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Resumo

Quantificação Automática deCélulasMicrogliais a partir deNeu-
roimagens

A microglia é um tipo de célula glial residente no sistema nervoso central e representa cerca de 10 a

15% da população de células cerebrais. Estas células não produzem impulsos elétricos, são responsáveis

por processos fisiológicos e patológicos fundamentais, e representam a primeira linha de defesa dentro

do sistema nervoso central. Assim, a quantificação destas células é fundamental num contexto clínico,

pois permite uma melhor monitorização e planeamento de tratamentos para diversas patologias.

A contagem convencional de células envolve um conjunto específico de ferramentas e dispositivos de-

senvolvidos para esse fim. Este processo é demorado e impreciso devido a estar bastante dependente do

operador. Atualmente, a maioria dos processos são feitos manualmente. No entanto, outras abordagens

têm sido estudadas, com o intuito de melhorar o processo de contagem, para tornar o mesmo menos

demorado, mais eficiente e reduzir o erro associado a fatores externos à contagem. Posto isto, o objetivo

desta dissertação é o de estudar a melhor abordagem para automatizar a quantificação de células mi-

crogliais indo desde os métodos clássicos aos de deep learning. Combinado com as devidas técnicas de

processamento e análise de imagem, a abordagem clássica mostra-se uma solução adequada. Contudo,

nos últimos anos, abordagens baseadas em deep learning evidenciaram um desempenho promissor em

várias tarefas de análise de imagens, como classificação, deteção e segmentação.

As abordagens desenvolvidas para automatizar o processo de quantificação foram testadas num con-

junto de imagens construído em parceria com elementos da Escola de Medicina da Universidade do

Minho. Quanto à abordagem da metodologia clássica, foi desenvolvido um protocolo dentro do ImageJ,

que aliado com técnicas de processamento de imagem permitiu automatizar o processo de contagem.

Com base em redes neuronais convolucionais, o problema de classificação referente a uma metodologia

de deep learning obteve uma accuracy de 0.9021 e conseguiu classificar as 661 imagens em 5 minutos

e 44 segundos. As duas abordagens, consideradas ótimas dentro de cada metodologia, são competitivas

com os métodos do estado da arte, pois permitiram automatizar o processo, mostraram uma significativa

melhoria na reprodutibilidade e eficiência.

Palavras-chave: Células Microgliais, Deep Learning, Processamento de Imagem, Quantificação Auto-

mática de Células, Segmentação de Imagem, Sistema Nervoso Central
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Abstract

Automatic Quantification of Microglial Cells from Brain Images

Microglia are a type of glial cell residing in the central nervous system and represent about 10 to

15% of the brain cell population. These cells don’t produce electrical impulses and are responsible for

fundamental physiological and pathological processes, as they represent the first line of immune defence

within the central nervous system. Thus, the quantification of these cells is essential in a clinical context,

as it allows better monitoring and planning of treatments for different pathologies.

Conventional cell counting involves a specific set of tools and devices developed for this purpose.

This process is time-consuming and imprecise due to being heavily dependent on the operator. Currently,

most processes are performed manually. However, other approaches have been studied and developed

to improve the counting process, making it less time-consuming, more efficient and reduce the error

associated with factors external to the counting. That said, the objective of this dissertation is to study the

best approach to automate the quantification of microglial cells, ranging from classical to deep learning

methodologies. Combined with the appropriate image processing and analysis techniques, the classical

approach proves to be an adequate solution. However, in recent years, approaches based on deep learning

have shown promising performance in various image analysis tasks, such as classification, detection and

segmentation.

The approaches developed to automate the quantification process were tested on a set of images built

in partnership with researchers from the School of Medicine of the University of Minho. As for the classical

methodology approach, a protocol was developed within ImageJ, which was combined with image pro-

cessing techniques that allowed the automation of the counting process. Based on Convolutional Neural

Networks, the classification problem referring to a deep learning methodology obtained an accuracy of

0.9021 and managed to classify the 661 images in 5 minutes and 44 seconds. The two approaches, con-

sidered optimal within each methodology, are competitive with the state-of-the-art methods, as they allowed

for the automation of the quantification process, and showed a significant improvement in reproducibility,

efficiency and reduced error associated with human factors.

Keywords: Automatic Quantification of Cells, Central Nervous System, Deep Learning, Image Processing,

Image Segmentation, Microglial Cells
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Introduction

The main objective of this study is to understand the best approach to automatically quantify microglial

cells, focusing on classical and deep learning methodologies. This chapter aims to contextualize the

reader for the goal of this work. The motivation behind this dissertation, along with the definition of the

main objectives and contributions are described. Ultimately, this chapter also provides an overview of the

document outline, summarising the main contents of each chapter.

1.1 Motivation

Microglial cells are one of the most important microorganisms in the Central Nervous System (CNS)

and are about 10 to 15% of the brain cell population [1]. Microglia is a type of glial cell that doesn’t produce

electrical impulses. They are responsible for fundamental physiological and pathological processes, rep-

resenting the first line of immune defence within the CNS [2]. Upon detection of any sign of brain damage

or nervous system dysfunction, these cells undergo an activation process. In the activation process, these

cells migrate to the site of injury [3]. Given that importance, the quantification of these cells is fundamental

in a clinical context, as it allows for better monitoring and planning of treatments for different diseases.

Therefore, cell count is an indispensable procedure routine that, in some cases, helps in the detection

of a particular disease. Most of the cell quantification processes are performed manually. This quantifica-

tion task requires time and is a tedious process. The final results may vary considerably between users,

even when they are very experienced. On the other hand, automatic approaches have been studied and

proposed over the last few years. The automated counting process has proven to be faster and more ef-

fective. This approach gained importance in the medical context, as evidenced by the inclusion of several

automatic quantification and segmentation systems in a clinical environment.

To overcome the challenging task of the automatic quantification of microglial cells, some available

alternatives are derived from the so-called more classic and deep learning-based approaches. Regarding

the classical approach, an image that contains scattered cells in a layer and a known area, software

solutions and assistants for automatic cell counting are applicable and make the quantification process

easier [4]. Deep learning is a branch of machine learning and has been successfully applied to hard

1



CHAPTER 1. INTRODUCTION

tasks. In this sense, it stands as a good choice for automatic quantification of microglial cells, essentially

due to its robustness, even in complicated domains with a lot of data variance. Deep learning methods

learn from data instead of rule-based programming. Hand in hand with the different approaches we

have indispensable image processing and analysis techniques. Image processing techniques convert an

image into a digital form, and then further processing is allowed in those images [5]. The image analysis

technique emulates human vision [6], including learning and the ability to make a decision based on input.

Morphological operators are also a key subject in image analysis.

So, to solve the problem of automatic quantification of microglial cells, a study and conception of

solutions to automatically quantify these cells, within the classical and deep learning approaches, will

be carried out. In this context, this dissertation presents an introduction to classic and deep learning

approaches for automatic cell counting. The state-of-the-art techniques are a good reference for it since

they were meant for this challenge. In the same way, those concepts can be adapted to less complex but

demanding tasks that require a high level of accuracy.

1.2 Objectives

The potential of automatic cell counting methods is, without a doubt, very vast. From the outset,

this procedure can provide the medical context with a greater capacity to analyze large sets of images,

substantially reducing costs and time lost with these tasks. Then, the methodologies for automatic cell

counting open doors for the creation of new systems, which can reformulate the diagnosis and treatment

of various diseases.

The problem is that nowadays most cell counting processes are manual. Such processes are time-

consuming, tedious, and imprecise, being heavily dependent on the operator. Considering the automatic

quantification of cells problem, this dissertation aims to develop means to quantify, i.e., count, the number

of microglial cells from brain images. As stated, the expectation is that we will be able to conceive a method

that, with acceptable performance, can automatically quantify microglial cells.

The first objective is to study and evaluate the different approaches to quantify the number of microglial

cells. The second objective is to investigate from the classical methodology proposed solutions, which is

the most suitable one to solve the problem, and successfully apply it to the automatic quantification of

microglial cells from brain images. At this stage, the software and assistants for cell counting will emerge

allied with image processing and analysis techniques. The third objective is to conceive and evaluate a deep

learning-based approach to automate cell counting. Such approaches have already evidenced promising

performance in various image analysis tasks, such as classification, detection, and segmentation, as

shown in future lines. The last objective is to compare the results between the classic and deep learning

approaches to fundament which one is the most suitable solution to automatic quantify microglial cells.
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1.3 Contributions

This dissertation gave rise to two scientific publications. The first, entitled ”Reviewing Computational

Approaches for the Automatic Quantification of Cells from Brain Images” by Diogo Lopes, Ana Bela Cam-

pos, Patrícia Maciel, Paulo Novais and Bruno Fernandes is a review of different computational approaches

for the automatic quantification of cells. In this scientific publication, the classic and deep learning-based

approaches were studied, helping to fundament a strategy to solve the problem raised in this dissertation.

This scientific publication was submitted for publication in the 17th International Conference on Practical

Applications of Computational Biology & Bioinformatics.

The second, entitled ”A Benchmark between Classic and Deep Learning Methods for the Automatic

Quantification of Microglial Cells”, is under preparation for submission in the Computer Methods and

Programs in Biomedicine journal, a Q1 journal in the domains of computer science applications and

health informatics. This scientific publication consists of a compilation of all the work developed, within the

classical and deep learning methodologies, for the presented problem. This paper presents the results, the

corresponding discussion, and all the main conclusions drawn from the work developed in this dissertation.

1.4 Dissertation Structure

This dissertation is organized into seven chapters. These are oriented to present the reader with all

the relevant information collected during the literature review, carried out in the state-of-the-art on the main

topics underlying this dissertation. The entire process of the quantification of the microglial cells is given.

Chapter 1 is intended to guide the reader to the subject of this work, presenting the context and

motivation for carrying out this study. Following that, and once delivered the problem that led to this study,

the main objectives and expected results of this dissertation are presented. The remainder of this section

provides a general overview of the document outline.

We proceed by delivering a medical perspective on microglial cells in Chapter 2. We start with a

general overview of microglial cells, namely their origin and morphology. The reader is then presented

with how these cells can be identified emphasizing cell markers since they will always be at the centre of

our study.

Chapter 3 consists of a literature review on the different approaches for the automatic cell quantification

of microglial cells from brain images, especially the classic and deep learning approaches. Concepts of

image processing and analysis techniques are presented and distinguished with some examples of the

most common methods. The emphasis given to these techniques is related to the fact that they are key

in digital image processing.

The information related to the data used to study and conceive a solution to the problem is provided

in Chapter 4. Firstly, the generic cell samples used to understand the best approach to take with ImageJ,

deep learning algorithms and their respective limitations, are presented. Next, the set of neuroimages
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used to build the dataset is also described. All the preparatory work carried out with them is presented to

the reader in this chapter.

Chapter 5 presents to the reader all the implementations developed to conceive a solution based

on some of the statements and conclusions drawn previously from the studied methodologies and ap-

proaches. It also presents the experimental environments where all the experiences were conducted.

The results obtained from the study are given in Chapter 6. In this chapter, the reader can understand

the entire analysis and discussion of the reached results.

Finally, Chapter 7 closes this document by presenting the main conclusions and perspectives of future

lines of research related to the study developed to this point.
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2

Microglial Cells - Medical Prespective

This chapter presents the reader with a medical perspective on glial cells, focusing on microglial

cells. These macrophages are a type of neuronal support cell present in the central nervous system of

invertebrates and vertebrates. Hence, these cells function primarily as immune cells they gather a big

research interest. To better access and comprehend their appearance in neuroimaging, a study related

to shapes that this organism adopts and cell markers are presented, as both have a tremendous role in

the identification for prior quantification. Image analysis of glial cells is the main application of the study

carried out with this dissertation, specifically microglial cells quantification from brain images. So, this

chapter presents theoretical foundations and gives a technical background related to these organisms, as

they play an important role in the implementation of an automatic quantification system.

2.1 General Overview

Microglia are a type of neuronal cell (neuroglia) located throughout the brain’s spinal cord. They

represent around 10 to 15% of the brain cell population [1]. As stated, microglial cells are the resident

macrophages in the CNS that don’t produce electrical impulses. Glial cells are responsible for fundamen-

tal physiological and pathological processes. They represent the first line of immune defence within the

CNS because they constantly monitor the CNS microenvironment for plaques, damaged or unnecessary

neurons and synapses, and infectious agents [2]. According to a study published in the Journal of Clinical

Investigation, microglia are also responsible for other cerebral processes, such as the regulation of synap-

tic architecture and neurogenesis. They are also fundamental for sustaining normal brain functions under

healthy conditions [7]. These cells migrate into all CNS regions and acquire a specific ramified morpho-

logical phenotype, which is a physical observable property like the one we can see in the image below,

termed “resting microglia” [3]. This dissertation’s main goal is to quantify this morphological phenotype

from brain images.

Microglial cells are considered the most vulnerable sensors to brain pathologies. Surveillant microglia

can be activated, adapt and respond according to a specific stimulus. The detection of any sign of brain

damage or nervous system dysfunction may be triggered by neurological degenerative disorders such as
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Alzheimer’s and Parkinson’s disease or by infections. These cells undergo an activation process that

converts them into the “activated microglial cell”. When activated, microglial cells can move to the site

of injury. Recent studies suggest that these cells can help delay the progression of diseases in the brain.

Figure 1 shows an example of microglia cells from a specific part of a brain image used in this study.

Figure 1: Microglial Cells.

2.2 Origin and Development of Microglial Cells

Microglia were first discovered by a Spanish neuroanatomist Pio del Rio-Hortega, between 1919 and

1921, through a study involving histological staining with silver carbonate. This neuroanatomist defended

that microglia are distinct from other types of neuroglia because they derive from embryonic mesoderm,

which gives rise to the blood and immune system cells [3].

The origin of microglial cells has been a theme long time debated. The evolutionary origins of these

cells remain largely unexplored. However, today it is already consensual that these cells are derived from

progenitors from the bone marrow and migrate into the CNS during the process called embryogenesis [8].

Once they reach the brain, glial cells propagate and disperse, in a non-heterogeneous manner, throughout

the CNS. After invading the brain, glial cells transform into a ramified phenotype. It’s important to highlight

that in a healthy CNS, including the brain and spinal cord microglial cells have a ramified morphology.

This specific morphology will help the identification and later quantification of cells. In a healthy brain,

microglial cells exist as a stable population.
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2.3 Identification and Morphology of Microglial Cells

Neuroimaging offers the non-invasively possibility to assess the brain. These images are a rich source

of data that allows the medical community and researchers to extract measurements, locate and study

lesions to prepare certain treatments. For these purposes, and remembering that microglial cells are key

for fundamental physiological and pathological processes, their identification throughout the brain images

is essential. Additionally, these images contain information that allows us to visualize the cell behaviour

through their morphology and the specific shapes acquired.

Regarding the information presented above, this section presents some theoretical foundations related

to microglial cell identification and morphology, as they are a key subject and will help in the decision-

making of the system based on a more classic and deep learning approach to quantify these cells.

2.3.1 Identification

The identification of glial cells beyond cytomorphological criteria has been facilitated by the develop-

ment of staining procedures that take advantage of the unique expression of certain molecules in certain

cell types. Regarding the purpose of the dissertation, this will be helpful when trying to identify and count

the number of cells using automatic cell counting related to more classic methods, by setting contrast and

colour variations in pixel values. In section 3.3, we can find more detailed information on how these specific

methods and techniques should be applied based on the literature collected, referring to the application

of this type of method in similar situations.

Microglia can be seen in some sections of human brain tissue and are well distinguished from other

brain cells CNS [3]. Regarding the purpose of this study, deep learning methods are expected to easily

identify these cells when trained to recognize and distinguish them. The different approaches that deep

learning methods can take, namely learning algorithms applied to similar problems, clustering, deep clus-

tering, generative networks, object detection and image segmentation, are described in detail in section

3.4, based on previous applications of automatic cell counting.

2.3.2 Morphology

Regarding these cells’ morphology, it is consensual that they are the smallest of all neuroglia. They

are typically oval-shaped, and projecting out from their bodies exist slender elongated processes that allow

these cells to move. These cells undergo a variety of structural changes based on their location and

immune system needs. The ability to transform themselves distinguishes them from other macrophages.

This helps to defend the CNS on extremely short notice without causing any immunological damage.

According to the information presented above, microglial cells can go from a resting state to an active

state. Microglia reduce the complexity of their shape when they shorten or retract their branches. The

shapes that these cells acquire are ”Ramified or Hyper-Ramified Shape” and ”Reactive Shape”, as we can
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see in Figure 2. The microglial cells seen in vitro do not usually have a branched structure compared to

the microglial cells typically seen in the normal CNS [3].

Ramified and Hyper-Ramified Shape Microglial cells assume this particular shape throughout the

CNS, specifically throughout the spinal cord and brain. This form is composed of long branches and a

small cellular body. The cell body of this ramified shape remains stable while its branches, which are very

sensitive to small changes, are constantly moving and supervising the surrounding areas. Microglia in this

state can search and identify various immune threats. Although this is considered to be a “resting state”,

microglia that remain ramified are extremely active and can be quickly transformed into the activated form

to respond to any injury or threat [9].

Reactive Shape Most of the time, when we refer to microglia, we use the term “activated”, although

some scientific studies assert that it is no longer correct. We should use the terminology “reactive”

microglia. The term used is misleading as it indicates a polarization of cellular reactivity. The Ionized

Calcium-Binding Adapter Molecule 1 (IBA1) marker, detailed in subsection 2.4, is upregulated in reactive

microglia and is often used to visualize these cells. This is the marker used to help the visualization of the

cells in this dissertation through the classic and deep learning methods [7]. When reactivated, microglial

cells became phagocytic activated and non-phagocytic. When glial cells became phagocytic activated are

the best line of an immune-responsive form that microglia can be. Non-phagocytic cells are glial cells that

are moving from their ramified form to their fully active phagocytic form [10].

Figure 2: Representation of Microglial Cells Morphology. Source [11].
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2.4 Markers of Microglial Cells

To recap, microglia are resident macrophages in the CNS that play an immune defence role. As

stated in subsection 2.3.2, they exist assuming a ramified shape and are actively investigating the sur-

rounding areas for injuries or infections. Being static but always looking for threats, they can be quickly

”activated” in response to environmental changes. Once a threat is detected, the microglia undergo some

morphological changes. Activated microglia are divided into essentially two states, M1 and M2, based on

their morphology. M1 microglia are the first cells to respond to injury, while M2 microglia, also known

as the anti-inflammatory microglia, can promote regression of neuroinflammation and stimulate tissue

repair [12].

Regarding the microglia marker, there are three different state markers the Steady-State, M1 and M2

Markers. When choosing microglia markers for cell visualization, their location is essential. These markers

help us to identify the cell more easily. There are numerous markers for microglial cells, but it is important

to point out, that in this dissertation, the samples used to study a way to automatically quantify the number

of cells contain the positive and non-positive IBA1 cell marker on them. IBA1 or AIF1 is a cytoplasmic

protein, related to microglia motility and phagocytosis and is associated with microglial cell activation.

IBA1 is the protein of a ramified microglia [13].

2.5 Summary

Microglial cells are a type of support CNS neuronal cell that don’t produce electrical impulses. These

cells reside in the healthy CNS parenchyma and are responsible for fundamental physiological and patho-

logical processes. Glial cells include oligodendrocytes, astrocytes, ependymal cells, andmicroglia, with this

last one representing 10 to 15% of the brain cell population. Microglia function primarily as immune cells

because they constantly monitor the CNS microenvironment, being able to detect extracellular changes.

Located throughout the brain spinal cord, and in addition to their immune functions, these cells are im-

portant in other brain processes such as the regulation of synaptic architecture. These cells migrate into

all central nervous system regions and acquire a specific ramified morphological phenotype.

Microglia were first discovered between 1919 and 1921 through a study involving histological staining

with silver carbonate. However, the origin of microglial cells has been a long-debated topic. Despite this,

it is already consensual that these cells are derived from progenitors and migrate into the CNS. When they

reach the brain, these cells propagate and disperse in a non-heterogeneous manner throughout the CNS,

transforming themselves into a ramified phenotype. They can go from a resting state to an active state.

This transition is accompanied by morphological changes. Microglia reduce the complexity of their shape

when they shorten or retract their branches.

Regarding the purpose of this dissertation, which is the automatic quantification of these cells from

brain images, the identification of microglial cells is crucial. The identification of these cells beyond cyto-

morphological criteria has been facilitated by the development of staining procedures. These procedures
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take advantage of the unique expression of molecules in cell types, helping to identify and count them.

By setting contrast and colour variations in pixel values, we can count cells when we face a more classic

approach. Microglial cells are easily distinguished from other brain cells, which will be readily identified by

deep learning methods when trained to recognize and distinguish these cells. Another key point to help in

the identification of these cells for posterior counting are the cell markers.

About the markers, there are three different state markers, the ”Steady-State” and ”M1 and M2

Markers”. All the samples used in this study have the IBA1 positive and non-positive marker on them.

IBA1 is a marker related to microglia motility and phagocytosis, as well as microglial cell activation.
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State of the Art

To quantify microglial cells present in the central nervous system, its identification through neuroimag-

ing is indispensable. Roughly, we can do this quantification in two different ways. The manual quantifica-

tion task presents itself as more time-consuming and error-prone even for the most experienced specialists.

As an alternative, automatic quantification systems using classic and deep learning methodologies have

shown robust results and the potential to reduce the human error associated with manual quantification.

In addition, they have proven to be faster and more effective. They gained importance in the medical

context, as evidenced by the inclusion of several automatic quantification and segmentation systems.

This chapter introduces the reader to relevant theoretical foundations and gives a technical background

related to the scope of this dissertation. Image processing and analysis techniques are required to imple-

ment a solution to automatically quantify microglial cells. Therefore, a description of the global aspects of

image processing and analysis is presented alongside with the processing techniques applied to enhance

some characteristics in brain images and the morphological operators of image analysis. Next follows a

brief contextualization of the automatic quantification process. Emphasis is on ImageJ, as it will be the

software of choice and analysis of similar work developed regarding this classical approach. This chapter

also provides information related to deep learning methodology and its respective algorithms that have

been applied successfully to image classification and in this way automate the quantification of cells. As

deep learning is a machine learning technique, emphasis is on learning paradigms, object detection and

recognition.

3.1 Image Processing Techniques

Image processing is the methodology that allows converting an image to a digital aspect. Then,

enabling us to perform actions on it, to get an enhanced image or extract quantitative and qualitative

information from images using appropriate techniques. Today, image processing is spreading throughout

various fields. Therefore, distributed into several groups emerge ”Visualization”, ”Image Retrieval”, and

”Digital Image Processing (DIP)”. Bering in mind the goal of this dissertation, the last-mentioned element

of the various image processing groups is the one that needs to be pointed out and will be detailed later.
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It is worth explaining that an image is a set of distributed data in an array. The positions are defined

by elements from the Cartesian plane [14]. Therefore, data values are described as a Two-Dimensional

(2D) function, 𝑓 (𝑥,𝑦), where 𝑥 and 𝑦, are coordinates of the Cartesian plane, and assume integer values

from 0 to 𝑁 −1 and𝑀 −1, respectively, in images with size 𝑁 ×𝑀 . Figure 3 illustrates and substantiates

the presented information.

Figure 3: Mathematical Notation for a Digital Image. Adapted From [14].

Sometimes, the images may be squares, making𝑀 equal to 𝑁 . Another repeatedly used terminology

is the given spaces generated by the intersection of rows and columns of a matrix. That said, 𝑖 and

𝑗 represent the row and column numbers, respectively, with the same range of integer values. Each

element of this matrix or grid is named by picture element, image element, or pixel, being pixel the

best-known denomination [14]. Data values, 𝑓 , is a discrete representation of the intensity or amount of

visible light reflected by an object. Considering our informatics background, we know that an image is

visualized by the computer as an array of integers. The application of algorithms for array manipulation

is a common practice. So, image processing needs several techniques available with the assistance of

computer programs. However, it’s possible to extract qualitative and quantitative information from images

using mathematical theorems, despite being a complicated and demanding task.

DIP is the technique of processing images performed by computers, eliminating the possibility of

extracting information using mathematical theorems. First, the images are converted into a digital form,

acquiring a computerized structure, and then further preparation/processing is done on those images.

To obtain this computerized structure, image processing uses various techniques such as correction,

formatting of the data, and enhanced procedure to create images with better quality [5]. It is important

to point out that DIP allows the usage of complex algorithms for more sophisticated or simpler tasks. DIP

is a tangible application of classification, feature extraction and pattern recognition. When we talk about
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DIP, there are several techniques associated with it, more precisely seven different techniques. However,

we will only focus on four of them, since they are related and are a key element in the automatic cell

quantification process using classical and deep learning methodologies. These techniques are ”Image

Segmentation”, ”Classification”, ”Image Restoration”and ”Image Enhancement”.

3.1.1 Image Segmentation

Image Segmentation allows the partitioning of an image into several regions, several subparts, or

even splitting it into pixels, according to the requirements intended by the user. This approach is often

used for the analysis of substances, borders and other records relevant to processing [15]. The outcome

of image segmentation is a set of sections that cover the total image. The main goal of segmentation

is to simplify a raw image in such a manner that makes it easier to evaluate a complete picture. The

segmentation of images is performed to compress images and facilitate the recognition of objects and

editing purposes. Bearing in mind this dissertation, the part of the recognition of objects associated with

the image segmentation will be extremely helpful when applying a more classic approach for automatic cell

counting, as described in section 3.3. For that, thresholding the image is also indispensable. Segmentation

allocates labels to each pixel so that pixels have similar labels and can share features [16]. This helps the

identification and subsequent quantification of cells. There are several image segmentation techniques,

as we can see in Figure 4. These techniques are detailed further below.

Image
Segmentation

Feature-Based
Clustering ThresholdingEdge-BasedRegion-Based Model-Based

Figure 4: Image Segmentation Techniques.

Region-Based This technique groups the objects used for segmentation. The region-based method,

also known as similarity-based segmentation, requires that certain regions must be together with each

other so that the segmentation can take place. The borders of an image are recognized to perform

segmentation. The area that is detected for segmentation should be closed, and the thresholding technique

is bound with region-based segmentation [17]. Every step of this technique requires at least one pixel for

processing purposes. The colour and texture of the image are altered, and a vector is created from the

edge flow. Then, further processing is applied to those edges [18].
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Edge-Based Another technique used in image segmentation is the edge-detection method also known

as edge-based. This technique is formulated as a binary classification problem at the pixel level to identify

individual pixels [17]. To recognize pixel values, edges are drawn, and then these edges are compared

with other pixels. The basic procedure of this technique starts with extracting information about the edges.

Then labelling is done for pixels. The segmentation is performed by the edges, and they must be far from

each other. The linking is performed to fill the gap between the edges [18].

Feature-Based Clustering Feature-based clustering, commonly known as clustering, is another op-

tion to perform image segmentation. With clustering, an image is changed into a histogram. Following

that, the clustering technique itself can be applied to the image. Pixels of the coloured images are clustered

for segmentation using an unsupervised technique (Fuzzy C-Means Clustering). The stated procedure is

applied to ordinary images, but if there is detected some noise, the result will be image fragmentation [19].

Threshold Thresholding is considered the easiest method used for image segmentation. This approach

changes a grayscale image into a binary image wherever the two points are allocated to pixels. These two

points are located below and on the upper side of the definite threshold value. The threshold value is

obtained from the histogram of the original image and is calculated by the detection of edges which

implies that this value is only correct if the detection of the edges is accurate. Segmentation perform via

thresholding has lesser calculations in comparison to other methods [20].

Model-Based This technique is based on Markov arbitrary field. For colour segmentation, inbuilt region

constraints are implicit. To characterize the exactness of the edges MRF is joined with edge detection. This

method contains the relations amongst colour components [21].

3.1.2 Classification

Classification is the technique used to extract data and pixels from images. To perform classification,

the minimum requirement is to have as many samples of similar objects as possible. An appropriate

classification scheme and an adequate amount of training samples are the basics for effective classifi-

cation [22]. There are various classification approaches such as Artificial Neural Networks (ANNs) and

Fuzzy Logic. The classification technique is either supervised or unsupervised. In supervised classification,

spectral signatures are obtained from training samples and are used to classify an image. After that, from

the given training pieces, a signature file is assembled. With the help of classification tools, the image

is then classified. In unsupervised classification, the output depends on the machine. It’s not necessary

any interaction with the user. The statements presented go in line with the principle of supervised and

unsupervised learning detailed in subsection 3.4.4.

The following diagram (Figure 5) illustrates and helps to describe the working of supervised and un-

supervised classification techniques. To sum up, in supervised classification and as previously stated, the
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result is the assembly of a signature file. Following that, various classification techniques are applied to

the created file to classify the image. Unsupervised classification deals with clustering, so no samples are

collected for further processing. All work is performed with the help of various algorithms by the computer.

Data
Exploration

Classification

ClusteringCollecting
Sample

Evaluating
Sample

Editing

Creating
Signature File

Signature File
Examine

Editing
Signature File

Applying
Classification

Post Classification
Processing

Supervised Unsupervised

Figure 5: Classification Workflow. Adapted From [23].

3.1.3 Image Restoration

As the name suggests, image restoration is the technique through which a corrupted and noisy image

is processed in such a manner to construct the ideal image [24]. There are two types of procedures

used to reconstruct an image. One technique is to model the image whose quality is degraded, and the

other technique, known as image enhancement, increases the quality of the image by applying various

filters [25]. In the subsection 3.1.4 more detailed information about image enhancement is given. Notice

that to restore an image correctly is important to have prior knowledge of what may be the cause of

degradation.
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The following diagram (Figure 6) shows the degradation and restoration activity. To sum up, the

restoration of images is achieved via two types of models, namely the degradationmodel and the restoration

model. On the diagram, the original image is represented by the 𝑓 (𝑥,𝑦). After the degradation has taken
place, various functions are applied to restore the image.

f(x,y) Degradation
Function + Restoration Filter p(x,y)

g(x,y)

Figure 6: Restoration-Degradation Model.

3.1.4 Image Enhancement

The image enhancement technique helps to improve the quality of the image. This method modifies

certain components in images to increase image clarity. Image enhancement is commonly used to analyse

an image for feature extraction. Several algorithms are used in this process. As can be seen in Figure

7, there are two different approaches to image enhancement. The spatial domain technique works with

pixels. The pixel values are altered to achieve the desired enhancement. It also contains other techniques

constantly working dependent on the pixels. The frequency domain technique is used for images that are

based on frequency mechanisms and works on the orthogonal conversion of the image rather than the

image itself [23].

Image Enhancement
Techniques

Spacial Domain
Approaches

Frequency Domain
Approaches

Figure 7: Image Enhancement Techniques. Adapted From [23].

