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ABSTRACT

Benchmarking Deep Learning for Predicting Telecommunications Recurring

Problems

Nowadays, companies live in a scenario of strong competitiveness. The telecommunications

market is not an exception and it is possible to offer a differentiation from competition through

better service quality, differentiated support and even better value proposals. With the evolution of

technologies, companies have more data about their customers and the usage profile of each one

of them. With this information it is possible to establish a better relationship with the customer

through a more efficient support service.

The evolution of artificial intelligence and computational power, combined with existing data, al-

lows for several comparisons between different machine learning algorithms. In this dissertation,

a prediction model capable of predicting recurrences of contacts with the customer service is pro-

posed. The aim is to predict whether a particular problem reported by the customer will repeat and

require a new contact, so that it is possible to correct those problems in advance, making the user

experience more pleasant and fluid. In order to achieve the best possible model, different classical

machine learning approaches were tested, along with several deep neural network architectures.

In recent years, deep neural networks have shown interesting results in several non-tabular appli-

cations, therefore being interesting to test them in tabular applications like the one present in this

work. TabNet, developed by Google, is a deep neural network adjusted to perform the better in tabu-

lar datasets, and was also tested, as it has shown better performance than several neural networks

or decision-tree bases algorithms.

The used data were collected by various internal systems, the most important of which being the

one related to customer support calls. The customer service, due to its size and complexity, has a

system that monitors all calls and their motivations, as well as the parties involved (both operator

and customer) and other additional data such as time spent and the call outcome. Data from other

systems is related to billing, service usage and customer profile, and is added to help to understand

the context of the call.

The model that shown the best results was CatBoost, a decision trees based algorithm, showing

an AUC_ROC of 79%, with a Recall of 61% and a Precision of 62%, allowing the identification of about

8,6% of the 3.9 million calls made to the support service as recurrences even before they occur,

about 340k cases. In an ideal scenario, all these calls would be avoided, allowing a substantial cost

reduction for the company, as well as a consequent increase in customer satisfaction in relation to

the service.

The CatBoost model showed better training times and less memory needs, while achieving a
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better performance than the different architectures of deep neural networks proposed. Only TabNet

was able to achieve a similar performance, while maintaining a higher training time. However, in

futures uses, where the CatBoost model achieves a plateau and is not benefiting for the increasing

data, it could be useful to use TabNet as the model in production. TabNet has the advantage of being

a neural network and, for that reason, being more capable of breaking the plateau that classical

models often achieve.

Keywords: Customer, Telecommunications, Data Mining, Quality of Service, Artificial Intelligence.
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RESUMO

Benchmarking de Deep Learning na Previsão de Problemas Recorrentes de

Telecomunicações

Atualmente, as empresas vivem num cenário de forte competitividade. O mercado das teleco-

municações não é uma exceção e é possível oferecer uma diferenciação da competição através

de melhor qualidade de serviço, suporte diferenciado e até melhores propostas de valor. Com a

evolução das tecnologias, as empresas possuem também cada vez mais dados acerca dos seus

clientes e sobre o perfil de uso de cada um deles. Com esta informação é possível estabelecer

uma melhor relação com o cliente através de um suporte mais eficiente.

A evolução da inteligência artificial e do poder computacional, aliada aos dados existentes, per-

mitem fazer várias comparações entre diferentes algoritmos de machinelearning. Nesta disser-

tação, é proposto um modelo de previsão capaz de prever reincidências de contactos com o serviço

de apoio ao cliente. O objetivo é, então, prever se um determinado problema reportado pelo cliente

se vai tornar reincidente e exigir um novo contacto, para que seja possível proceder à correção

antecipada desses problemas, tornando a experiência de utilizador mais agradável e fluida. A fim

de alcançar o melhor modelo possível, foram testadas diferentes abordagens clássicas de machine
learning, juntamente com várias arquitecturas de deepneuralnetworks. Nos últimos anos, as deep
neuralnetworksmostraram resultados interessantes em várias aplicações não tabulares, pelo que

é interessante testá-las em aplicações tabulares como a presente neste trabalho. O TabNet, de-

senvolvido pela Google, é uma deepneuralnetworkajustada para ter um melhor desempenho em

conjuntos de dados tabulares, e também foi testada, uma vez que mostrou ummelhor desempenho

do que várias redes neuronais e algoritmos baseados em árvores de decisão.

Os dados usados são recolhidos por diversos sistemas internos, sendo que os de maior im-

portância são os dados relativos a chamadas para o apoio ao cliente. O serviço de apoio ao cliente,

devido à sua dimensão e complexidade, possui um sistema que monitoriza todas as chamadas e

as suas motivações, bem como os intervinientes e outros dados acessórios como tempo dispen-

sado e soluções encontradas. Os dados provenientes de outros sistemas estão relacionados com

a faturação, uso e perfil do cliente, com vista a fornecer um contexto para a situação.

O modelo que obteve o melhor resultado foi o CatBoost, baseado em árvores de decisão, com um

ROC_AUC de 79%, com uma Recall de 61% e uma Precision de 62%, permitindo identificar cerca

de 8,6% das 3,9 milhões de chamadas feitas ao serviço de suporte como reincidências mesmo

antes de elas ocorrerem, ou seja, 334 mil casos. Num cenário ideal, todas essas chamadas

seriam evitadas, possibilitando uma redução de custos substancial para a empresa, bem como um

consequente aumento na satisfação do cliente em relação ao serviço.
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O CatBoost foi também o modelo que mostrou melhores tempos de treino e menor exigência de

memória, conseguindo ao mesmo tempo um melhor desempenho do que as diferentes arquitec-

turas dedeepneuralnetworkspropostas. Apenas o TabNet conseguiu um desempenho semelhante,

apesar de manter um tempo de treino superior. Contudo, em utilizações futuras, onde o modelo

CatBoost atinge um patamar de performance e já não beneficie com o aumento de dados, poderá

ser útil utilizar o TabNet como modelo em produção. O TabNet tem a vantagem de ser uma rede

neural e, por essa razão, ser mais capaz de quebrar o patamar de performance que os modelos

clássicos frequentemente alcançam e não conseguem quebrar.

