the vertical, lateral, and anteroposterior diameters of the thorax, decrease lung volume, and

consecutively increase alveolar pressure, making the air naturally flow out of the body. A lipoprotein

substance called surfactant produced in some alveolar cells is responsible for the non-collapse of the

alveoli by lowering the surface tension within the alveoli (by reducing the attractive forces of hydrogen

bonds) and, in combination with the drop in pressure in the pleural cavity, ensures that the alveoli

remain open [1–3].

The respiratory system is particularly susceptible to disease, as the lungs are the internal organ

most vulnerable to infection and injury. Because the respiratory tract is warm and humid, it provides

an ideal environment for pathogens to thrive, and many pathogens are airborne. Since humans

are constantly exposed to particles, chemicals and infectious organisms in ambient air, respiratory

diseases are an immense health burden worldwide. They are responsible for more than 10 % of all

disability-adjusted life years and account for five of the thirty most common causes of death [3, 4].
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1.2 L u n g p a t h o l o g i e s a n d t h e i r d i a g n o s i s

Lung pathologies have multiple causes, and their diagnosis and follow-up often require various

imaging technologies and investigative procedures. Pulmonary diseases are defined as conditions

preventing the proper functioning of the lungs and affecting either respiration or lung function, i.e.

the ability to breathe and how properly the lungs work [5].

Every diagnosis must start with the fundamental approach, a physical examination. A physical

examination of the respiratory system follows four consecutive steps: inspection, palpation, percus-

sion, and auscultation. Inspection may reveal physical signs, like for instance abnormal breathing

patterns, chest wall deformities, oedema, and cyanosis. Palpation may be an advantage in discover-

ing enlarged lymph nodes and subcutaneous emphysema. Conditions such as pleural effusion and

pneumothorax can be unveiled by percussion, since they may reveal areas of dullness or hyper reson-

ance, respectively. Lastly, auscultation identifies characteristic sounds of some respiratory diseases,

including wheezes, crackles, or a pleural effusion rub [6].

Laboratory methods are also helpful tools for lung assessment. Besides the conventional urine and

blood tests, some specific blood and sputum analyses are used to detect diseases. Microbiological

tests, for example, have an essential role in the examination of infectious respiratory diseases caused

by viruses, bacteria, fungi, or parasites, using bacteriological, molecular, biological or serological

techniques. Pathologies such as pulmonary embolism, cystic fibrosis, coronavirus disease 2019

(COVID-19), pneumonia, lung cancer, sarcoidosis, and asthma have specific markers that can be

found when resorting to these methods. Moreover, histology and cytology play a major role in the

diagnosis of infection, and malignant and benign diseases [6].

Besides being used for diagnosis, respiratory function tests have a big contribution in the assess-

ment of severity, treatment monitoring and prognosis evaluation. These include spirometry, diffusion

capacity, blood gas analysis, and cardiopulmonary exercise testing, among others [6, 7].

In addition, like in other fields of medicine, the diagnosis of respiratory pathologies rely heavily on

medical imaging, such as X-rays, computer tomography (CT), magnetic ressonance imaging (MRI),

nuclear imaging, bronchoscopy, and ultrasound (US). These modalities represent a significant tool for

physicians to better understand the cause of the problem and have profoundly changed the practice

of medicine and investigation, as they are able to provide better diagnosis and treatment [5].

Starting with chest radiography, the first step in the radiological evaluation of suspected respirat-

ory distress patients; to computed tomography, which offers a much more detailed observation of

the thoracic structures; pulmonary and bronchial angiography, for vessels imaging; and magnetic

resonance imaging, when there are suspicions of a tumour in the mediastinum or chest wall, these

techniques are some of the most used methods for lung assessment.

Ultimately, a well-established but underutilised imaging modality for lung assessment is the tran-

sthoracic ultrasound. Safe, low cost, mobile, fast, and allowing for a real-time evaluation, this tech-
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nique allows the visualisation of the pleura and chest wall abnormalities, diagnosis of pneumothorax

and works as an aid for minimally invasive procedures such as biopsies. Although not being able

to identify chronic obstructive pulmonary disease, asthma or pulmonary embolism (as these are as-

sociated with images too similar to the ones of a healthy lung), ultrasound usage is increasing due

to its unique ability to quickly diagnose some of the most common lung diseases. For example, if

a patient presents a pneumothorax, the air is accumulated in the pleural cavity, which will appear

in the ultrasound acquisition differently from a normal lung once the medium alters and thus the

propagation of the sound wave. Atelectasis, resulting from a pleural effusion, a bronchial obstruc-

tion, or an alveolar-interstitial syndrome, all of which lead to the aggregation of extravascular water,

diffuse alveolar oedema, and thickened interlobular septa, can also be identified in the ultrasound

images. The same can be said about pneumonia, which is characterised by the exudes invading

the pleural cavity because of an inflammation of the lung tissue. More recently, studies have shown

that COVID-19 may also be detectable through ultrasound imaging [6, 8, 9]. For the above reasons,

ultrasound has proven its usefulness and importance in modern medicine, especially in emergency

scenarios, where it is termed point-of-care ultrasound (POCUS).

1.3 POCUS

Point-of-care ultrasound concerns a portable ultrasound system that allows a bedside patient

assessment. Conceived for the purpose of being utilised in emergency settings, it differs from the

generic ultrasound in its intended application. The latter is focused on precise images, which take

time. On the other hand, POCUS is used for a quick evaluation to reach a reliable but not time-

consuming diagnosis, due to the urgent context. Globally, in addition to reducing the diagnosis time,

improving patient safety (as it is a non-ionizing technology) and decreasing complication rates, POCUS

provides essential health care independently of the patient’s location.

1.3.1 Ultrasound fundamentals

Acute care practitioners who perform point-of-care ultrasounds need to comprehend the basic

concepts of how ultrasound equipment works to be able to make critical decisions [10]. This know-

ledge is fundamental to establish a solid foundation for the understanding of the nature and behaviour

of ultrasound and to identify artifacts. This insight enables physicians to produce high-quality images

and assures their interpretation of the same, translating into the ability to deliver improved patient

care [11].

Ultrasound consists of waves. Ultrasonic waves are longitudinal progressive compression waves,

meaning that the particles in the medium dislocate in the direction of the wave propagation. This

generates areas of high and low particle density, as illustrated in Figure 4, corresponding to sections of
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Figure 4: Schematic representation of a longitudinal wave.
Adapted from [12].

compression and rarefaction, respectively. This motion is achievable due to some inherent properties

of the medium, such as elasticity and inertia. The elastic characteristic has its interaction as a

neutraliser of the compression site, to restore equilibrium. Due to inertia, this equilibrium will be too

large and, consequently, will create a region of rarefaction that will be counterbalanced by elasticity,

forming a loop of action. After some cycles, the equilibrium is achieved, since in each iteration the

propagation is damped as the wave propagates in space. The nomination of “ultrasonic” is referring

to the frequency of the wave and refers to wave frequencies above the audible spectrum of the human

ear (20 Hz – 20 kHz). In medical US imaging specifically, a frequency 100 to 1000 times higher

than the maximum audible frequency is used [12].

The shape’s wave is irrelevant to the propagation, meaning that any waveform generated can

propagate through matter. Assuming a homogeneous medium and a linear wave, there are some

key properties that are useful to characterise the wave. Wavelength is the distance between two

similar points on a wave, over one cycle. The period is the time it takes to complete said cycle.

However, when discussing ultrasound waves, the frequency, the inverse of the period, is more often

used, since it defines the number of cycles repeated per second, being measured in Hertz (Hz). The

strength of the wave is described by three parameters: its amplitude, i.e. the size of the wave that,

in a graphic representation, is measured between the average and the maximum value; its power,

which measures the energy per unit of time and is expressed in Watts; and its intensity, a measure

of the concentration of energy in a cross-section of an ultrasound beam. In its turn, the acoustic

impedance is defined by the ratio of the acoustic pressure by the frequency-dependent resistance

that an ultrasound wave comes upon as it passes through a medium [12, 13].

The ultrasound, as mentioned, is composed of waves that propagate and interact at the interface

where different tissues meet, depending on a medium of propagation, such as fluids, soft tissues, and

solids. These interactions can be reflections, diffractions, refractions, attenuations, and scattering,

for example. By measuring these time-dependent reflections and knowing the wave velocity that

is defined by the product of the frequency and the wavelength, we can infer the position of the

tissues [10, 13].
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These waves can be generated and detected by a piezoelectric crystal, which is a phenomenon

known as the piezoelectric effect. These crystals induce an electric field in response to a mechanical

force, i.e. a deformation, and vice-versa. Therefore, a compression wave is formed every time an

alternating voltage is applied to the crystal which is responsible for converting the electric energy to

mechanical energy, with the wave having the same frequency as the signal used.

An ultrasound transducer, also named probe, is constituted by various piezoelectric elements that

work sequentially, either to emit the pulse or receive the signal and can be composed of materials

such as quartz, lithium niobate and tourmaline. The multiple elements present in the transducer

allow the image to be obtained by shifting these elements in a systematic manner. Considering a

transducer with 9 elements, the first line scanned can be generated using elements 1-4, the second

from 2-5 and so on, scanning 6 lines in total. The number of lines can be altered by changing the

number of elements activated per line scanned [10, 13].

Resolution is defined as the minimum distance between two structures that allows for differen-

tiability as separate structures. In ultrasound imaging, the spatial resolution is distinguished into

three resolutions: axial, lateral and elevation. Axial resolution (also known as longitudinal) refers

to the resolution in the direction of the wave and can be improved by raising the transmitted fre-

quency, knowing that with this the attenuation increases and therefore the penetration depth de-

creases [12,13]. Mathematically, it is the same value as half of the spatial pulse length [14]. Lateral

resolution is perpendicular to the axial direction of the acquired image, which can be improved by in-

creasing the bandwidth and the central frequency of the pulse, translating to a reduction in the beam

width [12, 13]. The width varies with the distance from the transducer, beginning approximately

equal to the transducer’s width, narrowing with distance until the smallest width possible (near-zone)

and, after a certain point, returning to a wider beam (far zone) (Figure 5). With the balancing of

these distances, the ultrasound develops the possibility of focusing. By diminishing the near zone to

the focal length and considering that the beam diverges from that point onward, the focal region is

created. Notwithstanding, the lateral resolution can also be improved by focusing on multiple depths

within the same tissue by the repetition of pulses being emitted along the scan line [14]. Resolution

in the perpendicular direction to the image plane is titled elevation. This resolution is dependent

and, in some parts, controlled by the ultrasound transducer [12, 13]. One should note that being

Figure 5: Focal region representation.
Adapted from [14].
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ultrasound a real-time imaging method, the anatomical structures are displayed as sequential frames

over time, meaning that temporal resolution is also an ultrasound imaging property. Representing

the ability of the system to identify and distinguish between instantaneous events of moving struc-

tures, the temporal resolution is the time passed between frames. It can be increased by reducing

the depth of penetration, reducing the number of focal points, or reducing the number of scan lines

per frame [14].

Multiple types of transducers exist, being the main difference between them the shape obtained

by the various piezoelectric elements placed together. Depending on the shape, the transducer will

be more adapted to certain parts of the human body and therefore used for different purposes.

For abdominal imaging, curvilinear transducers are the most used due to their penetration capability,

allowing the observation of deeper structures and generating a pie-shaped field of view. For small and

difficult access regions, the phased array is the ideal choice. It is mostly used in cardiac imaging,

resulting in a pie-shaped image as well. Linear array transducers are best for analysing muscles,

nerves, soft tissue, and vasculature, displaying a rectangular image. Lastly, endocavitary transducers

are used inside a body cavity and the resulting images have a wide angle (up to 180 degrees).[13]

With the choice of the transducer, the frequency range is chosen inherently, although the expert can

select a frequency between certain permitted limits [13].

Two other features of ultrasound, besides frequency, that must be taken into consideration for the

correct acquisition of the images are gain and depth. Gain, also termed brightness when talking about

the resulting images, should be the minimal required to highlight the targeted structures without

saturating the image. Similarly, depth must also be kept as low as needed to display the target

anatomy only. When decreasing depth, the structures will appear amplified, and the resolution is

increased. In opposition, scanning at higher depths will decrease frame rate and image resolution.

As gain decreases with depth, ultrasound imaging employs time-gain compensation. This is called

the attenuation phenomenon and is responsible for the different values of the amplitude of identical

structures at different depths. The time-gain formula intends to counter this natural attenuation,

keeping the gain uniform along the field-of-view (FOV) [10, 12, 13].

To obtain spatial information from the ultrasounds, instead of using a continuous electrical signal

to power the transducer, pulses are applied to discover information about the human body, which

can be done in three different manners. A-mode, also known as amplitude imaging, is based on the

pulse-echo principle. A line is scanned through the target, and it utilises the transducer as a receiver

immediately after the pulses were emitted, and the reflected and scattered waves that are identified

by the crystal are converted and displayed as a time-dependent function. Note that the concept of

time in ultrasonography is equivalent to depth since the velocity of sound is fairly constant within the

tissue. M-mode, motion imaging, consists of the A-mode measure repeated, capturing the movement

of objects over time, focusing the ultrasound beam on a stationary location. The third way to present

the acquired information is the B-mode, brightness imaging. This two-dimensional (2D) image is
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possible with the translation of the transducer between two A-mode acquisitions. If this measure is

repeated in time, an image sequence (or ultrasound video) is obtained. The name brightness imaging

comes from the physical representation of a brightness point in the image since amplitudes from the

returning ultrasound are proportionally displayed as different brightness values. In clinical ultrasound,

although A-mode and M-mode are utilised, B-mode is the most widely employed, particularly in lung

ultrasound (LUS) [12, 13].

Ultrasound image generation is based on several assumptions. It is assumed that the only source

of sound waves is the transducer, that the sound wave travels linearly and at a constant velocity, that

the tissues in the body are uniform and that each reflector will produce one single echo. When this is

not verified, the phenomena that occur are named artifacts. Artifacts are any divergence from these

suppositions. Their occurrence can provide useful information for diagnostics and their presence

may be confirmed by shifting the transducer, as body structures will remain visible, but the artifacts

will alter.

1.3.2 Ultrasound artifacts

Ultrasound artifacts can be an asset in the interpretation of US images. Structures that reflect

strongly, such as calcifications, produce brighter reflections and are titled echogenic. Contrarily,

hypogenic areas of the image are characteristic of weak reflection structures, like blood. However, in

ultrasound imaging, to correctly perceive anatomy and findings, one must be aware of differences in

speckle pattern or texture.

Some artifacts common to ultrasonography, in general, are shadowing, acoustic enhancement,

mirror images, reverberation, ring down, and comet tail. Shadowing (Figure 6) is a highly common

artifact that exists when the emitted sound waves are mostly reflected or absorbed at the interface

(a) (b)

Figure 6: Shadowing artifact.
(a) Illustration of an US beam encountering a strong attenuator. (b) Example US image showing a shadowing

artifact (arrow). Adapted from [15].
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and has two main causes. The first cause is the presence of air, as when the incident pulse faces an

air-tissue interface most of the sound wave is reflected with only a small portion being transmitted

through the interface to the proceeding air, with whom it will interact and create secondary reflections

that will travel back to the transducer. It also occurs when facing osseous structures and calcifications,

with strong attenuators. Since these elements are porous, there is an increase in the absorption of

the sound wave. The first mentioned reason creates a “dirty shadowing” appearance, while the

second translates into a “clean shadowing” [12, 13, 15].

Posterior acoustic enhancement (Figure 7) is a helpful artifact in the identification of structures

containing fluid or other weak attenuators. Since sound waves are less attenuated by fluids than

solids, when the incident pulse is passing through fluid-filled structures, like cysts, the result will be

stronger reflections and a brighter appearance [12, 13, 15].

Mirror imaging (Figure 8) is another artifact caused by a highly reflective surface that is smooth,

like an interface between air and soft tissue. This may happen, for example, in the base of the right

(a) (b)

Figure 7: Posterior acoustic enhancement artifact.
(a) Illustration of an US beam encountering a weak attenuator. (b) Example US image showing a posterior

acoustic enhancement artifact (arrow). Adapted from [15].

(a) (b)

Figure 8: Mirror image artifact.
(a) Illustration of an US beam encountering a reflective interface. (b) Example US image showing a mirror

artifact (arrow). Adapted from [15].
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lung, since it is an air-filled structure. The base can serve as a mirror on abdominal ultrasonography,

creating a duplicated image of the liver or diaphragm [12, 13, 15].

Reverberation (Figure 9b) is an artifact that happens when there is a reflective surface in the near

field, such as cystic structures, from which a reflective sound wave is created. This wave is strong

enough to be reflected in the transducer and again into the body, interacting with the surface multiple

times and generating an effect called ping-pong. When the two interfaces that create the reflective

surface are very closely spaced, the sequential echos may be so near that it becomes impossible

to discern the individual signals. This will result in a display of hyperechoic reflections that have a

narrow base and form a ray that goes from the structures to the bottom of the screen, with a triangular

shape, named comet tail artifact (Figure 9c) [12, 13, 15].