3.2 Image Analysis Techniques

Image analysis is the field of digital image manipulation that differs from image processing. The

purpose of the image analysis technique is to emulate human vision, including learning and the ability

to make a decision based on input [6]. This method is associated with the DIP processes. However,

instead of collecting information qualitatively, these systems extract quantitative information from datasets

assembled by a set of images, as will be the case in this dissertation.
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Commonly image analysis techniques are applied to images resulting from image processing tech-

niques. The most typical operations associated with image analysis are morphological analysis, measure-

ments, recognition, representation and description. We can also include segmentation in this group of

operations. Regarding this study, the recognition based on object segmentation will be used for assigning

a label to objects (e.g. microglial cells). Another relevant aspect to point out, and also related to the main

goal of this dissertation, is that morphological analysis relies commonly on the geometric aspects of an

object. This means that the parameters related to object morphology such as diameter, area, number,

perimeter length, roundness, and extension [14], fit perfectly in the area of image analysis of microglial

cells. Besides the most basic mathematical morphological operations, three types of operations charac-

terize the morphological analysis technique. Regarding this study we are going to focus on morphological

analysis applicable to binary images, usually derived from thresholding. Operations for size and shape

are the most common and easiest morphological operations to use and are related to the properties, local

shapes and sizes of objects in images. There are several morphological operators to aid in image anal-

ysis. Knowing that we want to quantify the number of microglial cells from brain images the ones that

are important to point out are ”Dilation”, ”Erosion”, ”Opening and Closing”, ”Hit-or-miss Transform”, and

”Boundary Extraction”. Next, follows a brief description of each of the mentioned operators.

Dilation Dilation is the operation in which object edges are expanded. The central pixel of the structural

element (which in our study will be the nucleus of the microglial cell) cycles through all pixels of the target

object. This results in a wider object (wider nucleus). Related to this increase in size is the number of

pixels of the structural element, as they exceed the limits of the target object when the centre pixel reaches

the edge of the target object [26].

Erosion Erosion is the exact opposite of the dilation procedure. Erosion causes a contraction of the

edges of an object. The object is reduced according to the shape and size of the structural element. Once

the limit of this element reaches the boundary of the object, the pixels between the object boundary and

the central pixel of the structural element drop out from the constitution of the object. It is important to

point out that once the centre of an element passes through all the pixels of the target object this results

in the contraction of limits [26].

Opening & Closing Opening and closing operations are related and are intrinsic to dilation and erosion

techniques. The output of opening an object is the same as the result of erosion followed by dilation of

an object, causing smoothed contours, broken narrow isthmuses and eliminated small islands and sharp

peaks. Analogously, the output obtained by closing an object is the same result that we can obtain with

dilation followed by erosion of an object [27].

Hit-or-miss Transform Hit-or-miss transform is an iterative morphological shape detection tool. This

operation involves several basic operations such as erosion, complement, intersection and difference. After
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several iterations where each of these techniques is implemented, the final result includes the coordinates

of the object of interest in the image [27].

Boundary Extraction Boundary extraction is the operation that returns a region of pixels corresponding

to the boundary of an object of interest. The quality of the resulting boundary is related to the shape of the

structural element since the result of this operation is equal to the difference between the original object

and the same object after erosion [27].

3.3 Classic Methods for Automatic Cell Counting

Conventional cell counting involves a specific set of tools and devices developed for that purpose. This

process is tedious, time-consuming, and inaccurate due to operator-dependent biases. Most of the cell

counting processes to this date are manual. However, because cell counting is an important procedure

routine that in some cases may help in the detection of illness, various study reports are focusing on the

experience of the development of image processing programs to automate cell counting. This makes the

cell quantification process more time-efficient and reduces error [4, 28]. It is important to point out that

some of these programs, developed with the aim of automatic cell counting, require specific settings on an

image to obtain a reasonable accuracy [4]. This is where the image processing and analysis techniques

come in.

If an image of the cells spread in one layer on a known area is available, software solutions for automatic

cell counting are applicable. Some software have proven to be suitable for automatic cell quantification,

such as Cell Profiler, CellC, Cell-Counter, and OpenCFU. Another important piece of software for this

matter, and more related to the selected approach based on a more classical methodology, for automatic

quantification of cells are ImageJ and FIJI. Both are open-source image processing software, and FIJI

is a package based on ImageJ. It is important to point out that these manual standalone cell counting

assistants, plug-ins, and guides facilitate cell counting by replacing the manual clicker with multiple digital

counters or placing a semi-transparent grid over the image to help with focus. ImageJ is the platform

of choice for image processing and automatic cell counting because it has several useful tools. For this

study, the choice of ImageJ for the implementation of an automatic cell quantification solution, using a

more classic approach, was based a lot on the premise stated before and on the fact that allows studying

and designing a solution where concrete and acceptable results are expected. We can find more detailed

information about what is ImageJ in subsection 3.3.1.

One option to solve the problem raised can be the ”Analyze Particles” method combined with image

thresholding. Thresholding an image allows separating the background from the objects of interest, which

can then be counted by the ”Analyze Particles” function. An alternative can be the ”Find Maxima” method

of ImageJ. This functionality determines and counts the local intensity maxima in an image. To sum up,

with this method each pixel with the average of its 3 x 3 neighbourhood, eliminates small imperfections
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of high intensity that contribute to false positives. This can be extremely important for the identification

of microglial cells from brain images for the previous quantification [29]. A small review of related work

and possible approaches to the raised problem is presented in subsection 3.3.3. The work developed by

the scientific community will allow the development and understanding of the best approach to quantify

objects with ImageJ.

3.3.1 ImageJ

Until very recently, image processing and analysis were only possible through very expensive com-

mercial tools or even through software packages developed by those who needed them. Furthermore, the

acquisition and storage of digital pictures to an image processing system have never been as common-

place as it is today. The ubiquity of digital technology has made digital images part of numerous areas like

medicine. In fact, with the increasing flow of the acquisition of digital images, new software packages have

been developed, allowing users to manipulate and process digital images. Taking this into account, finer

distinctions of certain concepts related to digital image processing performance appeared [30]. As stated

in section 3.1, image processing is the conception, development, and improvement of digital images. As

previously mentioned, in section 3.2, image analysis comprises all the techniques with the purpose of

extracting meaningful information about picture contents.

After having previously introduced image processing and analysis techniques, let’s talk about and

present ImageJ. ImageJ is a software package containing many functionalities that allow the application

of image processing and analysis techniques to images. This software can compute areas and statistics

of pixel values, measure distances or even create histograms and line profile plots. With ImageJ, we can

do the most basic image processing techniques such as background subtraction, brightness and contrast

adjustment, image type conversion, smoothing, sharpening, filtering, and binarization. It also contains

other basic features for basic manipulations like geometric transformations such as scaling, zooming and

rotation. It is important to point out that it can display, edit, analyse, process, save and print 8–bit, 16–bit

and 32–bit images, as well as reads files in the TIFF, GIF, JPEG, BMP, DICOM, FITS format, and supports

stacks, that is, a series of images in a single window [31]. ImageJ is a java-based program developed at the

U.S. National Institutes of Health. Available on the Internet for the public domain, meaning that its source

code is openly available and its use is license-free (at https://imagej.nih.gov/ij/download.
html) for Mac OS X, Linux and Windows. Another important detail is that ImageJ was designed with an

open architecture that provides extensibility via java plugins [32]. If needed, we can use open-source code

to install additional plugins related to the automatic quantification of cells.

As intended, when we do a literature search and review to fundament a state-of-the-art and start

grounding some foundations for future work, ImageJ was installed, and the first contacts with the software

were made. The following subsection was developed to make a simple presentation about the ImageJ

software. Therefore, a brief presentation about how image processing with ImageJ is given, by presenting

some menu commands as well as a brief description of its features. More information about ImageJ
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documentation is available at https://imagej.nih.gov/ij/docs/guide/.

3.3.2 Image Processing with ImageJ

According to the information presented above, related to the characteristics of ImageJ, we can say

that this software developed a large ecosystem all over the years. ImageJ has several plugins, and they

are highly varied and are capable of modifying an existing function or introducing a brand new one due to

the fact of being an open architecture software that provides extensibility as it is an open-source tool [33].

Taking into account the vast list of projects that function within ImageJ it is important to focus on the

features that distinguish it from others and why it is the software chosen to be the basis for the study of a

solution to the problem presented. The most obvious distinction is its simplicity in image processing. With

ImageJ, applying image processing tasks is an extremely simple process because it is a very simple and

easy-to-understand graphical interface, which makes the processing task much easier.

Like most of the existing programs, ImageJ provides users with a graphical interface containing a

menu bar. The program main window is only a bar that contains the menu commands, a toolbar, a status

bar and a progress bar as can be seen in Figure 8.

Figure 8: ImageJ Main Window

Additional windows can be opened to show images, histograms, plots and results. The toolbar contains

the basic tools to make the following selections:

1. Rectangular and Rounded Rectangular;

2. Oval, Elliptical and Brush;

3. Polygon;

4. Freehand;

5. Straight, Segmented, Freehand Arrow Line;

6. Angle;

7. Point and Multi-point.
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Besides this, ImageJ has seven free slots to select any tool from the 60-plus tools offered by the

software. There are also 15-plus toolsets available online that can be installed later if necessary. The menu

bar has eight menus. The file menu contains the most basic operations like opening and saving. Then,

the edit menu allows editing and drawing, as well as contains operations for all global configurations. The

following menu, the image menu, has on it the operations for image modification and conversion including

geometric transformations. The process menu includes the options for image processing, and the analyze

menu has all the operations related to image analysis, such as statistical measurements, histograms

and profile plotting. The plugins menu contains all the commands for creating, editing and managing

add-ons, as well as the lists of all installed plugins and scripts. Finally, the window and help menu are

pretty much self-explanatory as they feature the selection of windows, the documentation and version

information, respectively. Regarding the main purpose of this dissertation and after this short exploration

and explanation of ImageJ menus and features, the ones we are going to focus more on are the image,

process and analyze menus because they are the ones related to image processing and analysis. These

menus will make it possible to implement an approach for automatic cell quantification.

Image Menu The image menu is composed of several sub-menus, like type, adjust, colour, stacks

and hyper-stacks, crop, duplicate, rename, scale, transform, zoom, overlay and lookup tables. The sub-

menu type determines the type of the active image. As stated in subsection 3.3.1, the image types

supported are 8-bit, 16-bit, 32-bit, 8-bit colour, RGB colour, RGB stack and HSB stack. The adjust sub-

menu contains commands that adjust brightness/contrast, adjust threshold levels, window levelling, colour

balance, image size and canvas size. This sub-menu will be extremely important for the process of image

processing once as it will assist in the preparation and adjustment of brain images. As expected, the

colour sub-menu contains commands that allow the user to manipulate colour. The ImageJ can handle

three types of colour images: pseudocolour images, RGB images and composite images. The stacks

sub-menu allows various manipulations of image stacks. Image stacks are sets of images displayed in

a single window. These images should be spatially or temporally related, and all the images must have

the same size and bit depth. The constituent images of a stack are called slices. It is important to point

out that most of the existing commands in ImageJ have the option of processing all the slices in a stack.

Crop and duplicate sub-menus allow cutting or duplicating an image or stack. Rename allows the user to

change the title of an active image or stack. The scale sub-menu opens a dialogue box allowing the user to

resize or scale an image or a selected area. The transform sub-menu enables the user to apply geometric

transformations to an image. It is possible to control how the current image is displayed through the zoom

sub-menu. To conclude, the lookup tables submenu contains a selection of colour lookup tables that can

be applied to grayscale images to produce pseudocolour images.

Process Menu The process menu is composed and has the following options that allow implementing

image processing techniques: smooth and sharpen, find edges and maxima, enhance contrast, noise,

shadows, binary, filters, bach, image calculator and subtract background. Smooth is a filtering function
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which blurs an image or a selected area. Sharpen is a command to a processing technique that accen-

tuates and enhances the detail of an image, particularly the edges of objects. The filter finds edges and

uses a detector to highlight sharp changes in intensity in the active image or selection. The noise sub-

menu contains commands to add or remove noise from images. The shadows sub-menu have a group of

operations to produce a shadow effect in image objects. The binary sub-menu has commands for mor-

phological analyses of binary images. As expected, the filters sub-menu contains several filters differing

from each other essentially by the method applied. Related to methods applied to filtering we can find the

convolution, gaussian, median, mean, and unsharp methods. The image calculator performs arithmetic

operations like addition, subtraction, multiplication, divide, between two images.

Subtracting background is useful for images with high backgrounds, but even images with a lower back-

ground may benefit from the subtraction of background. The process is based on the ”rolling ball”concept

in which a ball with a given radius rolls over the bottom surface of a three-dimensional grayscale 2D im-

age. As stated, this subsection was developed to have the first contact with ImageJ which will be used for

the automatic quantification of microglial cells when applied a more classical approach. For that, and as

an example similar to the case study, available at http://imagej.nih.gov/ij/images, an image
of a cell colony was selected, to evidence the benefits of image processing. In Figure 9, to the left, we

can visualize the original image. To the right, we can visualize the image whiteout the background after

applying the ”rolling ball”effect with 50 pixels of radius over the image surface. The ability to choose to

make the subtraction of dark backgrounds with lighter objects and choose to create a background (not

subtract) are features present in ImageJ that make image processing a simpler task, and will help with

the identification of microglial cells for previous automatic quantification.

Figure 9: Background Subtraction on a Cell Colony Image
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Analyze Menu The analyze menu is it is the menu that allows carrying out the last settings before

the actual counting process. As stated, a very peculiar feature of ImageJ is the possibility that it has

for counting objects, such as the number of cells from 2D images. Automatic counting is a program

application that is very interesting for its speed, ease of execution, and low error. This is why ImageJ was

selected and is the perfect solution to solve the problem of automatic quantification of microglial cells.

Before the automatic counting of objects in an image (e.g., the cell colony image presented in Figure 9), it

should be applied to the image set of processes to make the automatic quantification more precise. The

one applied for demonstration purposes, background subtraction is one of those processes. As expected,

the results are higher evidence of the cells, as was an increased gap between the background pixels and

cell pixels. Before automatic counting, thresholding is a fundamental procedure. This process is image

binarization. A manual adjustment with the sliders may be required to decrease the overlap, but is also

possible to rely on the automatic adjustment provided by ImageJ. The result is an image in which the white

areas have no interest in quantification.

After applying and selecting the threshold, automatic counting is done with the analyze particles

method contained in the analyze menu. As evidenced in Figure 10, the menu window for particle analysis

is opened. It is important to notice that a prior image scaling was required. On the first line is specified

the range of the size of objects to be counted. Following that, was set which objects are included in the

counting based on their circularity. This is possible by varying the range of circularity, where the minimum

extent (0) corresponds to a straight line and the maximum measure (1) corresponds to a perfect circle. A

particularity of ImageJ is the possibility of applying operations to selected areas or regions of an image. It

is important to point out that the analyze particles operation is truly useful in counting objects of different

colours in RGB images. This feature allows the differentiation of different types of objects and provides

count results for different types.

Figure 10: Analyze Particles for Automatic Cell Quantification
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3.3.3 Object Counting with ImageJ

The big goal of this dissertation is to perform automatic counts of cells, namely microglial cells. The

quantification of cells can be done in two different ways, manually and automatically. Regarding the last

one, two methodologies are associated with it, a more classical and a deep learning-based one. The

objective of this subsection is to review, within relevant work and literature, different classical approaches

to the automatic quantification of cells problem. In total, three articles will be brought for discussion to

present some aspects regarding how to do object counting with ImageJ. Some of those will be taken into

consideration when designing a final solution.

Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Pre-

pared Tissue Using ImageJ

The article produced by Young et al. [34] consists of a set of steps and ImageJ protocols used by the

research team to convert fluorescence and bright-field photomicrographs into binary and skeletonized im-

ages. Microglial cells are captured in a fluorescent format, and to make certain operations with those

images, i.e., count, they need to be converted to a binary format. In addition to the objective of counting

these cells, in this study, there was also the objective of analysing their morphology.

Introduction In the referred study, the authors detailed in a stepwise way how they use ImageJ plugins

to summarize microglia morphology. The analysis techniques were implemented with AnalyzeSkeleton

(2D/Three-Dimensional (3D)) and FracLac16 plugins. The first quantifies microglial cell structures, and

the other quantifies microglial shapes. These plugins offer a rapid analysis of microglia ramifications within

entire photomicrographs. They stated that the use of both tools is not redundant, as cell ramification is

complementary to cell complexity. In addition to the statement information, a protocol for counting these

cells was also developed.

Experimental Work In terms of the developed work, in addition to the objective of counting microglial

cells, in this study, there was also the objective of analysing their morphology. Therefore, of all the steps

performed, we will only focus on two, step 3 (Imaging) and step 4 (Skeleton Analysis) since they are the

ones that make it possible to elaborate an approach to the quantification of microglial cells and are related

to the theme of this dissertation. The samples used of microglial cells contain the IBA1 marker. Therefore,

in step 3 the goal was to separate channels since cells are only visible in the red channel. It was possible

to perform this action using ImageJ’s channel separation feature. To perform the automated count of

these cells, in step 4 they used the unsharp mask filter to increase the contrast on the image. Next, they

needed to adjust the threshold of the image to convert it into a binary format. Following this protocol and

using the analyze particles functionality, they were able to automatically count cells using ImageJ.

Results As stated, several steps were implemented to represent microglia morphology according to

metrics such as cell ramification, complexity, and shape. The developed protocol steps that helped in the
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identification of cells as the image noise was removed, and only the cells themselves were left for analysis

and counting. Throughout the results obtained, it was possible to prove that ImageJ protocols make

microglia morphology quantification available to all laboratories as the platform and related plugins are

open-source. Although their main objective was to enhance binary, skeleton, and outline representations

of complete photomicrographs and single cells, they were able to make easier the automatic quantification

of cells process. It is important to point out that supplementary modifications can be easily made to

the protocol depending on image quality and on the actions to reduce noise. Thus, through the results

obtained, we conclude that some of the steps will need to be taken into consideration to design a solution

for the problem presented in this dissertation.

Discussion and Conclusions To sum up, this paper provided a general overview of a developed

protocol with recommended ImageJ plugins for automatically accessing the morphology and quantifying

microglial cells. The main goal of the protocol is to convert fluorescence photomicrographs into binary

skeletonized images. Additionally, they concluded that with the use of this protocol, microglia quantification

is accessible to all laboratories, as the plugins used are open-source. This article was also able to verify

that it is possible to carry out cell counting in a more automated way, thus avoiding manual counting

approaches and processes.

Assessment of Cell Counting Method based on Image Processing for a Microalga Culture

In Dökümcüoğlu et al. [35] the main objective aimed to illustrate the effectiveness of an image process-

ing approach for the automatic counting of cells in a microalga culture. Therefore, they also develop a

protocol with ImageJ to automatically quantify cells.

Introduction In this study, the authors also detailed in a stepwise way how they automatically quantify

cells in a microalga culture. Their main goal was to prove the usefulness of an image-processing approach

for counting cells. Thus, to attest usefulness of image-processing software for cell counts, they compared

the performance obtained between the ImageJ cell counts, Utermöhl cell counts, which is a more manual

procedure for the quantification of cells, and Optical Density measurements.

Experimental Work In terms of the outcome, we are only going to focus on the ImageJ one. Similar

to the previous solution, they developed within ImageJ a protocol to automatically quantify cells. They

started by calibrating their image and then converting it to 8 bits to minimize colour variation. For better

visualization of dark-coloured cells, they subtracted the background through the background subtraction

functionality within ImageJ. To obtain a better and clear image, they also applied the rolling ball radius to

reduce the noise in their images. To convert the image into a binary format they also adjust the threshold,

and to obtain more accurate results, they fill the holes in cell nuclei. Finally, they used the analyze particles

functionality to be able to automatically count cells.
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Results The results obtained attest to the benefit of an image-processing approach to quantify cells.

The plots presented in the article represent the results of regression analysis between optical density and

cell counting methods. The first one is the analysis between the Thoma chamber and optical density, the

second is the Utermöhl chamber and optical density, and the last one is ImageJ counts and optical density.

Through the analysis of results, they were able to conclude ImageJ cell counts were finished in a quarter

of the time used for manual cell counting under the microscope. In this way, they attested ImageJ can

improve and automate the results of the existing automatic counting methods and increase the associated

work speed and reliability.

Discussion andConclusions The authors were able to demonstrate the usefulness of image-processing

approaches for the quantification of cells. In their case, the samples were a microalga culture. Their ap-

proach can be easily applied to the quantification of microglial cells problem. They are similar because

the brain image contains multiple glial cells, like in cell culture. To conclude, they also evidence in this

study that resorting to ImageJ allows the operator to complete the counting process four times faster than

a manual count, with similar accuracy.

Automated Segmentation and Analysis of Retinal Microglia within ImageJ

In Ash et al. [36] a segmentation routine was proposed to perform automated segmentation and cell

counting. Seeking to automate microglia counts, they concluded that few algorithms exist for retina mi-

croglia count. The experimental work within the FIJI-ImageJ ecosystem originated a new segmentation

routine to perform automated segmentation and cell counting in retinal microglia. They showed that they

can perform cell counts with similar accuracy to manual systems.

Introduction Through this study, and knowing that microglia are immune cells of the CNS capable

of migrating in response to injury, the author’s identified that algorithms aiming to automate microglia

counts and morphological analysis are becoming increasingly popular. Few exist that are acceptable for

use within the retina and manual analysis remains dominant. With FIJI-ImageJ they performed automated

segmentation and cell counting and evidence that their procedure routine can accomplish counts with

accuracy comparable to manual observers using the I307N Rho model.

Experimental Work In terms of the experimental work, they started with raw images as input. Then

they preprocessed those images by normalizing stack intensities followed by the application of a rolling

ball, median filter, and Gaussian smoothing routines. The next step was to convert the image to a binary

format. The fourth step was cell somas which were identified by morphology using an existing algorithm,

and their overlay with the candidate cell masks. The fifth step was labelling. After the application of the

watershed algorithm, they were able to identify distinct cells as this algorithm separates with one pixel what

he considers to be one or more cells together. Finally, they indicated high overall fidelity with occasional

undetected cells and dendrites. The quantification was performed after all these steps were conducted.
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Results The results obtained after the application of the image analysis protocol are images of cells

where the noise is reduced and the cells are evident, which undoubtedly facilitates the counting process.

The developed procedure segmented contender cell masks by watershed regarding the overlaid cell mark-

ers. This method allowed a more accurate definition of microglial morphology. Finally, cell counts were

obtained using the labelled image produced within FIJI-ImageJ. Once again, through the results obtained in

the analysis and counting process, the team attested to the benefits of automated cell counting processes

when compared to more manual processes.

Discussion and Conclusions The authors implemented, within the FIJI-ImageJ ecosystem, a new

segmentation routine to perform automated segmentation and cell counting in retinal microglia. As the

algorithms that automate microglia counts are increasing in popularity, they conclude that few of those are

adequate for segmentation and cell counting of retina microglia. Therefore, their approach built entirely

with open-source software, addresses the presented problem. Throughout the results, they showed that

their routine can perform cell counts with similar accuracy to manual counting but faster, thus evidencing

the benefit of automatic approaches to the problem of cell counts.

3.4 Deep Learning for Automatic Cell Counting

According to the information stated above the identification and counting of the number of cells from an

image are one of the biggest tasks for biomedical image analysis and medical diagnoses [37]. Cell count-

ing, in particular microglial cell counting, is conducted in this study because these cells are responsible

for fundamental physiological and pathological processes. Therefore, its identification and quantification

may help detect a serious illness. The major weakness of the state-of-the-art techniques for cell counting

is the counting dependence on low throughput technology that requires manual counting done by special-

ists, and adjacent to this, there are high labour costs, error-prone data collection, user subjectivity and

fatigue. In recent years, deep learning-based approaches evidenced promising performance in various im-

age analysis tasks, such as classification, detection and segmentation. The most important thing to notice

is that this approach has shown similar accuracy to manual counting but a significant enhancement in

reproducibility, throughput efficiency and reduced error from human factors.

Regarding the cell counting problem, with this approach, the problem can be categorized as detection-

based counting and regression-based counting [38]. The first approach requires the detection or segmen-

tation of every cell before cell counting, which implies a supervised learning process. To convert a counting

task into a segmentation task, cell annotation is needed, to train the detection or segmentation model.

Each cell is detected one by one through the object detection model, and then the counter takes the

detected cells and produces the counting results. To sum up, the first step of this approach is the identi-

fication of the cell-like candidate region, the second step is the evaluation of the candidate, which can be

done by an Support Vector Machine (SVM). The last step is the selection of a non-overlapping region.
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Currently, more studies have been focused on regression-based cell counting as they avoid the chal-

lenging task of detection or segmentation of single cells because they generate cell density or cell count

directly from the images [38]. The Convolutional Neural Networks (CNNs) models are been applied and

modified using the Euclidean loss function by taking the total number of cells as the annotation infor-

mation [39]. The number of cells within a certain region is obtained via the integration of the density

map.

3.4.1 Machine Learning

To better understand what Machine Learning (ML) is, there are certain basic concepts of Artificial

Intelligence (AI) that we must first comprehend. The term AI is commonly used to refer to all computer

programs that can think like humans, in other words, AI is defined as a computer program that exhibits

human-like cognitive ability. Major AI researchers and books define this field as “the study and design

of intelligent agents”, being the intelligent agents the systems that understand the environment and take

certain actions to obtain success [40]. Any computer program that shows the stated characteristics, such

as self-improvement, learning from inferring, or even basic human tasks, such as image recognition [41,

42], is considered to be a form of AI. The field of AI includes within it the sub-fields of ML and Deep

Learning (DL), each with its specific characteristics, but in the end, they are all related. It is important

to point out that ML approaches are more probabilistic, which means that the output can be explained,

thereby ruling out the black-box nature of AI, unlike DL approaches that are more deterministic.

ML is an application of AI [43], in and of itself, is a relatively simple concept. The idea behind ML is

that machines should be given access to data and learn specific tasks by themselves to make accurate

predictions or be able to behave intelligently without being explicitly programmed. They learn to do better in

the future based on past experiments. For that, ML exploits computing systems that learn and predict from

data, which can be examples, direct experience, or instruction [44]. Because of this, the main advantage

of ML over human learning is the ability to consume huge amounts of data, learn from it, and detect and

analyse patterns that outshine human capabilities. The data consists of a set of samples that usually

represent the observed variables. It is important to point out that in some cases like the one presented

in this dissertation, the set of observed variables is composed of images. As explained, ML algorithms

can improve through training from that data, to improve their predictions. Most of those algorithms have

certain settings, normally denominated as hyperparameters. During training, those hyperparameters help

to control the algorithm’s behaviour. It is noteworthy that a subset of the training set is the one used to

choose the hyperparameters for the model. The selection process can be made by trial and error because

the validation set isn’t used to train the ML algorithm [45].

To implement an intelligent system learning is required. As stated, a system must be able to perform

actions that are associated with intelligence. Despite the complexity of the implementation of learning, this

is a subject of great interest to the scientific community due to their large number of application domains,

such as medical diagnosis. Today, three prominent methods are being used to train these algorithms.
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These training methods, most commonly known as learning paradigms are supervised, unsupervised and

reinforcement learning. In subsection 3.4.4, we can find more detailed information about the learning

paradigms.

3.4.2 Deep Learning

We can say that DL is a more specialized version of ML because utilizes more complex methods for

difficult problems [46]. The term “deep” helps to justify the previous statement as it refers to the number

of layers in the network. DL stands as a sub-discipline within ML, that according to what has already been

explained is a subset of AI. Despite being a sub-discipline of ML, DL algorithms differ from ML algorithms in

their ability to learn from unstructured and unlabelled data. ML algorithms require labelled data, which is

a task performed to make data readable for the program. DL algorithms can process raw data without the

need for labelling [47]. DL specifically is the use of the concept known as Neural Networks (NN), whereby

computers emulate the systems of neurons, similar to those found in the brain, to learn and work [44].

NN and DL for many specialists represent the way forward for AI as we know it, as they will pave the way

for human-like AI shortly. NN and other subjects related to the fundamentals of DL are described in more

detail in subsection 3.4.3. In DL, the complexity is described in the relationship that variables share. A

system that relies on or uses simple concepts and variable relationships to learn more complex concepts

is known as a DL algorithm. This goes to find and substantiate the claim DL algorithms differ from ML

algorithms in their ability to learn from unstructured and unlabelled data [48].

To sum up this subsection and highlight some of the most important ideas, DL stands out mainly

because of these three factors: robustness, generalization capacity, and scalability. A model can auto-

matically learn from raw data, or in other words, can understand the most important features even in the

presence of noise [49]. The model’s performance tends to improve when trained more and more.

3.4.3 Fundamentals of Deep Learning

Related to the study developed with this dissertation, some theoretical fundamentals of DL are essential

to point out, to more easily understand the reasons behind the choice of this approach. A notion of artificial

neurons, moving on to how they can be assembled in a network, and finally introducing CNNs are the

theoretical foundations of DL presented below.

Artificial Neuron

The human brain is considered a massive network and has approximately 86 billion neurons [50]. The

neuron represents the basic computational unit of the brain. Usually, neuron inputs come from dendrites

which are connected to other neurons. The input signals are all processed together according to the

strength or weight of their connection. The newly generated signal is then sent through the output axon to

other neurons’ dendrites. In Figure 11, we can see a representation of a biological neuron. This one is in

genesis and inspired the creation of the mathematical model for artificial neurons.
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Figure 11: Representation of a Biological and an Artificial Neuron. Adapted from [50].

The artificial neurons are the base element of ANNs. They transform a set of inputs into a single value

using a weighted sum since each input has a respective weight. The neuron output values are calculated

by applying an activation function. In Figure 12, we can see the representation of the most commonly

used activation functions. Following, a small definition and description of these activation functions are

presented.

Figure 12: Representation of Activation Functions. Source [50].

Sigmoid The function outputs are values between 0 and 1. It saturates low input values closer to 0

and high input values near 1. However, this activation function has a small drawback of not being zero-

centred, once the output is always positive. That said, the gradient on the weights will become all positive

or negative, according to the signal [50].

Hyperbolic tangent This activation function, also known as Tanh, returns values between -1 and 1.

Similar to the sigmoid function, this one also saturates high and low input values. However, there are

differences between the two of them. The main difference is that for low input values the output will tend

to be -1, and, for high inputs, it will tend to be 1 [50].
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ReLU This function operates with a threshold of zero. The negative input values are set to zero and the

remaining values are left unaltered. This activation function is based on computational simplicity, and for

that accelerates training. However, the ReLU definition is fragile and many neurons can irreversibly die

during training, in special, with high learning rates [50].