Palavras-chave: Cliente, Telecomunicações, Mineração de Dados, Qualidade de Serviço, In-

teligência Artificial.
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1. INTRODUCTION



1.1 CONTEXT AND MOTIVATION

In a world increasingly connected, companies that are able to adapt to new technologies and

business models have better chances of succeeding. In this digital era, companies are able to use

their systems and data to take better decisions and not just only to provide with the services. The

telecommunications market has been experiencing a continuous growth since the beginning of the

century. In Portugal, the numbers observed in the last semester of 2018 proved once more this

growth, which is very attractive to investors (ANACOM, 2019). The company that supported this

dissertation is one of the biggest in the telecommunications and entertainment portuguese scene,

offering fixed and mobile solutions like television, broadband, internet and mobile data to all market

segments. This really high number of services and customers presents very difficult challenges to

the companies, that have to keep all the services operational and all the customer satisfied.

Even though there is a constant investment in improving physical infrastructures and offered tech-

nology, today the differentiation sought by telecommunications companies is based on improving

the quality of services provided. In order to improve these services, the optimization of operations is

key, since it allows redirecting costs to investment in areas that directly affect the user (Pina, Torres,

& Bachiller, 2014).

One way to optimize operations is to be able to predict the situations that may occur, taking a

proactive attitude in their resolution. Another way is simply to know the levels of customer satisfac-

tion and act accordingly, changing the customer support behavior in certain situations. Typically,

these forecasting problems are solved based on statistical models. Nowadays, Artificial Intelligence

(AI) has been gaining more and more expression in the industry, presenting significant improve-

ments in the optimization of processes and decisions. This adoption is due to the accelerated

growth in computational processing capacity and development in AI algorithms, having already

strong application in the world retail (Schaverien, 2019). The telecommunications market is not in-

different to this progress, given its fast and dynamic nature, and is already actively seeking AI-based

solutions (Nand Kumar, 2017).

In addition, the fact that companies are increasingly collecting data on services provided, equip-

ment and clients, provides a solid basis for AI modeling. Machine Learning (ML), a subarea of AI,

is the one that benefits the most from this increase in data and with which there have been better

results, where computers are able to obtain better models the larger the set of data provided.

In fact, telecommunication providers want to avoid the loss of a customer, since acquiring a

new one costs 5 to 10 times more than maintaining the current ones. This is a clear motivation to

improve the customer support service, since it is the entity with the most interaction with customers

themselves. The customer support service can improve by increasing the number of operators,

thereby reducing waiting times and having more specializations to solve each type of problem. It
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can also be improved in a smarter way, with lowers costs than the alternatives that include increasing

the number of operators, simply by providing the operators with tools to help the customer faster

and more efficiently.

Nowadays, customer service operators have an interface for each one of the call they attend

giving information about the customer and the services he contracted. As an example, all the

previous calls and motivations of them are registered and available for operator consultation. By

having this and other informations gathered in a single tool, operators can understand the context

of the problem being reported. However, sometimes customers call for the same reason within a

short timeframe and, although the customer can see that a similar problem has already happened,

they have to repeat all the procedures in order to fix that same problem. This not only causes the

company monetary losses because the operator is doing something that should’ve been already

solved, but also because the time being spent in this customer could be spent with other customer

if the problem was correctly fixed in the previous report. In fact, if sometimes a customer support

operator has 100% of his time being used in customer calls, some other times it could just be waiting

for a new customer to call. Hence, it would be beneficial if this times where operators are free from

work could be used to solve problems that are solvable without customer intervention, before they

become recurrent problems.

Using the most recent techniques in ML to predict if a customer would need to call again for the

same motivation (a recurrence) is a great step to improve customer satisfaction and support centers

efficiency. If a possible customer recurrence is predicted, a special care could be provided in the

next call, with a direct contact with a specialized operator being made. Even more, the customer

could have his problem solved beforehand because one of the free operators could be assigned with

the task of checking the status of the service of a customer and perform any operations needed

to get everything working perfectly again. Deep Learning (DL), a subfield of ML, has shown great

capability to deal with very complex problems like the one being dealt with, by creating a structures

simulates the human brain. DL has been used and showed promising results in fields like computer

vision and text recognition, but it is not often used in tabular data like the one available in this work.

Recently, Google explored DL applications in tabular data with the novel TabNet, which showed

promising results than the most common classical machine learning approaches used for tabular

data. This is encouraging, as classical machine learning techniques often have a performance

plateau that can be overcome by the DL applications, as they usually scale with the amount of data

available. Although statistical approaches are possible, their flexibility and complexity are sometimes

not attractive to companies, who aren’t capable of trusting in techniques with a performance that

could not have a economic impact big enough to get into production. Therefore, DL applications in

industry can be of great value, contributing to a better economical performance.
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1.2 OBJECTIVES

In this dissertation, the aim is to develop a model for predicting problem recurrence among

telecommunication services customer, and validate the corresponding predictions against real cases

in an experimental proof of concept. When customers have to interact with customer service their

question should be solved quickly and effectively, meaning that they should not have to call again for

the same motive. Predicting if they will need to call again, within a time period of 30 days, means

that it is possible to predict a recurrence of a problem.

The telecommunications’ companies have a lot of data about their customers and the services

provided. Ranging from personal customer informations, to service usage profiles, passing by billing

and customer support data, a lot of knowledge can be extracted. The most important data is the one

coming from the customer support service since the problem that needs to be solved concerns to

that. However, all the other data sources provide with data that hints about the recurrence probability

when taken in consideration and shall not be disregarded. Therefore, gathering all the data from

different sources is the first big challenge of the project.

The second challenge is to compare different machine learning approaches and identify the

one that performs the best in the company’s business model. In the first place, several classical

machine learning models need to be selected accordingly to the data available and the following

performance tests made. Secondly, several Deep Neural Networks (DNNs) should be designed

and the performance tests should also be made to them. After those steps, the best performance

models should be compared taking in consideration the prediction performance, the resources

spent on training and the impacts of the amount of data fed into the predictions.

In result of the data preparation and the selection of the best model to predict customers’ recur-

rences, a prediction for each new call ended should be done. If a probable recurrence is predicted

for a certain customer, the company should register this for a later customer’s service status inves-

tigation.