In the presence of air bubbles with fluid encapsulated between them, the excitation of the fluid

can cause the fluid to resonate, creating a continuous wave to be generated and transmitted back

to the transducer with the original echo, forming a set of bright echoes deep to the air, called ring

down artifact (Figure 10). It is common when analysing an air-filled bowel or when there is metal in

the region of the scanned image [12, 13, 15].

(a) (b) (c)

Figure 9: Reverberation artifact.
(a) Illustration of an US echos being repeatedly reflected.(b) Example US image showing a reverberation

artifact (arrow). (c) Example US image showing a comet tail artifact (arrow). Adapted from [15].

(a) (b)

Figure 10: Ring down artifact.
(a) Illustration of an US beam encountering a ring of bubbles with fluid trapped in the middle. (b) Example

US image showing a ring-down artifact (arrow). Adapted from [15].
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These fundamental concepts are essential for a correct and accurate interpretation of pulmonary

ultrasound images. Even though lungs are filled with air, a fact usually considered prohibitive for US

imaging, with the interpretation of these artifacts, physicians, paradoxically, transform the acoustic

limitations of this modality into a diagnostic advantage [8].

1.3.3 LUS image interpretation

As mentioned in previous sections, ultrasound waves need a medium to propagate, so one could

naively believe that their use is very limited in lung imaging. Any process within the lung that is

surrounded by an aerated lung will not be shown on the ultrasound images since the transmission

of the ultrasound is blocked due to a high acoustic mismatch with the surrounding tissue. Although

having these limitations, lung ultrasound relies in great part on the analysis of artifacts. Indeed, an

intensivist specialised in ultrasound imaging can interpret several findings and pathologies by relying

on ultrasound artifacts, some of which are characteristic of a normal healthy lung, while others are

associated with certain pathologies. Ultimately, LUS has proven its value in the evaluation of different

acute and chronic conditions, being a portable, safe, and quick-performing technology.

An ultrasound of a normal lung presents only one key structure, the pleura. A pleural line is

a horizontal hyperechoic line that appears below the rib line. Doubts still exist concerning if the

visualised line is the pleura itself or a reflection artifact at the interface between alveolar air and the

soft tissues of the thoracic wall. Still, the artifacts surrounding the pleural line provide important

information. The pleura moves in sync with respiration, and this dynamic movement observed in

normal lungs is called lung sliding, representing the free movement of the visceral pleura against

the parietal pleura. To correctly locate the pleura, professionals rely on another artifact, the bat sign

(Figure 11a). When the US probe is positioned longitudinally, the upper and lower ribs will form the

wings of a bat and, a little deeper, the pleural line will form the belly of the bat. When encountering

(a) (b) (c)

Figure 11: Example US images with artifacts distinctive of a normal lung.
(a) Bat sign. (b) A-lines. (c) The presence of the bat sign and A-lines simultaneously. Adapted from [13, 16].



1.3. POCUS 14

the pleural membrane (an interface of different acoustic impedance), the ultrasound wave will be

reflected by the pleura and bounce back and forward with the transducer, resulting in hyperechoic

horizontal lines arising at regular intervals (whose space is the same as the distance between the

probe and pleural line) and visible deeper than the pleural lines. These artifacts are known as A-lines

(Figure 11b), and although their presence is not necessarily indicative of a normal lung, their absence

is often a sign of existing pathology [8, 9, 13].

An artifact that works as a pathological indicator is the B-line (Figure 12a). B-lines are hyperechoic

lines, deriving from the comet tail artifact and arising vertically to the pleural line. They result from a

reverberation artifact due to the juxtaposition of thickened interlobular alveolar septa and air within

the alveoli and move coherently with lung sliding. The number of B-lines detected is directly related to

the disease severity. If the number of B-lines is higher than or equal to three, we are in the presence

of a positive B-line pattern and, in the reverse situation, of a negative B-line pattern. Pleural effusion is

another disease marker that presents itself as a dependent dark zone in the pleural cavity. Besides

being a pathology itself, the manifestation of this artifact can uncover other underlying diseases

(Figure 12b). The quad sign is an artifact that can indicate pleural effusion, confirming the presence

of free fluid. It consists of the pleural line (upper limit), the lung line representing the visceral pleural

(lower limit), and the two rib shadows (right and left limits) (Figure 12c). One last artifact is the lung

pulse. Resulting of the propagation of the heartbeats to the adjacent lung, the lung pulse will not

be detected when the pleural cavity is filled with air or the lung is overinflated. Like lung sliding, it

cannot be observed in a still image [9, 13].

As mentioned, LUS interpretation is based on artifacts. For example, a normal healthy lung is

characterised by lung sliding, presence of A-lines or scattering, and absence of any pathological

finding. Although commonly not present, isolated B-lines can be found in some lung regions in

healthy lungs. Lung sliding along with A-lines alone are characteristic of a “dry” lung, excluding the

possibilities of pulmonary oedema, pneumonia, and pneumothorax. However, an A-profile can also

appear in some diseases like asthma and pulmonary embolism. Since a pneumothorax is an air

accumulation in the pleural cavity, the presence of B-lines rules out this pathology completely. In

(a) (b) (c)

Figure 12: Example US images with artifacts distinctive of lung pathologies.
(a) B-lines. (b) Pleural effusion. (c) Quad sign. Adapted from [13].
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addition, the absence of lung sliding and lung pulse are also identifiers of the disease. Atelectasis,

on the other hand, is diagnosed by the absence of lung sliding and the existence of a lung pulse,

while alveolar-interstitial syndrome is a fluid condition, and consequently manifests as multiple B-

lines. However, relying solely on ultrasound examination is not sufficient to discriminate between

atelectasis and consolidation since both pathologies have similar artifact presentation. Pneumonia

is another fluid disorder, recognised by the existence of consolidation (which is not considered an

artifact but a finding on LUS; Figure 13), the presence of pleural effusion and the omission of lung

sliding [8, 9, 13].

As implied above, there is a natural hierarchy in lung pathology diagnosed by LUS. More precisely,

if any of the artifacts considered pathological are present, the presence of A-lines is irrelevant to the

diagnosis. Similarly, while a negative B-line pattern and pleural irregularity are artifacts indicative of

a pulmonary alteration, without any additional pathological artifact, these are not enough to diagnose

pathology. This hierarchy can also be transposed to the pathologies within themselves. For example,

since atelectasis and consolidation are within the most severe pathologies, they superimpose the

remaining pathologies.

LUS is an imaging technique of value for bedside evaluation in critical care. Being a cost and time-

efficient technique to diagnose multiple pulmonary pathologies, lung examination by ultrasound can

be part of a protocol of action, hence the point-of-care lung ultrasound. To facilitate the examination

process, a set of protocols exist that can be followed and a number of pulmonary views should be

taken in order to perform a correct evaluation.

1.3.4 LUS protocol and fields

The use of POCUS as a pulmonary diagnostic tool has been increasing in recent years due to

its availability and easy access. The ability to be performed in real-time at the patient’s bedside is

an advantage for critically care, emergency departments and trauma surgery. The POCUS approach

can be used as an addition to standard testing, or even substitute for some, not so safe, standard

Figure 13: Example US image of a lung consolidation.
Adapted from [13].
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tests. To aid the interpretation of the LUS exam, physicians have come up with a set of decision trees.

These present the correct sequence and the combination of sonographic signs that either confirm

the disease or discard it, with the Bedside Lung Ultrasound in Emergency (BLUE) protocol being

an example (Figure 14). BLUE is a fast protocol, in which the examination should take under three

minutes, and its purpose is to provide a flowchart for the diagnosis of acute respiratory failure [17].

To perform the pulmonary assessment, there are standard views, or ultrasound windows, normally

used to evaluate lung and pleura. These act as a guideline and considering that the quality of the

performed exam is highly user-dependent, the existence of a standard procedure normalises the

examination. Since some artifacts may not be visualised in all parts of the lung and, if there is a

pathology, it may not be identifiable across the entire lung, multiple windows (or fields) are usually

acquired. Although variable across hospitals or clinical protocols, the lung ultrasound exam may be

composed of eight, ten or even twelve fields. In the present project, the focus will be on the 12-field

protocol (Figure 15) , given the additional views provided.

Roughly, for the purpose of the exam, one can observe each lung as divided into two sections: the

superior and the inferior. Each zone is viewed from two different perspectives, anterior and posterior.

The lateral portion of the lung is visualised with, also, two angles, one to focus on the parenchyma

and another one on the diaphragm. In summary, for each lung, six fields are examined: anterior

superior (AS), anterior inferior (AI), posterior superior (PS), posterior inferior (PI), lateral superior (LS)

and lateral inferior (LI). Additionally, this protocol includes two extra views, one of the anterior superior,

usually with a lower acquisition depth which aim to assess lung sliding (SL), and one of the lateral

Figure 14: BLUE protocol flowchart.
Adapted from [18].
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Figure 15: Twelve fields of LUS examination.
The prefix ’RL’ is indicative of a right lung window, and the prefix ’LL’ of a left lung window. Adapted from [19].

inferior with a different inclination, focusing on the diaphragm insertion (DI). Each of these fields is

analysed for both lungs [8].

1.4 Mo t i v a t i o n

The physics behind ultrasound generation and propagation into information ready to be used are

complex. However, its application in clinical practice is much simpler and more direct. A basic un-

derstanding of how ultrasound works is a necessity for practitioners who use point-of-care ultrasound,

especially in emergency scenarios, to make accurate and rapid decisions [10].

Lung ultrasound interpretation relies on common ultrasound phenomena since the medium is not

favourable for wave propagation. Consequently, it is the clinician’s responsibility to correctly interpret

the images, as they portray a false anatomical representation. Hence the need for specialised training

to perform a correct assessment with this imaging modality.

To date, some proposals have emerged to automatise ultrasound interpretation. Some authors

focused their work on the identification of individual artifacts [20–23], while others concentrated their

research on developing classifiers for a set of non-overlapping pathologies [20, 24]. However, most

of the existing work does not contemplate multi-label problems, lacking applicability. Indeed, these

fail to faithfully represent the reality of LUS, which may comprise multiple findings, all of which are

relevant to reach a conclusion regarding the presence of a given pathology.

In clinical settings, the experts draw conclusions by observing the ultrasound throughout time.

However, video-based approaches for LUS interpretation are still underexplored. Frame-based deep

learning (DL) classifiers are a commonly used model to handle the data [20,22,25,26] and, in some

cases, precede algorithms that aggregate the classifier’s results to obtain a video-level conclusion

[21, 24, 27]. However, only a few opt for networks that work directly with raw LUS data [23, 28].

Such information, lost in the previously mentioned implementations, is important since the inherent

movements associated with certain findings are crucial for their appraisal.
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Moreover, a LUS examination includes multiple videos, from different fields. Thus, an evaluation

that aggregates the extracted information from all videos is favourable to obtain a global clinical

outcome.

1.5 A im s a n d c o n t r i b u t i o n s

This dissertation focuses on the development of a computer-assisted interpretation and diagnosis

algorithm for lung POCUS videos, to be an asset in clinical practice, specifically in emergency rooms

or remote locations where specialised personnel is not present. To achieve this goal, the intent is to

automatically interpret the artifacts-based findings in videos of LUS. The main contributions are thus

as follows:

1. A survey of the state-of-the-art LUS interpretation algorithms and video handling techniques;

2. Development a framework that automates LUS video interpretation and diagnosis, which in-

cludes:

a) Preparation of a large annotated dataset.

b) Development of a custom pre-processing algorithm.

c) Development of a flexible DL-based classification framework for automatic interpretation

of videos and identification of relevant LUS findings, which can be used in a supervised

or semi-supervised setting and works for multi-class (rough video classification) and

multi-label (detection of findings) problems.

3. Validation of the developed algorithms.

1.6 Ou t l i n e

The current document is composed of five chapters. In the current chapter, a clinical back-

ground was presented focused on the respiratory system, as well as lung pathologies and diagnostic

techniques. The chapter culminates with the presentation of the project’s motivation, goals and

contributions. The following chapters further develop the introduced topics.

The second chapter starts by introducing some fundamental concepts of deep learning and rel-

evant sub-classes, and afterwards presents the literature review on the state-of-the-art deep learning

models for lung ultrasound interpretation.

The third chapter presents the developed methods of the proposal. It comprehends the data pre-

processing algorithm, both supervised and semi-supervised training approaches, and the proposed

dataset-specific model ensembling and post-processing routines.
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The fourth chapter is dedicated to the validation of the proposed framework and each one of

its core blocks. To do so, one considered both multi-class and multi-label scenarios with the latter

investigated under both supervised and semi-supervised settings.

Finally, the fifth chapter concludes the work and presents the possible refinements and future

directions of the proposal.



2

PULMONARY ULTRASOUND INTERPRETATION

This chapter focuses on relevant and fundamental concepts for the understanding of the project.

Since the aim is to develop an automatic interpreter of LUS videos using DL, its basic concepts will

be introduced and explained. An overview of the state-of-the-art techniques and models for image

interpretation is then presented, with special attention to lung ultrasound and/or video-oriented inter-

pretation, followed by a brief outline of some of the most common DL-associated problems and tech-

niques on how to handle them. This chapter culminates with a brief compendium of semi-supervised

learning techniques and their respective core ideas.

2.1 D e e p l e a r n i n g

Artificial intelligence is based on the theory of computers being able to perform tasks that would

normally require human intelligence. Machine learning (ML) is a sub-field of artificial intelligence that

aims to give computers the “ability to learn without being explicitly programmed” for a certain task.

ML makes it possible for the computer to build a mathematical model based solely on given data,

recognise patterns within it, constantly learn and improve, and make predictions [29]. Among the

possible tasks, ML is frequently used to develop regressors or classifiers, in which known data is

fed to the system and the algorithm’s capacity is verified by testing it with unknown data. However,

ML systems are often not capable of working with raw data and instead operate on hand-crafted (i.e.

human-dependent) features [30, 31].

Deep learning (DL) is a type of ML with a structure similar to the human mind. It intends to,

just as ML, analyse data and draw conclusions, but try to employ a logic comparable to the human

one and, thus, much more complex than ML. Indeed, DL has birthed the development of deep

neural networks, highly connected networks that pass information through nodes, simulating the

distribution of information through neurons in biological systems. The distinctive detail of DL is that

the programmers are not defining the features fed to the system,instead, the system learns these

features directly from the raw data. The whole process is done end-to-end, from raw input to intended

output. Consequently, DL has a much higher necessity for large amounts of training data [29, 30].

20
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The best form to evaluate how well the model is able to generalise when presented with new data

is to try it with new cases. To that end, the data must be split into three sets: training, validation

and test. As implied, the model training will be performed in the training set and the test set is

used to test the model, verifying its capability to generalise and, overall, how it responds to unseen

data. The validation set is used to evaluate the candidate models and select the appropriate one.

Multiple trainings are carried out with multiple hyper-parameters, and the model that presented the

best results when applied on the validation set is selected [32].

Regarding the information provided with the data, there are two main groups of deep learning ap-

proaches, depending on whether the labels (the desired algorithm’s output) are or are not at one´s

disposal. Supervised learning implies a set of input-label pairs are provided so that the network

can be directly trained to predict the predetermined output. In the polar opposite, there is unsuper-

vised learning, when the input data is unlabelled and one relies on pattern recognition for clustering

and associating the data within itself. Self-supervised learning is inserted in unsupervised tech-

niques, in the sense that no target is defined a priori; however instead of finding patterns, it intends to

solve tasks commonly associated with supervised learning, such as image classification. By creating

an alternative task with labels produced by the machine itself, and then, after the underlying features

of the dataset are learnt, leveraging of those learned parameters, the model is trained to predict the

wanted output. In the middle of the spectrum is semi-supervised learning, in which part of the

dataset is labelled but a larger portion is unlabelled [33, 34].

2.1.1 Artificial neural network

The human brain possesses characteristics that are impossible to reproduce. One of the most

sought-after aspects of the brain is its ability to learn without any programming. Artificial neural

networks (ANNs) were based on this biological behaviour and its organisation in neurons. Brain

functioning is highly dependent on the signals received by synapses in each neuron, that controls

them. Analogously to the brain, an ANN is formed by a network of artificial neurons in a computer.

These neurons are connected by links that provide weights to each input, an adder sums these

weights and feeds them to the activation function. The activation function is a monotone function

that maps the output of the neuron. In analogous terms, a biological neuron is composed of dendrites,

which correspond to the links and respective weights in an artificial neuron, a cell body, the biological

equivalent to the weighted sum, and an axon, the activation function (Figure 16) [35, 36].
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(a) (b)

Figure 16: Biological neuron vs. artificial neuron.

Adapted from [37].