Artificial Neural Networks

The term ANNs is usually used to characterize the mathematical model composed of a collection of

artificial neurons. As stated in the previous section, these neurons are interlinked in a network by layers

to learn more complex data relations [49]. Feedforward Neural Networks (FNNs) and Recurrent Neural

Networks (RNNs) stand as two types of ANNs. The FNNs are characterized as being an acyclic graph

where the data only can move forward. Unlike these, with RNNs the data/information can flow in any

direction, including to the same layer. To sum up, RNNs are an extended representation of FNNs with the

addition of feedback connections [49]. As we can see in Figure 13 (a) contains three input neurons, two

hidden layers (both with four neurons) and an output layer with a single neuron. Traditional FNNs models

can be disposed into fully-connected layers of neurons and the data moves forward. On these layers, only

neurons between two layers are fully pairwise connected. That means that neurons within a single layer

don’t have connections between themselves [50].

Figure 13: Representation of two types of Artificial Neural Networks. Adapted From [50].

Traditionally FNNs are structured in three sections:

• An input layer that receives the data. The data needs to be in a vectorized representation, for

instance, and focusing on the problem presented with this dissertation, to deal with images, they

must be converted to a One-Dimensional representation, just like a vector;

• One or several hidden layers, which are composed of artificial neurons to extract non-linear features

from the data;

• An output layer that combines a set of non-linear features learned on the previous layers and outputs.
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The RNNs have the purpose of processing sequential data [49]. The term recurrent is used to refer to

the ability that these ANNs have to execute the same job for every element present in a sequence. Figure

13 (b) shows that for each time-stamp 𝑡 , the hidden state is calculated by adding the current input with

the previous hidden state, in which the function 𝑓 is the activation function. In the context of supervised

learning, which is described in more detail in subsection 3.4.4, on both types of ANNs, the error between

the network predictions and ground truth is back-propagated throughout all networks and is normally used

to update the network weights to make the predictions more accurate [51].

Convolutional Neural Networks

According to the information presented above, ANNs are composed of a set of artificial neurons that

are organized into layers such as the input layer, the hidden layer, and the output layer. CNNs follow the

same principle as they derive from ANNs. However, it is important to point out that they differ in one

simple detail, as they assume that the input is a set of images. The architecture of CNNs disposes of

the neurons differently when compared to ANNs as they look to improve the creation of the model [50].

Neurons are disposed of in three dimensions such as width, height and depth [49]. The idea behind CNNs

is to use small ANNs convoluted along with the image to extract relevant information. It is important to

point out that this idea differs from a fully connected architecture which demands much more parameters.

As a reference, a single fully connected hidden layer requires 120 000 parameters to handle a 200x200

RGB image. This number of parameters is wasteful as leads the model to easily overfit on training [50].

Besides that, with a fully-connect approach, the image pixels are related together. When using smaller

CNNs, it is possible to identify local features and add successive convolutions layers. In the Figure, we can

better understand how neurons are set on CNNs in comparison to ANNs. Figure 14 displays the traditional

representation of ANNs and CNNs.

Figure 14: Representation of a Traditional Artificial and Convolutional Neural Networks. Source [50].

The concept of receptive fields is key to ensuring that neurons inside a layer are only connected to a

small region of the previous layers and with this avoid the wastefulness of fully-connected neurons. This

allows for exploring the local connectivity among neurons. CNNs are capable of generalization on vision

problems and help to reduce the number of parameters [50]. As we can see, in Figure 15, typically a
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CNNs is structured in two main sections. First, we have the feature extraction followed by the classification

process. The main goals of these two sections are:

1. Feature extraction - plays an important role on CNNs as they are responsible for learning patterns.

They learn how to extract themost relevant features automatically and as expected when the network

grows deeper. This first section of the CNNs is computationally expensive due to convolutional

layers. Activation and pooling layers are alternatives that can be used. However, they have the

same problem as convolutional layers because they are also computationally expensive [51];

2. Classification - this section of CNNs receive the features extracted in the previous section. It can be

composed of one or more fully connected layers as well as some dropout layers between them [52].

Figure 15: Typical Structure of Convolutional Neural Networks. Adapted From [53].

Convolutional layers Convolutional layers represent the base element of CNNs, as they are respon-

sible for several computational convolutions. The most correct interpretation for convolution is a cross-

correlation once the convolutional filter works as a feature detector [49, 51]. Regarding this study, an input

image will produce a big output feature map. However, there are other properties and considerations re-

garding the convolutional layers that need to be pointed out. It doesn’t make any sense to fully connect all

neurons to all pixels in an image because nearby pixels have a higher probability of being correlated than

those that are far apart [50, 53]. This leads to small connections being made between a neuron and a

small receptive field that have the same size as the applied filter.

Activation layers Activation layers have the purpose of adding non-linearity properties to the data. As

they keep the volume unchanged, they perform an element-wise fixed mathematical operation [50]. These

layers are associated with activation functions, the same ones applied to ANNs that are described in this

subsection. For activation layers, the simplest activation function that we can use is the ReLU function

which makes the training faster without compromising performance.
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Pooling layers Pooling layers perform downsampling along the spatial dimensions, in particular width

and height. The pooling layers are responsible to shrink areas to a single value, to condense more infor-

mation. They bring a lot of benefits such as the improvement of computational performance. But it is

relevant to point out that a large pooling area may result in data loss [50, 53].

3.4.4 Learning Paradigms

To improve the accuracy of predictive models, ML techniques are required. About a learning paradigm,

we can say that it states a particular way or pattern in which something or someone learns. Depending

on the nature of the problem being addressed the ML paradigms vary. There are different approaches

based on the type and volume of data, which in turn have different amounts and types of supervision in

training [44]. Each has its advantages and disadvantages. To better understand their pros and cons, it is

very important to realize what kind of data they ingest. ML has two kinds of data, labelled and unlabelled

data. Labelled data requires a lot of human labour, to begin with because the input and output must be

labelled in a completely machine-readable pattern. In opposition, unlabelled data only have the input or

the output in a machine-readable form. In some cases, both can be unlabelled which completely denies

the need for human labour.

Supervised Learning A supervised approach usually begins with established data and knowledge

about how the data should be classified. The previous statement goes in line with the principle of super-

vised learning, which requires that the data used in training contains labels that are the outputs for each

input. The model has a mapping function, which is formed by an algorithm that differs from problem to

problem after being trained to predict the output data for each input [54]. The algorithms are trained using

pre-processed examples. Occasionally, patterns are identified in a subset of the data. If we are faced with

the case that the model is only fit to represent those patterns, we have an overfitting problem. To prevent

this overfitting problem testing needs to be done against labelled data [44]. As stated, supervised learning

requires labelled features to define the meaning of the data. For example, there could be millions of images

of birds and include an explanation of what each bird is. Then we can create an ML application that dis-

tinguishes one bird from another. With labelling, attributes and the meaning of the data are identified and

become perceptible to the users. When the labelling of the data is continuous, we are facing a regression

problem. When the data comes from a finite set of values, we are facing a classification problem [44]. A

typical classification problem is where the model needs to predict the correct categorical output, such as

classifying whether a patient has a disease or not or classifying whether an email is spam or not. Given

that the data involved in training contains each email labelled, the model must learn how to predict the

label, in this case, spam or not spam, in the most accurate way possible for each new email. The other

type of supervised learning problem is the regression problem. A machine is trained to predict a specific

value, such as the pricing of a house or a market stock [55]. It is important to point out that supervised
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training models have broad applicability to a variety of problems. Classification is a typical example of a

supervised learning task.

Unsupervised Learning Unsupervised learning differs from supervised learning as it can learn from

no results. The model tries to learn without any supervision. A machine is provided with just the input to

develop a learning pattern. A computer learns through observation and has to find structures in the data.

The model only has available the inputs without any corresponding outputs. This learning paradigm is

best suited to problems that require a massive amount of unlabelled data [55]. Algorithms understand the

meaning based on data to be able to classify it based on the patterns or clusters that are found. Unsuper-

vised learning algorithms segment the data into groups of examples (clusters) or features. The unlabelled

data creates the parameter values. This process allows adding labels to the data. Therefore, we can

conclude that unsupervised learning can be the first step before passing the data to a supervised learn-

ing process. That can help determine outcomes more quickly than a supervised learning approach [44].

This approach can be divided into three main categories to be best suited to different kinds of problems

such as clustering, association rule learning and visualization and dimensionality reduction, which have all

common large volumes of unlabelled data. A clustering problem is where we want to discover the inherent

groupings in data. To sum up, clustering is grouping up each input such that each one ends in the same

cluster or group. An association rule learning problem is where we want to discover rules that describe

large portions of our data, for example, people that buy the object X tend to buy object Y. Finally, the

visualization and dimensionality reduction problem consist in presenting data so that it is understandable

how the data is organized. Dimensionality reduction is discovering which inputs reflect better the general

aspects of the data and simplify the dataset without losing information [55].

Reinforcement Learning Reinforcement learning is a behavioural model. To help fundament that

statement, we know that reinforcement learning uses a method based on rewards and penalties for each

action that it takes to train the model. With that, the user is guided to the best outcome. Reinforcement

learning differs from other learning paradigms because it isn’t trained with the sample dataset. Therefore,

a sequence of successful decisions results in the process being “reinforced” better solve the problem at

hand [44]. The most common applications of reinforcement learning are in robotics or game playing. In

the case of robotics, a simple example of the application of this type of learning is when we train a robot

to navigate a set of stairs. The robot knows that it needs to change its approach to climbing a set of stairs

based on the outcome of its actions. The learning algorithm behind all that has to be able to discover an

association between the goal of climbing stairs successfully without falling and the sequence of events that

lead to the outcome. Well-known examples of the use of this paradigm are the AlphaGo. By implementing

reinforcement learning algorithms, the robot or program learned how to do a certain action.
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3.4.5 Variational Autoencoders & Generative Adversarial Networks

DL can easily extract high-level information and features that other methods composed of simple

representations can’t. Whether the data is labelled or not there are two possible approaches. As stated

previously, in supervised learning is required that the dataset features must be labelled. When facing

unsupervised learning tasks, labelling data is not required. The algorithms associated with unsupervised

learning explore the structure of the data. However, in some cases, some of these models have limitations

because they do not have good generalizations. To solve this problem, Variational Autoencoders (VAEs) e

Generative Adversarial Networks (GANs) can be a better alternative [56].

Variational Autoencoders VAEs provide probabilistic descriptions of observations in latent spaces [57].

VAEs have ANNs architecture. Therefore, they belong to the families of probabilistic graphical models and

variational bayesian methods. Unlike more common approaches, such as NN as regressors or classifiers,

VAEs are a powerful generative model. Using generative models, we could generate a random model or a

new output. The typical setup of VAEs, described in Figure 16, consists of a pair of networks: the encoder

and the decoder. The encoder, commonly described as a variational inference network, is responsible

for mapping the input to other distributions. The decoder takes the variables and parameters as inputs

and projects them to data distributions [57]. To conclude, VAEs are meant to compress the input informa-

tion into a constrained multivariate latent distribution once VAEs reconstruct/decode to obtain the most

exactness in the results possible.

Figure 16: Typical Structure of Variational Autoencoders. Source [57].

Generative Adversarial Networks GANs are a deep generative model. Such as VAEs, GANs algo-

rithms used in unsupervised machine-learning problems. GANs are composed of two NN, a generative and
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a discriminative neural network [57]. The generative and discriminative neural networks complete each

other to achieve balance in training. Figure 17 illustrates the GANs architecture. Usually, the generative

NN is liable for removing noise as input and rendering samples. On the other hand, the discriminative

NN is responsible for evaluating and distinguishing the generated samples from training data. Like VAEs,

generative networks conduce latent variables and parameters to data distributions. With a training set, this

technique can learn how to generate new data with the same statistics as the training set. To conclude

is important to point out that as a form of a generative model for unsupervised learning, GANs also have

proved to be useful for supervised and reinforcement learning tasks [56].

Figure 17: Architecture of Generative Adversarial Networks. Source [56].

3.4.6 Object Counting with Deep Learning Algorithms

The big goal of this dissertation is to perform automatic counts of cells, namely microglial cells. The

quantification of cells can be done in two different ways, manually and automatically. Regarding the last

one, two methodologies are associated with it, a more classical and a deep learning-based one. The

objective of this subsection is to review, within all relevant work and literature, different deep learning-

based approaches to the automatic quantification of cells problem. In total, two articles will be brought for

discussion to present some aspects regarding how to do object counting with deep learning algorithms.

Some of those will be taken into consideration when designing a final solution.

Automatic Ground Truth for Deep Learning Stereology of Immunostained Neurons and Mi-

croglia in Mouse Neocortex

The article produced by Phoulady et al. [58] consists of an automatic segmentation algorithm to apply

to stereology counts. Their validation experiments were performed in microglial cells containing the IBA1

marker. The microglia were automatically counted in tissue sections of a mouse neocortex. In addition to

their objective, the results obtained were compared with manual counts, to prove the benefits of a deep

learning-based approach to the cell quantification problem.
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Introduction In the referred study, the author’s explored automatic segmentation algorithms for au-

tomatic stereology counts. Their work delivers promising results for auto-segmentation datasets to train

models of CNNs to do automated stereological brain cell counts. In addition to the objective of segmenta-

tion and automatic stereology counts, they were also able to compare the results with the manual counting

process, to defend that this automatic quantification system can replace manual systems.

Experimental Work In their development, they started using the ASA to automatically count neurons.

As the neurons have different characteristics, different size and appearance, they quickly realized that

to perform microglial cell counts they would have to make changes to the proposed method. So, algo-

rithm parameters were modified to achieve acceptable results. They changed the minimum clump size,

as microglia cells are smaller compared to neurons. They changed the structuring element used in mor-

phological operations to enlarge the radius and the offset. With these changes was possible to quantify

accurately and effectively microglial cells with IBA1 marker.

Results In terms of results, they initially designed their approach for automatic counts of NeuN-stained

neurons. They identified that to assess the adaptability of their approach, they needed to implement minor

modifications to their CNNs algorithm to detect and count IBA1-immunostained microglia cells. They were

able to validate their results by checking parameters and testing on the remaining mice samples. In this

way, they were able to count microglial cells faster and more efficiently.

Discussion and Conclusions To sum up, this paper provided a general overview of an automatic

segmentation algorithm for automatic stereology counts. Their validation experiments used microglial

cells containing the IBA1 marker. The results obtained were compared to manual counting, and they

managed to defend that this automatic quantification system can replace manual systems, as they are

less labour-intensive and less tedious. They have also proven that they can decrease the time spent on

counting and decrease efforts and costs while increasing the accuracy, precision and throughput of the

final results. This article was also able to verify that by using an automatic segmentation algorithm in

conjunction with deep learning models, we can automatically count images of microglia more than five

times faster than manual stereology and counting systems.

An Adaptive Digital Stain SeparationMethod for Deep Learning-based Automatic Cell Profile

Counts

In Dave et al. [59] a method to separate stain colour channels on images from tissue sections was

developed. The samples of microglial cells used contained the IBA1 marker. Their methodology can

function as an input for deep learning-based algorithms to automatically quantify cells. They were able

to compare their results against the state-of-the-art methods and conclude that their method manages to

overcome them and obtain more accurate results.
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Introduction Through this study, automatic deep neural network-based methods have been studied.

Combined with hand-crafted techniques, such as image processing and analysis, ML algorithms enable

automated and semi-automated counts with high levels of accuracy, precision and efficiency compared

to manual counting methods. For that, their segmentation algorithm automatically generates masks on

grey-scale images to train CNNs to make automatic counts on images. Their study provides a new proof-

of-concept for deep learning-based automatic counting of cells.

Experimental Work In terms of developed work, the authors provide a complete overview of the au-

tomatic counting system developed. The stain separation method was based on SNMF for colour-to-grey

transformation and its application on 3D stacks. Their approach is to represent 3D information distributed

among a stack of images in a 2D image and a post-processing step to match such 2D images of the

counterstain dataset. During stain separation, an objective function of SNMF was estimated by applying

unsupervised learning on each image. Their purpose was to minimize the cost of the complete image.

Results The results of automatic counting and the model performance were validated based on unseen

images not used for training the model. Since 1 of each of the 5 animals is left out for testing the folds, in

their approach they were able to cross-validate the performance of the deep learning model on previously

unseen images. 3-fold cross-validation was performed on the dataset. With this, and through the results

obtained, it was possible to attest that the suggested method overwhelms the limits of the state-of-the-art

methods.

Discussion and Conclusions The authors were able to implement an automatic segmentation algo-

rithm for automatic stereology counts combined with an adaptive method to separate stain colour channels

on images from tissue sections to expand the automatic counting methods. They proved that automatic

deep neural network-based methods have the potential to do more efficient counts on brain cells when

compared to state-of-the-art methodologies. To conclude, they evidenced an increased value of accuracy

of automatic approaches when compared to the manual counting process.

3.5 Summary

Image processing is a method to convert an image to a digital aspect, allowing users to perform actions

to get an enhanced image or extract useful information. This technique is used to improve raw images.

Therefore, distributed into several groups emerge ”Visualization”, ”Image Retrieval”, and ”DIP”. The DIP

technique consists of the processing of images done by computers. First, images are converted into a

digital form (transformed into a computerized structure), and then further preparation is done on those

images. There are several techniques of DIP. However, only four are related to the automatic cell counting

process using classical and deep learning methodologies. These techniques are ”Image Segmentation”,

”Classification”, ”Image Restoration”, and ”Image Enhancement”.
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Image segmentation allows partitioning an image into several regions, several subparts, and some-

times even divides the image into pixels to help in the analysis of substances, borders and other records

relevant to processing. The outcome is a set of sections that together cover the total image. The main goal

of segmentation is to simplify a raw image in such a manner that is easier to evaluate a complete picture.

Classification is the technique used to extract data from images and label images. An appropriate clas-

sification scheme and an adequate amount of training samples are the basics for effective classification.

There are various classification approaches such as ANNs and Fuzzy Logic. The classification technique is

either supervised or unsupervised. Image restoration is the technique through which a corrupted and noisy

image is processed in such a manner to construct a perfect image. There are two types of procedures

used to reconstruct an image. One technique is to model the image whose quality is degraded. The other

technique, known as image enhancement, increases the quality by applying various filters. The image

enhancement method modifies components on the images to increase image clarity. This makes it easier

to identify key features in images.

Image analysis techniques emulate human vision, including learning and the ability to make a decision

based on input. The information is not collected qualitatively, because these systems extract quantitative

information from datasets assembled by a set of images. Typically, image analysis techniques are applied

to images resulting from image processing techniques. The most commonly used operations associated

with image analysis are morphological analysis, measurements, recognition, representation and descrip-

tion. There are several morphological operators to aid in image analysis. Regarding the quantification of

the number of cells from brain images, the ones related are ”Dilation”, ”Erosion”, ”Opening and Closing”,

”Hit-or-miss Transform”, and ”Boundary Extraction”.

Dilation is the operation that consists of the expansion of an object boundary. The central pixel of the

structural element (e.g. nucleus of the cell) cycles through all pixels of the target object. Erosion is the

exact opposite of the dilation operation because it causes a contraction of the boundaries of an object.

The object is ”reduced”according to the shape and size of the structural element. Opening and closing

operations are related and intrinsic to dilation and erosion techniques. The output of opening an object

is the same as the result of erosion followed by the dilation of an object. The output obtained by closing

an object is the same result that we can obtain with dilation followed by erosion of an object. Hit-or-miss

transform involves several basic operations such as erosion, complement, intersection and difference.

The final result includes the coordinates of the object of interest in the image. Boundary extraction is the

operation that returns a region of pixels corresponding to the boundary of an object of interest.

Conventional cell counting involves specific sets of tools and devices developed for that purpose. This

process is tedious, time-consuming, and inaccurate due to operator-dependent biases. Most of the cell

counting processes to this date are manual. However, because cell counting is an important procedure

routine that may help in the detection of a serious illness, various study reports are focusing on the

experience of the development of new systems. With the automation of cell counting, the process is more

time-efficient and has fewer errors.

In the case of the classic approaches for the automatic quantification of cells, software solutions for cell
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counting are applicable. The manual standalone cell counting assistants, plug-ins, and guides facilitate cell

counting by replacing the manual clicker with multiple digital counters. ImageJ is the platform of choice for

image processing and automatic cell counting as it has several tools to approach the problem. The choice

of ImageJ for the implementation of an automatic cell quantification system was based a lot on the premise

stated before and on the fact that allows studying and designing a solution where concrete and acceptable

results are expected. ImageJ is a java-based program for image processing and analysis, inspired by NIH

Image, developed at the U.S. National Institutes of Health. Accessible for the public domain, meaning that

the source code is openly available and its use is license-free. The software was designed with an open

architecture that provides extensibility via java plugins. With these highly varied plugins, we are capable of

modifying an existing function or introducing a brand new one due to the fact of being an open architecture

software that provides extensibility. Taking into account the vast list of projects that function within ImageJ

it is important to focus on the features that distinguish it from others and why it is the software chosen

to be the basis for the study of a solution to the problem presented. The most obvious distinction is its

simplicity in image processing.

With ImageJ we can do the most basic image processing techniques like background subtraction,

brightness and contrast adjustment, image type conversion, smoothing, sharpening, filtering, and bina-

rization. It also contains other features for basic manipulations like geometric transformations such as

scaling, zooming, and rotation. It is important to point out that it can display, edit, analyze, process,

save and print 8–bit, 16–bit and 32–bit images. Applying image processing tasks is an extremely simple

process since it provides an easy-to-understand graphical interface that makes the processing task much

easier. To automatically count objects in an image, a set of image processes should be applied to the

image so the automatic quantification is more precise. As expected, the results are higher evidence of

the cells, as was increased the gap between the background and cell pixels. Before automatic counting,

thresholding is a fundamental procedure. A manual adjustment with the sliders may be required to de-

crease the overlap, but is also possible to rely on the automatic adjustment provided by ImageJ. The result

is an image in which the white areas have no interest in quantification.

In the case of the DL approaches for the automatic quantification of microglial cells, the problem can

be categorized as detection-based counting and regression-based counting. The first approach requires

the detection or segmentation of every cell before counting, which implies a supervised learning process.

To convert a counting task into a segmentation task, cell annotation is needed, to train the detection

or segmentation model. The regression-based cell counting avoids the challenging task of detection or

segmentation of single cells because they generate cell density or cell count directly from the images.

To better understand the capabilities of this approach, certain basic notions must be addressed, such

as ML and DL. ML is a sub-field of AI. In a nutshell, we can define it as the evolving branch of computa-

tional algorithms designed to emulate human intelligence by learning from the surrounding environment.

Through various techniques, ML models and algorithms can process large amounts of data and extract

useful information. As expected, they can improve upon their previous iterations. ML models and al-

gorithms today can outperform the rival state-of-the-art algorithms and human performance. The obtain
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better results learning paradigms are being applied to train ML algorithms. Currently, ML is being suc-

cessfully applied in diverse fields rating from pattern recognition, computer vision, finance, entertainment,

and computational biology to biomedical and medical applications. DL is a sub-discipline of ML, which

itself makes it a sub-field of AI. The main distinguishing factor between ML and DL is that we consider the

latter to be more complex. It usually takes human interaction to label the data and make it readable by

the program, with ML algorithms dealing with structured, labelled data. However, when we resort to DL

algorithms, they can process this data accurately without the need for human labelling.

There are some DL theoretical foundations essential to point out like artificial neurons, ANNs and

CNNs. The neuron represents the basic computational unit of the brain. Usually, neuron inputs come

from dendrites. The artificial neurons are the base element of ANNs. They transform a set of inputs

into a single value using a weighted sum since each input has a respective weight. The neuron output

values are calculated by applying an activation function. The term ANNs is usually used to characterize

the mathematical model composed of a collection of artificial neurons. These neurons are interlinked in a

network by layers to learn more complex data relations. FNNs and RNNs stand as two types of ANNs. The

FNNs are characterized as being an acyclic graph where the data only can move forward. Unlike these, with

RNNs, the data/information can flow in any direction, including to the same layer. RNNs are an extended

representation of FNNs with the addition of feedback connections. CNNs follow the same principle as

they derive from ANNs. However, it is important to point out that they differ in one simple detail, as they

assume that the input is a set of images. The architecture of CNNs disposes of the neurons differently

when compared to ANNs as they look to improve the creation of the model. Neurons are disposed of in

three dimensions such as width, height and depth. The idea behind CNNs is to use small ANNs convoluted

along with the image to extract relevant information. It is important to point out that this idea differs from

a fully connected architecture which demands much more parameters.

To improve the accuracy of predictive models ML techniques are required. Depending on the nature

of the problem, the ML paradigms vary. There are different approaches based on the type and volume

of data, which have different amounts and types of supervision in training. Each has its advantages and

disadvantages. Supervised learning requires labelled features to define the meaning of the data. The

model has a mapping function formed by an algorithm that differs from problem to problem, after being

trained to predict the output data for each input. Occasionally, patterns are identified in a subset of the

data. Unsupervised learning differs from supervised learning as it can learn from no results. The model

tries to learn without any supervision. A machine is provided with just the input to develop a learning

pattern. This learning paradigm is best suited to problems that require a massive amount of unlabelled

data. Reinforcement learning is a behavioural model. Reinforcement learning uses a method based on

rewards and penalties for each action that it takes to train the model. By using this method, this learning

paradigm differs from other learning paradigms because it isn’t trained with the sample dataset. Therefore,

a sequence of successful decisions results in the process being “reinforced”.

DL can easily extract information and features that other methods composed of simple represen-

tations can’t. In some cases, some of these models have limitations because they do not have good
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generalizations. To solve this problem, VAEs e GANs can be a better alternative. VAEs provide probabilistic

descriptions of observations in latent spaces. VAEs have ANNs architecture. Therefore, they belong to

the families of probabilistic graphical models and variational bayesian methods. Unlike more common

approaches, such as NN as regressors or classifiers, VAEs are a powerful generative model. GANs are

a deep generative model. Such as VAEs, GANs algorithms used in unsupervised machine-learning prob-

lems. GANs are composed of two neural networks, a generative and a discriminative neural network. The

generative and discriminative neural networks complete each other to achieve balance in training. The

generative NN is liable for removing noise as input and rendering samples, and the discriminative NN is

responsible for evaluating and distinguishing the generated samples from training data.
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Data

This chapter presents the reader with all the relevant information about the used data. First, we have

a description of a generic cell sample. This cell sample had the purpose of being used to fully understand

ImageJ limitations, as well as study what would be the best approach to the problem based on a more

classical methodology. With the same cell sample, a deep learning-based approach was also studied.

Next, we detail all the information related to the dataset of microglial cells (brain images), ranging from

the data overview to its lobule and deep cerebellar nuclei segmentation. Finally, the manual quantification

of cells is presented since it will be used to compare the performance of all methodologies.

4.1 Cell Colony Sample

According to the study of relevant literature and documentation about the automatic quantification

of cells problem, more specifically related to the classic approach detailed in section 3.3, the software

of choice is ImageJ. To better understand the extensivity of ImageJ, a generic cell sample was selected

to do some experiments. In section 5.2.1, these experiments are detailed. Regarding a deep learning-

based approach, and considering all the conclusions brought from the study of all relevant literature and

documentation carried out in section 3.4, the best approach to the problem is the use of CNNs. Therefore,

the same cell sample was used to study the best strategy for this deep learning model. However, unlike the

approach implemented with the more classical methodology, in this case, the cell sample was fractionated

into 16 parts to build a better deep learning model. The experiments carried out are detailed in section

5.3.1. Next, follows explicit information about this cell sample.

As stated, the cell colony sample was used in the first place to understand the possible limitations

of ImageJ and better define a work strategy. Available at https://imagej.net/images/Cell_
Colony.jpg, belonging to the ImageJ documentation and intended for public use, this cell colony sample
was selected. Figure 18 illustrates the cell colony sample, and Table 1 contains more detailed information

about this sample. The image processing and analysis techniques applied to enhance some of the image

characteristics, allowing to more easily identify the cells for later counting are detailed in subsection 5.2.1,

which is related to the experiments carried out.
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4.1. CELL COLONY SAMPLE

Figure 18: Cell Colony Sample.

Size Width Height Pixel Size Bits per Pixel Display Range
162K 406 pixels 408 pixels 1x1 pixel^2 8-bit 0-255

Table 1: Cell Colony Sample Information.

Figure 19 illustrates the cell sample with the particularity of being divided into 16 parts. The rationale

for this division is related to the fact that it is necessary to build a dataset to test the best strategy and

possible limitations of CNNs models to quantify cells. Table 2 contains detailed information about each

section resulting from the division made. The experiments implemented are detailed in subsection 5.3.1.

Size Width Height Pixel Size Bits per Pixel Display Range
10K 101 pixels 102 pixels 1x1 pixel^2 8-bit 0-255

Table 2: Cell Colony Sample (Partitioned) Information.
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Figure 19: Cell Colony Sample (Partitioned).

4.2 Brain Image Samples

This dissertation aims to study the advantages of two different methodologies, a classical and a deep

learning-based approach, to automatically quantify microglial cells. In the end, it is expected that one of

these methodologies will be a more reliable solution than the current cell counting processes, which are

usually performed manually. For this, it was necessary to resort to brain images of four different animals

since they will originate the study and the implementations carried out in both approaches.

As stated before, microglia are a type of neuronal cell located throughout the brain and spinal cord.

Taking this into consideration, the only non-evasive way to access them is through neuroimaging. These

brain images contain a large population of microglia that are in a reactive shape. They contain the IBA1

marker, which is a marker upregulated in reactive microglia and used to visualize these cells. The data
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acquisition and the manual quantification of cells were done together and in partnership with the School of

Medicine of the University of Minho. The next subsections present and detail all the relevant information

related to these images, ranging from data acquisition and overview to the lobule and Deep Cerebellar

Nuclei (DCN) segmentation process. The last subsection presents the results of the manual counting

process, which with all the conclusions drawn, will help to cease the best solution for the automatic

quantification of microglial cells.

4.2.1 Data Acquisition & Overview

The dataset is composed of 16 brain images from 4 different animals. To access the microglia den-

sity and morphology, 4 coronal brain sections per animal (𝑛 = 4 per genotype) were imaged twice (in

both hemispheres) for each region of interest (DCN and Cervical Spinal Cord (CSC)) to yield 4–6 digital

photomicrographs per section. For the Pontine Nuclei (PN), 4 sagittal brain sections per animal were

used (𝑛 = 3 animals for wild-type and 𝑛 = 4 animals for CMVMJD135), and 2 photomicrographs per

section were taken [60]. To stack all images the Olympus Confocal FV1000 laser scanning microscope

with a resolution of 1024 × 1024 px using a 40× objective (UPlanSApo, N.A. 0.90; dry; field size 624.39

× 624.39 𝜇m; 0.31 𝜇m/px) was used. The acquisition settings for the images were the following: scan-

ning speed = 4 𝜇m/px; pinhole aperture = 110 𝜇m; Iba-1, excitation = 559 nm, emission = 618 nm; in

a 3-dimensional scenario (X, Y, and Z axes). In addition, the ImageJ was used on Z-stacked 3D volume

images from sections of the affected brain regions (DCN, CSC, and PN) [60].