This work aims to develop a model for predicting problem recurrence and its validation in an

experimental proof of concept. It is intended that the model developed will be able to predict when

a user of a service of a telecommunications company has, after any adverse event, a recurrence

of the same type of problem, in a time to be determined. Cases concerning the last three years of

events, collected daily by customer services, will be used.
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1.3 CONTRIBUTIONS

This study performed an intensive exploration of DNNs application in the present data. The width

and depth of the neural networks showed significant importance in the models’ performance. This

work has been peer-reviewed and accepted at:

• (Castro, Pereira, & Alves, 2020) V. Castro, C. Pereira, and V. Alves. Predicting Recurring

Telecommunications Customer Support Problems using Deep Learning. In IntelligentData
EngineeringandAutomatedLearning-IDEAL2020.

1.4 INVESTIGATION METHODOLOGY

Prior to writing this dissertation, a thorough research was required in order to better comprehend

possible approaches to solve the problem in hands. To facilitate this process, Design Science

Research (DSR) was used. DSR is a research strategy which is considered to be very effective in

the computer science field. The DSR methodology (Figure 1.1), is a rigorous scientific research

methodology that well defines all the six main steps of research, which consist of:

• Identification of the problem and motivation – what need to be solved and the scientific value

of it;

• Definition of the objectives to be attained – what are the solution objectives according to the

identified problem and the needs of the research problem;

• Development of the solution – design the features and details of the solution and develop the

respective product to solve the problem identified;

• Demonstration – all the experiments and simulation evolved in the process of test and demon-

stration, which lead to the evaluation of the product;

• Evaluation – compare the defined objectives for the solution to have with the practical ob-

served results. Verify if the solution worked out for the problem identified;

• Communication – present the audience with the solution developed and the need for it.

Demonstrate the importance of the problem and consequent solution.
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Figure 1.1: Design Research Process schema.

1.5 DISSERTATION STRUCTURE

This dissertation is structured in 5 sections. In section 1, an Introduction is given to bring the

reader into contact with the problem and to specify the objectives of this dissertation. The section

2, Concepts, describes in more detail the problem as well as the technologies used throughout this

work to overcome it. A bried description of the available related work is also present. The following

section, Predicting Recurrences, describes the available data and the methods adopted to produce

a quality dataset and the models needed. In section 4, Evaluation, the models are compared

and an evaluation of the selected model is done. Finally, this dissertation ends with Conclusions,

summarizing everything that has been done up to this point and the next steps.
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2. CONCEPTS



2.1 DOMAIN KNOWLEDGE

2.1.1 NOS

NOS was born in 2013 as a result of a merge between ZON and Optimus, two of the largest

telecommunications companies in Portugal at the time. ZON was born in 1993, when it was named

TV Cabo. At the time there was a growing demand for entertainment and telecommunications

services and TV Cabo became the largest television distributor in the country. It was also the

first company in Portugal to offer broadband. Since it bord, ZON reached more than three million

homes and became the second largest Internet and landline provider of the country. Optimus was

created in 1998 and, at the end of the year, had already a market share of 18%. In 2004, Optimus

introduced the first plan with free SMS and, in 2008, introduced free calls between users in the

same sub-net, being recognized on both occasions with international awards (ComparaJá-NOS,
n.d.). In 2014, after the merge of ZON and Optimus, the brand NOS was launched. Since that time,

NOS was responsible for more innovations like being the pioneer in the country in offering Ultra-HD

content. Currently, NOS is the leader operator in subscription television, next generation broadband

and movie distribution.

2.1.2 Market

In the telecommunications market, costumers usually subscribe to packages and stay associated

to them in a period that can range from one to two years. The packages vary accordingly to the

services subscribed, being the most common 1P, 2P, 3P, 4P and 5P. The 1P packages include one

of the services that can be television, internet, mobile phone or landline. The 2P packages are

usually composed by landline and fixed internet services. The 3P packages comprise three services

that are usually television, landline and fixed internet. In some variations, a mobile phone can be

associated with the subscription instead of one of the most common services. The 4P and 5P are

usually compositions of the 3P package with either one mobile number and one mobile internet or

just two mobile numbers. These packages are standard across all the national operators and all

the others are variations of the base ones.

2.1.3 Technologies

When trying to differentiate between each other, companies often have to balance cost and quality

for the infrastructure they provide. With home installations there are, at the moment, two different

common approaches: get the fiber cable into the house or get it near the house and connect

the remaining with coaxial cable. Fiber cable is a newer technology that has a higher capacity of
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conducting information in a high quality ambient. This higher capacity comes at a cost because the

sheer price of the cable is higher and the installation process is more time consuming, where often

coaxial cables have to be removed and fiber cables used as a replacement. The costs associated

with FTTH (Fibre-to-the-Home), that is, bring fiber optic cables directly to the home of subscriber

consumers, led to the use of an intermediate solution, in which fibre optic cables, instead of being

installed inside consumers’ homes, are placed at points close to them. Therefore, HFC (Hybrid Fibre-

Coaxial) is called a hybrid structure that incorporates fiber optics and coaxial cable into the same

distribution network. The final path of the connection, closer to the customers home, is connected

with coaxial cables. However, due to market pressure and the need to improve service quality, NOS

is trying to improve the existent connections from HFC to FTTH, as the direct competitors are using

this handicap to negotiate with their customers.

In some less developed areas, DTH (Direct to Home) also exists. Instead of getting the services

to customers using a cable approach, DTH is a satellite alternative. It was a common approach a

few years ago but with the cost-reduction of fiber, along with DTH being more problematic, it has

been less used in new applications.

2.1.4 Customer Support

NOS, like all telecommunications operators, has a customer support service, available on a daily

basis, in order to clarify doubts and to provide support for technical difficulties or breakdowns from

subscribers. When trying to stablish contact with NOS, customers usually call to numbers that are

answered by call center operators. Customers usually want and need a fast resolution for their

problem and are already annoyed by the situations. Having this in consideration, predicting how the

problem is affecting the client, the recurrence of the problem and the level of annoyance it is causing

is a valuable information. When trying to solve problems to customers the best-case scenario is to

be redirected to the most capable call center operator. This is, however, not possible, for two main

reasons, being the first one the lack of availability and the second one the cost associated with

having specialized operators. The goal is, therefore, predict the level of annoyance of a customer

and, with this information, treat differently the customer, with several levels of problem severity.