Basic components

One of the first and simpler ANN is the perceptron. The perceptron has only a single layer and is

a binary linear classifier. Introduced in 1957 by Frank Rosenblatt, the perceptron was, in the words of

its creator, “the first machine capable of having an original idea” [38]. Notwithstanding its innovation

factor, perceptrons are incapable of solving complex problems, which led to the development of the

multi-layer perception, which consisted of the stacking of multiple perceptrons. In this network, the

data is fed via the input layer, which passes the information to the subsequent layers. This information

is processed by the weighted interconnections and then returned via the output layer. Between the

input layer and the output layer, there are hidden layers, creating a multi-layer neural network, also

called a feed-forward network. A network containing a large stack of hidden layers is called a deep

neural network (DNN). When each neuron receives as information the outputs from all previous

neurons, the layer takes the title of fully connected layer (or dense layer), as exemplified in Figure

17 [32].

Figure 17: Basic representation of a multi-layer neural network.
Adapted from [39].
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Although the premise of ANNs was promising, the research encountered a stalemate: there was

no appropriate learning algorithm to train multi-layer perceptrons. Hence the emergence of the

backpropagation training algorithm, which is still used nowadays. Training begins with the random

initialisation of the hidden layer’s connections weights, to allow backpropagation to train a diverse

group of neurons. Each training instance (or sample) is fed to the network and passes through

each layer, from the input to the output, obtaining the first prediction based on the seen data –

the forward pass step. The output is then compared to the known result, that is, the label of the

respective sample, and a measure of error is calculated (termed loss). Then, the algorithm goes

through the architecture in reverse and the error from each connection in measured – reverse pass –

and, ultimately, the connection weights are adjusted with the purpose of reducing the error – gradient

descent step [32, 36].

To understand the algorithm on a deeper level, there are a few details that should be further

explored, namely activation functions, losses, optimisers and regularisation. All of them influence

the networks’ ability to minimise the error, i.e. the network’s expressivity.

The activation function plays a fundamental role in the learning ability. Without these functions,

the neural networks would behave as linear regression models and would not be able to handle more

complex data such as images, videos, or audio. Activation functions make it possible to recognise

complex mappings in large non-linear datasets. There are two major groups of activation functions:

the sigmoid functions, just like the logistic sigmoid function, hyperbolic tangent and arctangent; and

the piece-wise linear functions, such as the rectified linear unit (ReLU) or LeakyReLU (a variant of

ReLU). Some examples of these functions are present in Figure 18 [40].

Sigmoid functions are bounded functions that have only one inflexion point. Having the graphical

representation of an “S” shape, these functions are mathematical approximations of step functions,

being faithful to the correlation with the biological neuronal activation. Since they constrain the values

to a certain interval (hence the name bounded or squashing functions), they are more susceptible

to suffering from either vanishing or exploding gradient problems. Briefly, these issues are linked to

gradient descent. The vanishing gradient problem, as the name implies, is associated with gradients

diminishing as the algorithm progresses to deeper layers, making the weights unchanged and, as

(a) (b) (c) (d)

Figure 18: Graphical representation of several activation functions.
(a) Sigmoid function. (b) Hyperbolic tangent function (or tanh). (c) ReLU function. (d) Leaky ReLU function.

Adapted from [39].



2.1. Deep learning 24

a consequence, the training does not converge to an optimal result. The exploding question is the

exact opposite: the gradients increase and the weights attributed to the connections get too large,

diverging the algorithm. The piece-wise linear functions can be presented as a possible solution

to this question. Although not a perfect approach as they converge to zero in the limit of infinitely

small values functions like ReLU avoid the vanishing/exploding gradient in the limit of infinitely large

values. To also tackle infinitely small values, the LeakyReLU appeared, avoiding the problem of dying

ReLUs [32, 40, 41].

For the output layer of a network, the most common functions used are softmax and sigmoid.

The softmax function (Equation 1) is commonly used in multi-class problems, normalising the input

vector ( 𝑧 ) into a probability distribution, by guaranteeing that the sum of the elements ( 𝑖 ) of the
output vector equals 1. The sigmoid (Equation 2) is applied in binary and multi-label problems and

bounds the value of each class between 0 and 1. The output of the network will thus resemble the

probability of each element belonging to each class. In the softmax case, the class with the highest

value is assumed to be the prediction result of the network for said instance. However, for sigmoid,

a threshold is defined, and every class whose value surpasses it belongs to the output labels [32].

𝜎( 𝑧 )𝑖 = 𝑒 𝑧𝑖

∑ 𝐾
𝑗=1 𝑒 𝑧𝑗

(1)

𝜎(𝑧) = 1
1 + 𝑒−𝑧 (2)

Loss functions are methods that evaluate how adequately a specific network models the input

data. In other words, it evaluates the candidate model. The objective is to minimise the result of this

function, which can be controlled by the change of the weights’ values [32].

To minimise the loss function, one can implement optimisers, i.e. algorithms used to update

the weights iteratively. There are three gradient descent computation variants, which differ only

on the amount of data they require, namely: batch gradient descent, or vanilla gradient descent,

which performs an average over the gradients of the entire dataset and uses that value to update the

weights, which for large datasets becomes prohibitively costly in terms of time and memory, and thus

rarely used in DNNs; the stochastic gradient descent, which updates the parameters for each training

example; and, lastly, the mini-batch gradient descent approach that, as the name suggests, performs

an update for every mini-batch (data subset used for one iteration). Irrespective of the amount of

data used, optimisers often present a fixed learning rate (a parameter controlling how much the

weights are adjusted in relation to the loss gradient), which can difficult the tuning of the network’s

training and often hampers its convergence. To tackle this and allow an adjustable convergence

during training, optimisers like Adam [42], Adagrad [43] and Adadelta [44] have since appeared.

The ability to create a successful network for a specific task is achieved by fine-tuning these para-

meters. Notwithstanding, with the advancements in deep learning some architectures have been
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developed with a specific aim, and one particular type of architecture is notorious for its capability of

handling images, the convolutional neural network (CNN).

Convolutional neural networks

CNNs are one of themost popular deep neural networks, showing excellent performance on some

complex visual tasks, such as object recognition, image classification, and semantic segmentation.

However, CNNs are not restricted to visual perception, proving to be successful in voice recognition

or natural language processing applications also [45].

CNNs, much like ANNs, are derived from a biological functioning, the brain’s visual cortex. David

H. Hubel and Torsten Wiesel’s experiments demonstrated that many of the neurons of the visual

cortex had small receptive fields. These neurons would only react to stimuli in a limited section of

the visual field [32]. The receptive fields of multiple neurons could overlap, and when merged defined

the entire visual field. Some differences in the focus of the neurons were also discovered, since two

neurons may have the same receptive field but react to different aspects of the image; for example,

to different line orientations. These studies eventually evolved into CNNs [32, 45]. The success of

CNNs is due to the fewer connections they required when compared to fully connected networks with

an equal number of neurons, facilitating the training and, by reducing the number of connections,

obtaining a smaller model.

The convolutional networks are assembled by two primary blocks, the convolutional layer and the

pooling layer. Figure 19 is a representation of a CNN, which comprises convolutional layers, followed

by a ReLU activation, and then a pooling layer. This assembly of layers can be repeated various

times, making the network deeper. After this block, a feedforward network is often added, consisting

of one, or more, fully connected layer(s) and, in the end, a layer to estimate the output (e.g., a

Softmax). While the former blocks are employed to extract features (feature learning phase), the

latter is responsible for the prediction (classification phase).

Figure 19: Representation of a basic CNN.
Adapted from [46].
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In a convolutional layer, as mentioned, the neurons are not connected to each of the pixels in

the input image; instead, they connect to pixels in their receptive field. The first convolutional layer

is usually responsible for the extraction of low-level features, such as edges and colours. By the

repetition of these layers, and by consecutively converting pixels within the receptive field into a

single value, a hierarchy is created, where, by the combination of lower-level neurons, neurons in

deeper layers discover more complex, abstract patterns, the so-called high-level features [32]. The

convolutional layer is based on the dot product operation between two matrices: the kernel and

the respective portion of the receptive field. The kernel, or filter, is a set of learnable parameters, a

representation of a neuron’s weights as a small image of the same size as the receptive field. Although

being spatially smaller than the image, the filter extends in depth to the number of channels of the

input data. During the forward pass of any training step, the filter slides through the image, producing

an image representation known as a feature map (or activation map). During training, and thanks

to the backpropagation algorithm, the convolutional layer learns which filters are better for the task

at hand and which combinations to perform in the next layers to obtain more complex patterns,

meaning that the CNN will be able to detect various features. The convolutional kernel has a set of

hyperparameters that include size, depth and stride. The size of the filter, as a rule, is smaller than

the image and is a square, while the depth is equal to the input data’s depth. The stride corresponds

to the number of pixels between consecutive applications of the kernel while sliding through the

input [32, 41].

The pooling layers are often placed after the convolutional layers, as depicted in Figure 19. Neur-

ons in the pooling layer receive the values of multiple feature maps from a certain location in the

previous layer and output a single value representing a summary statistic of the neighbour values

it receives. Its aim is to reduce computational load and memory usage. Despite having the same

hyperparameters as the convolution layer, pooling neurons do not comprehend weights, as it simply

aggregates the information received [32, 41]. Two of the most common pooling layers are the Max

Pooling and the Average Pooling, in which the output will be the maximum or average value within

the filter region, respectively [47].

Over the years, many new CNN architectures have been developed to solve real-world problems. In

medical imaging, both 2D and three-dimensional (3D) CNNs have been used to create prediction or

segmentation models, for example. Most of these networks are based on some well-known architec-

tures, like AlexNet [48], VGG [49], ResNet [50] and derivatives centred on dealing with 3D data such

as R2+1D and R3D [51], Inception [52], or even some more specialised like Models Genesis [53].

2.2 LUS i n t e r p r e t a t i o n

With the aim of building an algorithm that automatically interprets LUS clips, the obvious lane

is to focus on the development of deep learning classifiers. Although classifiers are not novel in
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medicine, video-based analysis is still an under-explored domain, particularly due to the necessity

of a larger amount of training data compared to frame-based classifiers. Combining that with the

fact that LUS is not the standard imaging modality for lung assessment, not a lot of research has

been made on this topic. Notwithstanding, there has been a crescendo interest in this topic with the

COVID-19 pandemic creating the need for a rapid and safe assessment. Since the SARS-CoV-2 lung

infection can be detected in ultrasound images, automatic interpretation algorithms for the detection

of COVID-19 have emerged recently [20, 23–27]

There are two main deep learning approaches for medical video analysis found in the literature:

one separates the video frame per frame and aggregates the classification result to obtain a video-

level outcome, and the other uses the video itself as input to the network, i.e. as a 3D data matrix.

Most of the proposed networks are CNNs, often concentrating the innovative aspect on the pre- or

post-processing phase rather than altering the network architecture itself. This concept of focusing

on introducing domain knowledge has gained particular attention over the last few years.

Although clinical ultrasound is a time-dependent function, as a conclusion can usually be reached

only by visualising the anatomy across time to assess movement, some studies opt to concentrate on

the interpretation of still images, i.e. a frame-oriented classification approach [20, 21, 27]. Either in

the attribution of COVID-19 severity scores [27], the detection of pathologies (COVID-19, pneumonia

and healthy) [20] or in the identification of image findings (B-lines) [21], most authors use a CNN as

a base classifier. VGG-16, or an adaptation of it, is a recurrent option, as seen in Born et al. [20] and

Sloun et al. [21]. Frank et al. [27], however, although performing tests with VGG-16, obtained the

best results with ResNet-18 when developing a severity assessment network. Only the convolutional

part of VGG-16 was utilised in [20], with an additional hidden layer of 64 neurons, while in [21]

the six convolutional blocks were maintained, with the difference of each having two convolutional

layers only. An alternative approach was followed in [27], where the authors did not change the

VGG architecture but focused on its input. With the intent of creating a disease severity classifier,

the network was designed to receive three channels as input, making it possible to pre-train the

network on a natural Red-Green-Blue (RGB) colour model, 3-channel, images (Figure 20). Hereto,

the raw image, pleural line and vertical artifacts masks were automatically created using traditional

image processing techniques and concatenated to create a 3-channel input, targeting a more domain-

specific model.

Still, within frame-based classifiers, investigations have been made concerning video classifiers

based on frame classification aggregation [22, 25, 26]. The work presented in Roy et al. [25] pro-

posed an algorithm that automatically predicts the pathology score of each frame of a LUS clip and

aggregates the scores to generate a disease severity score at video level. Taking advantage of a

frame-level and video-level labelled dataset of LUS clips from patients with COVID-19, the network of

the classifier, besides predicting the score, also identifies the regions containing the LUS artifacts.

This is possible by leveraging a spatial transformer network, which is used to make two different crops
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Figure 20: Framework for LUS interpretation based on domain knowledge integration.
Proposed in Frank et al. [27].

of the same frame and enforce the network, a CNN, to give similar predictions of the two. The convo-

lutional network is similar to the one described in [21]. For the aggregation section, a uninorm was

utilised. Resorting to the same network, Tsai et al. [26] developed a pleural effusion binary classifier

for the detection of COVID-19. The results obtained with a frame-level or video-level labelled dataset

were compared and it was demonstrated that they were similar. This is viewed as an advantage,

especially for clinicians, since the video-level annotation is much simpler and less time-consuming.

In [22], Arntfield et al. implemented a frame-based classifier of A-lines and B-lines, which was tested

both at frame- and video-level. The classifier comprised a CNN network, composed of the first three

blocks of VGG-16. If all frames of a LUS clip were classified homogeneously as either A-lines or B-

lines, the classifier was applied and the test would be made at frame level. Otherwise, the classifier

would be combined with a two-threshold-based algorithm, consisting of a classification threshold and

a contiguity threshold applied over the network’s prediction, and it would be performed as a clip-

based test (Figure 21). With a different approach for temporal aggregation, Barros et al. [54] used a

pre-trained CNN network as a feature extractor for each of the 20 frames of a video and connected

the multiple feature maps temporally through a long short-term memory (LSTM) layer followed by

two dense layers that predict the intended output (COVID-19, pneumonia or healthy subject). LSTMs

are a type of recurrent neural network and, as such, have the ability to learn long-term dependencies,

due to which their use in video processing has been increasing. Although having a small dataset

(185 videos), the authors in [54] concluded that a hybrid network consisting of a CNN and a LSTM

provided better results than a spatial-only approach, and with less trainable parameters.

On what concerns video-based techniques, most of the works use a 3D CNN as backbone for

handling the raw data, i.e the LUS clip [23, 28]. Baloescu et al. [28] used this model for a B-

line quantification classifier, while Edabi et al. [23] incorporated the convolutional network in a two-

stream architecture. Each stream was composed of a 3D CNN (I3D), with one receiving the RGB

image while the other expected the image’s optical flow. The two outputs were combined to classify

the image as having either A-lines, B-lines or consolidation/pleural effusion. To compare the two
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Figure 21: Flowchart of the dataset creation, labelling, data allocation and training used in Artnfield et al.

last mentioned approaches, Bornet al. [24], based on his previous work [20], presented a side-by-

side comparison of two networks, a frame-based model with VGG-16 as the backbone and a video-

based model using a 3D CNN (Models Genesis), for a LUS pathology classifier (COVID-19, bacterial

pneumonia, viral pneumonia and healthy). To achieve a video result in the frame-based classifier,

and differently from [25], the authors proposed a confidence estimate selector that discards frames

with low confidence before summarising the frame result. The frame classifier outperformed the

video one. However, the authors stated that 3234 images were used for the first while only 770

videos were fed as training data in the latter, raising the hypothesis that the conclusions may have

been constrained by the dataset.

Regarding data augmentation, most of the mentioned works applied the standard transformations,

i.e flips, small rotations, translations, crops, contrast and brightness variations. Notwithstanding,

Baloescu et al. [28], although applying those augmentations, added a time reversal transform in

their algorithm. Since the lung movement does not have a relevant sequence, this alteration would

not compromise the B-line quantification, which was the purpose of their work.

In terms of adaptability to the domain, some authors have focused part of their work and research

on preparing the data according to the topic of analysis. Both [27] and [28] dealt with the B-lines

artifact. Although not giving the appearance due to the use of convex probes, this artifact is orthogonal

to the pleural line and in the direction of the ultrasound beam. As a result, these authors decided

to transform the LUS clip to a consistent rectilinear format (converting from Cartesian coordinates

to polar ones), so that the lines would be vertically aligned with the image axes. This allows for a

simpler detection, since their algorithm searches for bright columns in the lower half of the frame,
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Figure 22: Examples illustrating the pre-processing of frames to rectilinear format in Baloescu et al.

where there is less noise present. For [28], this transformation permitted the standardization of the

data across different formats.