4.2.2 Lobule and Deep Cerebellar Nuclei Segmentation

The DCN consist of three nuclei: the fastigial nucleus, the interposed nucleus and the dentate nucleus.

Together they form the output of the cerebellum. The fastigial nucleus is the most medially located of

the cerebellar nuclei, as they receive input from the vermis [61]. The lobules of the cerebellum are the

smallest of the lobes of the flocculonodular lobe. This flattened lobe lies between the posterolateral fissure

(inferiorly), the inferior medullary velum, and the cerebellar peduncles (superiorly). That said, to better

quantify microglial cells, in this study, the brain images of the animals were separated in several areas.

One of these areas is the DCN and the remaining ones are the lobules. As stated, each brain image

contains a DCN area, where, as a rule, the number of cells there is higher when compared to the number

of cells in the lobules. The remaining areas of the image are composed of several lobules, where we have

microglial cells more dispersed throughout the lobe in question. Figure 20 illustrates two examples of the

lobule and deep cerebellar nuclei segmentation performed in this study. The image on the right refers to

the segmentation performed in slice 1 of the animal CN282 2TE. The image on the left is evidence of the

segmentation performed in slice 2 of the same animal. In subsection 4.2.3 the results obtained from the

manual quantification of microglial cells are presented, differentiating between the counts of the DCN and

lobule areas. The number of lobules that compose each brain image is given.
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Figure 20: Lobule and Deep Cerebellar Nuclei Segmentation Representation.

4.2.3 Manual Cell Counting

With the help of elements from the School of Medicine, the manual cell counting process was con-

ducted. The total count of IBA1 positive cells was obtained using the multi-point tool. The quantification

was performed on images acquired with the acquisition settings described in subsection 4.2.1, normalized

first to the total image area and then for volume [60]. The data was obtained from individual cells of the

CSC (310 microglial cells from wild-type mice and 389 from CMVMJD135 mice), DCN (349 microglial

cells from wild-type mice and 445 from CMVMJD135 mice), and PN (152 microglial cells from wild-type

mice and 180 from CMVMJD135 mice). Therefore, the total number of analysed microglia with the IBA1

positive marker was 1825. However, the images that compose the dataset not only contain microglia

with the IBA1 positive marker. So, bearing in mind that the scope of this dissertation is to automate the

quantification of microglial cells from brain images, the results reveal the complete counting process (IBA1

positive and non-positive IBA1 microglial cells), detailed by the animal, lobule and deep cerebellar nuclei

cell count.

CN276 2FD Table 3 presents the results obtained from the counting process and the respective area

of each slice. In total, the DCN area of the animal CN276 2FD contains 668 microglial cells. Table 4

details the results brought from the quantification process of slices 1 and 2. Slice 1 contains ten lobules.

The number of microglial cells is 842. On the other end, slice 2 contains eighteen lobules with a total

number of 1022 microglial cells. Table 5 shows the results fetched from the quantification process of the

lobules of slices 3 and 4. Slice 3 contains eleven lobules, and slice 4 includes twelve lobules. The number

of microglial cells in the lobules of slice 3 is 863, and 1274 in slice 4.
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Slice Number of Cells Area (𝜇m)
1 147 288932.803
2 163 285064.506
3 205 363675.236
4 153 277021.494

Table 3: CN276 2FD - Deep Cerebellar Nuclei Cell Count.

Slice Region Number of Cells Area (𝜇m)
1 Lobule 2 73 197029.686

Lobule 3 80 233549.782
Lobule 4 54 221957.245
Lobule 5 38 198076.453
Lobule 6 43 181218.603
Lobule 7 52 166547.527
Lobule 8 116 285983.765
Lobule 9 186 520392.636
Lobule 10 105 426406.744
Lobule 11 95 280652.704

2 Lobule 2 61 212812.877
Lobule 3 47 142765.554
Lobule 4 39 127533.440
Lobule 5 41 125675.798
Lobule 6 43 142936.496
Lobule 7 47 133967.850
Lobule 8 61 226804.968
Lobule 9 74 279216.637
Lobule 10 56 173600.354
Lobule 11 97 315884.563
Lobule 12 64 222045.704
Lobule 13 51 149114.692
Lobule 14 50 197360.412
Lobule 15 32 157927.140
Lobule 16 33 120969.131
Lobule 17 65 265616.635
Lobule 18 87 313512.104
Lobule 19 74 178078.700

Table 4: CN276 2FD - Slice 1 & 2 - Lobule Cell Count.
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Slice Region Number of Cells Area (𝜇m)
3 Lobule 2 115 367417.617

Lobule 3 116 381444.375
Lobule 4 45 174852.729
Lobule 5 33 136708.092
Lobule 6 60 257572.427
Lobule 7 115 423266.443
Lobule 8 90 281917.033
Lobule 9 90 259198.652
Lobule 10 85 291940.415
Lobule 11 72 209955.486
Lobule 12 42 53199.434

4 Lobule 2 68 196495.743
Lobule 3 70 195813.571
Lobule 4 65 188390.571
Lobule 5 153 455472.759
Lobule 6 131 308181.840
Lobule 7 128 401349.684
Lobule 8 119 336006.238
Lobule 9 140 461858.954
Lobule 10 130 353812.435
Lobule 11 109 306318.619
Lobule 12 105 224807.862
Lobule 13 56 142629.678

Table 5: CN276 2FD - Slice 3 & 4 - Lobule Cell Count.

CN282 2TE Table 6 presents the results obtained from the counting process and the respective area

of each slice. The DCN area of the animal CN282 2TE contains 747 microglial cells. Table 7 points to

the results brought from the quantification process of slices 1 and 2. Slice 1 contains seven lobules with

1056 microglial cells. On the other end, slice 2 contains six lobules with a total number of 780 microglial

cells. Table 8 displays the results from the quantification process of the lobules of slices 3 and 4. Slices

3 and 4 both contain six lobules, with 843 and 854 microglial cells, respectively.

Slice Number of Cells Area (𝜇m)
1 162 307663.437
2 198 350889.696
3 171 350064.077
4 216 329267.003

Table 6: CN282 2TE - Deep Cerebellar Nuclei Cell Count.
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Slice Region Number of Cells Area (𝜇m)
1 Lobule 2 215 441463.932

Lobule 3 126 335660.769
Lobule 4 187 575328.978
Lobule 5 166 482161.533
Lobule 6 161 375729.593
Lobule 7 142 360554.061
Lobule 8 59 116713.527

2 Lobule 2 148 401681.207
Lobule 3 169 503307.263
Lobule 4 156 528835.309
Lobule 5 119 487064.642
Lobule 6 136 457288.653
Lobule 7 52 205100.590

Table 7: CN282 2TE - Slice 1 & 2 - Lobule Cell Count.

Slice Region Number of Cells Area (𝜇m)
3 Lobule 2 205 488441.338

Lobule 3 128 413963.486
Lobule 4 171 618159.959
Lobule 5 151 398723.004
Lobule 6 98 322174.330
Lobule 7 90 337119.151

4 Lobule 2 216 562527.500
Lobule 3 145 400294.549
Lobule 4 149 474527.346
Lobule 5 94 365960.431
Lobule 6 158 425694.289
Lobule 7 92 365867.987

Table 8: CN282 2TE - Slice 3 & 4 - Lobule Cell Count.

CN283 2FD Table 9 presents the results obtained from the counting process and the respective area

of each slice. In total, the DCN area of the animal CN283 2FD contains 597 microglial cells. Table 10

details the results brought from the quantification process of slices 1 and 2. Slice 1 contains six lobules.

The number of microglial cells is 743. On the other end, slice 2 contains seven lobules with a total number

of 921 microglial cells. Table 11 shows the results fetched from the quantification process of the lobules

of slices 3 and 4. Slices 3 and 4 both contain seven lobules. The number of microglial cells in the lobules

of slice 3 is 658, and 825 in slice 4.
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Slice Number of Cells Area (𝜇m)
1 151 437991.311
2 156 321837.627
3 121 305943.663
4 169 393448.924

Table 9: CN283 2FD - Deep Cerebellar Nuclei Cell Count.

Slice Region Number of Cells Area (𝜇m)
1 Lobule 2 118 707415.277

Lobule 3 133 526210.222
Lobule 4 107 422756.010
Lobule 5 129 515264.394
Lobule 6 104 434819.133
Lobule 7 152 602430.561

2 Lobule 2 133 445827.122
Lobule 3 115 360652.880
Lobule 4 163 454541.547
Lobule 5 146 448844.297
Lobule 6 159 498722.925
Lobule 7 113 343325.240
Lobule 8 92 317199.098

Table 10: CN283 2FD - Slice 1 &2 - Lobule Cell Count.

Slice Region Number of Cells Area (𝜇m)
3 Lobule 2 81 275852.000

Lobule 3 93 422877.143
Lobule 4 130 670650.923
Lobule 5 67 343893.052
Lobule 6 100 450314.632
Lobule 7 114 511644.342
Lobule 8 73 318657.878

4 Lobule 2 101 333694.346
Lobule 3 121 357793.497
Lobule 4 153 536827.715
Lobule 5 170 499677.248
Lobule 6 133 478029.851
Lobule 7 82 309468.483
Lobule 8 65 134080.616

Table 11: CN283 2FD - Slice 3 & 4 - Lobule Cell Count.
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CN284 TDTE Table 12 presents the results obtained from the counting process and the respective

area of each slice. The DCN area of the animal CN284 TDTE contains 619 microglial cells. Table 13

points to the results brought from the quantification process of slices 1 and 2. Slice 1 contains six lobules

with 637 microglial cells. On the other end, slice 2 contains nine lobules with a total number of 831

microglial cells. Table 14 displays the results from the quantification process of the lobules of slices 3 and

4. Slice 3 contains five lobules, and slice 4 includes six lobules. The number of microglial cells in the

lobules of slice 3 is 430, and 716 in slice 4.

Slice Number of Cells Area (𝜇m)
1 151 362609.342
2 211 406624.162
3 119 293392.022
4 138 433481.885

Table 12: CN284 TDTE - Deep Cerebellar Nuclei Cell Count.

Slice Region Number of Cells Area (𝜇m)
1 Lobule 2 124 408437.576

Lobule 3 85 330030.462
Lobule 4 136 445978.538
Lobule 5 57 327983.548
Lobule 6 115 525734.455
Lobule 7 120 526253.655

2 Lobule 2 104 300994.332
Lobule 3 99 339689.249
Lobule 4 87 361807.631
Lobule 5 168 830300.227
Lobule 6 72 345262.177
Lobule 7 55 335529.675
Lobule 8 64 221446.015
Lobule 9 92 408294.527
Lobule 10 90 176739.061

Table 13: CN284 TDTE - Slice 1 & 2 - Lobule Cell Count.
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Slice Region Number of Cells Area (𝜇m)
3 Lobule 2 93 324649.992

Lobule 3 142 540196.337
Lobule 4 75 669286.978
Lobule 5 63 400084.160
Lobule 6 57 280211.205

4 Lobule 2 130 629810.273
Lobule 3 169 690169.322
Lobule 4 136 401736.195
Lobule 5 99 430521.292
Lobule 6 106 466163.968
Lobule 7 76 518805.950

Table 14: CN284 TDTE - Slice 3 & 4 - Lobule Cell Count.
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Experimental Setup

Having presented all the main theoretical foundations and relevant work concerning the automatic

quantification of cells, we now move on to the design and conception of solutions that aim to solve the

problem. Therefore, this chapter describes to the reader all the experiments performed during this dis-

sertation work. We start with a description of both experimental environments used in our approaches.

Then the experiments conducted with some generic cell samples are presented. Following that, and with

the set of brain images, the experiments carried out for automatic quantification of microglial cells, using

a classical and deep learning methodology, are described.

5.1 Experimental Environments Description

Throughout all the work performed during this dissertation, it was necessary to resort to two exper-

imental environments. The reason behind these different environments stands to improve performance

and yield better results. That said, the first of those environments is the local one, where all the experi-

ments related to the so-called classical approaches were conducted. Additionally, the first test fits made to

the selected deep learning model, which automatically quantifies cells, were also implemented in the local

machine. However, through the results obtained and the execution times of the model, it was not difficult

to realize that performing an implementation in the local environment was not the best option. Thus, it was

necessary to use a cloud environment, namely Google Colab Pro, to carry out all the experiments related

to deep learning approaches. In the following subsections, we find more detailed information about these

environments. Subsection 5.1.1 presents all information related to the local environment, and subsection

5.1.2 presents all information related to the cloud environment.

5.1.1 Local Environment

All the experiments on the classic methods were executed on the same machine so that the perfor-

mance obtained in each of the tests is not affected by the fact that they were conducted in environments

with different specifications. Additionally, as previously stated, the first test fits made to the selected deep
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learning model were also implemented in the local machine. Table 15 presents the machine specifications.

The given information was gathered from Intel Support and ASUS Customer Support.

ASUS GL552VX
Processor Intel® Core™ i7-6700HQ
Processor’s Base Frequency 2.60 GHz
Max Turbo Frequency 3.50 GHz
# Cores 4
# Threads 8
Cache Memory 6 MB Intel® Smart Cache
RAM Memory 16 GB DDR4 2400 MHz
Storage 1 TB HHD + 256 GB SSD
GPU Nvidia ® GTX 950m 4GB

Table 15: Experimental Local Environment Specification.

5.1.2 Cloud Environment

All additional experiments and the results gathered with a deep learning-based methodology were exe-

cuted on the same machine (cloud environment) so that the performance obtained is not affected. Initially,

test fits made to the selected deep learning model were implemented in the local machine. However, as

Google Colaboratory is probably the most popular hosted Jupyter notebook service in the world, it was

easy to understand that for more acceptable results and better execution times, we would have to resort to

this cloud environment. Given the size of our dataset, a total of six hundred sixty-one images of microglial

cells, and knowing that the free version of Google Colaboratory does not allow for too long execution times,

it was necessary to resort to the Pro version. Table 16 presents the specifications of Google Colaboratory

Pro. The given information was gathered from Google Colab documentation.

Google Colab Pro
GPU Nvidia ® K80, P100, T4
GPU Memory 16 GB
GPU Memory Clock 0.82 GHz / 1.59 GHz
RAM 32 GB
CPU 2 x vCPU
Performance 4.1 TFLOPS / 8.1 TFLOPS

Table 16: Experimental Cloud Environment Specification.

5.2 Classic Methods for Automatic Cell Counting

The software chosen to develop a solution for automatic cell counting based on a more classic ap-

proach was ImageJ. As stated in subsection 3.3.1, this is a public domain program that is open-source
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and license-free. This software runs on any computer with a Java 1.5 or later virtual machine. In order not

to affect and influence the results obtained in both approaches studied, within the classical methodology,

the ImageJ version was the same in both cases. Figure 21 illustrates the version of ImageJ (version 1.53k)

used to carry out the work and the version of the Java virtual machine running.

Figure 21: ImageJ Version.

According to the study carried out, the most suitable solutions to apply to this work and automatically

count cells with ImageJ are the Analyze Particles functionality and the Image-based Tool for Counting

Nuclei (ITCN) plugin. These two were selected as they have proven to be successfully applied in similar

cases. In the end, through the analysis of the results and the entire counting process, the objective is to

substantiate their pros and cons, and which one can better answer the problem of cell counting within the

classical approaches.

In a nutshell, the Analyze Particules functionality consists of a set of commands and steps to count and

measure objects in binary or thresholded images. This functionality scans the image or the selected area

until it finds the edge of an object. Is necessary to configure the particle analyzer, as particles outside the

range specified are ignored. Particles with circularity values outside the range specified are also ignored.

In the end, the object is outlined and measured and the results are displayed. This functionality also

enables it to work with RGB images. The results are calculated using brightness values and RGB pixels

are converted to brightness values. In some cases, other types of image processing are needed, such

as work with outlines which this functionality allows. In subsection 5.2.1 all the experiments conducted

with the Analyze Particles functionality and the respective cell counting process implemented for the cell

colony sample are described. In subsection 5.2.2 using the developed Analyze Particles protocol, the

entire counting process which led to the final results, is explained step by step.

Developed by the Center for Bio-image Informatics the ITCN is an ImageJ plugin that automatically
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quantifies the number of cells in an image. This plugin’s workflow requires an estimation of the diameter of

a cell, which has to be done by the user, an estimation of the minimum distance between cells, also done

by the user, and either a region of interest (ROI) selection or a black and white mask image that is white in

regions that are to be counted. The following subsections detail all the experiments conducted with the cell

colony sample and brain images with the ITCN plugin. In subsection 5.2.1 all the experiments conducted

with the ITCN plugin and the respective cell counting process implemented for the cell colony sample are

described. In subsection 5.2.2 also with the ITCN plugin, the quantification process is explained.

5.2.1 Cell Colony Sample

A particular feature of ImageJ is the possibility of counting objects. These objects can be cells that

are in 2D images. Thus, ImageJ fits perfectly into the context of this dissertation since it allows for

solving the presented problem. As previously stated, to count objects with ImageJ, following a set of

techniques is mandated. Alternatively, a certain plugin can replace the obligation of following a set of

pre-established procedures. The Analyze Particles functionality and the ITCN plugin were chosen for the

automatic quantification of cells. To understand the extensiveness of these two different strategies, the

generic cell sample, detailed in section 4.1, was selected to carry out some experiments. This helped to

fully comprehend the best approach to automatically count cells.

Analyze Particles

The Analyze Particles consists of a set of stages that lead to automatic counting. To count objects,

which in this case are the cells present in the cell colony image, a set of processes should be applied

to make the count more reliable. Background subtraction is one of these steps as it results in higher

evidence of the objects of interest, therefore, increasing the gap between background pixels and objects.

In the different experiments, the subtraction of background was tested to verify its benefits. Thresholding

the image is also a fundamental procedure. This process specifies the image binarization and what must

be included in the analysis based on the intensity of the pixels. ImageJ offers the possibility to adjust the

threshold value manually or automatically. The manual adjustment with sliders requires decreasing the

overlap as much as possible and is more trustful when compared to the automatic adjustment. In the

experiments conducted, several values for the threshold were tested. However, it is important to notice

that in the case of this generic cell sample, all areas of interest are included with or without overlap.

After removing the background and defining the threshold value follows the automatic quantification. The

control menu window displayed in Figure 22, referring to one of the counts performed in the experiments,

allows the specification of the range of the size of objects that need to be counted. This control menu also

entitles to set which objects are included based on the cell circularity, where the minimum extent means

that the object corresponds to a linear line and the maximum corresponds to a flawless circle. The result

of this process is an 8-bit image generated from the original image, holding the numbered outlines of the

measured objects.
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Figure 22: Cell Colony Sample - Analyze Particles.

Moving on to the experiments conducted, Table 17 displays the different settings applied to the images,

namely the threshold values applied in each experiment, the range of size and the circularity of the objects

that lead to the final results obtained in the counting process. It is important to notice that in all the tests

conducted the circularity chosen for the objects range from 0.00 to 1.00, and the range of sizes defined

was 0 to infinity since in the cell sample there are cells with different values of circularity and sizes, and

in this way, we are not excluding any cell.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 129 0 129
Max 171 202 255 223 255

6.63% 6.11% 6.09% 4.90% 4.89%
Algorithm Default Default Default Default Default

Analyze Size (micron^2) 0-Inifinity 0-Inifinity 0-Inifinity 0-Inifinity 0-Inifinity
Circularity 0.00-1.00 0.00-1.00 0.00-1.00 0.00-1.00 0.00-1.00

Table 17: Cell Colony Sample - Analyze Particles - Quantification Settings.

The 1𝑠𝑡 experiment is the result of cell counting after applying auto-thresholding to the image, at a

pixel value of 171. Figure 23 illustrates the counting process of this experiment. The 2𝑛𝑑 test presents

the results of the quantification process by applying a background subtraction after the passage of a

”rolling ball” with a light background and a radius of 50 pixels. After that, auto-thresholding was applied

to the image, at a pixel value of 202. The 3𝑟𝑑 experiment is related to the prior procedure, however, after

subtracting the background the resulting image was then converted to binary, resulting in an 8-bit image.

Then, the watershed algorithm was applied. What this algorithm does is separate with a pixel what it

considers to be two or more cells together in the image. Thus, with the application of this algorithm, we

can obtain more accurate results in the counting process, since, without the application of this algorithm,
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the software only counts one cell when in fact there may be two or more cells. Notice that we are only

able to apply this algorithm in binary images. To complete the process, auto-thresholding was applied

to the image, at a pixel value of 255. The 4𝑡ℎ test is identical to the 2𝑛𝑑 test, however, the background

subtraction applied with a light background only had 2 pixels in the radius of the ”rolling ball”. Then again,

the auto auto-thresholding was used, at a pixel value of 223. The 5𝑡ℎ and final experiment is similar to the

previous one. Once the background was subtracted, the resulting image was then converted to binary, an

analogous process to the one conducted in the 3𝑟𝑑 experience, resulting again in an 8-bit image. Then,

the watershed algorithm was applied. To finalise the counting process, auto-thresholding was applied to

the image, at a pixel value of 255.

Figure 23: Cell Colony Sample - 1𝑠𝑡 Experiment - Automatic Quantification.

The results obtained and their respective discussion is presented in subsection 6.1.1. An approach

considered optimal for the development of the Analyze Particles protocol, to automatically quantify mi-

croglial cells, is also explained based on the results acquired with the experiments conducted with the

generic cell sample.

ITCN

As stated, the ITCN is an ImageJ plugin that purpose another approach to automatically count cells in an

image. Previous to the quantification of cells, this plugin requires that a set of procedures must be applied

to the image to make the count more reliable and effective. Therefore, in 1𝑠𝑡 experiment the background

was subtracted by applying auto-thresholding to the image, at a pixel value of 171. Then, using the ITCN

plugin, the size of the cell was set to 9 pixels, by measuring the line that joins the beginning to the end

of the selected cell body. The minimum distance between cells was defined by a line that joins the cell

whose size was measured to the nearest cell. In this case, the distance was 4 pixels. Notice that in this

case, the threshold value defined in the ITCN count was 2.0. Figure 24 illustrates the counting process of
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this experiment. In the 2𝑛𝑑 test, all the settings implemented in the previous experiment were followed,

except for the value defined for the ITCN threshold. So, it will be possible to understand how automatic

counting behaves when we change the threshold values. The 3𝑟𝑑 experiment is also very similar to the

1𝑠𝑡 . However, it was possible to sense that the results of the counts are more accurate if we find the

smallest cell and the smallest distance between cells. Preserving the values of the ITCN threshold higher

is also important. Therefore, keeping the values for the auto-thresholding to remove the background, the

cell size was defined in 6 pixels and the minimum distance between cells was 5 pixels. The 4𝑡ℎ test is

the result of applying a background subtraction after the passage of a ”rolling ball”with a light background

and a radius of 50 pixels. Then the image was converted to binary to apply the watershed algorithm. In

this case, the new cell size was 5 pixels and the distance 5 pixels. The 5𝑡ℎ and final experiment had a

background subtraction applied only had 2 pixels in the radius of the ”rolling ball”. Auto-thresholding was

used at a pixel value of 223. The cell size was 5 pixels and the distance between cells is 4 pixels.

Figure 24: Cell Colony Sample - 1𝑠𝑡 Experiment - ITCN.

Table 18 displays all the different settings applied to the images, namely the threshold values, the

cell size and minimum distance between cells defined, along with the ITCN threshold value that leads to

the final results obtained in the counting process. The results obtained and their respective discussion

is also presented in subsection 6.1.1. The pros and cons of implementing an approach to automatically

quantify microglial cells with the ITCN plugin are also discussed, based on the results gathered from the

experiments conducted with the generic cell sample.
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1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 129 0
Max 171 171 171 255 223

6.63% 6.63% 6.63% 6.09% 4.90%
Algorithm Default Default Default Default Default

ICTN Cell With 9 9 6 5 5
Minimum Distance 4 4 5 5 4
Threshold 2.0 1.0 3.0 4.5 5.0

Table 18: Cell Colony Sample - ITCN - Quantification Settings.

5.2.2 Brain Image Samples

Within the so-called classic approaches emerges ImageJ. As stated, this software offers the possibility

of counting objects in 2D images. Thus, ImageJ fits perfectly into the context of this dissertation, namely

for the automatic quantification of microglial cells. Collected together with elements from the School

of Medicine of the University of Minho, these images are in the desired format for quantification. With

image processing and analysis techniques, once again, the Analyze Particles and the ITCN plugin have

been chosen. These two different strategies were implemented to the brain images to fully comprehend

who is the best approach to automatically count microglial cells regarding a more classical approach. It

is important to note that to obtain more accurate results, all DCN areas and Lobules were divided into

several images with the same size, to minimize image noise and obtain a clearer view of the cells.

Analyze Particles

Having studied all relevant literature and documentation, namely, the approaches presented in subsec-

tion 3.3.3, their respective pros and cons, and the drawn conclusions from the experiments carried out

with the generic cell sample, the ImageJ Analyze Particles feature was tested again to automate cell count-

ing. The section where similar work was brought up for discussion helped to support this approach and to

design a solution to the presented problem. The different studies fetched good practices that need to be

considered, from the beginning of the counting process to the end, such as image processing, treatment

and analysis. The experiments carried out with the generic cell sample, detailed in subsection 5.2.1, also

brought very relevant considerations to this approach. Above all, analyzing the entire counting process

and the inherent results, the Analyze Particles has proven to be a very valid alternative for the automatic

quantification of microglial cells.

As previously described, the Analyze Particles consists of a set of procedures before automatic count-

ing. To count objects, a set of processes should be applied to make the count more reliable. The first of

those processes was to divide the DCN areas and the Lobules into several images, all with the same size.

Figure 25 illustrates the division of Lobule 2 of animal CN276 2FD from brain slice 1. Similar to the one

illustrated, this process of dividing the areas was carried out in all images to help reduce image noise and

obtain a clearer view of the cells for the required image processing tasks. Another step developed before
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the actual counting process was channel adjustment. As previously mentioned, namely, in subsection

2.4, microglia cells are associated with markers that help in their identification. The cell marker that helps

in the identification of cells is the ionized calcium-binding adapter molecule 1, most commonly known as

IBA1. As we can see in the image below, it is not easy to visualize the cells with the naked eye, even though

it contains the IBA1 marker to help with its visualization. Knowing that these images are captured in a

fluorescent format, channel separation was performed. The objective was to keep only the red channel

for the quantification of cells, as this is where we can visualize them. Figure 26 illustrates the result of

channel separation, and as we can see, it is now easier to identify the cells.

Figure 25: Microglial Cells - CN276 2FD - Slice 1 - Lobule 2 Images.

Figure 26: Microglial Cells - CN276 2FD - Slice 1 - Lobule 2 Red Channel Images.

Moving on to the quantification process itself, Table 19 displays the different settings applied to Lobule

2 of brain image 1 of animal CN276 2FD. It’s important to mention that going forward, here is where the

counting process varies from image to image. The purpose is to obtain the most accurate and precise

results possible. Until now, the division of areas and the separation of channels have been done identically

in all images. Threshold values vary in each experiment. A manual adjustment has been made with sliders

to decrease the overlap as much as possible. As each image differs from the others, all areas of interest for

the quantification are included with or without overlap. After properly adjusting the threshold value, as a

good practice for the counting process came the application of the watershed algorithm. As it was possible

to verify in the experiments conducted with the generic cell sample, the watershed algorithm separates

with 1 pixel what it considers to be one or more overlapping cells, which is extremely important to obtain

63



CHAPTER 5. EXPERIMENTAL SETUP

exact results. All images were converted to binary and later to mask, to ensure that the algorithm can be

properly applied. Finally, notice that in all the counts the circularity chosen for the objects ranges from

0.05 to 1.00, and the range of sizes is defined as 17 to infinity. It was possible to conclude that these

values are the ideal ones through several trial and error tests that were validated with test counts. In this

way, maintaining these values in all images, we ensure that we are not excluding any cell, as there are

cells with different values of circularity and size in each image. To sum up, the protocol developed in this

dissertation is composed of five steps, not counting the process of dividing the DCN areas and Lobules

into multiple images. The phases that make up this protocol are the following: 1 - Channel Separation;

2 - Threshold Adjustment; 3 - Image Conversion; 4 - Cells Separation; 5 - Cells Quantification. The first

stage is where we use the ImageJ functionality to separate channels, as the cells are only visible in the red

channel. The second stage is where we guarantee all areas of interest are included with or without overlap,

as we decreased the overlap as much as possible using the sliders for manual adjustment of the threshold

values. Following this, the third stage is where the image is firstly converted to binary, resulting in an

8-bit image. Then the 8-bit image is converted to mask to ensure that the next phase can be successfully

implemented. The fourth stage is the application of the watershed algorithm. Finally, to finalize the cell

counting process comes the fifth phase of the developed protocol. Needs to be pointed out that if all the

previous steps of the protocol are not followed, it is not possible to achieve good results. With the Analyze

Particles functionality of ImageJ, we defined the previously discussed circularity and the size of objects,

ensuring that we are not excluding any cell.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ

Threshold Min 0 0 0 0
Max 1461 1750 1526 1574

96.42% 96.26% 95.18% 95.04%
Algorithm Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 19: CN276 2FD - Slice 1 - Analyze Particles - Quantification Settings for Lobule 2.

Focusing more on the second stage of the developed protocol, since every other phase is pretty much

the same for every image, the 1𝑠𝑡 experiment conducted in image 1 of Lobule 2 is the result of cell

counting after applying manual thresholding to the image at a pixel value of 1461. Figure 27 illustrates

the result of the counting process of this experiment. The 2𝑛𝑑 test presents the quantification settings

of the conducted process in image 2 of Lobule 2 after once again applying manual thresholding to the

image at a pixel value of 1750. The 3𝑟𝑑 experiment is related to the prior procedures. However, manual

thresholding to image 3 of Lobule 2 was applied at a pixel value of 1526. The 4𝑡ℎ and final test for this

Lobule is identical to the previous ones, as manual thresholding was again applied but at a pixel value of

1574. In the table, it is possible to verify which algorithm was used to threshold the image. In this case,

the algorithm used was the Default. The reason for choosing this one was throughout the results obtained
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in several trial-and-error quantification tests. It should be noted that when we adjust the threshold value in

images, we are working with images in black and withe format. In total seven algorithms (Default, Huang,

Intermodes, IsoData, MaxEntropy, Otsu and Yen) were tested. From those seven emerged the Default and

the Intermodes algorithm. With better results and a little bit superior to the Intermodes algorithm, the

Default algorithm proved to be ideal for the problem in question.