This enables the company to provide adequate, personalized, fast and comfortable assistance to

the most severe cases of annoyance and to reduce the costs associated with problems that could

be easily solved by non-specialized operators.
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2.2 ARTIFICIAL INTELLIGENCE

AI is a branch of computer science that tries to gather science and engineering in order to build

instruments to support and replicate the human intelligence. The definition of AI has evolved in

the course of time, due to technology and scientific developments (Kok, Boers, Kosters, Putten,

& Poel, 2010). Nevertheless, AI focuses on solving problems that, if accomplished by humans,

would be considered a sign of intelligence (Moursund, 2006). The solutions spread across several

areas, ranging from autopilots for airplanes until shop suggestions. It all started as a fantasy or a

mere possibility of machines working for humans in an intelligent way. Philosophers saw intelligent

machines as a way to help them define what a human really is. Descartes, for example, had an idea

of a mechanical man, a machine that acted like a man, more as a metaphor than a possibility. As

the years passed by, the consequent evolutions in technology and computer science paved the way

to a real production and application of AI. Through science fiction, the idea of intelligent nonhuman

and robotic intelligent entities spread into people’s mind. In the 1980s, chess-playing machines

started arising in popularity, just like “The Turk”, that fooled people into thinking that the machine

was playing by himself. Finally, in 1997, the Deep Blue program defeated the world chess champion,

Gary Kasparov, which showed the real potential of AI to the community and led to a huge growth of

the field (Buchanan, 2005). In the early twentieth century, several inventions were made by major

academic laboratories and companies, proving the benefits of this application in real life.

2.2.1 AI in Telecommunication Providers

Telecommunications’ companies have lots of data from a variety of sources. Being capable of

using that data to hint about the market and their customers can help on the decision making.

Good business decisions can result in an increase in profits and competitiveness, while bad ones

can result in permanent loss to the companies.

In recent years, the interest in machine learning has seen a huge growth, and the applications

across industries have also increased. Some companies are leaving the statistical models they had

by a better performing and flexible solution provided by machine learning, while others are starting

to understand the advantages of his usage. The telecommunication industry in no exception, and

by identifying customer groups it is possible to create offers more personalized and that fulfill the

needs of those customers. By doing so, the customer satisfaction is increased and the consequent

probability of churn diminishes.

Churn is one of the biggest problems telecommunication’s companies face nowadays, as it is

very costly to have a customer doing a new service contract. Customer have lots of motivations

to change from a company to another, ranging from service quality and billing problems to service

accessibility and better priced offers.

10



However, the data is often collected in a manner that is not usable in the models. Sometimes

it is collected for a certain purpose and so it comes already digested, other times it is collected

with no specific purpose in mind and his correctness is undervalued. Moreover, data is not always

collected in the same time-frame, causing possible errors when gathering all the data in the same

dataset. The problem to be solved is also very unbalanced, which does not help when trying to

predict recurrences. For this reason, it is very important to take a deep dive in the data and have it

completely understood. Data mining and data visualization greatly help on this subject.

2.2.2 Machine Learning

In the past couple of decades companies are collecting more and more data from their customers

or operations. ML refers to the automated detection of meaningful patterns in data. Learning

means create knowledge from experience, where experience is given by the data available. Data is,

therefore, a key factor for ML applications because they need to pass by a training phase, where they

get all the knowledge. As expected, and contrary to the common approach when programming, not

everything can be controlled and the output produced cannot be explicitly understood. This happens

because ML models can identify patterns where humans cannot. The use of ML makes particular

sense when we try to replicate tasks performed by animals or humans, in a routinely but not defined

way, just like driving. Tasks beyond human capabilities or that are just very hard to accomplish in

a serviceable time window are also a great use for ML applications. Usually, things that require

high computational power fit under this category, like astronomical data, weather forecast, genomic

analysis andmany others. With the increasingly amount of data available and acting like a knowledge

base, systems that use ML tend to increase their performance. The adaptability of ML models

also contributes to the use of it in real world applications, as environments constantly change and

adapting systems can be expensive (Shalev-Shwartz & Ben-David, 2013).

Supervised Learning

Learning can occur in a supervised way, where the training data has information about the correct

answer the model should output. With this approach it is expected that the learner should compare

the new situations with the previously identified patterns, stablishing positive relations that outcome

a right solution. Commonly, this is used in scenarios where the goal is to predict some missing infor-

mation (Shalev-Shwartz & Ben-David, 2013). The answers provided are called labels and a problem

could be identified as a classification or regression problem according to them. In a classification

problem, labels are finite and represent something discrete like YES/NO, colors (R/G/B) or even

a mood (Happy/Sad//Frustrated). However, in regression problems, the number of possibilities is

virtually infinite and the idea is to approximate a function that represents all the data points.
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Unsupervised Learning

In the unsupervised learning approach, the goal is usually to create a summary or compressed

version of the data available (Shalev-Shwartz & Ben-David, 2013). This learning, contrarily to the

supervised, doesn’t use labels as a way to get information about the problem. Instead, the learning

idea is to identify similarities between the data entries. By finding this similarities and patters it is

possible to create several clusters of data that can be considered similar.

2.2.3 Classical Supervised Classifiers

Logistic Regression

Logistic regression is used for classification tasks. It derives from Linear Regression by composi-

tion of the sigmoid function over the class of linear function. As it is a statistical model, the sigmoid

function is applied over the probability of the class.

A linear regression is an algorithm capable of identifying a relation between one or more variables,

by fitting a linear equation to the given data points. This linear equation forms a regression line, like

the one seen in figure 2.1.

Figure 2.1: Linear Regression illustration. Extracted from (Ralabs, 2019).

In a linear regression there are several variables X that result in a outcome Y. If X is only a variable,

the model is a simple linear regression, whereas in the case of several variables X, the model is a

multiple linear regression.

Logistic regression works in a similar way but, instead of having just one outcome Y, it has 2

or more. As an example, there could be 3 different Ys, each one of them representing a possible

outcome. The exit value for each one of the Ys would be corresponding to the probability of that

outcome. All the Y values would sum up as 1, or 100% probability of one of the outcomes to happen.
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Decision Trees

Decision Trees (DT) classifier works by breaking down a dataset into smaller subsets based on

different criteria. When trying to predict and instance X it travels from the root node of the tree up to

the leaf, after clearing all the conditions created when training, taking in consideration the best and

most significant features for the model at each node. The number of nodes is given by the depth

we want to achieve, according to the problem, resources and data available (Fig. 2.2). They are

good predictors for both binary and multi class problems.