2.3 C ommon ch a l l e n g e s w i t h CNNs

One of the most important tasks to solve when facing a deep learning problem is the understand-

ing of the data. There are a set of characteristics that the dataset must comprehend to be able to

train a successful algorithm. Most networks require a substantial amount of data in order to work

properly, but a big dataset is not enough. It is also crucial that the data is representative of the cases

that we intend for the model to generalise for; in other words, it must be a representation of the

population. Conjointly, the fewer errors, noise and outliers a dataset has, the better its chance of

performing as desired [32, 55].

However, a perfect dataset is not commonly achievable and, as such, there are certain methods

to handle these challenges. One of the most frequent problems one encounters in deep learning is

overfitting. This is when a model fits too perfectly the training data and lacks the ability to generalise

to unseen data, due to either a small dataset or a noisy one, or due to the high number of neurons in

the neural network. Regularisation is often applied to tackle this. Early stopping is one regularisation

technique, stopping the training when the loss function stops decreasing. Another method highly
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used is dropout, where some hidden neurons are randomly ignored during training. In short, at

every training step, a few neurons are excluded by setting their outputs to zero. The probability of this

occurrence is the dropout rate. With this technique, the performance of the algorithm improves as it

becomes less sensitive to small changes and, therefore, generalises better. L1 and L2 regularisation

are other options, and they take action by constraining the networks’ weights. Data augmentation is

the generation of new data by performing transformations to the existing data, increasing the number

of instances. A bigger dataset presents the network with varied information and, therefore, is more

probable that the algorithm learns to generalise, decreasing the overfit. Lastly, batch normalisation

(BN) consists of adding an operation to the model, before or after the activation function, zero-centring

and normalising the inputs, followed by scaling and shifting. The optimal values for these parameters

are computed by estimating the mean and standard deviation over the training set [32,41,55]. Across

the DL-based LUS interpretation literature, researches have often opted to use dropout [25,26], while

others employ data augmentation [24], or batch normalisation [54]. Others, like in [22], chose to

design a smaller architecture, making it less prone to overfitting.

Datasets are usually labelled by humans, which although often being experts in the topic are

susceptible to errors, especially since many of the labelling tasks are monotonous and tedious. These

wrongly classified and unreliable labels are named noisy labels and, usually, their presence leads to a

poorly performing model, due to the inability to generalise. Although the aforementioned techniques

to deal with overfitting may be helpful in certain scenarios, in others they might not be sufficient.

To this end, several studies have surfaced on learning under noisy conditions, however, most of

the applications are focused on categorical (binary or multi-class) problems, neglecting multi-label

problems [32, 55, 56].

For categorical settings, a plenitude of techniques has been proposed, from adjusting the network

by adding a noise adaptation layer, to sample selection or the implementation of robust loss func-

tions. As detailed in Song et al. [56], robust training can be depicted into four main groups: robust

architectures, robust regularisation, robust loss design and robust sample selection. While, as the

name implies, a robust architecture approach requires altering the network itself, the remaining can

be used in most of the already existing algorithms. Regarding loss functions, Zhang et al. [57] com-

bined the advantages of both categorical cross entropy (CCE), which performs well for difficult data,

and mean absolute error (MAE), which has the ability to generalise better than CCE, by creating a

generalised cross entropy (GCE). Symmetric cross entropy learning (SL) [58] is an enhancement of

the vanilla CCE by combining it with its symmetric, the reverse cross entropy. In a more generic ap-

proach, Ma et al. [59] proposed a framework to build a robust loss, denominated active passive loss

(APL), which combines two loss functions: one active, that only maximises the network’s output prob-

ability for the correct class, and one passive loss, that also minimises the probability of the remaining

classes [56,60]. For multi-label classification, the research is scarce, with label smoothing being the

main approach. Label smoothing is a regularisation technique that prevents the model from being
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overly confident by smoothing the one-hot vectors, instead of relying on them solely [56, 60]. Espe-

cially for LUS interpretation, not many authors have directly tackled this problem. However, when

dealing with frame inputs, some researchers, such as Frank et al. [27] and Roy et al. [25], opted to

remove what they considered ambiguous frames to minimise the noise in the dataset.

One other common problem encountered in deep learning classifiers is class imbalance, and that

becomes evenmore evident in a multi-label setting. This complication takes effect when some classes

have a higher number of samples than the other classes in the dataset. Under the influence of an

imbalanced dataset, the models will often overclassify the majority group, with the model showing

a higher probability to wrongly classify the minority group samples. This happened because the

update of the model’s weights is more influenced by the gradients resulting from the majority class

samples, translating in a decrease in the error of these samples but an increase in the remaining ones,

ultimately affecting the model’s convergence and generalisation. The most straightforward approach

to mitigate this issue relies on sampling methods, either by over- or undersampling. Oversampling

consists of, in a random manner, replicating samples from the minority class, which increases the

size of the dataset andmay be prone to overfitting. Undersampling is the exact opposite, in which data

from themajority class are discarded, balancing the number of samples per class but usually resulting

in a lower amount of total samples to train the model [61, 62]. Some loss functions have been

developed to allay this issue, like the focal loss [63]. This loss focuses on learning hard misclassified

samples and consists in a scaled cross entropy loss, in which said scaling factor diminishes to zero

with the increase of the confidence in the true class.

In conclusion, a big dataset with careful and precise annotations would solve many of the most

commonly found challenges in deep learning. However, the shortage is not, primarily, due to the

data itself, but to the labels required. Since many developers do not have the expertise to curate the

datasets themselves, and since it is a time-consuming task, one approach to enhance the datasets

has been to leverage semi- or self-supervised learning techniques. By taking advantage of the unla-

belled data, these algorithms work as a path to either learn the general features of the dataset or

even produce said labels.

2.4 S em i - s u p e r v i s e d l e a r n i n g

Semi-supervised learning (SSL), as mentioned earlier, is a meet-in-the-middle approach between

supervised and non-supervised learning. It provides an opportunity for the models to benefit from

unlabelled data, while simultaneously maximising the useful information provided by the, usually,

smaller labelled dataset.

Semi-supervised learning algorithms were constructed as a tool to improve the performance of

either supervised or self-supervised tasks by taking advantage of the insight granted by the other.

Considering a dataset 𝐷 that contains two subgroups, the labelled dataset, 𝐷𝑙, and the unlabelled
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one, 𝐷𝑢, SSL main intention is to leverage 𝐷𝑢 to train a model that would give the most similar

performance possible to the one that would be obtained if the whole dataset, 𝐷 = 𝐷𝑙 ∪ 𝐷𝑢, was

labelled. This is possible to be accomplished since 𝐷𝑢 may be able to provide information about the

structure of the dataset, or even about some features, that may lead to a better decision boundary

between the different classes that, otherwise, would not be known [64–67].

In the past few year, a plethora of SSL methods have emerged as a result of the growing interest

in leveraging DL algorithms in fields where labelled datasets are scarce or hard to obtain. Ouali

et al. [65] divided the semi-supervised algorithms into four subgroups: consistency regularisation,

proxy-label methods, generative models and graph-based methods. Broadly, consistency regu-

larisation is based on the belief that the model prediction should not change if a set of realistic

augmentations are applied to the data. Thus, the network is trained to give a consistent result on

either 𝐷𝑢 or the augmented 𝐷𝑢 version. Proxy-label methods are algorithms that aim to label

𝐷𝑢 based on heuristic rules or using a model trained on a smaller labelled set. Analogously to a

supervised approach, generative models use 𝐷𝑢 to learn features that will later be transferred to

the supervised task with the intended targets. Graph-based methods are singular in the aspect

that their base concept is that both labelled and unlabelled data points can be viewed as the nodes

of a graph and one can propagate the 𝐷𝑙 nodes to 𝐷𝑢 nodes through some measure of similarity.

Given their relevance in the context of the present thesis, the rest of this section describes in

more detail the literature on proxy-label methods. Proxy labels are approximated labels, originally

not present in the dataset, obtained by using a prediction function or a variant in a non-supervised

setting. In proxy-label algorithms, these created labels are used during training alongside the labelled

data. One example of this category of algorithms is pseudo-labelling. Pseudo-labelling is a method in

which the intended network is trained in a supervised manner with the entire dataset, 𝐷. As one may

wonder, this approach may seem only conceivable if 𝐷𝑢 is also labelled. The idea is thus to attribute

pseudo-labels to 𝐷𝑢. To do so, one uses a model pre-trained on a smaller labelled dataset (𝐷𝑙) and

assumes the class with the highest probability (if binary/multi-class) or those above a given threshold

(if multi-label) as ground truth label(s). The pseudo-label phase is understood as a fine-tuning of the

previously pre-trained, using the entire dataset and respective true or pseudo-labels. Meta pseudo

labels are another approach that proposes a student-teacher setting. Pham et al. [68] presented

meta pseudo labelling as a derivative of pseudo labelling, that consists of two phases: the first step

in which the student learns from the teacher, with the teacher producing a target class distribution

and the student updating its parameters subsequently; and a second step during which the teacher

is updated based on the performance of the student on 𝐷𝑙. This differs from pseudo-labelling since,

in the latter, the teacher is a fixed pre-trained model.

However, pseudo-labelling has the downside of often overfitting to incorrectly attributed pseudo-

labels, which is known as confirmation bias. Holistic methods have arisen as a useful resource to deal

with this bias alongside label smoothing [69]. They are a branch of proxy labels that incorporate core
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ideas of the dominant paradigms mentioned above, with the exception of graph-based methods. One

example is MixMatch [70]. Its idea is to produce for each batch of labelled and unlabelled data, 𝐾
augmented labelled (𝐴𝑙) and unlabelled (𝐴𝑢) samples. Then, the proxy labels are generated for the

augmented data versions and an average of the K predictions is calculated to obtain a pseudo-label

for each example of 𝐴𝑙 and 𝐴𝑢, which are then sharpened having in consideration the categorical

distribution of the classes. To finish, the two batches of labelled and unlabelled data are merged

and combined with data that was not included in this fusion, the so-called MixUp, and trained with

a cross-entropy loss for supervised samples and a consistency loss for the unsupervised fraction. In

its turn, FixMatch [71] uses two types of augmentations, one weak and one strong. The model is first

trained to predict a pseudo-label for a weakly augmented version of the unlabelled data, and from

these only the ones with the highest confidence are maintained. Afterwards, the model is trained to

predict the same label for strongly augmented versions of said images.

It is relevant to reference that most of these algorithms use a weighted strategy across the mini-

batches and, therefore, assume large training batches. Consequently, these algorithms may not be

applicable in all settings and depend a great deal on the type of computation available. In addition,

although not much research on LUS interpretation has emerged with a focus on semi-supervised

learning, one can deduce that, given the nature of some of these algorithms, not all may work for

this type of medical images. Models such as MixUp and FixMatch may not be the best choice since

certain (strong) augmentations change the ground truth label or, at least, change the appearance of

the artifacts (or diminish their presence) to an extent that the image is no longer interpretable.
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METHODOLOGY

3.1 G e n e r a l o v e r v i ew

In this project, a novel, flexible DL-based framework for the automatic interpretation of lung

POCUS video is proposed (Figure 23). The proposed framework rests on four core blocks: (1) a

pre-processing block; (2) a supervised learning block; (3) a semi-supervised learning block; and (4)

a model ensemble block.

In brief, the pre-processing block (Section 3.3) is responsible for standardising the input data,

masking out any information outside the LUS FOV and splitting the video into multiple (smaller)

overlapping clips. The supervised learning block (Section 3.4) utilises the available labelled data to

train a 3D CNNmodel (Section 3.4.1), while employing data augmentation techniques (Section 3.4.2)

and label smoothing regularisation (Section 3.4.3). The trained classifier provides per-clip outputs

that are then aggregated into a video-level prediction (Section 3.4.4). In the semi-supervised learning

module (Section 3.5), one employs the previously trained classifier to predict pseudo-labels for the

unlabelled dataset and select those with high-confidence and low-uncertainty using the Uncertainty-

aware Pseudo-labelling Selection (UPS) method [72]. Taking advantage of both labelled and pseudo-

labelled samples, one trains the proposed 3D model once more from scratch. This step may be

repeated multiple times, updating the pseudo-labels with the most recently trained classifier. The

performance of the resulting classifier (or of that obtained through supervised training if an unlabelled

set is unavailable or its use is ineffective) is further boosted through model ensemble techniques

(Section 3.6), including a novel ensemble strategy that leverages of the hierarchy inherent to the LUS

evaluation. The latter may also be enforced through a (optional) post-processing routine that applies

conditional inference through a set of ad-hoc rules (Section 3.7).
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Figure 23: General overview of the proposed method for LUS video interpretation.

3.2 Da t a s e t

The dataset is composed of videos of point-of-care ultrasound acquired at Hospital de Clínicas

de Porto Alegre (HCAP) from 2020 onward, with the ethical approval of the Ethics Committee for

Research (ECR) in Life and Health Sciences of the University of Minho (CEICVS 039/202) and the

ECR of HCAP (5.334.879). The footage was obtained with two different transducers (convex and

linear), being discarded all but the B-mode videos performed with a convex probe. Over this period,

990 patients were evaluated, presenting symptoms or not, by multiple physicians, which translates

into 8160 LUS videos in total. The frame rate varies from 25 to 60 frames per second, with most

of the videos having 6 seconds each. All lung ultrasound videos were available in MP4 format and

were de-identified using Clip Deidentifier [73].
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Four medical doctors with expertise in the POCUS technique annotated the dataset. For this

labelling process, an online platform was used [74], where one would upload the data and the expert

would label it, by identifying the relevant finding(s) present in each video. To guarantee a consensus

between experts on what should be contemplated as relevant findings and how to classify them,

meetings were arranged to reach an agreement. Of the 8160 videos, 3649 were manually annotated

and therefore used in the supervised and semi-supervised settings (Section 3.4 and Section 3.5). The

remnant 4511 were left without annotations and were utilised only in the semi-supervised approach

(Section 3.5).

The dataset consisted of lung POCUS videos, of any of the fields described in Section 1.3.4. These

videos are divided by exam, and an exam does not have to necessarily contain all fields mentioned.

Additionally, there may be repetitions of the same field, resulting in a variable number of videos per

exam. Since different fields may highlight distinct features and be associated with a different set of

findings, in this work, one focused only on a sub-set of them which share the same list of relevant

findings. Table 1 summarises the included fields and associated findings.

Figure 24 represents the labelled dataset distribution, used throughout Sections 3.4 and 3.5.

The LUS findings can be grouped hierarchically, as represented in Figure 25. First, they can be

divided into two big groups: those considered to be of a normal lung, and those indicative of an

underlying pathology. The presence of any of these indicative findings overshadows the presence

of a normal finding. In the normal findings, one finds the scattering artifact and the A-lines pattern.

Within the indicative findings, there are those that, alone, are not sufficient to conclude the presence

of a pathology and those that are proof of such. In the first category, we can find pleural irregularity

and the presence of less than 3 B-lines. In the latter, one considered two sub-categories: the positive

Table 1: LUS fields and respective findings

Fields Findings

RL - AS
LL - AS
RL - AI
LL - AI
RL - LS
LL - LS
RL - LI
LL - LI
RL - PS
LL - PS
RL - PI
LL - PI

Scattering artifact only
A-lines only

Up to 3 B-lines
More than 3 B-lines
Coalescent B-lines
Consolidation
Pleural effusion
Pleural irregularity
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Figure 24: Distribution of the labelled dataset.

B-line pattern, which includes the presence of more than 3 B-lines or coalescent B-lines; and other

significant pathologies, such as consolidation and pleural effusion.

This hierarchy and categorisation will be considered throughout the present work. For more clarity,

possible labels are divided into two categories: leaf-labels and high-level labels. Leaf-labels are the

labels that were annotated by the experts (scattering artifact, A-lines pattern, pleural irregularity, up

Figure 25: Dataset annotation categorisation.
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to 3 B-lines, more than 3 B-lines, coalescent B-lines, consolidation and pleural effusion). The parent

labels (normal and indicative artifact) and the aggregation labels (non-pathological, pathological, B-

lines, B positive and other pathologies) will be referenced as the high-level labels.

As explained in Section 1.3.3, some findings are more subjective than others. Specifically, the

number of B-lines present may be a ground of discussion between physicians, as there is a fine line

between the definition of ’More than 3 B-lines’ and ’Coalescent B-lines’. ’Pleural irregularity’ is also

a misleading finding since it is a very small artifact and its presence alone is many often unnoticed.

The same may occur with both ’Consolidation’ and ’Pleural effusion’ depending on their degree of

severity and size. This user-dependent interpretation makes the dataset susceptible to the presence

of noisy labels.

3.3 D a t a p r e - p r o c e s s i n g

Surrounding the ultrasound sector scan, LUS videos have additional information and marks,

such as the indication of the ultrasound depth and details regarding the ultrasound machine itself.

This superfluous information may have a negative influence when training a deep learning model,

as the algorithm may focus on it during its learning process. For this reason, all videos must be

pre-processed to mask out any information outside the FOV. However, when analysing these videos,

one aspect that is evident and potentially unfavourable for such pre-processing is the presence of

pixels inside the ultrasound FOV with the same intensity value as those outside it (very low values).