Figure 27: Microglial Cells - 1𝑠𝑡 Image of Lobule 2 - Analyze Particles Automatic Quantification.

Tables 20, 21, 22 and 23 display the different quantification settings applied to Lobule 3, 4, 5 and

6, respectively. The remaining quantification settings for the remaining DCN areas and Lobules are dis-

played in Appendix A. The quantification settings of animal CN282 2TE, CN283 2FD and CN284 TDTE

are presented in Appendix B, C and D, respectively. As can be verified, all the steps and values that led

to obtaining the results regarding the automatic quantification of microglial cells process based on a more

classical approach are fully documented. In this way, anyone who has access to these images and follows

exactly all the steps can easily replicate all the results and consequently see their cell counting process

optimized. How the entire protocol developed throughout this dissertation is documented, can serve as a

basis for an application in a similar situation when dealing with a so-called more classical approach.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 1493 1911 1365 1477 1622

96.63% 94.45% 95.96% 95.05% 95.36%
Algorithm Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 20: CN276 2FD - Slice 1 - Analyze Particles - Quantification Settings for Lobule 3.
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1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 2457 1847 1879 2104 2698

96.85% 95.85% 96.71% 96.91% 96.63%
Algorithm Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 21: CN276 2FD - Slice 1 - Analyze Particles - Quantification Settings for Lobule 4.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 2826 1895 2762 2875 2826

97.52% 97.42% 97.25% 97.71% 97.33%
Algorithm Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 22: CN276 2FD - Slice 1 - Analyze Particles - Quantification Settings for Lobule 5.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 2264 3276 2746 3276 2971

97.57% 97.07% 96.02% 97.41% 98.39%
Algorithm Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 23: CN276 2FD - Slice 1 - Analyze Particles - Quantification Settings for Lobule 6.

The results obtained and their respective discussion is presented in subsection 6.1.2. The approach

considered optimal for the developed Analyze Particles protocol to automatically quantify microglial cells

is sustained based on the results acquired with the quantification processes conducted.

ITCN

After the experiments carried out with the generic cell sample, detailed in subsection 5.2.1, the ITCN

plugin was tested again to automate cell counting. Although the results obtained were not the best, due to

the various factors presented and inherent to the counting process with this plugin, the experiments brought

pertinent considerations to test this approach with microglial cells. The goal is to see if this approach is

a valid alternative for the automatic quantification of cells based on a more classical methodology, and

therefore a better alternative to manual counting processes. It is important to note that the images used

were the same as those used in the developed Analyze Particles protocol.

As previously stated, this plugin requires a set of procedures to be applied to the image to make the

count more reliable. Microglia cells are associated with markers that help their identification. The IBA1
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marker in these cells is only visible in the red channel, so performing channel separation was needed.

As the ITCN plugin doesn’t deal very well with image noise, thresholding an image is also an important

pre-procedure routine. Taking advantage of the threshold values applied in the Analyze Particles protocol,

considered optimal given the results obtained in the counting process, these same values were reused for

this counting process. To ensure that all cells are considered in the counting process, the watershed algo-

rithm was applied. All images were converted to binary and later to mask, to ensure that the algorithm can

work properly, and all areas of interest for the quantification are included. Moving on to the quantification

process, Table 24 displays the different settings applied to Lobule 2 of brain image 1 of animal CN276

2FD within the ITCN plugin. The table also exhibits the values applied to threshold the image.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ

Threshold Min 0 0 0 0
Max 1461 1750 1526 1574

96.42% 96.26% 95.18% 95.04%
Algorithm Default Default Default Default

ITCN Cell Width 15 14 10 11
Minimum Distance 19 39 55 47
Threshold 3.0 2.5 5.5 6.5

Table 24: CN276 2FD - Slice 1 - ITCN - Quantification Settings for Lobule 2.

Focusing more on the ITCN part, as the other parts of this counting process were previously described,

the 1𝑠𝑡 experiment conducted in image 1 of Lobule 2 is the result of cell counting after defining the cell width

in 15 pixels, the minimum distance between cells in 19 pixels and the ITCN threshold in 3.0. Figure 28

illustrates the counting process of this experiment. The 2𝑛𝑑 test presents the quantification settings of the

conducted process in image 2 of Lobule 2 after specifying the cell width in 14 pixels, the minimum distance

between cells in 39 pixels and the ITCN threshold in 2.5. The 3𝑟𝑑 experiment was conducted in image 3

of Lobule 2. The defined cell width is 10 pixels, the minimum distance between cells is 55 pixels, and the

threshold value is 5.5. The 4𝑡ℎ and final test, performed in image 4 of Lobule 2, resulted in the definition

of 11 pixels in the cell width, 47 pixels for the minimum distance between cells and 6.5 for the threshold

value. It is important to point out that although the minimum distance between cells recommended is

half the cell width, in the case of microglial cells, this recommendation was not followed. Microglial cells

are distributed unevenly across the image and have different sizes. Following the recommendation would

result in very poorly adjusted results and consequently would give rise to an imprecise counting process.

Therefore, the minimum distance between cells was manually defined through a line that joins the two

most close cells. This line is then measured to obtain the distance value in pixels. Similarly, the cell width

is measured. A line joins the two most distant points of the cell nucleus and then this line is measured to

obtain the cell width in pixels. The ITCN threshold value was also manually defined and differs from case

to case to ensure that in each experiment the quantification is as accurate as possible. It should be noted

that all the values presented were considered optimal for an adjusted counting process. To arrive at them
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was necessary to carry out several experiments, more than twenty in the case of Lobule 2.

Figure 28: Microglial Cells - 1𝑠𝑡 Image of Lobule 2 - ITCN Automatic Quantification.

Tables 25, 26, 27 and 28 display the different quantification settings applied to Lobule 3, 4, 5 and

6, respectively. Once again, anyone with these images can easily replicate all the results and see their

cell counting procedure optimized. The way the entire process is documented serves as a basis for an

application in a similar situation regarding a classical methodology.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 1493 1911 1365 1477 1622

94.63% 94.45% 95.96% 95.05% 95.36%
Algorithm Default Default Default Default Default

ITCN Cell Width 12 12 12 13 16
Minimum Distance 27 21 24 43 55
Threshold 4.5 5.0 5.5 4.0 1.5

Table 25: CN276 2FD - Slice 1 - ITCN - Quantification Settings for Lobule 3.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 1493 1911 1365 1477 1622

94.63% 94.45% 95.96% 95.05% 95.36%
Algorithm Default Default Default Default Default

ITCN Cell Width 16 15 20 22 22
Minimum Distance 70 44 43 68 50
Threshold 2.0 2.5 1.0 0.5 1.0

Table 26: CN276 2FD - Slice 1 - ITCN - Quantification Settings for Lobule 4.
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1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 2826 1895 2762 2875 2826

97.52% 97.42% 97.25% 97.71% 97.33%
Algorithm Default Default Default Default Default

ITCN Cell Width 17 18 19 25 20
Minimum Distance 50 80 77 60 50
Threshold 1.5 0.5 0.5 0.5 1.0

Table 27: CN276 2FD - Slice 1 - ITCN - Quantification Settings for Lobule 5.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ

Threshold Min 0 0 0 0 0
Max 2264 3276 2746 3276 2971

97.57% 97.07% 96.02% 97.41% 98.39%
Algorithm Default Default Default Default Default

ITCN Cell Width 20 16 23 22 13
Minimum Distance 10 56 33 50 43
Threshold 1.0 2.5 0.5 1.0 3.5

Table 28: CN276 2FD - Slice 1 - ITCN - Quantification Settings for Lobule 6.

The results obtained and their respective discussion is presented in subsection 6.1.2. This approach is

discussed meticulously to sustain our opinion on the applicability of it to automatically quantify microglial

cells based on the results acquired with the quantification processes conducted.

5.3 Deep Learning for Automatic Cell Counting

CNNs were chosen to develop a solution for automatic cell counting based on a deep-learning ap-

proach. As stated in subsection 3.4.3, CNNs are composed of a set of artificial neurons organized into

layers such as the input layer, the hidden layer, and the output layer. They are also most commonly

used to analyze visual imagery, as is the case in this dissertation work. In both approaches discussed in

subsection 3.4.6, the common point between both is the use of CNNs. In this way, and after having also

analyzed all relevant documentation and literature, the use of CNNs to solve the problem of automated

microglial cell counts based on a deep learning approach seems to be ideal. The programming language

used in this approach was Python, which is a high-level programming language. The version used was

3.7.15. Different libraries were also used in the design of this solution, such as the open source library for

ML TensorFlow (version 2.9.2), the high-level NN library that runs on top of TensorFlow as is the case of

Keras (version 2.9.0), the software library for creating graphs and general data visualizations Matplotlib

(version 3.2.2), the software library created for the Python language for data manipulation and analysis

Pandas (version 1.3.5), the Python library that supports processing of large, multi-dimensional arrays and

matrices, along with a large collection of mathematical functions NumPy (version 1.21.6) and the open
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source machine learning library for the Python programming language Scikit-learn (version 0.24.1). In

order not to affect and influence the results obtained in both approaches studied, within the deep learning

methodology, the version of the programing language and libraries was the same in both cases.

5.3.1 Cell Colony Sample

Once again, to fully comprehend the best approach to automatically count cells within a deep learning-

based methodology the generic cell sample was selected to test two approaches. The goal was to under-

stand the extensiveness of these two strategies, namely the pros and cons of applying a CNNs to a classifi-

cation approach. In this case, the models with CNNs were applied to a cell classification procedure based

on the number of cells present in the image and a classification technique based on the area occupied by

the cells in the sample. It is important to point out that according to what was highlighted in section 4.1,

for a model to work properly and have adjusted results, the generic cell image was divided into 16 equal

images to compose a dataset with 16 samples.

Classification per Number of Cells

The objective of a classification approach is to classify one or several images using previously defined

classes. Table 29 presents the classes defined for the classification of the generic cell sample based on

the number of cells. To correctly define the intervals, in all 16 images the cells present were counted using

the Analyze Particles protocol developed in this dissertation. Thus, an image that does not contain more

than 40 cells will be classified as ”Few”, given the low number of cells. An image that contains more than

40 cells and less than 50 is classified as ”Average”. Finally, an image that has more than 50 cells will be

classified as ”Many”, given the high number of cells.

Label Interval
Few < 40

Average ⩾ 40 & < 50
Many ⩾ 50

Table 29: Cell Colony Sample - Labelling Classes (Number).

Once the intervals for cell classification were defined and the cells were counted, labelling the images

is required. Figure 29 displays the labelling performed on the images. In total 3 images were labelled as

”Few”, 8 as ”Average”, and 5 as ”Many”. At the level of the code structure for the construction of the

developed CNNs model, after labelling the images it was necessary to do the load data, load labels and

define the classes. Following the TensorFlow documentation, the appropriate CNNs model was created

to help solve the problem presented in this dissertation. Once the model was created, it was necessary

to compile and fit it. For that, in this compile and fit function we passed the model type, the training

and test set, the batch size, the number of epochs, the value of the learning rate, the application of data

augmentation and the plot of the learning curves initialized as false. The metric defined for the model
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is ”accuracy”. Within this function, the number of splits was defined. In this specific case, the number

of splits defined was 16, so we can cross-validate with 16 folds and the error will be the average of 16

folds. As we have little data to train and test, we try to maximize the training data since in each fold we

train with 15 images and test only with 1 image. This was done for the 16 images of the dataset, which

makes training and testing more time-consuming, but will generate better results. Then it was necessary

to plot the learning curves. The data was prepared again by reading the training and test set and the

classes. To plot the learning curves and understand how the model behaves, the most complex values

were assigned to the parameters. The values in question were one for the batch size, one hundred for

the number of epochs, and 0.0005 for the learning rate. Data augmentation was used in this case. The

number of folds for the plot of learning curves was four, meaning that we train with twelve cases to predict

four, thus bringing even more complexity to the model. It is important to point out that to guarantee that

these results can be replicated on any machine by any user, a seed has been defined. Thus, similar to

the classical methodology, the processes developed in an approach based on deep learning can also be

fully replicated.

Figure 29: Cell Colony Sample - Image Labelling (Number).

The purpose of learning curves is to help us understand the optimal values for the model, namely the

number of epochs. Figure 30 illustrates the learning curves obtained in this approach. We can conclude

by reading the plots that the ideal value for the number of epochs goes up to 35. Going beyond this value

is irrelevant to the model since the training loss and validation loss are getting further and further away
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from each other. Since our dataset only consists of 16 images, going beyond 16 in the value assigned to

the batch size would also be irrelevant. So, to be able to tune the model, the following list of values was

defined for the different parameters:

• batch_size_list = [1, 2, 4, 8, 16];

• epochs_list = [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35];

• learning_rate_list = [0.0005, 0.005, 0.001];

• apply_data_augmentation_list = [True, False].

Figure 30: Cell Colony Sample - Learning Curve (Number).

Several experiments were carried out, with the different values defined in the parameters, totalling

330. The results obtained and a respective discussion is presented in subsection 6.2.1. The approaches

considered optimal to help in the problem of the microglial cells are explained.

Classification per Area of Cells

Similar to the classification approach per number of cells, the objective is again to classify one or several

images using previously defined classes. Table 30 presents the classes defined for the classification of the

generic cell sample based on the area of cells. To properly define the intervals, in all 16 samples the cells

were counted using the Analyze Particles protocol developed in this dissertation. By using this protocol

and through the counting results, we can access the percentage of the area that these cells occupy in the

image. Thus, an image that does not contain a percentage of cell area greater than 5.2 will be classified
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as ”Few”. An image that contains a percentage of cell area greater than 5.2 and less than 6.9 is classified

as ”Average”. Finally, an image that contains a percentage of cell area greater than 6.9 will be classified

as ”Many”.

Label Interval
Few < 5.2

Average ⩾ 5.2 & < 6.9
Many ⩾ 6.9

Table 30: Cell Colony Sample - Labelling Classes (Area).

Once the intervals for cell classification were defined and the area of the cells was measured, the

first step for classification was the labelling of the images. Figure 31 displays the labelling performed on

the images. In total 4 images were labelled as ”Few”, 6 as ”Average”, and 6 as ”Many”. Then, it was

necessary to do the load data, load labels and define the classes in the model. Leveraging the previous

procedure, it was necessary to compile and fit it, passing the model type, the training and test set, and the

respective parameters. As the objective is classification, the chosen metric was ”accuracy”. The number

of splits defined was the same as in the previous experience. With this number of splits, we can cross-

validate with 16 folds. The error will be an average of 16 folds. For the plot of learning curves, the same

procedure as the previous approach was followed.

Figure 31: Cell Colony Sample - Image Labelling (Area).
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Before moving on to the analysis of learning curves, it is necessary to point out that once again to

guarantee that these results can be replicated on any machine by any user, a seed has been defined in the

code. The purpose of learning curves, in this case, is the same as in the previous approach, which is to

help us understand the optimal number of epochs for the model. Figure 32 illustrates the learning curves

obtained in this approach. Through their analysis, we can see that there is an approximation between the

line of training loss and validation loss up to 20 epochs, and then they distance themselves from each

other. The point of going up to a relatively high number of epochs with the learning curves plot is to see if

both lines of the loss come together again at some point, which was the case when the number of epochs

is 60. Going beyond 95 epochs is irrelevant to the model since the training loss and validation loss start

getting further and further away from each other. Once again, knowing that our dataset only consists of

16 images, going beyond 16 in the value assigned to the batch size would also be irrelevant. To be able

to tune the model, the following list of values for the model parameters was defined:

• batch_size_list = [1, 2, 4, 8, 16];

• epochs_list = [1, 2, 3, 4, 5, 10, 15, 20, 60, 65, 70, 75, 80, 85, 90, 95];

• learning_rate_list = [0.0005, 0.005, 0.001];

• apply_data_augmentation_list = [True, False].

Figure 32: Cell Colony Sample - Learning Curve (Area).

In total, 480 experiments were carried out, with the different values defined in the parameters. The

results obtained and a respective discussion is presented in subsection 6.2.1. The best approaches are
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described based on the results acquired from the experiments conducted with the generic cell sample are

explained based on the results acquired.

5.3.2 Brain Image Samples

The objective of this dissertation is to automate the cell counting process, namely the quantification of

microglial cells. As already explained, these cells are associated with the markers that help in their identi-

fication. An approach to automate the microglia cell counting process is image classification. According to

relevant literature and documentation, namely, the approaches presented in subsection 3.3.3, the use of

a model based on CNNs proves to be an ideal solution for the problem. The experiences carried out with

the cell colony detailed in subsection 5.3.1 also came to attest that the conclusions drawn from the articles

brought for discussion were correct, namely that the use of CNNs is ideal for automating the microglial

cell counting process. Both the approaches presented and those developed fetched good practices that

need to be considered in our case. Therefore, using a model based on CNNs two approaches that aim

to automate cell counting were applied to the brain images. The goal is to understand the extensiveness

of these two strategies, namely their respective pros and cons. Taking advantage of the work produced

within the classical approach, the division performed on the images was reused, thus composing a dataset

with 661 images. With this number of images, we guarantee that the model can work properly and have

adjusted results. Next, the experiments conducted with these images, namely the classification approach

based on the number of cells in an image and the percentage of area that the cells occupy in an image

are explained.

Classification per Number of Cells

Once again the objective of a classification approach is to classify one or several images using previously

defined classes. Analyzing the entire counting process and the results inherent to the experiments carried

out with the generic cell sample, the classification approach based on the number of cells has proven to

be a very valid alternative for automating the quantification of microglial cells. That said, Table 31 presents

the classes defined. To correctly define the intervals, we resorted to the cell count results for each image,

obtained from the Analyze Particles protocol developed in this dissertation. Thus, an image that does not

contain more than 15 cells will be classified as ”Few”. An image that contains more than 15 cells and

less than 25 is classified as ”Average”. Finally, an image that has more than 25 cells will be classified as

”Many”.

Label Interval
Few < 15

Average ⩾ 15 & < 25
Many ⩾ 25

Table 31: Microglial Cells - Labelling Classes (Number).
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Having the intervals for cell classification defined and the cells counted, image labelling is the next step

required. Figure 33 displays part of the labelling performed on the images. In total 339 were labelled as

”Few”, 203 as ”Average”, and 119 as ”Many”. In terms of the code structure for building the model, the

approach followed was very similar to the one implemented with the cell colony. Once again, following the

TensorFlow documentation, the appropriate CNNs model was developed to help automate microglial cell

counting. The model was created so it was necessary to compile and fit it. For that, and since excellent

results were obtained previously, the same parameters were passed to the model. The parameters in

question were the following: the model type, the training and test set, the batch size, the number of

epochs, the value of the learning rate, and the application of data augmentation. The data augmentation

value has been initialized to false. As in the previous cases, the metric defined for the model is ”accuracy”

since it is a classification approach. The number of splits for the model was also defined, which in this

specific case was 5. We can do cross-validation with 5 folds. The error will be the average of the 5 folds. In

this way, we don’t add too much difficulty to the model and manage to have an equally effective but faster

process. That said, we are left with 529 images for training and one 132 for testing. This is done for each

fold, which makes training and testing a little more time-consuming, but will generate more reasonable

results.

Figure 33: Microglial Cells - Image Labelling (Number).
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After creating and defining the model was necessary to plot the learning curves. As expected, the

data was prepared by reading the training and test set and the classes. To understand how the model

behaves, the most complex values were assigned to the parameters to plot the learning curves. The values

in question were one for the batch size, 50 for the number of epochs, 0.0005 for the learning rate, and

data augmentation has been initialized to true. The number of folds for the plot of learning curves was 4,

meaning that we train with 496 cases to predict one 165. This adds complexity to the model and gives us

an idea of how it will behave. Once again, it is important to point out that to guarantee that these results

can be replicated on any machine by any user, a seed has been defined.

Figure 34: Microglial Cells - Learning Curve (Number).

Moving on to a more detailed analysis of the results obtained with the implementation of learning

curves, we came to the idea that the ideal value for the number of epochs goes up to 20. Figure 34

illustrates the learning curves obtained in this approach. As explained, the purpose of learning curves is

to help us understand the optimal values for the model, namely the number of epochs. As the lines of

training loss and validation loss are getting further and further away from each other when the number of

epochs is higher than 20 is irrelevant to go above that value. Knowing that our dataset is composed of

661, in this case, it is already relevant to increase the maximum value for the batch size to 32. So, to tune

the model, the following list of values was defined for the different parameters:

• batch_size_list = [1, 2, 4, 8, 16, 32];

• epochs_list = [1, 2, 3, 4, 5, 10, 15, 20];

• learning_rate_list = [0.0005, 0.005, 0.001];
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• apply_data_augmentation_list = [True, False].

In total, 288 experiments were carried out, with the different values defined in the parameters. The

results obtained and a respective discussion is presented in subsection 6.2.2. The best approaches are

described based on the results acquired from the experiments conducted. The procedure considered

optimal that helps to automate the microglial cell counting is described in detail as it will be brought for

discussion within the various methodologies, manual, classic and deep learning.

Classification per Area of Cells

Another approach that helps automate the cell counting process is the classification technique based

on the area that cells occupy in an image. Similar to the previous procedure, the objective is again to

classify one or several samples using previously defined classes. Table 30 presents the defined classes.

To correctly define the intervals, we resorted again to the cell count results obtained from the Analyze

Particles protocol developed in this dissertation. Thus, an image that does not contain a percentage of cell

area greater than 0.45 will be classified as ”Few”. An image that contains a percentage of cell area greater

than 0.45 and less than 0.85 is classified as ”Average”. Finally, an image that contains a percentage of

cell area greater than 6.9 will be classified as ”Many”.

Label Interval
Few < 0.45

Average ⩾ 0.45 & < 0.85
Many ⩾ 0.85

Table 32: Microglial Cells - Labelling Classes (Area).

Once defined the intervals for cell classification and the area of the cells was measured, the second

procedure was image labelling. Figure 33 displays part of the labelling performed on the dataset. In total

324 images were labelled as ”Few”, 270 as ”Average”, and 67 as ”Many”. Then, following the same

approach as the previous procedure, it was necessary to do the load data, load labels and define the

classes in the model. Up next, was necessary to compile and fit it CNNs model, passing the model type,

the training and test set, and the respective parameters. Leveraging the previous procedure, the number

of splits defined was the same as in the previous experience since excellent results were obtained. With 5

splits we can do cross-validation with 5 folds, and the error will be the average of the 5 folds.

To understand how the model behaves was necessary to plot the learning curves. Therefore, the most

complex values were assigned to the different parameters. The values in question were the same as in

the previous procedure and were: one for the batch size, 50 for the number of epochs, 0.0005 for the

learning rate, and data augmentation has been initialized to true. The number of folds for the learning

curves plot was also the same since in this way we added complexity as much as possible to the model

and gives us an idea of how it will behave. A seed was again created to ensure that these results can be

replicated on any machine by any user.
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Figure 35: Microglial Cells - Image Labelling (Area).

Analyzing the plots we concluded that the ideal value for the number of epochs goes up to 25. Figure

34 illustrates the learning curves obtained in this procedure. Once again, the purpose of learning curves

is to help us understand the optimal values for the model, namely the number of epochs. After 25, the

lines of training and validation loss are getting further and further away from each other so it is not relevant

to go beyond the 25 epochs. As with the previous approach, the maximum value for the batch size to 32

since the dataset is composed of 661 samples. To tune the model, the following list of values was defined

for the different parameters:

• batch_size_list = [1, 2, 4, 8, 16, 32];

• epochs_list = [1, 2, 3, 4, 5, 10, 15, 20, 25];

• learning_rate_list = [0.0005, 0.005, 0.001];

• apply_data_augmentation_list = [True, False].

In total, 324 experiments were carried out. The results obtained and a respective discussion is pre-

sented in subsection 6.2.2. Once again, the best experiences are described based on the results acquired

from the experiments conducted. The best approach is described in detail since it can be a solution to
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Figure 36: Microglial Cells - Learning Curve (Area).

automate microglial cell counting. This procedure will also be brought for discussion within the various

methodologies, manual, classic and deep learning.
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Results and Discussion

This chapter presents the reader with all the results of the automated counting experiences performed

with the different approaches. Initially, the results of the counting process of the generic cell sample are

presented followed by the results of the quantification of microglial cells. Finally, based on the results

gathered from the overall experience between different approaches and methodologies, a discussion is

presented where all the pros and cons of each procedure are raised since the goal is to find the most

suitable solution to the microglial cell automatic quantification problem.

6.1 Classic Methods for Automatic Cell Counting

Based on ImageJ, which was the software of choice for automatic cell counting, in terms of a more

classic methodology, several experiments were carried out, as detailed in the previous chapter. The exper-

iments conducted with a generic cell sample aimed to understand the possible limitations of the software,

as well as to study the selected approaches, namely the Analyze Particles functionality and the ITCN Plu-

gin. So, through the results obtained, a discussion is presented in subsection 6.1.1. This discussion made

it possible to conclude what should or should not be done with each one of these approaches in terms

of microglial cell counts. Subsection 6.1.2 details the results obtained from the automatic quantification

of microglial cells, as well as, presents the discussion of them, and bases the procedure considered opti-

mal, chosen for the comparison between the different approaches, the manual, the classic and the deep

learning approach.

6.1.1 Cell Colony Sample

As was already explained, this sample was selected to understand the limitations of ImageJ. Accord-

ing to all relevant literature and documentation studied in the state-of-the-art, two different approaches

were tested within the classical methodology. Next, the quantification results gathered from the counts

performed are presented. For each strategy, results are discussed, followed by the conclusions drawn that

will positively influence the microglial cell counting process.
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Analyze Particles

To study the best approach to automatically quantify the number of cells in an image, with the Analyze

Particles functionality, 5 test experiments were conducted. Table 33 presents the results obtained in the

counting process. According to the information presented in subsection 5.2.1, in all experiments, care

was taken to test different approaches within the developed protocol, except for the values assigned to the

size and circularity of the cells. Behind this exception is the fact that the cells present in the sample have

different sizes and circularity from each other, so changing and defining a specific size would influence the

results and leave some cells out of the count. At first glance, we may think that we will have a lot of noise

in the image and that any pixel will be counted as a cell but we couldn’t be more wrong. Throughout the

developed protocol, and the steps implemented before the counting process itself, such as removing the

image background, and adjusting the threshold value, among others, we are reducing noise and eliminating

image outliers. In this way, we obtain a more accurate and reliable counting process. It is easy to notice

that the algorithm used to change the threshold value in the image was always the same, and the reason

for its choice was, according to the analysed documentation, because it is the best one to deal with image

analysis in the black and white format.

Test
Experience

Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 710 10979 15.463 6.628
2 690 10126 14.675 6.113
3 710 10079 14.196 6.085
4 881 8120 9.217 4.902
5 893 8094 9.064 4.886

Table 33: Cell Colony Sample - Analyze Particles - Automatic Quantification Results.

Moving on to the results of the conducted experiences, the counting process of the 1𝑠𝑡 experiment

resulted in 710 cells quantified. It should be noted that in this experiment, before the counting process

itself, only the threshold of the image was treated. Therefore, it was possible to understand how the

counting process behaves without removing the background or separating cells. The count performed in

the 2𝑛𝑑 experiment quantified 690 cells. In this case, before the threshold treatment, the background of

the image was removed, as explained in the previous chapter. Thus, and different from the previous test, it

was possible to see how the count behaves when we just remove the background and treat the threshold.

The 3𝑟𝑑 experience resulted in the quantification of 710 cells. In addition to background removal and

threshold processing, in this experiment, the image was converted to a binary format, namely an 8-bit

format, to be able to apply the watershed algorithm. As explained, this algorithm separates with 1 pixel

what it considers to be two cells or more together. Thus, instead of quantifying just one cell when there

may be two or more, it quantifies the correct number of cells, two or more. The 4𝑡ℎ test resulted in

the quantification of 881 cells. Similar to the counting process in the 2𝑛𝑑 experiment, this one aimed

to understand what happens when we change the radius of the ”rolling ball”in the background removal
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process. The last test resulted in 893 cells quantified. Also with a low value of the ”rolling ball”radius for

background removal, in this experiment, the image was converted again to a binary format to be able to

apply the watershed algorithm. In this way, with this and with the previous experience, we were able to

understand how the count behaves with low values in the background removal and consequently greater

noise. To try to minimize the outliers, in the 5𝑡ℎ test, the separation of cells that the software judges to be

together was tested as was explained. Auto-thresholding was applied both in this experiment and in the

previous one.

To conclude, of all the experiments carried out the first three should be highlighted. The counting

results are very approximate and accurate. In the case of experiments 1𝑠𝑡 and 3𝑟𝑑 , we even reached

the same result in the cell counting process. Through the results of these two experiments, we learned

more pros than cons regarding the Analyze Particles functionality. Thresholding an image proved to be

a very important task as it helps in removing noise and makes the counting process more accurate. In

the case of this colony cell sample, the image is not very complex, hence auto-thresholding has been

used. In the case of images of microglial cells, we have more complex images due to the complexity

of the cell itself, so it can be concluded that auto-thresholding should not be the ideal solution. So, it

will be necessary to adjust the threshold manually through the sliders decreasing the overlap as much

as possible. From these experiments, it was also possible to conclude that removing the background

from the image can be beneficial for the counting process. When we compared the background removal

process through the passing of a ”rolling ball”performed in experiments 2𝑛𝑑 and 3𝑟𝑑 with experiments

4𝑡ℎ and 5𝑡ℎ, we noticed that with a higher radius value the counting process is more accurate. Finally,

using the algorithm that separates what is considered to be cells together is something very positive that

this protocol can bring to the quantification of microglial cells, as it was possible to prove with the results

of this sample. The only necessary care is to transform the image to a binary format, otherwise, it is not

possible to apply this algorithm. That said, the Analyze Particles functionality brings many benefits to the

automatic quantification of cells, as it makes a process that is usually time-consuming simpler, faster and

more effective. Within the classical methodologies, it is a reliable solution to the problem presented and

therefore it will be used in the counting of microglial cells.

ITCN Runner

Another approach within the classic methodology to automatically quantify the number of cells in an

image is the ITCN plugin. With the ITCN plugin, 5 experiments were performed. Table 34 presents the

results obtained throughout the counting process. As mentioned in subsection 5.2.1, in all experiments,

different approaches within the ITCN plugin were tested to verify the effectiveness of this approach. This

protocol requires certain procedures applied to the image before the application of the ITCN. Taking advan-

tage of the Analyze Particles experiments, some practices were reused. As in the previous approach, all

images were converted to binary and later to mask, to ensure that all areas of interest for the quantification

are included. Throughout this pre-procedure task, such as removing the image background and adjusting

the threshold value, we are reducing noise and eliminate image outliers. In this way, we obtain a more
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accurate and reliable counting process.