Figure 2.2: Decision Tree Regression adaptation with different depths. Extracted from (Pedregosa
et al., n.d.).

This is a non-parametric supervised method. When in train, a series of trees are built and in

each tree exists a node holding a classification rule. In each side of the node there could be another

two tree that have other classification rules themselves. When a data entry is evaluated it follows a

path in the tree built in the training phase. At each node, the classification rule is compared with

the information that the data entry holds. In DT, the data is divided in heterogeneous groups using

techniques to gain information like Gini, Chi-square and Entropy.

Support Vector Machines

In Support Vector Machines the work is done by separating as much as possible the different

clusters of data identified (Fig. 2.3). The main problem for the algorithm is to predict from which

cluster a data point belongs when it is equally distant from two or more classes. The separation

and increase of distances between the points of the classes is, therefore, the main challenge and

is countered by different kernels and parameters that could be applied.
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Figure 2.3: A representation of the division of different points of clusters. Extracted from (Nelson,
2020).

Naïve Bayes

The Naïve Bayes classifier is a clear demonstration of how generalization can simplify the learning

process. The generalization is done by assuming that each one of the features is independent

of each other, decreasing the number of examples needed to learn about all the features. It is

especially efficient in situations where the amount of data available is not big enough for other

algorithms. Another benefit is the high scalability of this classifier due to the linear time taken to

evaluate, instead of the more common iterative approximation that other classifiers perform.

The classifier is based in the Bayes theorem, that describes the probability of an event A to

happen, knowing that a event B already happened, equal to the probability of a event B happen,

knowing that A happened, multiplied by the probability of the event A happening, all that divided by

the probability of the event B happening (Eq. 2.1).

P (A|B) =
P (A|B) ∗ P (A)

P (B)
(2.1)

The name ”Naïve” comes from the supposition that the variables are all independent. By con-

sidering them like that, the probability of B only needs to be extended to all the variables of a data

entry.

K-Nearest Neighbors

The K-Nearest Neighbors (KNN) classifier operates by checking the distance from the test sample

to the known training examples. In the training phase, it groups data into classes according to the

patterns identified, balancing the importance of each feature accordingly. In the test phase, it aligns

the example provided and measures the data point created to the center of the other data points,

classifying the new entry as the one closest to the data points previously known (Fig. 2.4).
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Figure 2.4: An illustration of the data points and sample points to predict. Extracted from (Srivastava,
2018).

2.2.4 Ensembles

Ensembles is a machine learning technique where several base models are combined to produce

the optimal model. A common problem in machine learning is having too much noise, bias and

variance (Fig. 2.5).

Figure 2.5: Bias-variance problem illustration. Extracted from (Mayo, n.d.).

In general, ensemble techniques produce more accurate predictions, are more stable and robust

because their individual models are simple and can capture both linear and non-linear relationships

in the data. However, there is a reduction in model interpret-ability because several models con-

tribute to the prediction result. Computation and design time can also be costlier because several

models can take too long produce an output. Ensembles could be of Bagging or Boosting type.
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Bagging

In Bagging, each one of the models that make up the solution is exposed to a different subset of

data. The output of the individual models is, therefore, independent of the others even at the data

level. The data being divided and independent makes overfitting a less notorious problems because

the variance error is, overall, spread across the models. This helps to reduce the variance, thereby

overcoming problems related with overfitting.

Random Forests are an example of the application of the bagging technique. It’s a algorithm

based on DT that split the data entries features in subsets and builds several trees, having each one

of them the corresponding subset of features. When trying to make a prediction, all the DT have

their outcome. The resulting outcomes are weighted and the final decision comes as a result of all

the previous ones.

In this model it is important to consider the amount of trees and how big a leaf should be

considered before becoming another tree. Less trees and bigger leafs get faster results. However,

if those values are too large or too small they can reduce the performance of the model.

Boosting

Boosting, contrarily to Bagging, makes the models dependent on others. It is an iterative tech-

nique that increases the weight of an observation based on the last observation done, in order to

classify it correctly afterwards (Fig. 2.6). The first algorithm is trained on the complete data and the

subsequent algorithms are trained by fitting the residuals of the first algorithm and giving enough

weight to those poorly predicted observations. The week learners, the individual algorithms, are

good specifically in predicting what they were trained for and that is why the model they can boost

the ensemble performance.

The most well-known boosting technique, Gradient Boosting, relies on the intuition that the best

possible next model, when combined with previous models, minimizes the overall prediction error.

The name gradient boosting arises because target outcomes for each case are set based on the

gradient of the error with respect to the prediction. The base idea is to set target outcomes for the

next model, in order to minimize the error. If a change in the prediction causes a big drop in the

error, then it has great value in the next model.

LightGBM is a gradient boosting framework that uses tree based learning algorithms. By default

it uses decision trees but also support random forests, Dropouts meet Multiple Additive Regression

Trees (DART), and Gradient Based One-Side Sampling (Goss) (WelcometoLightGBM’sdocumenta-
tion!—LightGBM3.0.0.99documentation, n.d.).
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Figure 2.6: A boosting ensemble example, training the subsequent models with the errors from
previous iterations. Extracted from (Ramzai, 2019).

The main difference over other algorithms is that it grows the trees vertically instead of horizontally

and does it life-wise (Fig. 2.7) instead of level-wise (Fig. 2.8). It grows the leaf with higher delta loss,

decreasing the max the loss at each level. This solution allows for a higher speed in the algorithm,

making it handle larger data sizes and lowering the memory needed to run. Those characteristics

are of high importance in today’s age, where data is becoming more abundant and complex.

Figure 2.7: LightGBM works leaf-wise and vertically. Extracted from (Mandot, 2017).

Figure 2.8: General tree based algorithms work level-wise and horizontally. Extracted from (Mandot,
2017).

CatBoost is also an algorithm for gradient boosting but only on decision trees. CatBoost imple-

ments symmetric trees, which is also a better solution to general decision trees tree growth which

can be unbalanced (Fig. 2.9). Having the trees symmetric results in a more constant time to

prediction.