Since the LUS videos are, for the most part, very dark due to the presence of air, they often have

a deteriorated image that complicates the estimation of the FOV mask, especially considering that,

ideally, the mask should have a shape equal to the ultrasound sector scan. These facts preclude the

use of simple thresholding operations, and thus a novel pre-processing algorithm was created, whose

sole input is the video itself. Figure 26 illustrates the simplified flowchart of the proposed algorithm,

which was implemented in MATLAB (MathWorks Inc, USA).

In short, the method builds the mask by finding certain points, fitting lines/circles and attributing

confidence values to each. Figure 27 is an example of the original ultrasound image.

Binary thresholding

First, a thresholding operation was applied to create a a raw mask of the LUS FOV. Although the

outside of the FOV appears to be black, its intensities are not always zero. An intensity value of 2

was thus used as threshold and applied to the video. The resulting binary map is summed across all

frames and the result is once again thresholded to identify those locations in which valid information

appears at least once during the video (i.e. value in summed map above 0).
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Figure 26: Flowchart of the pre-preprocessing algorithm.
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Figure 27: Example of a LUS frame before pre-processing.

Although the resulting mask contains the relevant pixels inside the sector scan, is also contains all

non-zero pixels belonging to the superfluous information. To filter these unwanted details, a shape-

and area-based filter operation was applied through connected components analysis. In simple terms,

only non-squared components with an area above 20,000 pixels were maintained (smaller regions

represent text and a large squared region represents the bottom menu present in most videos; see

example in Figure 27). An example of the resulting map is shown in white in Figure 28 and Figure

29.

At this stage, a bounding box containing all selected pixels is also created.

Fitting of the lateral lines and superior/inferior arcs

Based on the binary mask created, an approximation of the lateral lines and superior/inferior

arcs of the sector scan is made.

To identify the optimal lateral lines (Figure 28), it is necessary to find the most outward pixels

of the binary mask, for both left and right sides. This is obtained by two search procedures, each

searching for the first non-zero pixels (i.e. boundary pixels) from the respective bounding box limit

(left or right) to the middle of it. For either side, a regression for the line that best fits the identified

set of pixels is calculated.

The same idea is followed for the superior and inferior arcs (Figure 29). For the superior arc, by

running a search procedure on the image columns, one searches for the boundary pixels with the

lower y-coordinate on either half of the bounding box. All top boundary pixels located between these

two identified pixels are considered as probable points of the superior arc. The superior arc is then

estimated as the circumference that best fits these points. For the inferior concavity, the process

is similar, with the difference that the search is applied from the bottom to all image columns. The

inferior arc is then estimated by fitting a circumference to the detected boundary pixels.
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Figure 28: Fit of the lateral lines. Figure 29: Fit of the superior and inferior concavities.

Line’s confidences estimation

To validate if the fitted lines are accurate and can, indeed, be used to create the sector scan

mask, a confidence value is calculated for each line.

For the lateral lines, this confidence is defined by two parameters: the number of pixels from the

mask that are either left of the left line or right of the right line; and the angle of the line in relation

to the vertical axis. If the number of points outward of the lines is greater than 500 and the angle is

higher than 45 degrees, the line cannot be trusted, and its confidence is set to zero. This can occur

for just one line or both. In opposition, if the line can be trusted, the confidence takes the value of 1.

For the arcs, to assure a satisfactory fitting, one compares it with the fitting of a line to the same

set of pixels. In simple terms, one calculates the percentage of inliers (defined as those points whose

distance to the closest point in the regressed arc/line is equal to or less than 2 pixels) when fitting

the circumference and the line. If the percentage of inliers for the circumference is higher, then this

value is used as confidence. Otherwise, the confidence is set to zero.

Probe’s virtual origin estimation

With all the confidences calculated, the algorithm has all the information to choose which approx-

imation will be the reference for the creation of the mask.

At this stage, one has two lateral lines and two arcs identified. Independently of being able to

trust them or not, a problem exists with these calculated regressions. They were all performed

independently of each other and, as such, do not have a common vanishing point, which occurs

in a real LUS FOV. This is defined as the probe’s virtual origin and it is calculated by a weighted

average that takes into consideration the created lines’ intersections and respective confidences.

Specifically, five intersections are estimated: the intersection of the left line with the right line, and

the intersections of each lateral line and the vertical line that passes through each circumference

center. The weighted average is obtained by averaging the calculated intersection points’ coordinates,
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weighted by the confidences implied in that intersection, and each of the arcs’ centres, multiplied by

their respective confidence.

Once the virtual origin is estimated, to complete the LUS sector scan, both lateral lines and arcs

must be adapted to the origin. The virtual origin of the probe will be the mask’s centre. This informa-

tion, along with the opening angles (defined by the lateral lines) and the arcs’ radii, must be provided

by the algorithm, since they are needed for the data augmentation routine proposed in Section 3.4.2.

Lines and concavities re-adjustments

To adapt each of the four lines, their reliability must be taken into consideration. If none of the

lines can be trusted, the mask will be the bounding box of the initial binary map. Consequently, the

probe’s virtual origin will be the middle top point of the image, the opening angles will be 0 and 180

degrees, the smaller radii will be 0 and the larger will be equal to the height of the image.

If the two lateral lines cannot be trusted, they are re-calculated. The only requirement is that the

angle defined by the lateral lines (in relation to the vertical axis) creates a sector that includes all

pixels from the initial binary map.

If either one of the lateral lines or even both can be trusted, these will also be recomputed, but in a

different manner. A new line is fitted to the set of points originally used for line regression, but adding

the constraint that the regressed line must pass through the probe’s virtual origin. Since the LUS

sector scan is known to be symmetrical, one must further guarantee that these lines are mirrored

with respect to the vertical axis. Thus, if both lines were recomputed, their angle with the vertical

axis is computed, with the wider angle kept and the other line adjusted. The final angles are stored

as opening angles.

Afterwards, the bounding box is centred in relation to the probe’s virtual origin. For the superior

arc, the radius is obtained by computing the intersection of the left lateral line with the superior

bounding box limit and calculating the distance of this intersection to the virtual origin. The approach

is more straightforward for the inferior concavity since the radius is the distance from the bounding

box’s bottom limit to the virtual origin.

The identified probe’s virtual origin, arcs’ radii and lines (Figure 30) are ultimately used to create

a binary mask of the sector scan (Figure 31), which is used to mask and crop the input video. The

coordinates of the virtual origin, the arcs’ radii and the opening angles are also stored in a JavaScript

Object Notation (JSON) file.

Data standardisation

The input video is then scaled to 128x128 pixels by nearest neighbour interpolation (to minimise

smoothing effects on the data) with padding being used when needed. Additionally, the pixel values

are converted to grey-scale colour space and are normalised between 0 and 1.
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Figure 30: Example of the final lines and arcs
estimated.

Figure 31: Example of the final mask (in blue), overlaid
on the original image.

3.4 S u p e r v i s e d s e t t i n g

Since video clips of, at least, 4 seconds are necessary to perform an adequate LUS assessment

(given the average period of a respiratory cycle), the network’s input was set to 32 frames, at a frame

rate of 8 Hz. These video clips are extracted from the labelled LUS videos, by randomly selecting the

first frame of the clip (always guaranteeing a set of 32 frames). If the input video has less than 32

frames, empty frames are added.

Regarding the training details, the Adam optimiser [75] was employed, running 100 epochs with

a batch size of 4 and with weights initialised by a normal distribution (as presented in [76]). The

learning rate was initialised at 1x10-3, and decreased using a cosine decay learning schedule [77].

For the loss function, categorical/binary cross entropy was used, depending if the outputs were

multi-class or multi-label, respectively. The labelled dataset was split into 80% for training and 20%

for testing, with the training portion used in a 5-fold cross-validation for algorithm development. The

training was performed in a mixed precision setting, which reduces memory usage and accelerates

training time, without jeopardising convergence.

The pipeline was developed in the Keras framework [78] with TensorFlow backend [79], resorting

to a workstation with a Nvidia RTX A6000, 64 GB of RAM and an Intel(R) Core(TM) i9-12900F CPU.

3.4.1 Network architecture

For the development of the video-based classifier, one focused on networks that dealt with 3D

data as input. When analysing which architectures could have the best performance, the work of

Tran et al. [51] stood out due to the good results granted without the computational overload that

other 3D techniques presented. Consequently, a R2+1D network with 18 layers is proposed as the

baseline architecture for the classifier, whose visual representation is presented in Figure 32.
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Figure 32: Representation of the R2+1D architecture.



3.4. Supervised setting 46

R2+1D is a ResNet-based architecture and gets its name due to the factorisation of the 3D con-

volutional filters into spatial (2D) and temporal (one-dimensional (1D)) blocks. The aim is that, by

having an additional non-linearity between these operations, the number of nonlinear rectifications

doubles compared to the non-factorised version, R3D. This translates into a model capable of per-

forming more complex functions. Additionally, differently from 3D filters where the dynamics are

intertwined, R2+1D provides an easier model to optimise, resulting in an overall lower testing and

training error, as demonstrated by Tran et al. [51]. Differently from [51], the proposed network does

not consider an increased number of filters per convolutional layer, which reduces the number of

parameters compared to a R3D network and, consequently, its memory usage and training time.

The network receives as input a LUS clip of 128x128 pixels. This size was chosen to be the smallest

possible while still being interpretive. With 32 frames per clip, the standardised LUS clip enters the

stem block, a convolutional block, followed by four identical levels of residual convolutions. Each

of the levels can be divided into two basic blocks, as seen in Figure 32, composed of consecutive

spatial-temporal-spatial-temporal stages, each accompanied by BN and ReLU. Each convolutional

layer is composed of 3x3x3 kernels with the exception of the stem which relies on a 7x7x3 kernel.

One should notice that each of these kernels, just like the convolutions themselves, is factorised into

spatial and temporal kernels. In the residual blocks, the skip connection is added to the result of

the last BN, and is proceeded by the final ReLU layer. One spatial downsampling is performed in

the stem with a stride of 2, and three spatiotemporal downsamplings are applied at the first basic

block of levels 2, 3 and 4 (stride of 2 also). The number of filters starts at 45 and 64 for the spatial

and temporal convolutional layers in the stem, is set to 64 for the first level and is increased by a

power of 2 in subsequent levels. After the fourth convolutional level, a global spatiotemporal average

pooling is applied, followed by a fully connected layer and the activation function (softmax or sigmoid

whether multi-class or multi-label, respectively). These details are summarised in Table 3. One may

Table 2: Detailed parameterization of the proposed R2+1D architecture

Layer Block Input size Channels Kernel Stride

Stem
Spatial block 128 x 128 x 32 45 7 x 7 x 1 2 x 2 x 1
Temporal block 64 x 64 x 32 64 1 x 1 x 3 1 x 1 x 1

Level 1
Basic block 1 64 x 64 x 32 64 3 x 3 x 3 1 x 1 x 1
Basic block 2 64 x 64 x 32 64 3 x 3 x 3 1 x 1 x 1

Level 2
Basic block 1 64 x 64 x 32 128 3 x 3 x 3 2 x 2 x 2
Basic block 2 32 x 32 x 16 128 3 x 3 x 3 1 x 1 x 1

Level 3
Basic block 1 32 x 32 x 16 256 3 x 3 x 3 2 x 2 x 2
Basic block 2 16 x 16 x 8 256 3 x 3 x 3 1 x 1 x 1

Level 4
Basic block 1 16 x 16 x 8 512 3 x 3 x 3 2 x 2 x 2
Basic block 2 8 x 8 x 4 512 3 x 3 x 3 1 x 1 x 1
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notice that, when the downsample exists in the basic blocks, the dimensions of the output of the

BN and the output of the previous stage are not compatible. In the levels in which this occurs, a 3D

convolution with a 1x1x1 kernel followed by BN is applied to the output of the preceding stage.

Overall, the network has 15,382,033 parameters.

3.4.2 Data augmentation

3D networks have the particularity of requiring an even larger amount of data than 2D architec-

tures. Thus, it is useful to artificially generate more training data when possible. Hence the need for

the on-the-fly data augmentation step.

Although all US videos have the same beam direction (which always originates from the probe’s

position), in LUS exams, it produces particular findings (such as A-lines and B-lines) with particular

features that are impossible to occur in any other direction than the beam one. Hence, there is a

need for extra caution when choosing the augmentations to apply, since some could create unrealistic

LUS videos and reduce the clinical significance of the resulting classifier.

Although a few vanilla augmentations were applied to the dataset, to avoid unrealistically looking

images, some of them were performed in the polar space instead of the Cartesian one. To be able

to perform these transformations, the probe’s virtual origin is needed (which in polar coordinates will

be the pole), as well as the opening angles for the angular coordinate and the radii (one referring to

the small arc and the other to the maximum US depth) of the LUS beam. These values, as previously

mentioned, were saved when the sector scan mask was created.

Specifically, the video clip is first converted to the polar space. In this space, a scaling transform,

with a factor between 0.7 (Figure 33b) and 1.3 (Figure 33c), is applied over the radial axis, using

the pole (represented by the first row of the polar image) as origin. In other words, one varies the

axial resolution of the LUS beam (± 30% of the original resolution). A rotation transform, of up to 10º

(Figure 33d and 33e), is then applied, being implemented as a translation along the angular axis.

Again, the probe’s virtual origin is used as a fixed origin, which in the Cartesian space represents

the rocking of the probe. Still in the polar space, one applies a contrast augmentation with a gain

range of 0.25. Afterwards, the clip is converted back into Cartesian coordinates using the original

pole, opening angles and radii, which guarantees that the content is still restricted to the US FOV.

Finally, a horizontal flip transform is applied. All these augmentations have a 50% probability of being

applied, with the exception of the contrast transform which has a 15% probability. To implement these

transformations, the Solt [80] package was used.
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(a) (b) (c) (d) (e)

Figure 33: An examples of LUS frame and associated augmented versions.
(a) Original LUS image. (b)-(e) Augmented versions resulting from scaling with a factor of 0.7 or 1.3, or upon

rotation by -10º or +10º, respectively.

3.4.3 Label smoothing regularisation

To increase the framework’s robustness against label noise, one decided to use label smoothing

regularisation (LSR). This choice was prompted by the fact that this method is one of the few that

can be applied either in multi-class or multi-label problems. Furthermore, it can be jointly used with

most variations of the cross entropy loss, which makes it easy to embed in the loss function.

As formerly mentioned, label smoothing alters the true one-hot labels, loosening the confidence of

these values. How these values are altered depends on the type of problem. In the categorical case,

label smoothing is responsible for assuring that the gap between the biggest and smallest values is

decreased. This happens by reducing the value of the target labels, which were 1, and increasing the

non-target ones, which had a value of 0 (Equation 3). For binary scenarios, these changes are meant

to approximate the true values to 0.5, the threshold value (Equation 4). In the following equations,

𝛼 represents the label smoothing factor, C is the number of output classes and 𝑦𝑡𝑟𝑢𝑒 is the one-hot

vector.

𝑦𝑡𝑟𝑢𝑒 = 𝑦𝑡𝑟𝑢𝑒 × (1.0 − 𝛼) + 𝛼/𝐶 (3)

𝑦𝑡𝑟𝑢𝑒 = 𝑦𝑡𝑟𝑢𝑒 × (1.0 − 𝛼) + 0.5 × 𝛼 (4)

Throughout the work, a label smoothing factor of 0.1 is applied.

3.4.4 Video-level inference

Videos have the characteristic of mutability when compared to images. In an image, the findings

may or may not be present, while in a video their presence and absence may coexist. Thus, although

the dataset annotation was performed on a video level, that does not mean that the labelled finding is

present throughout the whole video, which may reduce the algorithm’s sensitivity if only one random

clip is assessed. The inference process was thus altered with that in mind.
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Instead of extracting a single clip from the video and obtaining a single prediction, one divides the

LUS video into multiple overlapping clips. As described in Section 3.3, all clips have 32 frames with

a frame rate of 8 Hz. Contrarily to the training stage, the first frame of the first clip corresponds to

the first frame of the video, and subsequent clips are extracted with a delay of 0.5 seconds. For this

dataset, each video results in, approximately, 5 clips. To obtain a video-level prediction, an average

of the resulting scores of the multiple clips is computed.

Besides increasing the method’s sensitivity when compared to a one-clip prediction, it also in-

creases its robustness when compared to a whole-video prediction (i.e. inputting the full video at

the inference stage). Indeed, although the latter would allow the assessment of the full video and

therefore allow the detection of any visible finding, by relying on multiple predictions, one decreases

the method’s uncertainty and ultimately increase its accuracy.

3.5 S em i - s u p e r v i s e d s e t t i n g

In this work, the intention is to benefit from the large number of data available. Since a big

portion of the dataset is unlabelled, we focused on semi-supervised techniques.