Test
Experience

Number of Cells

1 286
2 1136
3 908
4 981
5 969

Table 34: Cell Colony Sample - ITCN - Automatic Quantification Results.

Moving on to the results of the conducted experiences, the counting process of the 1𝑠𝑡 experiment

resulted in 286 cells quantified. The result is far from the actual number of cells in the image. However,

should be noted that in this experiment, before the quantification, only the background was subtracted

by applying auto-thresholding. Another fact that may help to explain this result is the defined size for the

cells, which may not have been ideal since cells with a size smaller than 9 pixels are not counted. The

minimum distance between cells was 4 pixels contrary to what is recommended by the plugin. The plugin

always recommends that the minimum distance between cells is half the size of the smallest cell. As the

cells are dispersed non-uniformly across the image, following the recommendation we would have many

outliers in the counting process. The count performed in the 2𝑛𝑑 test is similar to the previous one, as the

only difference was the ITCN threshold value. The objective was to understand how the counting process

behaves when we adjust the threshold value. This resulted in 1136 cells quantified. The 3𝑟𝑑 experience is

the most accurate of all and resulted in the quantification of 908 cells. Once again, similar to the previous

ones concerning the pre-counting procedures, in this experiment, the explanation for the results obtained

comes from the definition of a smaller size for the cells and the value of the ITCN threshold was increased.

To test the benefits of pre-counting procedures, in the 4𝑡ℎ test the background was subtracted after the

passage of a ”rolling ball”. The image was then converted to binary for the application of the watershed

algorithm. The size defined for the cells was again reduced and consequently, it was necessary to increase

the threshold value. This resulted in 981 cells being counted. In the 5𝑡ℎ experience the size defined for

the cells was maintained, and the minimum distance between cells was changed to a value smaller by 1

pixel. The threshold value was increased again, having counted 969 cells.

To conclude, of all the experiments carried out the 3𝑟𝑑 is the one that should be highlighted since was

the one that had the closest results to the actual number of cells. Through the results of these experiments,

we learned more about the quantification process with the ITCN plugin. Pre-quantification procedures

are extremely important, and the more rigorous they are, the more effective the counting process will

be. Another very important aspect to consider with this approach is the definition of cell size and the

minimum distance between cells. If these two parameters are not correctly defined, the counting process

is not efficient because it will either count more or fewer cells. The value assigned to the ITCN threshold

is also important as it helps to deal with image noise and outliers. Thus, to achieve interesting results
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that are close to reality with this approach, it is necessary to carry out several experiments, contrary to the

approach taken with the Analyze Particles. Despite this, and sometimes taking longer when compared to

the previous procedure, this approach undoubtedly manages to automate the cell counting process. That

said, the ITCN plugin brings some benefits to the automatic quantification of cells. Within the classical

methodologies, it can be a reliable solution to the problem presented and therefore it will be tested in the

quantification of microglial cells.

6.1.2 Brain Image Samples

As explained, to obtain more accurate results, and as microglial cells and the marker associated with

them are only visible in the red channel, all DCN areas and Lobules were divided into several images

with the same size, to minimize image noise and obtain a clearer view of the cells. Through the literary

review and the conclusions drawn from previous approaches with cell colony sample, ImageJ offers the

possibility of effectively counting objects in 2D images. In this way, ImageJ fits perfectly into the context of

this dissertation, where two alternatives emerge to automate the microglial cell counting process. Next, for

each strategy, results are presented and discussed, followed by the conclusions drawn that will positively

influence an optimal approach for the automation of the microglial cell counting process.

Analyze Particles

According to relevant literature and documentation and also through the results obtained with the

generic cell sample-related experiments, an approach to automate the microglial cell quantification based

on a more classical approach is the developed Analyze Particles protocol. Taking advantage of the ex-

periences that obtained excellent results with the cell colony sample, and the good practices of articles

related to similar problems, brought up for discussion the protocol presented in subsection 5.2.2 was

developed/created. Table 35 presents the results obtained in the counting process of Lobule 2 of animal

CN276 2FD. In all quantification experiments, care was taken to implement the best approach within the

developed protocol. For this, and as already explained, this protocol consists of a set of steps that, when

respected, allow the automation of the cell counting process. This makes the whole process faster and

the performance obtained in some cases turns out to be superior to manual approaches.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 304.134 27.649 0.454
2 19 443.560 23.345 0.662
3 19 503.421 26.496 0.751
4 16 369.572 23.098 0.552

Table 35: CN276 2FD - Slice 1 - Analyze Particles - Automatic Quantification Results for Lobule 2.

Moving on to the results of the quantification process itself, in particular, those conducted in Lobule 2
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of animal CN276 2FD, since re-emphasizing the pre-quantitation procedures would bring repetitive informa-

tion as they are properly documented in subsection 5.2.2. The 1𝑠𝑡 image quantification process resulted

in 11 quantified microglial cells. It should be noted that in this experiment, the image was thresholded at

a pixel value of 1461. The 2𝑛𝑑 cell counting process resulted in 19 cells quantified, after thresholding the

image at a pixel value of 1750. The 3𝑟𝑑 resulted once again in 19 cells quantified, and the 4𝑡ℎ resulted

in 16 microglial cells quantified. As expected, both images were thresholded at a pixel value of 1526 and

1574, respectively. Analyzing together the results obtained in the four images, since they make up the

Lobule 2 of the CN276 2FD animal, the performance obtained is on par with the manual approach since

the number of cells counted in both cases was similar. It should be noted that even with a very similar

performance, this process was much faster and more accurate since the error associated with the user is

minimal. Tables 36, 37, 38 and 39 display the different results of the quantification process of Lobule 3, 4,

5 and 6, respectively. The remaining quantification settings for the remaining DCN areas and Lobules are

displayed in Appendix E. The quantification settings of animal CN282 2TE, CN283 2FD and CN284 TDTE

are presented in Appendix F, G and H, respectively. As can be verified, all results regarding the automatic

quantification of microglial cells process based on a more classical approach are fully documented. In this

way, anyone who has access to these images and follows exactly all the steps can easily replicate all the

results and consequently see their cell counting process optimized. The documentation of this dissertation

can serve as a basis for an application in a similar situation when dealing with a so-called more classical

approach.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 21 528.703 25.176 0.789
2 18 423.483 23.527 0.632
3 10 209.325 20.932 0.312
4 16 405.637 25.352 0.625
5 10 276.993 27.699 0.413

Table 36: CN276 2FD - Slice 1 - Analyze Particles - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 6 169.542 28.257 0.253
2 16 400.803 25.050 0.598
3 14 299.673 21.405 0.447
4 9 212.299 23.589 0.317
5 10 245.761 24.576 0.367

Table 37: CN276 2FD - Slice 1 - Analyze Particles - Automatic Quantification Results for Lobule 4.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 269.557 22.463 0.402
2 9 195.940 21.771 0.292
3 14 303.019 21.644 0.452
4 4 88.489 22.122 0.132
5 9 202.632 22.515 0.302

Table 38: CN276 2FD - Slice 1 - Analyze Particles - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 7 157.644 22.521 0.235
2 6 130.131 21.688 0.194
3 20 444.676 22.234 0.664
4 7 149.465 21.352 0.223
5 5 122.323 24.465 0.183

Table 39: CN276 2FD - Slice 1 - Analyze Particles - Automatic Quantification Results for Lobule 6.

To conclude, the results obtained in the quantification of microglial cells proved that the protocol

developed is a viable alternative to manual approaches. To support an optimal approach to the problem

presented in this dissertation, we highlight not only one experience but the entire protocol. We know that

brain images of microglial cells are quite complex which in itself does not help in the counting process.

It could be expected that the results obtained would not be comparable to manual processes, as they

dictate the most common approaches within the clinical context. This protocol, and the results related to

it, came to contradict this premise. When image processing and analysis tasks are performed correctly,

accurately and appropriately, the results speak for themselves. As already mentioned, the results obtained

are comparable to those of manual approaches, even in some cases we believe that they were more

accurate. That said, the Analyze Particles protocol brings many benefits to the automatic quantification

of cells, as it makes a process simpler, much faster, more effective and replicable. Within the classical

approaches, it is a very reliable solution to the problem presented since it was possible to prove through this

that the cell counting process can be automated. To finish, this protocol will be brought to the discussion

of the different methodologies for cell quantification, manual, classical and deep learning.

ITCN Runner

Another approach that automates the microglial cell counting process fetched from the results obtained

with the generic cell sample experiences regarding a more classical methodology is the quantification

process with the ITCN plugin. Taking advantage of the good practices gathered from the previous ex-

periments, this approach was tested with microglial cells. Table 40 presents the results obtained in the

counting process of Lobule 2 of animal CN276 2FD. Similar to the previous procedure, care was taken to
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implement the best approach within the developed protocol. For this, in some images, it was necessary

to test different values for the various parameters involved in the quantification process. As was already

explained, before the quantification process itself, certain procedures are recommended as described in

subsection 5.2.2. Taking advantage of the fact that the results obtained in the previous procedure were

excellent, the pre-quantification procedures performed for each image were reused for this approach. This

made the quantification process more effective.

Image Number of Cells
1 8
2 25
3 30
4 18

Table 40: CN276 2FD - Slice 1 - ITCN - Automatic Quantification Results for Lobule 2.

Moving on to the results, the 1𝑠𝑡 quantification perfomed in image one of Lobule 2 of animal CN276

2FD resulted in 8 cells quantified. The ideal cell size defined was 15 pixels, and the minimum distance

between cells was 19 pixels. The 2𝑛𝑑 cell counting process resulted in 25 cells quantified, after defining

the cell size in 14 pixels, and the minimum distance between cells was 39 pixels. The 3𝑟𝑑 quantification

resulted in 30 cells quantified, and the 4𝑡ℎ resulted in 18microglial cells quantified. The cell size was 10

and 11 pixels respectively, and the minimum distance between cells was 55 and 47 pixels. In all counting

processes, the value of the ITCN threshold was adjusted to obtain more accurate and realistic results.

Despite all these precautions, as was already foreseeable and it was possible to conclude through the

experiments carried out with the generic cell sample, the results were a little off from the real number

of cells on the image. It should be noted that even with this performance, in some cases this process

was faster and equally accurate when compared to the manual quantification process. Therefore, the

remaining images were quantified to be able to substantiate with concrete results which of the classic

approaches is the best alternative to the standard counting process.Tables 41, 42, 43 and 44 display the

different results of the ITCN quantification process of Lobule 3, 4, 5 and 6, respectively. This quantification

process is well documented which helps if it is necessary to replicate work or apply this approach in similar

situations.

Image Number of Cells
1 25
2 25
3 7
4 16
5 12

Table 41: CN276 2FD - Slice 1 - ITCN - Automatic Quantification Results for Lobule 3.
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Image Number of Cells
1 9
2 14
3 10
4 13
5 9

Table 42: CN276 2FD - Slice 1 - ITCN - Automatic Quantification Results for Lobule 4.

Image Number of Cells
1 8
2 11
3 20
4 9
5 14

Table 43: CN276 2FD - Slice 1 - ITCN - Automatic Quantification Results for Lobule 5.

Image Number of Cells
1 13
2 8
3 24
4 2
5 10

Table 44: CN276 2FD - Slice 1 - ITCN - Automatic Quantification Results for Lobule 6.

To conclude, the approach implemented with the ITCN plugin proved that it is possible to automate

the cell counting process, namely the process of counting microglial cells. Once again, it doesn’t make

sense to highlight only one experience, but the whole counting process. As explained, the brain images

of microglial cells are quite complex which in itself does not help in the counting process. As had already

been verified with the experiments carried out with the generic cell sample, pre-quantification procedures

are very important. The more rigorous they are, the more effective the counting process will be. This

was no exception in the case of microglial cells. Another very relevant aspect of the quantification of

cells based on this approach was the definition of cell size and the minimum distance between cells. It

should be noted that not defining these two parameters correctly, the counting process is not efficient

because it will either count more or fewer cells. Knowing that microglial cells are non-uniform and have

different sizes and lengths from each other, sometimes it was necessary to reset cell size and the minimum

distance between cells several times, which made the counting process more time-consuming. The value

assigned to the ITCN threshold is again important as it helps to deal with image noise and outliers. Thus,

in some experiences, to achieve results close to the actual number of cells in an image was is necessary

to conduct several tests. That said, the ITCN plugin undoubtedly was able to automate the microglial

cell quantification, which is one of the objectives of this dissertation. However, when we compare its
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performance with the developed Analyze Particles protocol, we realize that the ITCN approach is not the

ideal solution since sometimes takes longer to achieve proper results. Perhaps in situations where the

cells are all of a similar size and are evenly distributed across the image, the ITCN plugin may be a better

solution to the problem when compared to the developed protocol. Through the analysis of the results

and the experiments carried out, it can be concluded that the ITCN works better in situations that are not

too complex, which is not the case with microglial cells. Therefore, this fully documented protocol will not

be brought for the discussion of the different methodologies for cell quantification, manual, classical and

deep learning, as the previous approach evidence better results.

6.2 Deep Learning for Automatic Cell Counting

Based on CNNs, which is the model of choice for automatic cell quantification with a deep learning-

based methodology, several experiments were performed, as was detailed in the previous chapter. Once

again, tests were conducted with the generic cell sample to understand the possible limitations of the

model, as well as to study the pros and cons of the application thereof. So, through the results obtained, a

discussion is presented in subsection 6.2.1. The outcomes of the model made it possible to conclude that

this approach can be applied in the case of microglial cells. Subsection 6.2.2 details the results obtained

with microglial cells, as well as, presents a discussion, and bases the procedure considered optimal. The

chosen procedure will be brought to the comparison between the different approaches, the manual, the

classic and the deep learning approach.

6.2.1 Cell Colony Sample

Similar to the classical approach, this generic cell sample was selected to understand the limitations

of the CNNs model. However, unlike the classical methodology, in the case of deep learning approaches,

the cell sample was divided into 16 equal parts to build a dataset composed of 16 images and thus obtain

more adequate and accurate results. Next, the results gathered from the experiments performed are

presented. For each strategy, results are discussed, followed by the conclusions drawn that will positively

influence the microglial cell counting process.

Classification per Number of Cells

One of the approaches for automating the counting process based on a deep learning methodology

is image classification based on the number of cells. The classification model is composed of four pa-

rameters, namely the bath size, the number of epochs, the learning rate and whether or not to apply

data augmentation. These parameters can take different values so it was necessary to tune the model as

explained in subsection 5.3.1. The tuning performed on the model resulted in 330 experiments. Table

45 presents the top 15 of the best results obtained. In addition to the results, the values that the various

parameters took to arrive at the presented results are also presented. As explained, to arrive at the score
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value presented, cross-validation was performed with 16 folds and the final error is the average of the 16

folds. In this way, it was possible to maximize the training data since in each fold we train with 15 images

and test only with 1 image.

batch_size epochs learning_rate data_augmentation score loss run_time str(score_list)

8 25 0.0005 false 0.9375 0.1678 20.3901
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

16 30 0.0005 false 0.9375 0.1683 22.2191
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4 10 0.0010 false 0.9375 0.1706 11.5472
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 15 0.0010 false 0.9375 0.1725 13.9473
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4 35 0.0010 false 0.9375 0.1882 33.9451
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

2 10 0.0005 false 0.9375 0.1936 14.4812
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

16 20 0.0010 false 0.9375 0.1991 16.4319
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4 15 0.0005 false 0.9375 0.2024 15.2823
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

2 10 0.0010 false 0.9375 0.2219 14.4046
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

16 20 0.0005 false 0.9375 0.2269 15.7107
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4 10 0.0005 false 0.9375 0.2273 11.4160
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1 10 0.0010 false 0.9375 0.2279 17.4996
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

2 30 0.0010 false 0.9375 0.5378 35.5997
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

2 35 0.0010 false 0.9375 0.5511 38.9295
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 30 0.0010 true 0.8750 0.4016 35.0041
[0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Table 45: Generic Cell Sample - Deep Learning Classification Results (Number).

Turning now to a more detailed analysis, throughout the visualization of the results is clear that in none

of the experiments the model was able to correctly classify the first image. The reason could be related to

the image in question, as it contains 38 cells. Therefore is labelled as ”Few”. The fact that it has 38 cells

puts it very close to the next class since it only needed to have 40 cells to be labelled as ”Average”. Thus,

this image turns out to be a bit complicated for a first prediction of the model and consequently helps to

justify the result obtained in the classification. It is important to point out that to know the result of the

prediction of a certain image, an order was defined. Another relevant aspect to highlight is that in these

top-of-the-best experiences, the model managed to correctly classify 15 of the 16 images, which leads to

the expectation that it will have an adequate performance when applied to microglial cells. Maybe related

to the fact that the dataset is composed of 16 images, data augmentation was not used in any of the top

experiments.

To conclude, of all the experiments carried out the first four should be highlighted, as they had a loss

value of less than 0.18 and a run time of fewer than twenty-three seconds. The results are excellent as the

model just didn’t get it right in predicting one image. In common among these four best experiments we
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have that the value of the learning rate was 0.0005 or 0.0010. The first value is the most complex value

that the model can take. This leads to the conclusion that the model will behave well in more complex

situations as will be the case of microglial cells. To attest to this, the second-best experience took the most

complex values possible (except for the application of data augmentation) and still managed to be one of

the best results. That said, the classification approach based on the number of cells in an image brings

many benefits to the automatic quantification of cells, as it makes a process that is usually time-consuming

simpler, faster and more effective. Within a deep learning-based methodology, it is a reliable solution to

the problem presented and therefore it will be used with microglial cells.

Classification per Area of Cells

Another approach for automating the counting process based on a deep learning methodology is image

classification based on the percentage of area that the cells take in an image. Similar to the previous

approach, the classification model is composed of four parameters, namely the bath size, the number of

epochs, the learning rate and whether or not to apply data augmentation. Once again these parameters

can take different values so it was necessary to tune the model. The entire tuning process is explained in

subsection 5.3.1. The tuning performed on the model resulted in four 480 experiments. Table 46 presents

the top 15 of the best results obtained. Parallel to the previous approach, cross-validation was performed

with 16 folds and the final error is the average of the 16 folds.

By viewing the results, we can prove that the model behaved very well by correctly classifying 15 of the

16 images. Once again is clear that in none of the experiments the model was able to correctly classify

the first image. The reason for this could also be related to the image in question, as the percentage of

the area that the cells occupied in the image are 5.159%. Therefore is labelled as ”Few”. To be classified

as ”Average” the percentage of the area needed to be 5.2%. Given the proximity of values, once again we

conclude that the image in question turns out to be a bit complicated for a first prediction of the model

and consequently helps to justify the result obtained in the classification. Through the results obtained

in the learning curves, in this case, it was relevant to go up to 95 epochs. In this way, the complexity

of the model increases considerably, so the application of data augmentation becomes relevant, having

even been applied in two of the fifteen best experiments. Overall, the results lead to believing that the

classification approach based on the percentage of area that the cells take in an image will have an

acceptable performance when applied to microglial cells.

To conclude, highlight the two best experiments, which despite having taken more complex values for

the model parameters managed to have the lowest loss value, lower than 0.17. Despite the high run time,

results are excellent as the model just didn’t get it right in predicting one image. In the remaining thirteen

cases, the model also failed to predict one image. In common these two approaches have the same value

for the batch size, which is eight, the same number of epochs, which is seventy-five, and both used data

augmentation. Regarding the value of the learning rate parameter, they used the most complex ones for

the model. This leads to the judgment that the model will behave reasonably in more complex situations

as will be the case of microglial cells. To testify to this, the best experience took data augmentation, and
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batch_size epochs learning_rate data_augmentation score loss run_time str(score_list)

8 75 0.0005 true 0.9375 0.1593 85.7092
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 75 0.0010 true 0.9375 0.1612 85.7127
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 65 0.0005 false 0.9375 0.5792 47.4480
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 70 0.0005 false 0.9375 0.5959 54.7171
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 65 0.0010 false 0.9375 0.7511 54.4616
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 60 0.0010 false 0.9375 0.7541 49.5269
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 70 0.0010 false 0.9375 0.8202 56.6123
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 75 0.0010 false 0.9375 0.8563 57.2924
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1 65 0.0005 false 0.9375 0.8674 106.3055
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 75 0.0005 false 0.9375 0.9085 61.6134
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 80 0.0005 false 0.9375 0.9547 65.1747
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

8 90 0.0005 false 0.9375 0.9570 64.7027
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

4 60 0.0005 false 0.9375 1.0262 61.0437
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

1 70 0.0005 false 0.9375 1.1333 116.4780
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

16 95 0.0010 false 0.9375 1.6979 65.3831
[0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

Table 46: Generic Cell Sample - Deep Learning Classification Results (Area).

the value of the learning rate was the most complex. This model also took a high value for the number of

epochs and still managed the best results despite the somewhat high run time. That said, the classification

approach based on the percentage of area that the cells take in an image fetches many advantages to

the automatic quantification of cells, as it makes the process faster and more effective. Within a deep

learning-based methodology, this is another reliable solution to the problem presented and therefore it will

be used with microglial cells.

6.2.2 Brain Image Samples

Taking advantage of the division that was performed on the images within the classical approach,

namely due to the fact that the microglial cells and the marker associated with them are only visible in the

red channel, the same images were reused, thus composing a dataset with 661 images. With this number

of images, we are guaranteed to obtain more adequate and exact results with the model predictions. Next,

the results collected from the experiments performed are given. For each strategy, results are discussed,

followed by the conclusions drawn that will positively influence an approach considered optimal for the

automation of the microglial cell counting process.
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Classification per Number of Cells

As it was possible to prove, not only through relevant literature and documentation but also through the

results obtained with the generic cell sample-related experiments, an approach to automate the microglial

cell quantification based on a deep learning methodology is image classification based on the number of

cells. Taking advantage of the model that obtained excellent results with the cell colony sample, the model

for microglia cells also has four fundamental parameters. These parameters are once again the bath size,

the number of epochs, the learning rate and whether or not to apply data augmentation. As expected

these parameters took different values so it was necessary to tune the model as explained in subsection

5.3.2. The tuning performed on the model resulted in 288 experiments. Table 47 presents the top 15

of the best results obtained. As can be visualized, in addition to the classification results, the values that

the various parameters took to arrive at these results are also presented. As explained, to arrive at the

score value presented, cross-validation was performed with 5 folds and the final error is the average of

the 5 folds. In this way, it was possible to maximize the training data since in each fold we train with 529

samples and test with 132 images.

batch_size epochs learning_rate data_augmentation score loss run_time str(score_list)
32 20 0.0005 false 0.9021 0.2479 326.4157 [0.5714, 0.9393, 1.0000, 1.0000, 1.0000]
32 20 0.0010 false 0.9006 0.2765 260.9422 [0.5789, 0.9318, 0.9924, 1.0000, 1.0000]
16 20 0.0005 false 0.8690 0.3291 333.8006 [0.4586, 0.8863, 1.0000, 1.0000, 1.0000]
32 15 0.0010 false 0.8672 0.3326 202.2335 [0.5864, 0.7500, 1.0000, 1.0000, 1.0000]
16 15 0.0005 false 0.8520 0.4301 293.1848 [0.6466, 0.6136, 1.0000, 1.0000, 1.0000]
32 10 0.0005 false 0.8489 0.3904 150.9446 [0.6691, 0.6363, 0.9469, 0.9924, 1.0000]
32 15 0.0005 false 0.8475 0.4282 206.0727 [0.5939, 0.6590, 0.9848, 1.0000, 1.0000]
32 10 0.0010 false 0.8475 0.3738 179.2750 [0.6240, 0.6363, 0.9848, 1.0000, 0.9924]
16 10 0.0005 false 0.7959 0.5477 156.7259 [0.6691, 0.5454, 0.7651, 1.0000, 1.0000]
8 15 0.0005 false 0.7944 0.5796 266.0632 [0.6691, 0.5530, 0.7575, 0.9924, 1.0000]
16 15 0.0010 false 0.7595 0.8250 209.3782 [0.6691, 0.8409, 0.3560, 0.9393, 0.9924]
32 5 0.0010 false 0.7462 0.6996 76.5467 [0.6090, 0.8181, 0.5151, 0.8409, 0.9469]
16 5 0.0005 false 0.6611 0.8956 93.8852 [0.6691, 0.8030, 0.3636, 0.6212, 0.8484]
32 5 0.0005 false 0.6520 0.8672 84.6684 [0.6691, 0.8333, 0.3484, 0.5378, 0.8712]
32 4 0.0005 false 0.5989 0.9619 86.9296 [0.6691, 0.8409, 0.3181, 0.4318, 0.7348]

Table 47: Microglial Cells - Deep Learning Classification Results (Number).

Looking in more detail at the results, the first eight experiments should be highlighted, since the

score obtained is above 84%. In at least one of the folds, the 132 images were correctly classified, which

attests to the solidity of the model for the presented problem. However, the problem with the model was

the classification made in the first fold, where the results were sometimes not the best. It is important

to note that the brain images of microglial cells are extremely complex, since the cells have a complex

morphology, vary in size and length, and some have longer ramifications than others. This makes the

model predictions more difficult. Despite this, in the second fold, we see substantial improvements, which

leads to the conclusion that the model is capable of learning from errors and thus obtaining and making

better predictions. Nevertheless, the loss obtained in these eight best experiments is less than 0.44 which

is a very good benchmark for the model. Another relevant aspect to highlight is that in these top-of-the-

best experiences, the model didn’t use data augmentation despite being composed of a high number of

samples. Finally, highlight again the eight best experiments, as they took some of the most complex values
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for the model parameters, such as higher values for the bath size, number of epochs, and the learning

rate, and still managed to obtain the best ratings.

To conclude and in this way support an optimal approach to the problem presented in this dissertation,

we highlight the first and best experience. For the reasons presented above, we know that the samples

that make up our dataset (images of microglial cells) are quite complex. Then, with the tuning done to

the model, we bring more complexity to it, given the values that the different parameters can take. A

person not familiarised with the subject would say that great results would not be expected given the

difficulty we are causing to the model, through extremely complex images and various values assigned to

parameters. The results obtained contradict this premise. As if that were not enough, in addition to the

already mentioned difficulty caused by the complexity of the images, the values of the parameters that

gave rise to the best result were the most complex possible, except for the data augmentation, which was

not used. The model took the value of 32 for the batch size with 20 epochs and 0.0005 for the learning

rate. With all this difficulty, the model was able to correctly classify more than 90% of the cases, which

means it correctly classified 596 images out of 661. It should be noted that the classifications made in the

last three folds contributed to this, where the percentage of success was 100%. This gives 396 correctly

classified images. Even the results obtained in the first two folds are very positive, with the percentage of

hits exceeding 57% and 93%, respectively. As if the score wasn’t enough, the model was able to classify

all 661 images in 5 minutes and 44 seconds. That said, the classification approach based on the number

of cells in an image brings so many benefits to the automatic quantification of cells, as it makes a process

simpler, much faster, more effective and replicable. Within a deep learning-based methodology, it is a very

reliable solution to the problem presented.

Classification per Area of Cells

Another approach to automate the microglial cell counting process fetched from relevant literature and

through the results obtained with the generic cell sample-related experiments regarding a deep learning

methodology is image classification based on the percentage of area that the cells take in an image.

Once again taking advantage of the model that obtained excellent results with the cell colony sample, the

model for microglia cells also has the same parameters. As the parameters can take different values was

necessary to tune the model. The tuning process is described in subsection 5.3.1. The tuning performed

on the model resulted in 324 experiments. Table 48 presents the top 15 of the best results obtained.

Parallel to the last procedure, cross-validation was performed with 5 folds and the final error is the average

of the 5 folds.

Contrary to the previous approach, but as expected from the results obtained in the classification by

the percentage of area that cells occupy in an image with the generic cell sample, the results were not so

positive. Despite this, the seven best experiences obtained a score percentage of more than 74%. This

means that in these experiments at least 493 images were correctly classified. This attests to the solidity

of the approach for the presented problem. Once again, and to explain why these results were obtained, it

is worth noting that the images of microglial cells are complex, and in the case of a classification approach
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batch_size epochs learning_rate data_augmentation score loss run_time str(score_list)
16 25 0.0005 false 0.8312 0.5005 186.4194 [0.3533, 0.8030, 1.0000, 1.0000, 1.0000]
16 20 0.0005 false 0.7827 0.7110 145.2895 [0.3533, 0.5606, 1.0000, 1.0000, 1.0000]
32 25 0.0005 false 0.7721 0.6995 181.540 [0.3759, 0.5000, 0.9848, 1.0000, 1.0000]
8 25 0.0005 false 0.7525 0.7375 250.4927 [0.3383, 0.4318, 0.9924, 1.0000, 1.0000]
32 20 0.0005 false 0.7479 0.5524 146.7203 [0.3383 0.4848, 0.9166, 1.0000, 1.0000]
8 20 0.0005 false 0.7479 0.8725 206.0794 [0.3383, 0.4242, 0.9772, 1.0000, 1.0000]
16 15 0.0005 false 0.7464 0.6019 129.4396 [0.3383, 0.4848, 0.9166, 0.9924, 1.0000]
32 15 0.0005 false 0.6919 0.6063 100.8088 [0.3383, 0.4242, 0.7121, 0.9848, 1.0000]
16 15 0.0010 false 0.6706 0.7802 109.5244 [0.3383, 0.4469, 0.5757, 0.9924, 1.0000]
32 25 0.0010 false 0.6510 0.6611 172.7800 [0.3383, 0.4393, 0.5757, 0.9090, 0.9924]
16 10 0.0005 false 0.6449 0.7910 80.5878 [0.3383, 0.4469, 0.4924, 0.9469, 1.0000]
32 20 0.0010 false 0.6313 0.7594 162.2263 [0.3383, 0.4318, 0.4924, 0.9015, 0.9924]
8 15 0.0005 false 0.6222 0.8347 151.2869 [0.3383, 0.4469, 0.4545, 0.8712, 1.0000]
32 10 0.0005 false 0.5903 0.7720 67.7552 [0.3383, 0.4318, 0.5303, 0.7803, 0.8712]
16 10 0.0010 false 0.5706 0.8302 80.6591 [0.3383, 0.4469, 0.4545, 0.6287, 0.9848]

Table 48: Microglial Cells - Deep Learning Classification Results (Area).

based on the percentage of area that cells occupy in an image it is even worse since the cells vary in size

and length. Consequently, this makes the model predictions more difficult. The results obtained in the

first fold are not the best, but they improve from fold to fold. This proves that despite everything the model

is capable of learning from errors and accordingly making better predictions. Anyway, the loss obtained in

these seven best experiments is less than 0.88 which is also a very good benchmark for the model. In all

these top-of-the-best experiences, the model didn’t use data augmentation which leads to the idea that,

in addition to the already extremely intricate images, the use of data augmentation would only worsen the

results obtained, since it would bring an additional difficulty to the model. Finally, these experiments took

some of the most complex values for the model parameters, such as 32 for the batch size, 25 for the

number of epochs, and 0.0005 for the learning rate value, and still managed to obtain decent results.