Another major advantage of this algorithm is that it can reproduce a time sequence in the training

examples. This is important in situations where a row of the training data is not independent of the

previous events (e.g. the same customer’s previous calls).

XGBoost is an algorithm based on DT where the boosting is applied to the gradient. It is similar

but not as fast as the LightGBM, offering, however, more consistent results.
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Figure 2.9: Other boosting tree algorithms versus CatBoost symmetric trees implementation. Ex-
tracted from (Chepenko, 2019).

Stacking

In stacking, models are not simply trained with a subset of the features or being improved over-

time. Instead, from the various models available the best one is chosen for each one of the possible

labels. As an example, if a classification task has labels A, B and C, there will be 3 classifiers chosen

with each one of them being the better predicting label A, B or C. There are to components that

make this possible:

• Base model: individually trained on the data and the ones that give the probability values

for each label;

• Meta model: responsible for selecting the best base model for each one of the classes.

Voting

In voting, every one of the models outputs is prediction and the final prediction is a balance of

the votes. This balance could be done in tho different ways:

• Hard-voting: where each one of the votes has the value 1 or 0 and the result is the mean

of the votes;

• Soft-voting: where the votes consist in probabilities (i.e. confidence in prediction) and the

prediction will be according to the mean of the predictions.

2.2.5 Artificial Neural Networks

AI can be defined as the capacity of a computer have to simulate the human intelligent processes.

AI is, therefore, a branch of computer science which tries to create systems capable of learning new

concepts and tasks. These systems, ultimately, solve the problems they may face accordingly to
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the behavior acquired previously in the most intelligent way (Hunt & Hunt, 1986). One of the

several approaches to AI is ML, which consists of a computer being trained with large amounts of

data using specific algorithms, in order to allow the computer to gain the ability to adapt to new

situations having in consideration previous patterns. Artificial Neural Networks (ANNs) are one of

the several algorithms used in ML. An ANN is a system capable of processing data in a large and

interconnected structure, similarly to the human brain cortex. Having this human brain approach to

problems, by generating connections between the structures, computers are provided with a toolset

that make them capable of doing similar things to humans and that normal computers do in a poor

way (Uhrig, 1995). Having this structures (Fig. 2.10) that provide similarity to human brain, ANNs

show a big capability to modify their own internal structures in order to better perform in relation

to an objective function. They are able to solve complex nonlinear problems because they can act

over knowledge instead of computing all the possible options or simply follow rules.

In figure 2.11 it’s possible to observe the propagation and back-propagation steps. This is the

most common method to train the neural networks, with the propagation phase being responsible

for passing the inputs of the new data entry to the network, which generates an output. That output

is then compared to the true output and the error is calculated. The back-propagation phase uses

the calculated error to adjust the neurons’ weights from the last layer to the first, adjusting the future

outcomes.

Figure 2.10: Comparison between an artificial and a biological neuron. Extracted from (Vazquez,
2018).

The internal structures are composed by nodes, which have one or more connections to other

nodes, and are activated (like in the human brain) accordingly to a certain activation function.

Therefore, it’s worth to better understand this basic structure of an ANN.

Nodes Nodes are the basic structures of ANNs, acting like the human brain’s neurons. They

receive the data and produce an output, accordingly to the weight associated to the input, the bias

and the activation function they have.
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Each one of the nodes receives communications from the ambient, if it is part of the primary

layer, or other nodes, if it is part of the subsequent layers. Each one of these nodes has his unique

behavior accordingly to the function given at it and the data fed. This function, called activation

function, acts like a switch between the input and output, that modulates the signal accordingly to

the problem, similarly to the behavior of neurons on a human brain. Adding this behavior with the

ability to give different weights to each one of the input connections, it is possible to build a complex

system that replicates the human brain behind a complex mathematical equation composed by

nodes functions and connections weights (Grossi & Buscema, 2007) (Fig. 2.11).

It is also possible to introduce a bias element in the node, just like our brains do. Bias allows

neurons to favor a certain output, and is useful in real-world scenarios where some outputs are

more important or less frequent and need an adjust.

Nodes are combined in order to perform a layer (Fig. 2.11). A neuron by itself wouldn’t be able to

communicate and generate the best outputs for every different situation, as the result of our brain’s

success is a composition of millions of neurons working together. A higher number of layers is used

in complex problems, demanding for higher computational resources.

Figure 2.11: Fully connected Artificial Neural Network (Azlah et al., 2019).

There are also several parameters that can be adjusted within the ANNs, that are important and

make for a better learning process. Those are:

• Number of Hidden Layers - the sheer number of layers a ANN uses to comprehend the

data and create relations between the inputs received. For a faster and better generalizing

network, the fewer layers the better. Increasing the number the layers, however, increases

the classifying power of the neural network for more complex problems;
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• Learning Rate - determines the amount of correction term that is applied to adjust the neu-

ron weights. When a ANN is being trained, the neurons weights are constantly adjusted

accordingly to the result of the previous prediction. The greater the learning rate, the faster

the training time. However, this could lead to less optimal results, whereas lower learning

rates take more time but can be more accurate. However, small learning rates also have the

disadvantage of possibly being stuck on a local minima;

• Momentum - determines how much of the previous correction is remembered and carried

on in the next correction. With a larger momentum, the current correction has more em-

phasis. Momentum is important because it allows for a smoothing between the current and

the previous corrections, so that a single iteration doesn’t ruin the learning process in an

undesirable correction;

• Activation Function - the function through which the weighed sum of the node is passed, in

order to have a significant output, namely as a vector of probability or a 0–1 output;

• Minibatch size - the number of samples a model trains with at each step. When feeding the

ANNs with big amounts of data, it could take long for them to train if they are fed with one

sample at a time. The typical size of the minibatch is 32 or higher, but with the consideration

that a value could be too big, making the model over generalized;

• Epochs - the number of times the ANN is fed with the entire dataset. A low epoch number

can lead to underfitting, while a big epoch number can lead to overfitting. This happens

because the bigger the number of times the model is trained on training data, the more it

gets adjusted to it;

• Dropout - removing some of the nodes, making the model less heavy and lowering the infor-

mation propagated with redundancy. This also helps the model to generalize better.