To this end, one proposes to use the UPS method [72]. This is a pseudo-labelling method that,

through a more precise label selection, aims to diminish the amount of noise present in the pseudo-

labels. Additionally, UPS offers an approach for the use of pseudo-labelling in multi-label scenarios

and performs well with video data (note however that no results were originally shown for a video-

oriented multi-label dataset).

The UPS method consists of three steps: pseudo-label generation, pseudo-label selection, and

model training. For the generation of pseudo-labels, the hard labels provided are the direct predictions

of the network. However, to create more accurate labels and reduce the noise that will be injected

into the semi-supervised training, only high-confidence predictions are selected. This is applied in

a positive and in a negative manner, meaning that the network can be confident that the output is

of a certain class, attributing a positive label, or confident that the output does not belong to that

class, giving a negative label. In other words, it is not only the presence of a class that is verified but

also its absence. For this, two thresholds are defined, 𝜏p the positive threshold and 𝜏n the negative

threshold. Besides the confidence thresholds, the uncertainty of the predictions is also integrated into

the pseudo-label selection. Rizve et al. proved that when labels are selected with more certainty, the

calibration error is reduced. As such, two new limits are set, the uncertainty thresholds for positive

and negative labels, kp and kn, respectively.

Since one intends to use this method in a multi-label scenario, 𝜏p was set to 0.5 and 𝜏n to 0.05.

For the uncertainty limits, kp = 0.05 and kn = 0.005 were utilised.

To summarise, this approach, in the multi-label setting, has three types of pseudo labels: positive,

negative, and unreliable labels. If the prediction value is higher than 𝜏p and the uncertainty is lower
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than kp, the label is positive. If the prediction has a value and an uncertainty lower than 𝜏n and kn,

respectively, the label is negative. If the prediction values do not fall in any of the above conditions,

the label is an uncertain one. These last labels do not contribute to the loss function. To know

which labels are to be used for the loss function calculation and which are to be ignored, along with

the one-hot vector, a new vector is introduced, g. For each class of each sample, g has either the

value of 1 (reliable label) or 0 (unreliable label). LSR was also integrated into the new loss function.

The modified binary cross entropy is presented in Equation 5, where c represents the class, C the

number of classes, and i the sample. Note that, for labelled samples, all classes in g are set to 1.

The true/pseudo label vector, after label smoothing, is represented as 𝑦, and the prediction output
as ̂𝑦.

𝐿𝐵𝐶𝐸 = 1
∑𝐶

𝑐=1 𝑔𝑖𝑐

𝐶
∑
𝑐=1

𝑔𝑖
𝑐 [ 𝑦𝑖

𝑐 𝑙𝑜𝑔( ̂𝑦𝑖
𝑐 )+ ( 1 − 𝑦𝑖

𝑐 ) 𝑙𝑜𝑔 ( 1 − ̂𝑦𝑖
𝑐 )] (5)

Multiple iterations of the UPS method can be applied. First, the framework presented in Section

3.5 is trained on the labelled dataset. Once trained, the predictions for the unlabelled dataset are

calculated. Here, in order to apply the UPS method, predictions are made to the original unlabelled

clip and to nine additional augmented versions of said clip (applying with 100% probability both

scaling and rotation transforms, by up to 7.5% and 2.5º respectively, and employing a horizontal flip

transform with 50% probability). This is needed for the uncertainty estimation, which is computed

as the standard deviation of the ten predictions. The prediction for the original clip is used for

the confidence thresholding. After selecting the unlabelled samples and respective pseudo-labels,

these are combined to the labelled dataset and used to re-train the proposed network model from

scratch. After each iteration, new pseudo-labels are generated for all unlabelled samples, using the

new classifier and the proposed video-level inference technique. The aim is that, at each iteration,

more data is included and the pseudo-labels attributed are more curated, injecting a smaller amount

of wrongly classified samples in the subsequent network training.

In this work, it is proposed to train the semi-supervised framework for one iteration.

3.6 E n s emb l e mod e l l i n g

The integration of domain knowledge in DL approaches has been receiving acclaim. By leveraging

the known characteristics of the data, one may adapt the framework and tailor it accordingly, often

leading to performance gains. With that in mind, a novel ensemble modelling technique is proposed,

based on the hierarchy of LUS findings.

The proposal consists of an ensemble of models trained to predict a different set of output labels,

according to the dataset hierarchy present in Figure 25. In this sense, the multiple models’ outputs

comprise both leaf and high-level labels. All of the models included must comprehend the same label
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categories. In other words, a model may either have the high-level category as a label or all of the

leaf-labels of the said category (for example, a model can either have the ”Other pathologies” label,

or both ’Consolidation’ and ”Pleural effusion” labels). It cannot, however, have labels from a data

group that is not included in all models.

The intuition is that the classification of the high-level nodes can be improved by considering

information from the leaf-labels. The idea of focusing on high-level nodes is that these often have

high clinical relevance, namely for patient screening and management. However, high-level labels

present a higher intra-class variability, which may increase the classifier’s uncertainty and, thus,

decrease its performance. Since leaf-labels present a lower intra-class variability, a classifier trained

to predict them may focus on more refined features, and present better results for them separately.

Hence, models with leaf-labels can be used to improve models with high-level labels, by passing

knowledge that, otherwise, the high-level model may fail to capture.

The proposed ensemble is obtained by combining the predictions of leaf- and high-level labels from

the multiple models (Figure 34). For each label, an average is computed. If the label is a leaf one

(and the corresponding high-level label is not comprised in any model), the average is straightforward,

considering the values inferred by all models. If the label is high-level, a mean is computed with the

high-level labels from the models that contain them, and the result of an aggregation function for the

leaf-labels (that derive from the high-level label under evaluation). This aggregation varies whether

the problem is categorical or multi-label. In the categorical scenario, since the network’s outputs

went through a softmax function, the sum of all labels’ values equals 1. Consequently, the probability

of a high-level label is the sum of each of its leaf-labels’ scores. For multi-label, the probability of a

high-level label will be the score of the associated leaf-label with the highest predicted value.

Figure 34: Illustration of the proposed multi-output to high-level ensemble method.
The aggregation function is represented by f (sum/maximum function for categorical/multi-label) and the

coloured blocks represent an average operation.
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However, if the purpose is to train a classifier able to detect leaf-labels only, a traditional ensemble

modelling approach is recommended. Instead of computing an ensemble of multiple models with

different output labels, the same model (the one with the intended label set) is trained multiple times

and the results are averaged.

Independently of the scenario, the training of each one of the models is done independently,

following the aforementioned implementation details.

3.7 Po s t - p r o c e s s i n g

With the intent of, once more, leverage from the data hierarchy (Figure 25), a set of ad-hoc rules

are proposed to be applied to obtain the video-level predictions when employing a multi-label setting

for LUS assessment. With the prediction vectors, instead of choosing all classes with a prediction

value above 0.5, the result is modified based on the following rules:

• Only one normal finding can be selected;

• Normal findings cannot coexist with indicative findings;

• Only one of the B-lines leaf-labels can be chosen;

• At least one class has to be chosen in every LUS clip.

Based on these rules, a post-processing pipeline was elaborated. First, the maximum value of

the predicted outputs is identified. If it belongs to either ”Scattering” or ”A-lines”, the one with the

highest value is selected as the output class (independently of its value being above 0.5 or not). If

neither of the aforementioned class has the highest value, the next step is to verify if any of the ’B-

lines’ leaf-labels as a value higher than 0.5. If true, only the label with the highest score among those

targeting B-lines assessment is selected. This also applies if the high-level ’B positive’ label is used

instead of its corresponding leaf-labels. Next, the labels ”Consolidation” and ”Pleural effusion” are

verified for the same condition and any with a value higher than 0.5 is selected. The same occurs for

the respective high-level prediction. In the case that the highest value belongs to one of the findings

indicative of pathologies, but the value itself is not higher than 0.5, the one with the highest score

will be the sole attributed label (since all clips must have at least one label).

This post-processing block can only be applied in the multi-label scenario.
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RESULTS AND DISCUSSION

This chapter is dedicated to the validation of the framework proposed in Chapter 3. First, the

metrics utilised to evaluate said framework are presented. Then, two sections describe the exper-

iments performed to evaluate each one of the studied training regimes: the supervised and the

semi-supervised approaches. In the first, the experiments are divided into two types of problems:

categorical and multi-label classification. In the latter, the research focused on multi-label classifica-

tions. In these sections, all results were obtained from a 5-fold cross-validation. Finally, results for

the test set, which were obtained using a mean average of the five trained models, are presented and

discussed. Unless otherwise indicated, all results include the video-level inference routine proposed

in Section 3.4.4.

4.1 E v a l u a t i o n me t r i c s

To validate the proposed framework and the blocks that compose it, a set of metrics was used:

balanced accuracy (BA), average precision (AP), Matthews correlation coefficient (MCC) and F1-

score. All of these metrics are presented in all experiments targeting a categorical classification. In

the multi-label case, only AP and F1-score are reported. Additionally, when appropriate, the expected

calibration error (ECE) was also computed.

Most of the mentioned metrics are a compound of performance metrics, such as precision, recall

and specificity. All of these are calculated based on the four possible outcome of the model’s output.

These can be either: true positive (TP) (positive samples correctly predicted as such), true negative

(TN) (negative samples correctly predicted as such), false positive (FP) (negative samples predicted

as positive), and false negative (FN) (positive samples predicted as negative). These values are

usually presented in the form of a confusion matrix. In multi-class scenarios, these are computed

in a one-vs-all manner, meaning that each class is evaluated independently by considering itself as

”positive” and all other as ”negative”.

Precision (Equation 6) is the positive predictive value, which is the ratio of TP among all positive

predicted samples (i.e considering TP and FP). Recall (Equation 7), also known as sensitivity, is

53
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the fraction of TP among all positives (TP plus TN samples). Similarly, specificity (Equation 8), also

termed true negative rate, is the fraction of the TN by all negatives [81].

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (6)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (7)

𝑆 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃 (8)

BA is calculated based on recall and specificity (Equation 9) [81] and is particularly useful to

assess the performance of imbalanced classification problems. Derived from the basic accuracy

score (a statistical measure of the correct predictions of a classifier among all predictions), it takes

into consideration the imbalance ratio between the different classes, giving a better perspective of

the network’s real performance.

𝐵𝐴 = 𝑃 + 𝑅
2 (9)

AP is a multi-threshold metric, obtained from the precision-recall curve (Equation 10) [81]. It

provides a value that has into consideration both false positives and false negatives.

𝐴𝑃 = ∑
𝑛

(𝑅𝑛 − 𝑅𝑛−1) × 𝑃𝑛 (10)

F1-score is also obtained from precision and recall (Equation 11) [81], and is considered the

harmonic mean of these metrics. It is the selected metric to evaluate the model’s performance for

each class independently.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 (11)

MCC performs a correlation between the true and predicted labels (Equation 12) [81]. It can

assume values between -1 and +1, being -1 an inverse prediction, 0 an absolutely random prediction

and +1 a perfect one.

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

(12)

ECE is a metric to verify a network’s calibration [82]. Based on the comparison of the model’s

accuracy and the model’s confidence, it can be used to adjust the model so that the probabilities

become more similar to the probabilities of a correct prediction.
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4.2 S u p e r v i s e d t r a i n i n g

This topic will present the experiments that have led to the methods and associated algorithmic

decisions described in Section 3.4. For this setting, two types of problems were considered: cat-

egorical and multi-label. All models were trained in the same conditions, with only the last activation

function and loss function being altered according to the type of task.

4.2.1 Influence of network architecture

To evaluate the network’s performance alone, it was decided to train the network with a cat-

egorical problem. To this end, samples were categorised as either ”Normal findings” or ”Indicative

findings” (following the hierarchy present in Figure 25). This is the simplest possible problem to

create with the present dataset so that factors like noisy labels and imbalanced classes influence the

least the decision on the chosen architecture.

To validate the selection of the proposed network (a variant of R2+1D), Table 3 compares its

performance against four other: the original R2+1D, R3D, C2+1D and C3D [51]. For all architectures,

parameters like regularisation weight and learning rate were optimised to guarantee a fair comparison

between networks. These architectures were chosen given their similarities with the proposed model

and their ability to deal with 3D inputs. Specifically, both R2+1D and R3D were tested as proposed in

Tran et. al. [51]. In their version, R2+1D is built in order to have the same number of total parameters

as R3D, which is done by adjusting the number of filters in the convolutional layers of the network. For

simplification, this operation will be named ”boost”. In the variant proposed in this work, the number

of filters is not adapted (no boost), resulting in a network with approximately half of the number of

parameters of R3D. Additionally, to verify the advantage of the residual connections, a comparison

against traditional CNNs was also considered. Indeed, C3D and C2+1D differ from R3D and R2+1D,

Table 3: Performance of the proposed architecture and comparison against four other
similar architectures

Network Parameters BA MCC AP
F1-score

Normal Indicative

R2+1D
(proposed)

15.4M 0.9210 0.8417 0.9704 0.9192 0.9224

R2+1D
(w/ boost)

33.2M 0.9112 0.8225 0.9687 0.9086 0.9138

R3D 33.2M 0.9147 0.8293 0.9700 0.9126 0.9167
C2+1D 33.0M 0.9023 0.8044 0.9622 0.9003 0.9039
C3D 32.9M 0.9071 0.8138 0.9630 0.9051 0.9087
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respectively, only in the fact that they do not have residual connections on the basic block of Figure

32.

By analysing Table 3, one concludes that the chosen network presents the best performance

across all metrics. First, it is clear that ResNet variants achieve better results when compared to

the traditional CNNs both in 3D or in the factorised version. This aligns with the proven advantages

of shortcut connections, avoiding the problem of vanishing and exploding gradients. Another factor

for consideration is the number of parameters of each architecture. The proposed R2+1D is the

network with fewer parameters and the best performance. This indicates that the other networks

were starting to slightly overfit the training data (despite the per-network optimisation of parameters

like regularisation weight). This is one of the advantages of the use of factorised blocks compared

with 3D ones. Dealing with 3D convolutions automatically increases the number of parameters of the

network, while in the factorised version, a smaller number of trainable parameters can be achieved.

This creates a network less prone to overfitting, as demonstrated.

4.2.2 Influence of input pre-processing

A study of the network’s input was conducted to verify if the proposed input settings are optimal.

The effect of the video length at a fixed frame rate was evaluated and the reverse also (maintaining

the number of seconds and varying the frame rate).

As previously stated, a frame rate of 8 Hz and 4 seconds of duration were the chosen parameters.

To have a starting point, the frame rate was decided by observing videos at different rates and

choosing the one that appeared to be the minimum needed for an adequate visualisation of the

relevant findings. Additionally, in clinical settings, the minimal LUS video length needed for an expert

to perform a LUS assessment is 4 seconds. This is a pre-determined value due to the respiratory cycle

(inhalation and exhalation). While a LUS video length of less duration may not be enough to visualise

all of the present findings, a longer video may capture more than just one cycle. Notwithstanding,

both these values were verified, in order to choose the most appropriate ones.

Starting with a fixed frame rate of 8 frames per second, the length of the video was varied, as

observed in Table 4. The results were congruent with the initial expectations, with the best result

achieved with 4-second clips. Indeed, successive improvements were seen when increasing the clip

length from 2 to 4 seconds, but onward the model’s performance deteriorates. For videos with less

than 4 seconds, as stated, the justification for the reported results is that most of the clips do not

comprehend a complete respiratory cycle. Consequently, there may be information (or even entire

findings) missing. With more than 4 seconds, besides possibly covering more than one respiratory

cycle, the data variability diminishes given the higher similarity between extracted clips (since their

duration gets closer to the length of the original video). With less variability in the training set, the

network is more prone to overfitting, thus the worst performance observed.
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Table 4: Effect of the input’s clip duration on the network’s performance

Clip duration
BA MCC AP

F1-score

(seconds) Normal Indicative

2 0.9065 0.8127 0.9688 0.9049 0.9075
3 0.9147 0.8293 0.9694 0.9123 0.9170
4 0.9210 0.8417 0.9704 0.9192 0.9224
5 0.9138 0.8279 0.9669 0.9112 0.9167
6 0.9017 0.8034 0.9619 0.8988 0.9047

Regarding frame rate, Table 5 summarises the results obtained for clips with 4 Hz to 12 Hz (and 4

seconds duration). One can observe that frame rates of 4 or 6 frames per second are not sufficient

for a good performance. This is expected due to the variability of the findings, as 4 to 6 Hz may

often not be sufficient to detect very sudden findings, like an isolated B-line. When increasing the

frame rate to a value above 8, the performance also decreases. By increasing the frame rate, while

freezing the number of seconds, one is increasing the input data depth. However, since the size of

the convolutional kernels are kept constant, the associated receptive field is smaller, which means the

temporal features extracted concern smaller temporal intervals. Consequently, there is less temporal

correlation and more overfit, which leads to the models delivering worst results. Overall, the proposed

use of a frame rate of 8 Hz, reveals to be the optimal one for the present dataset.