To support an optimal approach to the problem presented in this dissertation, we highlight the first and

best experience. For the reasons presented above, we know that the samples that make up our dataset

are complex. Then, with the tuning done to the model, we bring more complexity to the procedure. With

all this difficulty, the model was able to correctly classify more than 83% of the cases, which means it

correctly classified 548 images out of 661. The classifications made in the last three folds contributed

to this, where the percentage of success was 100%. This gives 396 correctly classified images. Looking

at the value obtained in the loss, which, despite not being bad, is not ideal. The classification time took

3 minutes and 10 seconds. That said, the classification approach based on the area that cells occupy

in an image brings benefits to the automatic quantification of cells, as it makes a process simpler, much

faster and replicable. Nevertheless, this approach will not be brought for the discussion of the different

methodologies for cell quantification, as the previous procedure presents better results to automate the

process of microglial cell count.
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Conclusion

The aim of this dissertation was the automatic quantification of microglial cells from brain images with

classic and deep learning methods. Our contributions were described in the previous chapters, following

two main topics: classic and deep learning methods for automatic cell counting. For each approach, we

have presented and described the developed procedure and the obtained results as well as presented a

discussion of those results. Therefore, in this last chapter, we sum up to the reader the main contributions

and conclusions. Finally, we complete this document with our perspectives for future work that may

deserve further investigation.

7.1 General Conclusions

Microglia are a type of neuronal cell located throughout the brain’s spinal cord. Bearing in mind

the importance of these cells and knowing how they are counted, which requires the segmentation of

several images, a task usually performed manually. Therefore, we focused the work in this dissertation

on studying the different methodologies that help automate microglial cell quantification. As this is a

fundamental procedure that in some cases may help in the detection of an illness, the ultimate objective

is enabling the development of automated computerized solutions. The study carried out is very important

as automatic cell quantification approaches are becoming increasingly important to reduce the workload

of specialists and provide robust and reproducible results.

As stated, nowadays, most of the cell counting processes are done manually. Conventional cell count-

ing involves a specific set of tools and devices developed for that purpose. This process is tedious, time-

consuming, and inaccurate due to operator-dependent biases. As cell counting is an important procedure

routine, various study reports are focusing on the experience of the development of image processing pro-

grams and techniques to automate cell counting. Consequently, this makes the cell quantification process

more time-efficient and reduces error.

To automate the cell counting process emerge classic and deep learning methodologies. Within the

so-called classic methodology, we have software and assistants, like ImageJ, that automate the quantifi-

cation process. Needs to be pointed out that some of these programs, developed to automate the cell

97



CHAPTER 7. CONCLUSION

counting process, require specific settings on an image to obtain reasonable accuracy. Recently, deep

learning-based approaches evidenced promising performance in various image analysis tasks, such as

classification. Deep learning approaches showed similar accuracy to manual counting but a significant

enhancement in reproducibility, throughput efficiency and reduced error from human factors. Here, mod-

els based on CNNs emerge since regression-based cell counting avoids the challenging task of detection

or segmentation.

In the following subsections, we overview our main conclusions and contributions regarding each

methodology studied in this dissertation. Also presented are the reasons that lead us to conclude that an

automated process for the quantification of microglial cells is more effective than conventional processes.

7.1.1 Classic Methods for Automatic Cell Counting

Within the classical methodology, two approaches were developed to automate the quantification of

microglial cells. To understand the pros and cons of these procedures and define a better work strat-

egy, firstly they were applied to a cell colony sample, which makes up a total of four approaches within

the classical methodology. In section 5.2, we present the two approaches that allowed us to solve the

problem of the automatic quantification of microglial cells. In section 6.1, we present the results inher-

ent to each counting process developed. Among the two approaches, the one to highlight is the Analyze

Particles protocol developed. As the objective of this dissertation was to compare among the different

methodologies the best approach to automate the microglial cell counting process, the Analyze Particles

protocol is capable of being faster and more effective. To be effective needs to be pointed out that in this

quantification process, based on a classical methodology, some pre-quantification procedures must be ap-

plied to the images, otherwise the counting process fails to achieve adequate results. Through the results

obtained, we concluded that both the pre-quantification process and the quantification itself, within the

optimal approach presented, were successfully implemented. The way the entire process is documented

to the reader helps any user who follows the correct procedures to obtain the same results, and if we are

faced with a different problem, this approach can serve as a basis, and in this way, the entire counting

process is automated.

7.1.2 Deep Learning Methods for Automatic Cell Counting

Regarding a deep learning-based methodology, once again, two different approaches were developed

to automate the quantification of microglial cells. To understand the pros and cons of these approaches,

they were also applied to a cell colony sample, which makes up a total of four approaches within a deep

learning methodology. In section 5.3, we present the two approaches that allowed for solving the problem

of automatic quantification of microglial cells. In section 6.2, we give the results inherent to the counting

processes developed. Between both, and not wanting to completely disregard the classification approach

based on the percentage of the area that the cells occupy in the image, the one that stands out is the
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classification approach based on the number of cells contained in an image, as it was the one that had

the best and fastest results. In 5 minutes and 44 seconds, the model classifies the 661 images with an

accuracy percentage greater than 90%. This gives approximately 596 correctly classified images out of

661. The robustness and the results associated with the model and its ability to successfully deal with

complex situations, in addition to the already expected complexity generated by the images, unquestionably

attest to the benefit of applying a methodology based on deep learning to the automatic quantification of

microglial cells problem. The way the entire process is documented helps the reader who follows the

correct procedures to obtain the same results, and if we are faced with a different problem, this approach

can serve as a basis.

7.1.3 Benefits of Automated Cell Counting Procedures

After presenting and bringing to the conclusion the ideal procedures within each of the methodologies

studied, it is now up to us to compare them with the so-called common approach, manual quantification.

Within the classical methodology, as expected, the optimal strategy developed and presented with ImageJ

relatively easily automates the counting process of microglial cells. Thus, it is an obvious solution to

the problem presented in this dissertation. Another relevant aspect that attests to the benefits of this

procedure, is the fact that it can be replicated in similar situations. Regarding the deep learning-based

approach, as was predictable, since these types of techniques can deal with complex problems with relative

ease, the ideal procedure based on a CNNs model was able to automate the quantification of microglial

cells with similar accuracy to manual approaches. Once again, this method can be replicated in similar

situations. Both the Analyze Particles protocol developed and the classification based on the number of

cells in an image helped to turn a process that normally is tedious, time-consuming, with high labour costs

and imprecise because it is dependent on the operator into an automated process. This process is now

less time-consuming, more accurate and where the error associated with users is reduced since a large

part of the process is done by machine. To conclude, as one of the objectives of this dissertation is to

present the best approach to quantify microglial cells, and knowing that a manual procedure is not the

best solution, the choice falls on the deep learning implementation. The reason was that this procedure

is extremely effective and much faster throughout the entire process. It should be noted that if a deep

learning implementation had not been studied, the classical approach would have been easily chosen, as

it is also a competitive solution with state-of-the-art methods.

7.2 Prospects for Future Work

New methods are constantly emerging in the clinical and medical context. Cell quantification is no

exception, as it is a very important procedure routine that, in some cases, may help in the detection of

a serious illness. The current and new approaches are progressively improving several tasks, namely the

automation of the cell quantification process. Despite this, there is always still room for improvement. The
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work developed in this dissertation is no exception, as some topics can be studied and improved in the

future. There is no unique way to automate the microglial cell quantification process, as was proved in

this work, by presenting two approaches for each methodology. Many other strategies may lead to better

results as far as automating cell counting is concerned. That said, for future work stand some suggestions

about classical and deep learning-based approaches that were not mentioned in this dissertation.

Regarding the classical methodologies, knowing and taking advantage of the fact that ImageJ is a java-

based program, available on the Internet for the public domain, a plugin can be developed from scratch

to help automate the microglial cell counting process. Additionally, as ImageJ was designed with an open

architecture that provides extensibility via Java plugins other plugins that not only automate the counting

process but also automate imaging processing can also be tested.

Regarding a deep learning-based methodology, it would be interesting to test other DL models, to

understand if the models based on CNNs are the best for this type of problem, as seems to be the case

when we analyze the relevant literature and documentation. However, still using CNNs model as the basis

of the solution to the problem, testing other types of approaches in addition to the tested classification

approach could be relevant. For example, with a detection or segmentation approach, the results obtained

when the basis of the procedure is the percentage of area that the cells occupy in the image, the results

could be better than when the basis of the procedure is the number of cells contained in the image.
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A

CN276 2FD Quantification Settings

This appendix displays the quantification settings applied to the brain image of the animal CN276 2FD, allowing us to achieve the results obtained in

microglia cell counts with ImageJ regarding a more classical approach.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ 7𝑡ℎ 8𝑡ℎ

Threshold Min 0 0 0 0 0 0 0 0
Max 3694 2168 2393 2569 2425 2794 2650 2425

96.29% 95.58% 95.80% 97.14% 96.89% 96.39% 95.97% 96.51%
Algorithm Default Default Default Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 49: CN276 2FD - Slice 1 - Quantification Settings for DCN.
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1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ

Threshold Min 0 0 0 0
Max 2746 3212 2875 2248

96.32% 96.35% 95.63% 95.07%
Algorithm Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 50: CN276 2FD - Slice 1 - Quantification Settings for Lobule 7.

1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 4𝑡ℎ 5𝑡ℎ 6𝑡ℎ 7𝑡ℎ

Threshold Min 0 0 0 0 0 0 0
Max 3003 2682 2618 2425 2232 1847 1718

96.14% 96.11% 95.73% 95.88% 94.77% 95.87% 94.78%
Algorithm Default Default Default Default Default Default Default

Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity
Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 51: CN276 2FD - Slice 1 - Quantification Settings for Lobule 8.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1975 2618 1734 1799 2168 1959 2489 2216 2088
95.60% 95.22% 94.31% 95.02% 94.63% 95.33% 94.88% 94.68% 94.91%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 52: CN276 2FD - Slice 1 - Quantification Settings for Lobule 9.
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1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 3404 3726 1815 2923 2409 2746 3115 3228 1927
96.43% 95.60% 94.91% 96.15% 95.29% 96.86% 97.41% 97.41% 94.90%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 53: CN276 2FD - Slice 1 - Quantification Settings for Lobule 10.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 2521 2473 3501 3453 3131
95.08% 95.66% 94.49% 93.44% 94.30%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 54: CN276 2FD - Slice 1 - Quantification Settings for Lobule 11.

1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1638 1092 1574 1847 1156 1686 1847 1028
95.26% 95.22% 94.02% 93.68% 92.83% 91.90% 94.43% 90.87%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 55: CN276 2FD - Slice 2 - Quantification Settings for DCN.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 3437 2746 3019 2521 1750 1831 2826 2650
96.98% 95.91% 94.87% 94.11% 94.35% 97.27% 95.87% 97.34%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 56: CN276 2FD - Slice 2 - Quantification Settings for Lobule 2.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 2088 2007 2312 2682 2971
94.15% 94.13% 96.21% 93.54% 94.93%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 57: CN276 2FD - Slice 2 - Quantification Settings for Lobule 3.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 2505 2810 2569 2312 2393 3292
93.61% 95.43% 95.45% 95.84% 96.10% 96.05%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 58: CN276 2FD - Slice 2 - Quantification Settings for Lobule 4.
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1 2 3
Threshold Min 0 0 0

Max 1670 1269 1702
94.02% 93.61% 94.23%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 59: CN276 2FD - Slice 2 - Quantification Settings for Lobule 5.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1879 2120 1590 2023 2377 2602
93.92% 95.27% 94.21% 95.37% 95.97% 95.85%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 60: CN276 2FD - Slice 2 - Quantification Settings for Lobule 6.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1493 996 1237 1429 1381
95.25% 94.05% 96.21% 95.38% 95.62%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 61: CN276 2FD - Slice 2 - Quantification Settings for Lobule 7.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1686 2264 1911 1815 1991 1574 1188
95.50% 96.94% 96.05% 96.15% 96.54% 95.21% 95.24%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 62: CN276 2FD - Slice 2 - Quantification Settings for Lobule 8.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1847 2361 1975 1526 1638 1558 1815
95.32% 95.72% 95.18% 95.79% 95.03% 94.35% 93.65%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 63: CN276 2FD - Slice 2 - Quantification Settings for Lobule 9.
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1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1028 1558 1542 1702 1542 1606 1574
97.37% 94.30% 95.29% 93.51% 94.00% 94.48% 95.95%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 64: CN276 2FD - Slice 2 - Quantification Settings for Lobule 10.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1237 1253 1269 530 658 1172 1108 1140 835
97.71% 97.02% 97.46% 96.80% 95.05% 94.86% 93.07% 96.42% 93.39%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 65: CN276 2FD - Slice 2 - Quantification Settings for Lobule 11.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1349 1574 1461 1718 2184 1445
93.09% 92.66% 95.08% 96.06% 95.51% 94.07%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 66: CN276 2FD - Slice 2 - Quantification Settings for Lobule 12.
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1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1204 1670 1975 1734 1645
95.12% 96.20% 96.24% 96.35% 95.97%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 67: CN276 2FD - Slice 2 - Quantification Settings for Lobule 13.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1879 1526 1766 1076 1959 2232 1911
97.03% 96.20% 97.11% 98.72% 94.09% 95.40% 96.10%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 68: CN276 2FD - Slice 2 - Quantification Settings for Lobule 14.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 2104 2120 1381 2361 2505
94.36% 97.08% 98.30% 96.88% 96.91%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 69: CN276 2FD - Slice 2 - Quantification Settings for Lobule 15.

1 2 3 4
Threshold Min 0 0 0 0

Max 2521 2296 2264 2104
96.00% 96.55% 95.25% 95.96%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 70: CN276 2FD - Slice 2 - Quantification Settings for Lobule 16.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1622 1429 1124 1365 1237 915 1204 1124
96.18% 97.49% 97.60% 94.00% 94.37% 96.97% 95.49% 93.74%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 71: CN276 2FD - Slice 2 - Quantification Settings for Lobule 17.

1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 434 1220 1237 1188 674 418 947 1012 1028 771
97.19% 96.57% 96.21% 97.13% 97.01% 96.92% 96.64% 94.08% 95.23% 95.78%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 72: CN276 2FD - Slice 2 - Quantification Settings for Lobule 18.

1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1365 1590 867 1028 867 1012 626 803
94.00% 94.18% 92.58% 92.91% 92.34% 94.84% 92.46% 90.27%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 73: CN276 2FD - Slice 3 - Quantification Settings for DCN.
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1 2
Threshold Min 0 0

Max 771 755
87.10% 87.77%

Algorithm Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00

Table 74: CN276 2FD - Slice 3 - Quantification Settings for Lobule 2.

1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 771 594 466 931 707 819 1108 835 899 1060
96.46% 96.22% 94.61% 95.13% 94.89% 92.39% 94.27% 96.99% 93.86% 94.15%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 75: CN276 2FD - Slice 3 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7 8 9 10 11 12
Threshold Min 0 0 0 0 0 0 0 0 0 0 0 0

Max 353 1204 1333 1574 1815 964 1253 1188 1012 1493 835 1333
96.14% 97.12% 96.28% 95.85% 96.89% 97.83% 98.02% 96.71% 97.10% 97.08% 96.85% 97.04%

Algorithm Default Default Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 76: CN276 2FD - Slice 3 - Quantification Settings for Lobule 4.
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1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1156 1702 1895 1461 1445 1622
96.64% 96.79% 96.69% 96.45% 96.53% 96.29%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 77: CN276 2FD - Slice 3 - Quantification Settings for Lobule 5.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1028 1317 1285 1542 1590
95.54% 95.37% 93.00% 95.29% 92.67%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 78: CN276 2FD - Slice 3 - Quantification Settings for Lobule 6.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1510 1156 883 1285 947 1285 1333 1140 1526
96.86% 95.60% 93.19% 94.11% 92.94% 95.18% 94.53% 95.61% 93.98%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 79: CN276 2FD - Slice 3 - Quantification Settings for Lobule 7.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
Threshold Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Max 1028 1188 899 1060 1686 1349 1381 1526 1429 1477 1253 1365 1381 947
95.72% 97.02% 95.75% 96.83% 96.64% 96.46% 96.18% 96.67% 96.67% 95.47% 96.17% 95.85% 96.44% 95.96%

Algorithm Default Default Default Default Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 80: CN276 2FD - Slice 3 - Quantification Settings for Lobule 8.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1140 1510 1285 899 787 1381 1204 1188 610
96.93% 95.20% 94.46% 94.34% 94.93% 96.04% 95.30% 94.54% 95.31%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 81: CN276 2FD - Slice 3 - Quantification Settings for Lobule 9.

1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 883 1028 1285 1493 947 1461 1381 1285 1301 1285
95.15% 95.20% 96.12% 97.06% 95.88% 94.86% 92.88% 92.80% 95.45% 97.21%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 82: CN276 2FD - Slice 3 - Quantification Settings for Lobule 10.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1220 867 964 1237 1429 1654 1317 1317
96.62% 92.84% 98.06% 96.16% 95.95% 93.89% 95.60% 94.70%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 83: CN276 2FD - Slice 3 - Quantification Settings for Lobule 11.
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1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1253 1076 1269 1028 1156 418 530
97.07% 95.09% 96.89% 95.13% 96.36% 96.67% 94.75%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 84: CN276 2FD - Slice 3 - Quantification Settings for Lobule 12.

1 2 3 4
Threshold Min 0 0 0 0

Max 787 771 1140 1445
96.12% 96.78% 96.49% 95.30%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 85: CN276 2FD - Slice 3 - Quantification Settings for Lobule 13.
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B

CN282 2TE Quantification Settings

This appendix displays the quantification settings applied to the brain image of the animal CN282 2TE,

allowing us to achieve the results obtained in microglia cell counts with ImageJ regarding a more classical

approach.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 3051 3324 2553 3228 4031 3421
97.05% 97.10% 96.90% 97.25% 97.90% 98.05%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 86: CN282 2TE - Slice 1 - Quantification Settings for DCN.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 2505 2521 2361 2473 1783 1991 1959 2007
97.65% 97.65% 97.20% 97.65% 97.65% 97.15% 97.60% 96.90%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 87: CN282 2TE - Slice 1 - Quantification Settings for Lobule 2.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1927 2216 2345 1927 3003
98.05% 97.30% 97.20% 97.20% 97.50%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 88: CN282 2TE - Slice 1 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 2088 2312 2505 2056 2023 1911 2007 2128
98.00% 97.60% 97.84% 97.65% 97.89% 97.90% 97.81% 97.81%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 89: CN282 2TE - Slice 1 - Quantification Settings for Lobule 4.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1686 2152 2312 1959 2312 1927 1590 2425
98.09% 97.95% 98.17% 97.70% 98.23% 98.15% 97.68% 98.17%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 90: CN282 2TE - Slice 1 - Quantification Settings for Lobule 5.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1959 2013 2184 1863 2056 2007
97.70% 97.81% 98.07% 98.09% 97.72% 97.47%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 91: CN282 2TE - Slice 1 - Quantification Settings for Lobule 6.

1 2 3
Threshold Min 0 0 0

Max 2007 1863 1606
97.33% 97.93% 96.70%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 92: CN282 2TE - Slice 1 - Quantification Settings for Lobule 7.
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1 2 3
Threshold Min 0 0 0

Max 2505 2232 2007
98.35% 97.99% 97.69%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 93: CN282 2TE - Slice 1 - Quantification Settings for Lobule 8.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 2826 2778 3196 2826 2939 3083 1429
96.65% 97.01% 97.21% 98.02% 97.23% 97.84% 97.87%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 94: CN282 2TE - Slice 2 - Quantification Settings for DCN.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 2023 1815 1606 2585 2136 1927 2393 1477 1445
97.90% 97.65% 97.52% 97.86% 98.46% 98.04% 98.31% 97.82% 97.58%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 95: CN282 2TE - Slice 2 - Quantification Settings for Lobule 2.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1349 1542 1429 1815 1911 1783 1622 1493
97.94% 98.34% 97.30% 97.32% 98.01% 97.71% 97.22% 97.34%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 96: CN282 2TE - Slice 2 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1301 2039 1622 1783 1590 1493 1237 1140 1285
97.77% 97.99% 97.77% 97.94% 97.58% 97.41% 98.41% 98.52% 97.85%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 97: CN282 2TE - Slice 2 - Quantification Settings for Lobule 4.

1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1895 1975 2023 1783 1927 1831 2088 2411 2088
98.71% 98.42% 98.07% 98.18% 97.71% 98.21% 98.15% 98.47% 98.98%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 98: CN282 2TE - Slice 2 - Quantification Settings for Lobule 5.
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1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 1783 1718 1477 1975 1783 1574 1493 1317 1799
98.16% 97.47% 97.97% 98.18% 98.33% 97.30% 98.19% 97.86% 97.72%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 99: CN282 2TE - Slice 2 - Quantification Settings for Lobule 6.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1622 915 1413 1911 1766
97.87% 99.38% 98.93% 98.23% 98.31%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 100: CN282 2TE - Slice 2 - Quantification Settings for Lobule 7.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 2987 2457 3292 2746 2666 2714 2810
96.70% 96.84% 96.99% 96.15% 96.91% 95.74% 96.55%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 101: CN282 2TE - Slice 4 - Quantification Settings for DCN.
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1 2 3 4 5 6 7 8 9
Threshold Min 0 0 0 0 0 0 0 0 0

Max 2248 2248 2312 1927 1831 2120 1893 2184 1799
97.65% 97.14% 96.96% 97.32% 98.04% 97.14% 96.37% 97.83% 96.79%

Algorithm Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 102: CN282 2TE - Slice 4 - Quantification Settings for Lobule 2.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1975 2361 2409 2810 2200 2345 2007
97.98% 97.52% 97.81% 98.04% 97.98% 97.35% 97.22%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 103: CN282 2TE - Slice 4 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7 8 9 10 11
Threshold Min 0 0 0 0 0 0 0 0 0 0 0

Max 2120 2296 2698 2361 2200 2088 3035 2296 2473 2280 2425
97.94% 98.54% 97.97% 98.12% 98.27% 98.64% 98.52% 98.32% 98.42% 98.12% 97.97%

Algorithm Default Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 104: CN282 2TE - Slice 4 - Quantification Settings for Lobule 4.
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1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 2136 2264 2425 2489 2393 1975 2585 2746 2875 2666
98.32% 98.72% 98.77% 98.58% 99.48% 99.38% 98.77% 98.40% 98.67% 98.77%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 105: CN282 2TE - Slice 4 - Quantification Settings for Lobule 5.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 2232 1429 2216 1510 2409 1622
97.96% 97.71% 97.43% 97.17% 97.78% 96.81%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 106: CN282 2TE - Slice 4 - Quantification Settings for Lobule 6.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 2618 2280 2106 1317 1927 1638 2858
97.59% 97.35% 97.94% 97.86% 97.54% 98.17% 97.91%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 107: CN282 2TE - Slice 4 - Quantification Settings for Lobule 7.
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1 2 3
Threshold Min 0 0 0

Max 2168 2280 1734
97.87% 97.70% 97.35%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 108: CN282 2TE - Slice 4 - Quantification Settings for Lobule 8.
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C

CN283 2FD Quantification Settings

This appendix displays the quantification settings applied to the brain image of the animal CN283

2FD, allowing us to achieve the results obtained in microglia cell counts with ImageJ regarding a more

classical approach.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1445 1943 2200 2312 2248 2473
98.04% 98.35% 98.20% 97.95% 98.10% 98.45%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 109: CN283 2FD - Slice 1 - Quantification Settings for DCN.
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1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 1590 1108 1895 1718 1734 1638 1558 1349 1188 787
98.55% 98.75% 98.90% 98.25% 99.00% 99.30% 99.05% 99.25% 99.45% 98.55%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 110: CN283 2FD - Slice 1 - Quantification Settings for Lobule 2.

1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1493 2136 1975 1879 1477 2296 2393 3340
98.33% 98.00% 98.10% 98.00% 99.60% 98.90% 98.50% 98.95%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 111: CN283 2FD - Slice 1 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 3276 2939 3356 1879 2425 1493 2875
97.95% 98.35% 98.70% 97.95% 98.95% 98.60% 98.20%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 112: CN283 2FD - Slice 1 - Quantification Settings for Lobule 4.
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1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 2585 2457 2955 2425 2489 2425 1750
98.40% 97.62% 98.80% 98.50% 98.65% 98.80% 99.20%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 113: CN283 2FD - Slice 1 - Quantification Settings for Lobule 5.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 2409 2585 1799 2072 1783 2698 2746
98.50% 98.75% 99.20% 98.50% 97.90% 98.60% 99.20%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 114: CN283 2FD - Slice 1 - Quantification Settings for Lobule 6.

1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 1927 1991 1526 1413 1172 1220 1044 1445
98.50% 98.30% 98.25% 98.60% 98.90% 98.55% 98.00% 98.00%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 115: CN283 2FD - Slice 1 - Quantification Settings for Lobule 7.
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1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 2071 1959 2361 2184 2312 1542
97.90% 98.25% 98.25% 98.85% 98.25% 98.50%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 116: CN283 2FD - Slice 4 - Quantification Settings for DCN.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1493 1702 1718 1879 1702
98.55% 98.45% 98.60% 98.70% 98.50%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 117: CN283 2FD - Slice 4 - Quantification Settings for Lobule 2.

1 2 3 4
Threshold Min 0 0 0 0

Max 1477 1696 1702 1911
98.05% 97.80% 97.30% 98.05%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 118: CN283 2FD - Slice 4 - Quantification Settings for Lobule 3.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1895 1911 2120 2345 2232 3164
98.50% 97.75% 98.50% 98.46% 98.90% 98.90%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 119: CN283 2FD - Slice 4 - Quantification Settings for Lobule 4.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1702 1959 1574 1510 1349 1349
98.50% 98.30% 98.95% 98.03% 97.50% 97.95%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 120: CN283 2FD - Slice 4 - Quantification Settings for Lobule 5.
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APPENDIX C. CN283 2FD QUANTIFICATION SETTINGS

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1349 2634 2296 1429 1397 1638
98.40% 98.60% 98.95% 98.70% 98.30% 98.70%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 121: CN283 2FD - Slice 4 - Quantification Settings for Lobule 6.

1 2 3 4
Threshold Min 0 0 0 0

Max 1493 1493 1606 1381
98.25% 98.51% 98.30% 99.00%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 122: CN283 2FD - Slice 4 - Quantification Settings for Lobule 7.

1 2 3
Threshold Min 0 0 0

Max 1172 1108 1188
98.75% 98.80% 98.35%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 123: CN283 2FD - Slice 4 - Quantification Settings for Lobule 8.
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D

CN284 TDTE Quantification Settings

This appendix displays the quantification settings applied to the brain image of the animal CN284

TDTE, allowing us to achieve the results obtained in microglia cell counts with ImageJ regarding a more

classical approach.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1044 1220 980 1060 1060 1092 964
95.15% 96.08% 97.68% 95.20% 94.12% 96.23% 96.22%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 124: CN284 TDTE - Slice 1 - Quantification Settings for DCN.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 498 674 691 835 658 723 674
96.05% 96.62% 95.96% 94.93% 95.94% 94.83% 95.11%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 125: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 2.
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APPENDIX D. CN284 TDTE QUANTIFICATION SETTINGS

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1044 915 947 835 1349 691
96.79% 96.02% 95.65% 97.53% 97.52% 96.59%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 126: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 3.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 996 1172 964 947 1076 1188 851
97.43% 97.22% 95.04% 96.99% 91.53% 97.09% 95.71%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 127: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 4.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1188 1092 1397 996 1327 1461
97.09% 96.35% 95.93% 95.91% 97.27% 97.22%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 128: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 5.

1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 1253 1012 787 819 1108 1172
95.85% 94.56% 94.10% 94.22% 94.21% 97.43%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 129: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 6.
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1 2 3 4 5 6 7 8
Threshold Min 0 0 0 0 0 0 0 0

Max 803 771 1253 1461 1012 899 1060 1188
97.14% 95.70% 95.85% 96.63% 96.83% 94.46% 95.98% 97.26%

Algorithm Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 130: CN284 TDTE - Slice 1 - Quantification Settings for Lobule 7.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1012 1012 642 915 899
95.57% 95.81% 90.61% 91.85% 94.82%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 131: CN284 TDTE - Slice 2 - Quantification Settings for DCN.

1 2 3 4
Threshold Min 0 0 0 0

Max 851 530 626 707
96.04% 94.74% 94.14% 93.06%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 132: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 2.
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APPENDIX D. CN284 TDTE QUANTIFICATION SETTINGS

1 2 3 4
Threshold Min 0 0 0 0

Max 1092 723 755 755
96.14% 94.17% 95.07% 92.36%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 133: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 3.

1 2 3 4
Threshold Min 0 0 0 0

Max 947 1461 1060 1124
94.14% 97.01% 94.45% 95.73%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 134: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 4.

1
Threshold Min 0

Max 434
85.19%

Algorithm Default
Analyze Size (micron^2) 17-Inifinity

Circularity 0.05-1.00

Table 135: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 5.
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1 2 3 4 5 6 7 8 9 10
Threshold Min 0 0 0 0 0 0 0 0 0 0

Max 1012 1269 1590 1558 1574 1542 1702 1574 1349 1317
97.01% 96.76% 96.20% 97.30% 97.20% 97.80% 98.00% 97.40% 97.45% 97.90%

Algorithm Default Default Default Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 136: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 6.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1397 1783 1461 1108 1028
97.60% 98.10% 96.45% 96.51% 98.85%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 137: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 7.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 1397 1108 1718 1510 1686
97.00% 96.35% 97.15% 97.80% 97.46%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 138: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 8.
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APPENDIX D. CN284 TDTE QUANTIFICATION SETTINGS

1 2 3 4
Threshold Min 0 0 0 0

Max 2473 1237 1044 915
97.15% 95.06% 95.29% 95.28%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 139: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 9.

1 2 3 4 5 6 7
Threshold Min 0 0 0 0 0 0 0

Max 1718 1493 915 771 996 2746 1333
97.06% 98.20% 97.90% 98.94% 96.05% 98.55% 96.02%

Algorithm Default Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 140: CN284 TDTE - Slice 2 - Quantification Settings for Lobule 10.

1 2
Threshold Min 0 0

Max 787 674
95.27% 94.17%

Algorithm Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00

Table 141: CN284 TDTE - Slice 3 - Quantification Settings for DCN.