Deep Neural Networks

Computers can perform logical operations faster than humans. DNNs are an evolution of ANNs,

where several more layers are added, in order to process the information received in a more human

way. ANNs and the shallow common ML models (like Support Vector Machines, Random Forest)

often fail to recreate the abstract capacity of human brain, like the associations and deconstruction

of an image or sound. Through life, humans are exposed to an immense amount of information

and always learn something from it. Experiences make people learn what to expect from certain

input, just like a DL model does. Children are in the early stage of life and, therefore, are exposed

to a more intense process of learning and adaptation. They learn what to say in certain situations,

how to demonstrate their feelings, how to recognize animals and objects, always with the help of
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their parents. Parents act like the feedback system of DL models, as they help to get the correct

output value and provide children with the best data as possible.

The shallow ANN have only 3 layers (input, hidden and output), whereas DNN have multiple

hidden layers (Fig. 2.12). Through the use of multiple hidden layers it is possible to get a better

approach to the way human brains work. As an example, humans can smell food (receive the

input), have the desire to it something (hidden layer for thought), then think about the diet they are

committed to (hidden layer for memory), and decide to ignore the diet just for once (hidden layer

for decision making), with the outcome of really eating something. In an ANN all this reasoning

would not be possible since there would be not enough hidden layers. The disadvantages inherent

to this approach are the increased difficulty (i.e. time) to train and the possibility that the neural

network becomes too intelligent for the problem itself. When the DNN are deepest then the problem

difficulty it’s frequent to occur overfitting.

Figure 2.12: Comparison between a Simple Neural Network and a Deep Neural Network. Extracted
from (Vazquez, 2017).

Common DNN architectures There are several architectures of DNNs, which are often used

in different applications. The most common applications of DNNs are related with image, text, and

sound.

The Deep Feed Forward (DFF) is the most common structure, where the first layer receives the

inputs, passes them to the middle (hidden) layers, and produces the output. It only differs from

the typical feed forward network because it adds multiple hidden layers. They nodes are often fully

connected with the nodes of the previous and next layer.

The Recurrent Neural Network (RNN) introduces a different type of cell, the recurrent cell. This

cell is mainly used in problems where the context is important, because they pass their output to

themselves with a delay, i.e. they see their output from previous iterations. Applications for these

types of networks are commonly found in problems involving texts.

Long/Short Term Memory (LSTM) networks are also commonly used in text classification. They

introduce a new type of cell that resembles memory. These cells have a series of logical gates that
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allow for previous information (memory) to pass on in a future time, while also erasing previous

memories from time to time.

Deep Convolutional Networks (DCNs) are the most well-known networks to process images nowa-

days. They feature convolution cells that simplify the data, keeping only the features that are relevant

during this compression. In image recognition, this could be a layer of gradients, another of lines,

a third of shapes, and so on. By the end of these layers there is a DFF network for final processing.

The most relevant architecture for this dissertation is DFF, because no time or memory factor is

needed, and no image processing is to be made.

2.3 DATA PREPROCESSING

Preparing the data is very important to the success of the machine learning techniques. Data

is gathered using several devices and passing through several phases before getting into the data

warehouse, which increases the probability of errors, inconsistencies or noise. MLmodels frequently

have their performance reduced by this problems, so reducing their impact is of great importance.

2.3.1 Data Visualization

Nowadays, data is more complex than ever. Understanding the meaning of each data field is

very important to understand the problem being faced and contributes to an easier solution. Data

visualization tools makes this easier than using tabular data. It’s easier for humans to understand

relations through visual application, like a graphic or a map, and even to see where patterns, ten-

dencies or outliers are forming. Some of the most common graphics are:

• CountPlot - a graphic that uses bars to represent the corresponding count for each column

value;

• BarPlot - a graphic similar to the CountPlot but using the count axis to represent another

variable. Allows to put two variables against each other;

• DistPlot - a graphic that represents counts for variables contained in certain intervals;

• BoxPlot - a graphic that represents the lower and superior limit of the data, as well as the

quartiles and median. It allows to better visualize outliers.
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2.3.2 Data Cleaning

After understanding the state of the data, it is important to clean it and improve his quality. The

problems targeted in this step are:

• Inconsistencies;

• Duplication;

• Empty data fields;

• Data fields with wrong information.

Inconsistencies are generated when joining data from different sources, as some sources contain

informations related to their domain that, when used in order to make predictions on other domain,

lose their meaning or compatibility.

Duplication can also occur due to merges and joins or because the information systems need to

follow protocols whose transaction are recorded.

The lack of data present in certain records is also a big problem. In situations where data is

missing it is very important to decide between removing the entire data entry or to fill it. Usually,

when lots of missing fields are present the data entry is removed. When this happens, due to the

characteristics of the problem, all the data entries related to the customer should also be deleted.

If that operation was not performed, the models could see only parts of a problem that led to the

recurrence, reducing the capability of identifying those situations. When filling the data entries with

other calculated values it’s probable that the data becomes deviated from the reality, which also

causes troubles to the models.

Data fields with wrong information can occur when some field is filled with data that is calculated

using considerations that are not considered true for the problem being solved. When this happens,

the problem should be addressed similarly to an empty data field situation.

2.3.3 Data Integration

Usually, when facing a certain problem, data scientists have one data source in mind that could

be leveraged to solve that problem. However, more data from different sources could be added to

this base dataset, contributing for a better performing model. Joining data from several sources

is, however, a difficult operation, from sources with different timestamps to different IDs. This step

needs to be done by someone with a high level of business knowledge.
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2.3.4 Data Transformation

Transforming the data is important because it introduces business knowledge into the dataset or

makes the data have less noise. There are several procedures that count as data transformation

steps (Han, Kamber, & Pei, 2012).

Smoothing

Used to reduce noise from data and includes the following techniques:

• Binning - Where data is grouped by ranges, thereby reducing the number of different values.

The groups could have the same length or the same number of data points;

• Clustering - An automatic process where an algorithm gathers data points by clusters, com-

paring their similarities.

Feature Construction

New attributes are constructed and added using the given set of attributes. This helps to make

clear for the model characteristics that seem to be important to the data scientist.

Aggregation

Where the available data is aggregated or summed. As an example, joining all the daily upload

data consumption in a monthly feature.