4.2.3 Influence of model output

To leverage the entire notation of the dataset and the hierarchy inherent to it, a study was con-

ducted to demonstrate the differences in having different types of label aggregations, both for the

categorical problem and the multi-label one.

Table 5: Effect of the input’s frame rate on the network’s performance

Frame rate BA MCC AP
F1-score

Normal Indicative

4 0.9117 0.8232 0.9670 0.9095 0.9137
6 0.9133 0.8266 0.9699 0.9108 0.9158
8 0.9210 0.8417 0.9704 0.9192 0.9224
10 0.9143 0.8286 0.9692 0.9119 0.9167
12 0.9144 0.8287 0.9713 0.9122 0.9164
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Categorical models

For the categorical problem, only labels that are mutually exclusive could be considered. In that

sense, besides the aforementioned categorisation, which will be named C1, three other possibilities

were considered, as presented in Table 6.

Table 7 presents the aggregated results for each one of the models, with the per-class performance

reported in Table 8. Note that, although direct comparison between models cannot be made from

the aggregation metrics, these results, together with a per-class result, provide interesting insights.

Indeed, the larger performance difference is observed between models C1 and C4, i. e. the models

with the fewer and the most number of labels, respectively. However, when analysing both C2 and

C3 results, one can notice that, although both have the same number of outputs, C3 presents

a better performance. This is due to the difficulty of discerning between ”Non-pathological” and

”Pathological” findings, opposed to ”Scattering” versus ”A-lines”. Besides being well-represented

classes in the dataset, the latter (i.e. the leaf-labels of ”Normal finding”) are less prone to dubious

interpretations. In its turn, B-lines, for example, are present in the two groups (”Non-pathological”

and ”Pathological”), with different degrees of severity. This can be indicative that there are more

noisy labels in the ”Indicative finding” data group.

In summary, by adding more categorical outputs, one gains in terms of detail of the information

retrieved from the data but has to compromise on the certainty about said information.

Table 6: Categorical models and respective outputs

Categorical models

C1 C2 C3 C4

Normal finding Normal finding
Scattering Scattering
A-lines A-lines

Indicative finding
Non-pathological

Indicative finding
Non-pathological

Pathological Pathological

Table 7: Comparison of categorical models with different outputs

Model BA MCC AP
F1-score

Macro Micro

C1 0.9210 0.8417 0.9704 0.9208 0.9208
C2 0.7363 0.6935 0.7970 0.7395 0.8128
C3 0.8097 0.7539 0.8603 0.8091 0.8502
C4 0.6974 0.6347 0.7482 0.6979 0.7360
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Table 8: Per-class F1-score for the categorical models from Table 6

Model
Normal finding Indicative finding

Scattering A-lines Non-pathological Pathological

C1 0.9192 0.9224
C2 0.9181 0.4940 0.8065
C3 0.6692 0.8387 0.9195
C4 0.6647 0.8263 0.5054 0.7953

Multi-label models

For the multi-label scenario, the intention was to obtain the maximum information possible from

the model, by creating models from M1 (composed of several leaf-labels and some high-level labels)

to M4 (with only leaf-labels). The models and respective output labels are described in Table 9, and

the respective results shown in Tables 10 and 11.

Considering Table 10 and Table 11, one observes the same phenomena seen for the categorical

models. By increasing the number of outputs, one decreases the general metrics’ values, as expected.

Moreover, by looking at the per-class scores, it becomes clear that one of the most difficult task lies

in the B-lines classification. When comparing M2 to M3, which output the high-level ”B positive” and

”Other pathologies” respectively, M2 delivers a better performance. This aligns with the statement

that within the ”B-lines” category, especially ”B positive”, exists the biggest uncertainty and, possibly,

label noise. Regarding the normal findings, the performance does not significantly change across the

tested models. However, it seems that certain aggregations might slightly jeopardise these classes,

which is the case of M3 that displays the lowest values of ”Scattering” and ”A-lines”.

In general, no model consistently outperforms the remaining ones or displays explicit connections

and associations between the aggregation of classes and the model’s performance. Notwithstanding,

Table 9: Multi-label models and respective outputs

Multi-label models

M1 M2 M3 M4
Scattering Scattering Scattering Scattering
A-lines A-lines A-lines A-lines

Up to 3 B-lines Up to 3 B-lines Up to 3 B-lines Up to 3 B-lines

B positive B positive
More than 3 B-lines More than 3 B-lines

Coalescent Coalescent

Other pathologies
Consolidation

Other pathologies
Consolidation

Pleural effusion Pleural effusion
Pleural irregularity Pleural irregularity Pleural irregularity Pleural irregularity
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Table 10: Comparison of multi-label models with different outputs

Model AP
F1-score

Macro Micro

M1 0.6615 0.5931 0.6924
M2 0.6356 0.5748 0.6822
M3 0.6360 0.5737 0.6463
M4 0.6196 0.5622 0.6385

Table 11: Per-class F1-score for the multi-label models from Table 9

Model S A < 3 B
B + OP

PI
> 3 B CB C PE

M1 0.6654 0.8305 0.5228 0.7864 0.5886 0.1649
M2 0.6747 0.8358 0.4914 0.7789 0.5767 0.5161 0.1500
M3 0.6487 0.8195 0.5202 0.5644 0.6825 0.6178 0.1630
M4 0.6706 0.8294 0.5204 0.5413 0.6825 0.5446 0.5159 0.1931

S: Scattering; A: A-lines; < 3 B: Up to 3 B-lines; B+: B-line positive; > 3 B: More than 3 B-lines; CB: Co-
alescent B-lines; OP: Other pathologies; C: Consolidation; PE: Pleural effusion; PI: Pleural irregularity.

one still hypothesises that the leverage of all these models at once (through ensemble modelling) may

deliver an overall accuracy improvement, as different models may help in classifying different labels.

4.2.4 Effect of robust learning

Given the complexity of interpreting LUS videos, a certain degree of variability is expected between

POCUS users. Additionally, the categorisation of some findings is much more dubious than others.

With that in mind, one expects the employed label smoothing regularisation to have a more impactful

effect on the multi-label models than the categorical ones, where there are fewer outputs and the

performance is already satisfactory.

Consequently, it was decided to validate the proposed noisy label reduction approach in the multi-

label model M4, i.e. the model with the most labels. A comparison was made between the traditional

loss function, binary cross-entropy (BCE), the proposed LSR-based loss function (with a factor of 0.1)

and binary focal cross entropy (FCE) (with 𝛼 =0.25 and 𝛾 = 2.0). Results are presented in Table 12.

Overall, the LSR approach presents the best results. Although the focal loss has a higher AP, the

difference in the label smoothing AP value is not significant and, in contrast, the difference between

both approaches in F1-Score is drastic. Label smoothing not only outperforms the other noise regular-

isation approach, but also the traditional loss function. On average, each class presents an increase
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Table 12: Comparison of noisy labels regularisation strategies for model M4

Loss AP
F1-score

Macro Micro

BCE 0.6196 0.5622 0.6385
Binary FCE 0.6210 0.4858 0.5801

Label smoothing 0.6198 0.5752 0.6505

in F1-score of 1.3%, which clearly validates the aforementioned intuition about the presence of noisy

labels in the annotated dataset, and that the proposed loss function is effective against it.

In addition, Table 13 presents the results of the application of label smoothing for the C1 model.

No improvement is observed with LSR and, in fact, the metrics show a slight reduction in performance

when compared to the model trained with categorical cross-entropy (CCE). Again, as anticipated, the

noisy labels are mostly concentrated in the leaf-labels rather than the high-level ones. This becomes

even more evident in the categorical models since they gather the simplest tasks.

4.2.5 Influence of inference routine

To corroborate the advantages of the video-level inference explained in Section 3.4.4, Table 14

presents a comparison between the proposed inference routine (average of multiple overlapping video

segments) with two others: a whole-video inference and a one-clip inference. For the entire video

prediction, a full video is fed to the trained model. For the one-clip prediction, only the first clip of

each video is fed to the network. The C1 categorical model was the one chosen to perform this

comparison.

From the ablation results, it is proved that the average of multiple overlapping clips from the same

video is preferred over classifying the video based on a single prediction (of the entire video or one clip).

Indeed, a multi-clip inference introduces variability and reduces the model’s uncertainty, obtaining

more accurate predictions. However, between single-prediction inference routines, the use of the full

video outperforms the one-clip strategy. These results corroborate the intuition that, by considering

Table 13: Effect of label smoothing regularisation on model C1

Loss BA MCC AP
F1-score

Normal Indicative

CCE 0.9210 0.8417 0.9704 0.9192 0.9224
Label smoothing 0.9177 0.8354 0.9688 0.9154 0.9200



4.3. Semi-supervised training 62

Table 14: Comparison of different inference routines for the C1 model

Inference method BA MCC AP
F1-score

Normal Indicative

One-clip inference 0.9115 0.8227 0.9637 0.9095 0.9130
Whole-video inference 0.9157 0.8313 0.9678 0.9133 0.9180
Multi-clip inference

(proposed)
0.9210 0.8417 0.9704 0.9192 0.9224

the full video, one may identify any finding(s) that appear briefly over the full 6 seconds of the video,

which may be missed if one single clip is extracted and analysed.

4.3 S em i - s u p e r v i s e d t r a i n i n g

Since the categorical models performed well, the semi-supervised approach focused on the multi-

label models. These were themodels where inputting more data could be of great benefit. Specifically,

this was done with the M4 model, as it had the highest number of outputs. Upon a first evaluation,

it is then applied to the remaining multi-label models.

When analysing the number of pseudo-labels fed to the network, the ”Pleural Irregularity” class

presents a challenge. As seen in previous results (Table 11), this is the label with the worst per-

formance upon supervised training. Thus, when attributing pseudo-labels to the unlabelled samples,

very few videos were identified as belonging to this class, contributing to a larger class imbalance in

the SSL training. For these reasons, it was decided not to include this class in the evaluation of the

semi-supervision approach. With that, from these results onward, the label ”Pleural irregularity” will

be disregarded from the multi-label models.

First, a study was conducted to verify the choice of confidence and uncertainty thresholds. To

provide a fair comparison, the results of the confidence thresholds are compared to the original

pseudo-label approach. Here, classes with a score above 0.5 are classified as positive (taking the

value of 1), or otherwise considered negative (taking the value of 0). To verify if measuring uncertainty

for pseudo-label selection was indispensable for a good outcome, an additional selection and training

was conducted by removing the uncertainty-based thresholding from the UPS method. Table 15

portrays the obtained results after one iteration of the proposed semi-supervised training. All models

were trained in the same conditions, following the method described in Section 3.5.

Interestingly, the classical pseudo-label method (𝜏p=0.5 and 𝜏n = 0.5), in which all LUS unlabelled

videos are added (and all labels considered reliable), already improves the model’s performance when

compared to the supervised model. When considering a lower negative confidence threshold (in an

attempt to optimise the selection of negative labels that one can rely on), a slightly lower improvement
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Table 15: Comparison of different thresholds for pseudo-label selection

𝜏p 𝜏n kp kn AP
F1-score

Macro Micro

Supervised - - - - 0.6803 0.6414 0.6775
0.5 0.5 - - 0.6530 0.6632 0.6917
0.5 0.05 - - 0.6537 0.6605 0.6892

Proposed 0.5 0.05 0.05 0.005 0.6782 0.6711 0.7007

is observed, albeit almost negligible. Comparing the results from the use of thresholds 𝜏p=0.5 and

𝜏n = 0.05 with and without uncertainty thresholding. Addition of the uncertainty estimation allows

a more refined pseudo-label selection and leads to a performance improvement, when compared

to a selection dependent solely on one prediction. Indeed, a solid model should be able to deliver

the same, or similar, results when observing the same clip with weak augmentations. If the results

vary substantially, it means the network is not fully confident of the attributed class and, therefore,

that label should not be considered reliable. The uncertainty-based selection takes this factor into

consideration.

Additionally, one noticed that the choice of thresholds is essential to obtain a good performance

(data not shown). If the thresholds are not ideal, for either positive or negative labels, the performance

of the network falls short. In this case, more labels with lower confidence are added and the model

learning is compromised, suggesting that the quality of the added videos’ labels plays a bigger role

than the quantity of added videos or the number of reliable labels per added video. These results

corroborate the intuition that trustworthy labels are of great importance to obtain an optimal SSL-

based performance.

Overall, the employed thresholds, coincidentally the same as proposed in Rizve et al. [72], provide

the best outcomes. With this selection, an average of 3878 videos, with at least one positive or

negative label, are added to each training fold.

Using the aforementioned set of thresholds, Table 16 presents themodel’s performance for the first

3 iterations of SSL training (with iteration 0 representing the supervised training only). As explained

in Section 3.5, the UPS training occurs in iterations with the new pseudo-labels being attributed to

the entire unlabelled dataset at each iteration. Besides the model’s outputs, Table 16 presents the

average number of added videos to each fold’s training set, divided in those for which most labels

are considered reliable (either positive or negative) and those with a majority of unreliable labels.

A visible improvement occurs from the supervised training to the first iteration of the semi-supervised

training (the proposed one). In fact, each of the subsequent iterations also obtains better average

F1 scores than the supervised version. However, there is a drop in performance from iteration 1

to iteration 2, and another significant decrease at iteration 3. By analysing the number of videos
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Table 16: Number of added videos and model performance at each UPS iteration

Iteration
Nº of added clips

AP
F1-score

With > 3 labels With ≤ 3 labels Macro Micro

0 - - 0.6803 0.6414 0.6775
1 911 2966 0.6782 0.6711 0.7007
2 1664 2744 0.6602 0.6650 0.6892
3 1842 2639 0.6256 0.6471 0.6738

added, one observes a significant increase in the number of videos with more than 3 reliable labels,

resulting in a larger number of total added videos. However, the results are not better, which is not

expected. The expected scenario would be one where at each iteration the performance increases

even though the differences become successively smaller. However, this is consistent with the find-

ing made earlier, that the quality of the video labels is more important than the number of labels

per video or the total number of added videos. With the addition of 3878 videos in the first iteration,

the network starts overfitting, becomes overly confident and less calibrated, which explains why the

newly attributed labels, in iterations 2 and 3, are not benefiting the model. This result confirms a

known issue in SSL approaches (particularly those from the proxy-label group), the confirmation bias,

i.e. incorrect pseudo-labels guide subsequent training iterations and lead to a loop of self-reinforcing

errors [69].

To further investigate what was causing this, the network’s calibration and ECE were verified and

compared to the model obtained by supervised training. The ECE and the reliability plots obtained

for each class, for the supervised and first iteration of semi-supervised settings, are shown in Figures

35 to 48.

Reliability plots are a representation of the percentage of correct samples for each range of con-

fidences. For example, considering a confidence of 0.9, in a perfectly calibrated network, it would

be expected that 90% of the attributed labels would be correct. Figure 37, for instance, represents

the most calibrated class of the supervised model. It has the lowest ECE value and the plot is the

closest to what would be ideal.

For each class, the semi-supervised model calibration is further from optimal when compared to

the supervised one. This is particularly noticeable for classes ”Up to 3 B-lines” and ”More than 3

B-lines”, which present the highest ECE, and the largest difference between ECEs (supervised vs.

semi-supervised). One notices that the conclusions align with the intuition that these are within the

hardest labels to classify, and probably the classes for which the pseudo-labels inject further noise

in the training.

By analysing all graphics, it is clear that the model is less calibrated in every class. This indicates

that, although being able to deliver better results than the supervised version, the network is overly
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confident. Due to that, when producing the new set of pseudo-labels, a larger number of labels is

selected, however, they are not as accurate as in iteration 0. This explains why there is a decline in

the model’s performance after the first iteration. At each iteration, there is a snowball effect. The

network becomes more confident, more uncalibrated and, although being able to (confidently) select

more labels, its performance deteriorates. This is also perceivable from the AP value reported in Table

16, which despite the increase in F1-score over the supervised model, shows a noticeable decrease

after iterations 2 and 3 of the SSL training. This shows that on average at multiple thresholds, the

number of false positives is larger in the semi-supervised setting.

Figure 35: Reliability plot for class ”Scatter-
ing” for iteration 0.

Figure 36: Reliability plot for class ”Scatter-
ing” for iteration 1.

Figure 37: Reliability plot for class ”A-lines”
for iteration 0.

Figure 38: Reliability plot for class ”A-lines”
for iteration 1.
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Figure 39: Reliability plot for class ”Up to 3
B-lines” for iteration 0.

Figure 40: Reliability plot for class ”Up to 3
B-lines” for iteration 1.

Figure 41: Reliability plot for class ”More
than 3 B-lines” for iteration 0.

Figure 42: Reliability plot for class ”More
than 3 B-lines” for iteration 1.

Figure 43: Reliability plot for class ”Coales-
cent B-lines” for iteration 0.

Figure 44: Reliability plot for class ”Coales-
cent B-lines” for iteration 1.
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Figure 45: Reliability plot for class ”Consol-
idation” for iteration 0.