1 2 3
Threshold Min 0 0 0

Max 369 401 369
96.55% 96.25% 96.05%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 142: CN284 TDTE - Slice 3 - Quantification Settings for Lobule 2.

1 2 3 4
Threshold Min 0 0 0 0

Max 610 739 434 626
96.75% 96.70% 95.97% 95.12%

Algorithm Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 143: CN284 TDTE - Slice 3 - Quantification Settings for Lobule 3.
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1 2 3 4 5 6
Threshold Min 0 0 0 0 0 0

Max 883 691 931 964 996 996
98.07% 97.15% 97.85% 97.00% 98.00% 97.86%

Algorithm Default Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 144: CN284 TDTE - Slice 3 - Quantification Settings for Lobule 4.

1 2 3 4 5
Threshold Min 0 0 0 0 0

Max 739 851 514 723 755
99.04% 98.00% 99.15% 97.95% 97.40%

Algorithm Default Default Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00 0.05-1.00

Table 145: CN284 TDTE - Slice 3 - Quantification Settings for Lobule 5.

1 2 3
Threshold Min 0 0 0

Max 434 626 642
98.04% 97.85% 95.71%

Algorithm Default Default Default
Analyze Size (micron^2) 17-Inifinity 17-Inifinity 17-Inifinity

Circularity 0.05-1.00 0.05-1.00 0.05-1.00

Table 146: CN284 TDTE - Slice 3 - Quantification Settings for Lobule 6.
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E

CN276 2FD Quantification Results

This appendix displays the quantification results fetched from microglia cell counts with ImageJ re-

garding a more classical approach. These results refer to each brain image of the animal CN276 2FD.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 14 324.955 23.211 0.485
2 22 554.358 25.198 0.827
3 23 566.255 24.620 0.845
4 15 334.622 22.308 0.499
5 10 281.083 28.108 0.420
6 18 402.662 22.370 0.601
7 21 614.590 29.266 0.917
8 18 447.650 24.869 0.668

Table 147: CN276 2FD - Slice 1 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 19 429.432 22.602 0.641
2 9 175.491 19.499 0.262
3 11 241.300 21.936 0.360
4 13 278.852 21.450 0.416

Table 148: CN276 2FD - Slice 1 - Automatic Quantification Results for Lobule 7.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 314.173 28.561 0.469
2 17 409.355 24.080 0.611
3 9 205.979 22.887 0.307
4 9 194.825 21.647 0.291
5 24 546.178 22.757 0.815
6 15 384.816 25.654 0.574
7 17 464.010 27.295 0.693

Table 149: CN276 2FD - Slice 1 - Automatic Quantification Results for Lobule 8.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 470.702 27.688 0.703
2 14 411.585 29.399 0.614
3 28 674.450 24.087 1.007
4 21 495.985 23.618 0.740
5 22 575.178 26.144 0.859
6 18 391.136 21.730 0.584
7 20 498.215 24.911 0.744
8 19 455.086 23.952 0.679
9 22 546.178 24.826 0.815

Table 150: CN276 2FD - Slice 1 - Automatic Quantification Results for Lobule 9.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 250.967 25.097 0.375
2 10 228.287 22.829 0.341
3 20 457.317 22.866 0.683
4 10 246.133 24.613 0.367
5 18 452.484 25.138 0.675
6 14 360.648 25.761 0.538
7 5 117.118 23.424 0.174
8 5 147.606 29.521 0.220
9 15 315.289 21.019 0.469

Table 151: CN276 2FD - Slice 1 - Automatic Quantification Results for Lobule 10.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 22 620.167 28.189 0.926
2 12 262.864 21.905 0.392
3 14 342.802 24.486 0.512
4 24 689.322 28.722 1.029
5 27 694.899 25.737 1.037

Table 152: CN276 2FD - Slice 1 - Automatic Quantification Results for Lobule 11.

141



APPENDIX E. CN276 2FD QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 16 381.469 23.842 0.934
2 12 291.121 24.260 0.713
3 20 491.523 24.576 1.203
4 13 329.417 25.340 0.807
5 24 651.026 27.126 1.594
6 28 699.360 24.977 1.712
7 15 431.291 28.753 1.056
8 31 780.413 25.175 1.911

Table 153: CN276 2FD - Slice 2 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 282.198 28.220 0.691
2 5 89.976 17.995 0.220
3 5 102.617 20.523 0.251
4 12 256.172 21.348 0.627
5 16 425.342 26.584 1.041
6 6 139.798 23.300 0.342
7 10 214.530 21.453 0.525
8 2 51.309 25.654 0.126

Table 154: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 239.813 21.801 0.587
2 19 421.996 22.210 1.033
3 2 56.886 28.443 0.139
4 10 236.466 23.647 0.579
5 14 336.853 24.061 0.825

Table 155: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 13 257.659 19.820 0.631
2 7 170.657 24.380 0.418
3 6 119.720 19.953 0.293
4 8 198.543 24.818 0.486
5 9 216.761 24.085 0.531
6 3 64.322 21.441 0.157

Table 156: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 250.967 22.815 0.615
2 15 461.407 30.760 1.131
3 16 435.381 27.211 1.067

Table 157: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 5.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 13 330.161 25.397 0.809
2 5 118.605 23.721 0.291
3 14 300.045 21.432 0.735
4 14 356.930 25.495 0.875
5 4 96.297 24.074 0.236
6 7 158.016 22.574 0.387

Table 158: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 275.877 27.588 0.676
2 14 316.404 22.600 0.776
3 11 275.134 25.012 0.674
4 10 239.813 23.981 0.588
5 11 255.800 23.255 0.627

Table 159: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 271.416 24.674 0.665
2 9 205.979 22.887 0.505
3 7 212.671 30.382 0.521
4 7 184.042 26.292 0.451
5 5 118.233 23.647 0.290
6 7 181.068 25.867 0.444
7 12 308.224 25.685 0.756

Table 160: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 8.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 317.519 21.168 0.777
2 8 198.171 24.771 0.485
3 12 292.237 24.353 0.716
4 5 122.323 24.465 0.300
5 12 272.903 22.742 0.668
6 11 273.647 24.877 0.670
7 13 307.481 23.652 0.755

Table 161: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 9.
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APPENDIX E. CN276 2FD QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 6 127.156 21.193 0.312
2 11 251.338 22.849 0.617
3 9 188.504 20.945 0.463
4 2 55.027 27.513 0.134
5 9 191.478 21.275 0.467
6 13 298.929 22.995 0.731
7 13 306.365 23.567 0.749

Table 162: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 10.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 4 87.745 21.936 0.215
2 7 174.375 24.911 0.428
3 4 40.798 10.199 0.100
4 3 66.924 22.308 0.164
5 8 232.377 29.047 0.570
6 15 395.970 26.398 0.972
7 17 343.174 20.187 0.842
8 8 217.876 27.235 0.535
9 18 425.342 23.630 1.0044

Table 163: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 11.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 389.277 25.952 0.952
2 13 305.993 23.538 0.755
3 12 266.954 22.246 0.658
4 6 142.400 23.733 0.349
5 4 92.207 23.502 0.226
6 11 281.454 25.587 0.689

Table 164: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 12.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 18 490.036 27.224 1.200
2 10 219.363 21.936 0.537
3 6 154.670 25.778 0.379
4 8 172.145 21.518 0.421
5 11 278.108 25.283 0.681

Table 165: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 13.

144



Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 6 161.734 26.956 0.396
2 11 286.660 26.060 0.702
3 2 44.244 22.122 0.108
4 2 62.463 31.231 0.153
5 11 279.224 25.384 0.684
6 11 242.043 22.004 0.593
7 9 191.850 21.317 0.470

Table 166: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 14.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 239.069 19.922 0.585
2 7 185.529 26.504 0.454
3 3 58.373 19.458 0.143
4 6 123.810 20.635 0.303
5 5 115.631 23.126 0.283

Table 167: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 15.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 7 140.913 20.130 0.345
2 6 166.196 27.699 0.407
3 10 264.352 26.435 0.647
4 6 120.836 20.139 0.296

Table 168: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 16.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 8 206.350 25.794 0.505
2 4 123.810 30.953 0.303
3 2 42.757 21.379 0.105
4 13 313.801 24.139 0.768
5 11 278.480 25.316 0.682
6 7 165.824 23.689 0.406
7 7 173.632 24.805 0.425
8 12 286.288 23.857 0.701

Table 169: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 17.
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APPENDIX E. CN276 2FD QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 7 153.554 21.936 0.376
2 6 147.234 24.539 0.360
3 12 298.186 24.849 0.730
4 4 118.233 29.556 0.290
5 3 70.642 23.547 0.173
6 7 164.337 23.477 0.403
7 4 73.989 18.497 0.182
8 12 278.852 23.238 0.684
9 12 295.955 24.663 0.726
10 14 327.186 23.370 0.803

Table 170: CN276 2FD - Slice 2 - Automatic Quantification Results for Lobule 18.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 19 515.690 27.142 1.344
2 19 413.444 21.760 1.077
3 23 605.294 26.317 1.577
4 18 464.381 25.799 1.210
5 29 811.273 27.975 2.114
6 15 426.829 28.455 1.112
7 30 759.221 25.307 1.978
8 39 971.148 24.901 2.530

Table 171: CN276 2FD - Slice 3 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 47 1302.052 27.703 3.393
2 43 1177.127 27.375 3.067

Table 172: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 204.120 20.412 0.532
2 8 217.504 27.188 0.567
3 18 478.882 26.605 1.248
4 10 281.454 28.145 0.733
5 10 222.338 22.234 0.579
6 14 337.968 24.141 0.881
7 14 314.173 22.441 0.819
8 5 121.579 24.316 0.317
9 16 365.854 22.866 0.953
10 11 276.621 25.147 0.721

Table 173: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 3.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 8 203.004 25.376 0.529
2 2 48.334 24.167 0.126
3 4 84.399 21.100 0.220
4 7 156.157 22.308 0.407
5 5 115.631 23.126 0.301
6 4 79.938 19.984 0.208
7 5 156.901 31.380 0.409
8 6 158.388 26.398 0.413
9 5 112.656 22.531 0.294
10 2 39.411 19.706 0.103
11 6 153.183 25.530 0.399
12 3 63.206 21.069 0.165

Table 174: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 8 210.812 26.352 0.549
2 5 108.195 21.639 0.282
3 6 129.015 21.503 0.336
4 7 153.926 21.989 0.401
5 4 89.604 22.401 0.233
6 7 169.914 24.273 0.443

Table 175: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 9 223.825 24.869 0.583
2 14 348.751 24.911 0.909
3 18 505.651 28.092 1.318
4 7 171.773 24.539 0.448
5 13 388.905 29.916 1.013

Table 176: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 6 171.401 28.567 0.447
2 7 164.709 23.530 0.429
3 15 432.778 28.852 1.128
4 9 236.838 26.315 0.617
5 15 354.328 23.622 0.923
6 12 278.852 23.238 0.727
7 16 361.020 22.564 0.941
8 9 205.235 22.804 0.535
9 12 304.506 25.376 0.793

Table 177: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 7.
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APPENDIX E. CN276 2FD QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 5 107.079 21.416 0.279
2 3 81.053 27.018 0.211
3 12 272.903 22.742 0.711
4 6 128.644 21.441 0.335
5 6 120.836 20.139 0.315
6 7 166.939 23.848 0.435
7 5 116.002 23.200 0.302
8 5 166.568 33.314 0.434
9 3 86.258 28.753 0.225
10 9 224.569 24.952 0.585
11 7 160.247 22.892 0.418
12 6 168.798 28.133 0.440
13 5 123.438 24.688 0.322
14 8 236.466 29.558 0.616

Table 178: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 8.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 7 186.645 26.664 0.486
2 8 181.440 22.680 0.473
3 9 222.338 24.704 0.579
4 11 262.121 23.829 0.683
5 13 299.673 23.052 0.781
6 7 142.029 20.290 0.370
7 8 175.491 21.936 0.457
8 11 295.211 26.837 0.769
9 14 363.251 25.947 0.946

Table 179: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 9.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 269.557 26.956 0.704
2 7 191.478 27.354 0.500
3 10 205.979 20.598 0.538
4 3 65.809 21.936 0.172
5 6 160.619 26.770 0.420
6 7 164.709 23.530 0.430
7 11 265.095 24.100 0.693
8 14 292.237 20.874 0.763
9 12 249.479 20.790 0.652
10 7 149.836 21.405 0.391

Table 180: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 10.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 8 275.877 34.485 0.721
2 12 290.006 24.167 0.758
3 4 76.963 19.241 0.201
4 6 134.593 22.432 0.352
5 4 78.079 19.520 0.204
6 5 136.452 27.290 0.356
7 9 197.427 21.936 0.516
8 13 279.224 21.479 0.729

Table 181: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 11.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 5 121.208 24.242 0.316
2 6 138.682 23.114 0.361
3 5 131.618 26.324 0.343
4 7 192.222 27.460 0.501
5 8 165.452 20.682 0.431
6 5 101.130 20.226 0.264
7 10 224.197 22.420 0.586

Table 182: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 12.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 6 179.209 29.868 0.467
2 4 122.323 30.581 0.319
3 9 243.159 27.018 0.634
4 12 292.980 24.415 0.736

Table 183: CN276 2FD - Slice 3 - Automatic Quantification Results for Lobule 13.
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F

CN282 2TE Quantification Results

This appendix displays the quantification results fetched from microglia cell counts with ImageJ re-

garding a more classical approach. These results refer to each brain image of the animal CN282 2TE.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 37 977.064 26.407 0.715
2 28 878.345 31.369 0.643
3 32 884.673 27.646 0.647
4 35 1012.501 28.929 0.741
5 21 668.251 31.821 0.490
6 26 797.977 30.691 0.585

Table 184: CN282 2TE - Slice 1 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 20 592.946 29.647 0.435
2 15 377.157 25.144 0.277
3 27 785.954 29.109 0.576
4 31 899.860 29.028 0.660
5 25 642.938 25.718 0.472
6 33 936.564 28.381 0.687
7 24 536.626 22.359 0.394
8 34 1013.767 29.817 0.744

Table 185: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 2.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 25 706.852 28.274 0.518
2 27 696.727 25.805 0.511
3 35 923.907 26.397 0.678
4 26 791.649 30.448 0.581
5 30 696.727 23.224 0.511

Table 186: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 22 649.899 29.541 0.477
2 28 699.891 24.996 0.513
3 20 513.212 25.661 0.376
4 21 544.219 25.915 0.399
5 26 679.641 26.140 0.498
6 23 627.118 27.266 0.460
7 21 547383 26.066 0.401
8 20 472.711 23.636 0.347

Table 187: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 20 683.438 34.172 0.501
2 26 818.860 31.495 0.603
3 18 473.344 26.297 0.348
4 21 658.759 31.369 0.485
5 24 774.563 32.273 0.570
6 16 509.415 31.838 0.375
7 28 720.774 25.742 0.533
8 20 539.790 26.989 0.399

Table 188: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 29 915.681 31.575 0.674
2 22 612.563 27.844 0.451
3 23 637.876 27.734 0.469
4 18 564.469 31.359 0.415
5 32 894.798 27.962 0.659
6 36 1041.611 28.934 0.767

Table 189: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 50 1279.548 25.591 0.445
2 63 1576.338 25.021 0.548
3 26 648.634 24.947 0.671

Table 190: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 7.
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APPENDIX F. CN282 2TE QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 475.876 27.993 0.350
2 20 485.368 24.268 0.357
3 20 493.594 24.680 0.363

Table 191: CN282 2TE - Slice 1 - Automatic Quantification Results for Lobule 8.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 40 1066.923 26.673 0.956
2 35 965.673 27.591 0.865
3 27 802.407 29.719 0.719
4 16 471.446 29.465 0.422
5 29 890.368 30.702 0.798
6 22 728.368 33.108 0.653
7 26 1006.806 38.723 0.902

Table 192: CN282 2TE - Slice 2 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 339.188 22.613 0.305
2 10 257.555 25.755 0.231
3 16 444.868 27.804 0.399
4 24 822.657 34.277 0.739
5 19 485.368 25.546 0.436
6 21 568.899 27.090 0.511
7 10 246.164 24.616 0.221
8 12 283.500 23.625 0.255
9 18 450.563 25.031 0.405

Table 193: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 22 596.110 27.096 0.535
2 11 318.305 28.937 0.286
3 26 764.438 29.401 0.686
4 27 742.290 27.492 0.666
5 11 254.391 23.126 0.228
6 13 327.164 25.166 0.294
7 31 931.501 30.048 0.836
8 26 708.118 27.235 0.636

Table 194: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 3.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 20 551.180 27.559 0.495
2 18 475.243 26.402 0.427
3 23 623.321 27.101 0.560
4 15 346.149 23.077 0.311
5 24 628.384 26.183 0.564
6 22 663.188 30.145 0.595
7 10 361.336 36.134 0.324
8 8 279.703 34.963 0.252
9 16 492.962 30.810 0.445

Table 195: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 327.797 32.780 0.295
2 20 480.939 24.047 0.433
3 14 392.977 28.070 0.354
4 11 318.938 28.994 0.287
5 23 585.352 25.450 0.527
6 11 342.985 31.180 0.309
7 22 685.970 31.180 0.618
8 12 382.852 31.904 0.345
9 4 122.133 30.533 0.110

Table 196: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 254.391 25.439 0.229
2 16 467.016 29.189 0.418
3 16 448.032 28.002 0.403
4 12 315.141 26.262 0.284
5 14 360.071 25.719 0.324
6 28 657.493 23.482 0.592
7 14 382.852 27.347 0.345
8 16 565.735 35.358 0.509
9 16 499.922 31.245 0.450

Table 197: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 436.641 25.685 0.391
2 4 78.496 19.617 0.391
3 10 256.289 25.629 0.230
4 19 410.063 21.582 0.368
5 18 425.250 23.625 0.382

Table 198: CN282 2TE - Slice 2 - Automatic Quantification Results for Lobule 7.
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APPENDIX F. CN282 2TE QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 32 854.931 26.717 0.816
2 34 851.134 25.033 0.812
3 24 657.493 27.396 0.627
4 39 1225.126 31.413 1.169
5 19 586.618 30.875 0.560
6 40 1593.424 39.836 1.520
7 24 796.079 33.170 0.759

Table 199: CN282 2TE - Slice 4 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 14 311.977 22.284 0.298
2 16 419.555 26.222 0.400
3 31 830.251 26.782 0.792
4 31 946.056 30.518 0.903
5 15 353.743 23.583 0.337
6 20 520.805 26.040 0.497
7 45 1239.048 27.534 1.182
8 15 336.657 22.444 0.321
9 24 672.680 28.028 0.642

Table 200: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 24 614.462 25.603 0.586
2 22 572.696 26.032 0.546
3 23 661.290 28.752 0.631
4 16 403.102 25.194 0.385
5 11 274.008 24.910 0.261
6 22 591.680 26895 0.564
7 22 644.204 29.282 0.615

Table 201: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 20 577.126 28.856 0.551
2 11 363.868 33.079 0.347
3 15 384.750 25.650 0.367
4 21 530.297 25.252 0.506
5 16 353.110 22.069 0.337
6 10 251.227 25.123 0.240
7 8 235.407 29.426 0.225
8 11 249.328 22.666 0.238
9 10 270.211 27.021 0.258
10 12 282.993 24.416 0.280
11 15 346.149 23.077 0.330

Table 202: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 4.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 514.477 30.263 0.491
2 11 313.243 28.47 0.299
3 12 365.766 30.481 0.349
4 15 367.664 24.511 0.351
5 4 149.977 37494 0.143
6 6 122.766 20.461 0.117
7 11 30.914 27.901 0.293
8 18 487.899 27.106 0.465
9 11 299.953 27.268 0.286
10 6 145.547 24.258 0.139

Table 203: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 563.837 33.167 0.538
2 19 544.852 28.676 0.520
3 27 776.462 28.758 0.741
4 22 593.579 26.981 0.566
5 21 575.860 27.422 0.549
6 35 1045.407 29.869 0.997

Table 204: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 315.141 26.262 0.301
2 18 440.438 24.469 0.422
3 14 337.922 24.137 0.324
4 14 394.875 28.205 0.379
5 15 405.000 27.000 0.388
6 17 425.250 25.015 0.408
7 11 299.321 27.211 0.287

Table 205: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 377.789 25.186 0.362
2 18 512.579 28.477 0.491
3 21 525.235 25.011 0.504

Table 206: CN282 2TE - Slice 4 - Automatic Quantification Results for Lobule 8.
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G

CN283 2FD Quantification Results

This appendix displays the quantification results fetched from microglia cell counts with ImageJ re-

garding a more classical approach. These results refer to each brain image of the animal CN283 2FD.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 35 1026.423 29.326 0.644
2 25 806.204 32.248 0.506
3 23 724.751 31.503 0.454
4 30 873.282 29.109 0.548
5 32 835.313 26.104 0.524
6 17 754.313 44.371 0.473

Table 207: CN283 2FD - Slice 1 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 14 379.688 27.121 0.238
2 13 323.368 24.874 0.203
3 9 204.399 22.711 0.128
4 21 566.363 26.970 0.355
5 17 747.985 43.999 0.469
6 9 224.016 24.891 0.141
7 6 136.688 22.781 0.086
8 7 179.719 25.674 0.113
9 5 106.945 21.389 0.067
10 16 405.633 25.352 0.254

Table 208: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 2.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 25 640.407 25.616 0.402
2 34 953.650 28.049 0.598
3 24 748.618 31.192 0.470
4 27 720.141 26.672 0.452
5 5 153.774 30.755 0.096
6 8 199.969 24996 0.125
7 20 562.571 28.129 0.353
8 15 399.305 26.620 0.250

Table 209: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 31 833.415 26.884 0.523
2 13 346.149 26.627 0.217
3 9 226.547 25.172 0.142
4 30 776.462 25.882 0.487
5 9 202.500 22.500 0.127
6 12 309.446 25.787 0.194
7 18 520.805 28.934 0.327

Table 210: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 33 942.892 28.572 0.591
2 36 1070.087 29.725 0.671
3 14 341.719 24.409 0.214
4 11 268.313 24.392 0.168
5 14 425.250 30.375 0.267
6 17 465.751 27.397 0.292
7 4 106.945 26.736 0.067

Table 211: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 19 560.673 29.509 0.352
2 15 368.297 24.553 0.231
3 12 385.383 32.115 0.242
4 15 398.672 26.578 0.250
5 25 687.868 27.515 0.431
6 19 480.938 25.313 0.302
7 6 153.141 25.523 0.096

Table 212: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 6.
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APPENDIX G. CN283 2FD QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 11 538.524 48.957 0.338
2 22 753.048 34.229 0.472
3 13 311.344 23.950 0.195
4 14 440.438 31.460 0.276
5 12 306.071 30.006 0.226
6 21 604.337 28.778 0.379
7 19 467.649 24.613 0.293
8 23 906.189 39.400 0.568

Table 213: CN283 2FD - Slice 1 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 39 1151.720 29.531 0.631
2 35 944.790 26.994 0.518
3 31 832.149 26.844 0.456
4 21 563.837 26.849 0.309
5 18 489.165 27.176 0.268
6 28 811.267 28.974 0.445

Table 214: CN283 2FD - Slice 4 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 17 451.829 26.578 0.248
2 25 618.259 24.730 0.339
3 24 523.337 21.806 0.287
4 15 370.829 24.722 0.203
5 26 713.813 27.454 0.391

Table 215: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 30 861.892 28.730 0.472
2 27 695.462 25.758 0.381
3 42 1084.009 25.810 0.594
4 24 628.384 26.183 0.344

Table 216: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 29 825.188 28.455 0.452
2 39 1162.478 29.807 0.637
3 31 787.852 25.415 0.432
4 24 620.157 25.840 0.340
5 23 591.048 25.698 0.324
6 14 384.118 27.437 0.211

Table 217: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 4.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 19 578.391 30.442 0.317
2 26 750.516 28.866 0.411
3 7 278.438 39.777 0.153
4 26 680.274 26.164 0.373
5 48 1468.759 30.599 0.805
6 33 809.368 24.526 0.444

Table 218: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 29 831.517 28.673 0.456
2 25 708.751 28.350 0.388
3 7 162.000 23.143 0.089
4 22 602.438 27.384 0.330
5 28 959.978 34.285 0.526
6 17 548.649 32.273 0.301

Table 219: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 26 680.907 26.189 0.373
2 19 587.251 30.908 0.322
3 28 747.985 26.714 0.410
4 11 305.649 27.786 0.168

Table 220: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 18 591.048 32.836 0.324
2 13 298.688 22.976 0.164
3 28 944.157 33.720 0.517

Table 221: CN283 2FD - Slice 4 - Automatic Quantification Results for Lobule 8.

159



H

CN284 TDTE Quantification Results

This appendix displays the quantification results fetched from microglia cell counts with ImageJ re-

garding a more classical approach. These results refer to each brain image of the animal CN284 TDTE.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 26 794.170 30.545 0.953
2 21 523.870 24.946 0.629
3 13 300.788 23.138 0.361
4 27 712.002 26.370 0.854
5 33 868.902 36.330 1.043
6 16 416.047 26.003 0.499
7 23 512.716 22.292 0.615

Table 222: CN284 TDTE - Slice 1 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 365.854 24.390 0.439
2 14 316.776 22.627 0.380
3 14 369.943 26.425 0.444
4 16 369.943 23.121 0.444
5 13 343.546 26.427 0.412
6 19 504.536 26.555 0.605
7 24 655.488 27.312 0.787

Table 223: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 2.
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Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 290.006 29.001 0.348
2 11 239.813 21.801 0.288
3 23 486.318 21.144 0.584
4 5 155.042 31.008 0.186
5 11 299.301 27.209 0.359
6 15 353.584 23.572 0.424

Table 224: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 21 473.676 22.556 0.568
2 14 302.275 21.591 0.363
3 20 515.318 25.766 0.618
4 13 285.916 21.994 0.343
5 35 858.120 24.518 1.030
6 6 182.183 30.364 0.219
7 20 455.086 22.754 0.546

Table 225: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 7 171.773 24.539 0.206
2 13 344.289 26.484 0.413
3 9 172.516 19.168 0.207
4 12 252.454 21.038 0.303
5 7 146.490 20.927 0.176
6 9 211.184 23.465 0.256

Table 226: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 15 292.609 19.507 0.351
2 19 454.343 23.913 0.545
3 24 511.600 21.317 0.614
4 26 675.937 25.998 0.811
5 28 595.628 21.272 0.715
6 6 126.785 21.131 0.152

Table 227: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 6.
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APPENDIX H. CN284 TDTE QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 13 360.648 27.742 0.433
2 21 536.883 25.566 0.644
3 16 571.832 35.740 0.686
4 7 146.490 20.927 0.176
5 17 423.855 24.933 0.509
6 17 407.124 23.948 0.489
7 18 397.829 22.102 0.477
8 13 274.390 21.107 0.329

Table 228: CN284 TDTE - Slice 1 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 23 556.588 24.199 0.608
2 25 622.397 24.896 0.680
3 65 1895.821 29.166 2.072
4 67 1841.538 27.486 2.013
5 32 820.940 25.654 0.897

Table 229: CN284 TDTE - Slice 2 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 20 521.267 26.063 0.570
2 26 683.745 26.298 0.747
3 27 671.475 24.869 0.734
4 29 727.246 25.077 0.795

Table 230: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 14 304.134 21.724 0.332
2 26 611.987 23.538 0.669
3 31 844.363 27.238 0.923
4 25 697.501 27.900 0.762

Table 231: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 26 709.771 27.299 0.776
2 10 367.341 36.734 0.401
3 27 809.042 29.965 0.884
4 26 745.464 28.672 0.815

Table 232: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 165 4442.296 26.923 4.855

Table 233: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 5.

162



Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 292.980 24.415 0.320
2 8 187.017 23.377 0.204
3 14 285.544 20.396 0.312
4 6 133.105 22.184 0.145
5 13 377.751 29.058 0.413
6 7 168.055 24.008 0.184
7 4 92.951 23.238 0.102
8 8 207.466 25.933 0.227
9 5 154.670 30.934 0.169
10 8 184.786 23.098 0.202

Table 234: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 6.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 8 207.466 25.933 0.227
2 5 97.412 19.482 0.106
3 9 237.210 26.357 0.259
4 15 399.688 26.646 0.437
5 19 432.035 22.739 0.472

Table 235: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 7.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 292.237 24.353 0.319
2 21 560.678 26.699 0.613
3 10 709.027 70.903 0.775
4 4 126.785 31.696 0.139
5 16 504.536 31.533 0.551

Table 236: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 8.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 29 750.297 25.872 0.820
2 17 408.983 24.058 0.447
3 24 581.871 24.245 0.636
4 23 533.908 23.213 0.583

Table 237: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 9.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 14 392.995 28.071 0.429
2 5 122.323 24.465 0.134
3 8 167.683 20.960 0.183
4 3 97.784 32.595 0.107
5 28 888.608 31.736 0.971
6 12 274.018 22.835 0.299
7 18 442.817 24.601 0.484

Table 238: CN284 TDTE - Slice 2 - Automatic Quantification Results for Lobule 10.
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APPENDIX H. CN284 TDTE QUANTIFICATION RESULTS

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 60 1481.633 24.694 0.838
2 59 2020.003 34.237 1.143

Table 239: CN284 TDTE - Slice 3 - Automatic Quantification Results for DCN.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 22 548.780 24.945 0.311
2 31 759.593 24.503 0.430
3 36 868.159 24.116 0.491

Table 240: CN284 TDTE - Slice 3 - Automatic Quantification Results for Lobule 2.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 29 818.337 28.219 0.463
2 36 844.735 23.465 0.478
3 42 1042.906 24.831 0.590
4 37 949.955 25.674 0.538

Table 241: CN284 TDTE - Slice 3 - Automatic Quantification Results for Lobule 3.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 10 249.108 24.911 0.141
2 16 397.085 24.818 0.225
3 12 312.686 26.057 0.177
4 12 253.198 21.100 0.143
5 10 26.138 26.138 0.148
6 14 321.981 22.999 0.182

Table 242: CN284 TDTE - Slice 3 - Automatic Quantification Results for Lobule 4.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 4 101.130 25.283 0.057
2 16 362.507 22.657 0.205
3 6 118.233 19.706 0.067
4 18 456.945 25.386 0.259
5 20 475.907 23.795 0.269

Table 243: CN284 TDTE - Slice 3 - Automatic Quantification Results for Lobule 5.

Image Number of Cells
Total Area
(Pixels)

Average Size
(Pixels)

Area
(%)

1 12 285.916 23.826 0.162
2 20 467.356 23.368 0.364
3 25 604551 24.182 0.342

Table 244: CN284 TDTE - Slice 3 - Automatic Quantification Results for Lobule 6.
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