Figure 46: Reliability plot for class ”Consol-
idation” for iteration 1.

Figure 47: Reliability plot for class ”Pleural
effusion” for iteration 0.

Figure 48: Reliability plot for class ”Pleural
effusion” for iteration 1.

4.4 E f f e c t o f mod e l e n s emb l e

To further improve the performance of our classifier (in either supervised or semi-supervised

setting), one has proposed the use of ensemble modelling (Section 3.6). Specifically, one proposes

a novel ensemble technique based on models with distinct output label sets when targeting the

classification of high-level labels (like seen for model M1), and the use of a traditional model repetition

technique when focusing of models with leaf-labels only (like model M4). Here, one compares the

proposed strategies against others found in the literature for test-time improvements.

Starting with the high-level labels ensemble, the proposal is to leverage the four multi-label models,

M1, M2, M3 and M4, to improve the performance of the M1model. This will be namedmulti-output to

high-level ensemble. This ensemble is compared with three others: test-time augmentation (repeating

the inference for another 9 augmented versions of the input video, following the augmentation scheme
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described in Section 3.5), model repetition ensemble (by repeating the training of model M1 four

times), and leaf to high-level ensemble (a variant of ours in which model M4 is repeated four times and

the leaf-labels aggregated to obtain the high-level labels of model M1). These results are presented

in Tables 17 and 18. Note that, except for the test-time augmentation, all strategies consider the

training of four models

Table 17: Comparison of distinct model ensemble strategies for model M1

Method Ensemble type AP
F1-score

Macro Micro

SL

- 0.7408 0.6855 0.7225
Test-time augmentation 0.7516 0.6890 0.7254

Model repetition 0.7657 0.6983 0.7346
Leaf to high-level 0.7711 0.6984 0.7331

Multi-output to high-level
0.7721 0.7057 0.7397

(proposed)

SSL

- 0.7421 0.7146 0.7409
Test-time augmentation 0.7502 0.7152 0.7408

Model repetition 0.7595 0.7221 0.7487
Leaf to high-level 0.7577 0.7275 0.7542

Multi-output to high-level
0.7697 0.7264 0.7515

(proposed)

Table 18: Per-class F1-scores obtained for the ensemble strategies in Table 17

Method Ensemble type S A < 3 B B + OP

SL

- 0.6632 0.8357 0.4978 0.7940 0.6369
Test-time augmentation 0.6760 0.8310 0.5017 0.8007 0.6355

Model repetition 0.6910 0.8411 0.5133 0.8007 0.6455
Leaf to high-level 0.6937 0.8482 0.5332 0.7767 0.6403

Multi-output to high-level
0.6842 0.8420 0.5525 0.7980 0.6520

(proposed)

SSL

- 0.6832 0.8392 0.5886 0.8065 0.6554
Test-time augmentation 0.6861 0.8362 0.5885 0.8097 0.6554

Model repetition 0.6876 0.8509 0.5983 0.8107 0.6631
Leaf to high-level 0.7041 0.8497 0.5929 0.8143 0.6763

Multi-output to high-level
0.6966 0.8446 0.6005 0.8145 0.6758

(proposed)

S: Scattering; A: A-lines; < 3 B: Up to 3 B-lines; B+: B positive; OP: Other pathologies.
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In agreement with the intuition that models with a higher number of leaf-labels are more refined, it

appears that ensembles that leverage from leaf-labels to provide the corresponding high-level labels

outperform models relying solely on those high-level labels. In opposition, test-time augmentation de-

livers the worst outcome, despite still surpassing a single inference at test-time. This is corroborated

for both supervised and semi-supervised settings.

Comparing both leaf and multi-output to high-level ensembles, the latter outperforms the first in

the supervised setting, with the difference between the average F1-scores being minimal in favour of

the first in the semi-supervised one. However, the AP score is greater in the multi-output ensemble.

This leads to the conclusion that, while leveraging from one model of just leaf-labels to obtain high-

level labels is advantageous, relying on models able to classify distinct output label sets, seems to

be more promising. A possible reasoning for such result is the fact that models with distinct label

sets focus on distinct data distributions, differing in the existing intra- and inter- class variability, but

also in things like class imbalance and label noise.

For the leaf-labels model ensemble, the proposed approach is to use themodel repetition ensemble

described above, with four repetitions. Once again, one compared this technique against test-time

augmentation to validate its effectiveness, with the results summarised in Tables 19 and 20. Both

test-time inference techniques outperformed a single inference routine, with the model repetition

ensemble providing a better performance, both globally and for nearly all classes individually. This

is an expected outcome since, being M4 the most refined model, it is expected that the repetition of

that same model multiple times outperforms the model when alone.

Finally, for the categorical models, since the semi-supervised approach was not applied, the pro-

posed ensembles were evaluated for the supervised setting only. Again, the multiple outputs to

high-level ensemble is applied to C1 (Table 21) and the model repetition ensemble to C4 (Table 22).

As expected, although with a smaller improvement (mainly due to the fact that the models were

already very robust), the results do increase with the proposed ensemble implementations.

Table 19: Comparison of distinct model ensemble strategies for model M4

Method Ensemble type AP
F1-score

Macro Micro

SL

- 0.6803 0.6414 0.6775
Test-time augmentation 0.6849 0.6411 0.6783

Model repetition
0.7093 0.6503 0.6898

(proposed)

SSL

- 0.6782 0.6711 0.7007
Test-time augmentation 0.6902 0.6766 0.7036

Model repetition
0.6980 0.6868 0.7118

(proposed)
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Table 20: Per-class F1-scores obtained for the ensemble strategies in Table 19

Method
Ensemble

type
S A < 3 B > 3 B CB C PE

SL

- 0.6667 0.8346 0.5356 0.5773 0.7192 0.5733 0.5831
Test-time

augmentation
0.6828 0.8329 0.5190 0.5863 0.7275 0.5577 0.5816

Model repetition
0.6937 0.8482 0.5332 0.5858 0.7373 0.5808 0.5731

(proposed)

SSL

- 0.6961 0.8433 0.5938 0.6258 0.7478 0.6026 0.5882
Test-time

augmentation
0.6981 0.8445 0.5888 0.6307 0.7500 0.6136 0.6103

Model repetition
0.7041 0.8497 0.5929 0.6334 0.7566 0.6381 0.6330

(proposed)

S: Scattering; A: A-lines; < 3 B: Up to 3 B-lines; > 3 B: More than 3 B-lines; CB: Coalescent B-lines; C: Consolid-
ation; PE: Pleural effusion.

Table 21: Original C1 model and proposed ensemble

Method Ensemble type BA MCC AP
F1-score

Normal Indicative

SL
- 0.9210 0.8417 0.9704 0.9192 0.9224

Multi-output to high-level 0.9268 0.8533 0.9758 0.9252 0.9280

Table 22: Original C4 model and proposed ensemble

Method Ensemble type BA MCC AP
F1-score

Macro Micro

SL
- 0.6974 0.6347 0.7482 0.6979 0.7360

Model repetition 0.7046 0.6498 0.7723 0.7055 0.7472

4.5 I n f l u e n c e o f p o s t - p r o c e s s i n g

At last, the influence of the implemented post-processing routine was also evaluated. To do so, it

was gradually added in both supervised and semi-supervised settings, with and without the proposed

ensemble for either M1 and M4 (Tables 23 and 24, respectively). It is important to bear in mind that

this algorithm is only applicable in multi-label scenarios.
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Table 23: Comparison of different combinations of blocks for model M1

Method Ensemble Post-processing
F1-score

Macro Micro

SL

0.6855 0.7225
x 0.6953 0.7285

x 0.7057 0.7397
x x 0.7138 0.7441

SSL

0.7146 0.7409
x 0.7073 0.7366

x 0.7264 0.7515
x x 0.7212 0.7493

The results for both models are similar. In the supervised setting, the application of the post-

processing block improves performance, irrespective of the usage or not of ensemble modelling.

The post-processing block, as described in Section 3.7, relies on the dataset hierarchy, and is thus

expected to improve the models’ performance since it restricts the possible outputs to viable ones.

This is not verified in the SSL approach, however. Actually, in this case, the values obtained with

the post-processing block are inferior for both M1 and M4 models. One explanation for this incident

is, once again, the calibration of the semi-supervised model not being ideal. The post-processing

is based on the output vectors. If the network is overly confident, and therefore outputting very

high or very low values, the confidence-based rules become a fault. Labels that, in the supervised

version, were doubtful, in the semi-supervised become certain. And, while in the usual multi-label

classification, every class with a confidence above 0.5 is selected, in this post-processing routine that

does not happen. Considering, for example, a model that had a score above 0.5 for two (incompatible)

Table 24: Comparison of different combinations of blocks for model M4

Method Ensemble Post-processing
F1-score

Macro Micro

SL

0.6414 0.6775
x 0.6481 0.6827

x 0.6503 0.6898
x x 0.6631 0.7003

SSL

0.6711 0.7007
x 0.6611 0.6918

x 0.6868 0.7118
x x 0.6755 0.7030
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classes, in the vanilla classification both are selected and one of them is probably correct (unless a

third incompatible class exists). However, in this scenario, the post-processing ad-hoc rules will force

the choice of one. This may become more frequent in the semi-supervised model since it is overly

confident.

The applicability of the domain knowledge is backed for the supervised setting. However, its

objective is lost in the semi-supervised approach. Note that different results may be achieved if one

calibrates the SSL-based models (following, for example, the strategies in [83]), but such experiment

is left for future studies.

4.6 Te s t s e t r e s u l t s

Considering the multitude of experiments performed and their respective results, a final assess-

ment of the proposed strategy (summarily illustrated in Figure 23) was performed on the held-out

test set. The test results are presented for both categorical C1 and C4 models, and multi-label M1

and M4 models, for both supervised and semi-supervised settings, each compared with the corres-

ponding baselines (Tables 25 to 28). Each baseline considers the model in question without any

of the proposed strategies,with the exception of the proposed video-level inference. Additionally, for

the multi-label scenarios, the considered baseline does not include the ”Pleural irregularity” class to

permit the direct comparison against the results upon semi-supervised training. For the multi-label

approaches, two proposals are investigated, a supervised and a semi-supervised one, while one single

proposal is evaluated for the categorical classification (supervised setting only). For the multi-label

models, M1 and M4, both proposals (supervised and semi-supervised) contain label smoothing reg-

ularisation and either multi-output to high-level ensemble or model repetition ensemble, respectively.

The difference lies in the post-processing routine which is only applied in the supervised setting. For

the categorical tasks, C1 and C4, one considers multi-output to high-level and model repetition en-

sembles, respectively. Once again, note that the proposed post-processing routine is not applicable

for categorical tasks.

By observing Tables 25 to 28, one can note that the results decrease slightly from those reported

for the validation set, which may underline a bit of overfitting due to hyperparameters’ tuning and

empirical algorithmic choices. Note that this slight drop in performance may also be caused by

other factors like distinct class imbalance ratios (jeopardising the performance measured for certain

low-frequency classes) or higher label noise on the test set. Another reason may be linked to the

quality of the test set videos, or the fact that there are fewer videos considered in this set, increasing

the representativeness of each video on the final results. Among the evaluated classes, the ”Up to

3 B-lines” presents the largest decrease. This may be due to the fact that this class presents the

highest amount of label noise, but also because its interpretation is difficult and hampered by the
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fact that a similar artifact, the so-called Z-lines (in every aspect similar but for the fact that they do

not occur until the bottom of the sector scan), if present should be disregarded.

Notwithstanding, the conclusions remain the same, with all proposals surpassing the baseline

models and, when applicable, corroborating the interest in employing the semi-supervised methods.

Table 25: Test set performance for the baseline and final proposal for the C1 model

Model BA MCC
F1-score

Macro Micro Normal Indicative

Baseline 0.9121 0.8238 0.9118 0.9131 0.9012 0.9225

Proposal 0.9261 0.8522 0.9261 0.9272 0.9170 0.9351

Table 26: Test set performance for the baseline and final proposal for the C4 model

Model BA MCC
F1-score

Macro Micro S A NP P

Baseline 0.6750 0.6507 0.6768 0.7614 0.6423 0.8077 0.3911 0.8662

Proposal 0.6900 0.6657 0.6919 0.7716 0.6561 0.8121 0.4264 0.8729

S: Scattering; A: A-lines; NP: Non-pathological; P: Pathological

Table 27: F1-scores obtained in the test set by the baseline and final proposals for the M1 model

Model Macro Micro S A < 3 B B + OP

Baseline 0.6664 0.7243 0.6652 0.8192 0.4793 0.8356 0.5327

SL Proposal 0.6826 0.7403 0.6841 0.8313 0.4952 0.8486 0.5540

SSL Proposal 0.7045 0.7540 0.6925 0.8475 0.5529 0.8572 0.5725

S: Scattering; A: A-lines; < 3 B: Up to 3 B-lines; B +: B positive; OP: Other pathologies.
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Table 28: F1-scores obtained in the test set by the baseline and final proposals for the M4 model

Model Macro Micro S A < 3 B > 3 B CB C PE

Baseline 0.6095 0.6628 0.6559 0.8124 0.4758 0.6017 0.7310 0.5889 0.4006

SL Proposal 0.6406 0.6879 0.6838 0.8291 0.5287 0.6273 0.7495 0.6155 0.4502

SSL Proposal 0.6509 0.6957 0.6702 0.8433 0.5414 0.6530 0.7567 0.6139 0.4780

S: Scattering; A: A-lines; < 3 B: Up to 3 B-lines; > 3 B: More than 3 B-lines; CB: Coalescent B-lines; C: Consol-

idation; PE: Pleural effusion.

Comparing the categorical and the multi-label models, the latter (being more challenging tasks)

are the models that benefit the most from the proposed blocks, showing the highest improvement.

Furthermore, besides the calibration problem encountered with the semi-supervised approach, its

utilisation is still an asset as it is able to produce better outcomes than the supervised setting. The

final semi-supervised proposals deliver an average improvement in F1-score of 3.81% and 4.14% for

models M1 and M4, respectively.

To demonstrate the potential utility of the proposed LUS interpretation method in clinical practice,

one used the model C1 to create a visual representation of the classification result over the multiple

fields acquired in a LUS exam. This representation shows the lungs divided according to the imaged

fields and coloured (per field) following the predicted class. Figure 49 presents the obtained rep-

resentation for a representative patient from the test set, considering the categorical classification

between normal and indicative findings.

As one may notice, very similar representations were obtained, with the proposed algorithm

wrongly classifying only two of the twelve fields. The RL - LI field was mistaken as having an un-

derlying pathology, and the LL - AI field was misclassified as healthy. In the case of the latter, the

true label is ”Up to 3 B-lines” (hence the ”Indicative finding” label), which is one of the hardest

and most ambiguous findings to interpret. Overall, the representation is very similar and the global

outcome regarding each lung remains the same.
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Figure 49: Visual representation of the lungs of a patient from the test set, coloured per field according to the
(top) ground truth and (bottom) predicted labels.



5

CONCLUSION AND FUTURE WORK

In this work, it was proposed to develop a generic deep learning framework for automatic in-

terpretation of lung POCUS videos. Thus, the main objective was to develop a network that, upon

receiving a LUS video, identifies the finding(s) present in that video.

A framework based on a 3D ResNet was created that incorporates a noise-robust approach (in

the form of label smoothing regularisation) and integrates domain knowledge (in the form of model

ensembling, and optionally, a post-processing routine). The implemented framework is also flexible,

being applicable for either categorical or multi-label classification, and can be successfully transferred

to a semi-supervised setting (through an uncertainty-aware pseudo-label selectionmethod) to leverage

of unlabelled data, when available.

The framework’s performance was validated with several models, both categorical and multi-label.

For each classification, two different outputs are proposed, depending on the information one desires

to retrieve from the LUS videos. By combining the different blocks proposed and the different classi-

fications types, one can create models that are able to respond to different tasks and objectives. For

example, the binary categorical model, which has excellent performance in distinguishing between

normal-looking lungs and lungs with an indication of underlying pathology, can be of great use for pa-

tient screening in emergency scenarios. Triage could be performed based on the algorithm’s output,

giving experts a rapid forewarning on urgent cases. On the other hand, the more complex multi-label

models could be used to get a sense of the progression and extension of the pathology.

These methods, however, are not without flaws. First, in order to improve the performance of the

semi-supervised method, calibration strategies (such as temperature scaling and isotonic regression

[83]) would need to be investigated and implemented to solve the observed limitations. Moreover,

the presented work focused exclusively on lung parenchymal fields. For an increased applicability

in clinical practice, the work would need to be extended to the diaphragm insertion and lung sliding

fields. In addition, to simplify the adoption of the framework in clinics, experts must trust it. This can

be achieved by resorting to explainability methods, allowing the expert to understand the reasons for

the network’s output (e.g. by identifying where it is looking at, either spatially and/or temporally).

These would all be indispensable next steps to enhance the proposal.

76
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