Normalization and Standardization

Normalization happens where the attribute data is scaled so it fits in a certain range, usually

of -1 to 1 or 0 to 1. This helps the models to consider every feature with the same importance.

Standardization happens when the data is transformed in order to have an average of 0 and a

standard deviation of 1.

When the data distribution is not gaussian or the data deviation is low, normalization is a good

choice since it doesn’t change the data but only the scale. Normalization, however, gives outliers a

bigger importance with the scaling. Standardization reduces the outliers’ values but can generate

a significant distribution change in the data. Currently, some different version of normalization

have been developed that try to tackle his lack of outliers’ remotion by making use of the quartiles

minimum and maximum values.
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Discretization

Where the raw numeric values are grouped using labels to replace them. As an example, classi-

fying every person with an age between 0 and 18 as youth.

Concept hierarchy generation for nominal data

The same as discretization but with things like street names grouped in cities.

2.3.5 Feature Selection

Although adding information to the model is important, sometimes reducing the number of fea-

tures can contribute to the model’s better performance. Columns with a lower importance can affect

the model because:

• They introduce redundancy, increasing the overfit potential which is undesirable;

• Increase the training time since the model needs to perform calculations and take in consid-

eration that variable;

• Reduces the model’s performance because it introduces noise.

There are three possible methods to reduce the features’ count. The filter methods use statistical

metrics that observe the intrinsic properties of the features. Wrapper methods, however, use the

performance retrieved from classifiers in order to calculate feature’s importance. In embedded

methods, the variable selection algorithm is integrated in the algorithms’ learning phase.

2.4 SAMPLING TECHNIQUES

Sampling Techniques are often used in problems where there is an unbalancing in the data.

Increasing or decreasing the frequency of a class in the data can improve the prediction capability

of a model (Lemaitre, Nogueira, Oliveira, & Aridas, 2017a). Figure 2.13 shows the improvements of

increasingly balancing of samples in each classes for a given problem.

The dataset used to produce this work was unbalanced, with a ratio of 1 positive for each 9

negative values. The most important class to predict was the positive one, that represented cases

of possible recurrence. This motivated several tests with and without sampling techniques, in order

to understand the sensibility of the models to them.
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Figure 2.13: Impact on balancing ratio in a linear SVC predictor. Extracted from (Lemaitre et al.,
2017b).

2.4.1 Oversampling

Random Oversampling

The Random Oversampling is the most common oversampling method. In this method, random

entries are chosen to be duplicated in order to achieve the desired proportion of data. This technique

is simple but often causes overfit and doesn’t add any information to the model.

SMOTE

Synthetic Minority Over-sampling Technique (SMOTE) is an alternative to the Random Oversam-

pling technique that, instead of duplicating existing entries, synthesizes new ones from the existing.

This not only helps to prevent overfitting, since the data is not repeated, but also can be seen like

a type of data augmentation (Brownlee, 2020a).

The way SMOTE works is by selecting entries that are in a close feature space and calculating a

function that approximates them. By doing so, new points of the function can be calculated, giving

new entries that will be used in the oversampling. To do so, a first random entry is chosen and then

a number of k nearest neighbors of that class are found (usually k=5). From the found neighbors,

one of them is chosen randomly and the function is calculated to approach the two selected entries

in the feature space. In Figure 2.14 is represented an imbalanced situation that is after fixed using

SMOTE, as seen in Figure 2.15.
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Figure 2.14: Scatter Plot of Imbalanced Binary Classification Problem. Extracted from (Brownlee,
2020b).

Figure 2.15: Scatter Plot of Imbalanced Binary Classification Problem Transformed by SMOTE.
Extracted from (Brownlee, 2020b).

2.4.2 Undersampling

Random Oversampling

The Random Undersampling is the most common undersampling method. In this method, ran-

dom entries are chosen to be deleted in order to achieve the desired proportion of data. This

technique is simple but often causes lost of information, mainly in situations where data entries are

not fully independent.

Tomek links

This technique is an alternative to random undersampling that tries to increase the space between

the different classes. This increased space allows the models to better separate the classes, not

having to considerate the sometimes noisy data in-between. The Figure 2.16 shows how this method
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changes de data distribution.

Figure 2.16: Application of Tomek links on data. Extracted from (Alencar, 2017).

Cluster Centroids

In this technique, centroids are generated using clustering methods on the data. The data is

grouped by similarity so it helps on information preservation. Figures 2.17 and 2.18 show how data

distribution is affected after the application of the undersampling technique.

Figure 2.17: Data before Cluster Centroids application. Extracted from (Alencar, 2017).

Figure 2.18: Data after Cluster Centroids application. Extracted from (Alencar, 2017).

29



2.5 MODEL TRAINING

2.5.1 Activation Functions

Nodes, the artificial structures that aim to recreate human neurons, act under a function. This

function allows nodes to have a positive or negative impulse upon the next node. The function

outputs a value according to the received inputs. Activation functions can be linear or nonlinear

(Fig. 2.19). With linear functions the results are easier to compute and provide a faster model,

while reducing his capability and leading to limitations. On the other end, nonlinear functions are

more powerful and complex and can be one of the following: Softmax, Sigmoid and ReLU. Softmax

is often used in multi-classification problems, normalizing the previous layers bringing the total of

all to one. This leads to a result that specifies the probability for each one of the classes. In the

end, only one label should have a value of 1, while the rest maintain a value of 0, indicating strong

certainty in the prediction. Sigmoid is usually used in binary classification problems and aims to

give values closest to 0 and 1. ReLU is becoming a very used and important function over the past

years. It works well with large and consistent gradients and, for that reason, is being heavily used

in computer vision applications. It blocks the negative values and gives a linear importance to the

positive ones. This blocking action over negative values can, sometimes, be negative. Therefore,

Leaky ReLU was invented and does not block the negative values, only attenuating them.

Figure 2.19: Activation functions.
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2.5.2 Loss Functions and Optimizers

Other than activation functions, loss functions and optimizers are also very important to build a

efficient brain-like system. The loss function acts like the dad or mom who corrects any incorrect

behaviour of the sun they educate. In neural networks, this loss applies a penalty for the incorrect

predictions the model outputs, giving the feedback needed. The system receives the feedback of

the used loss function at any point and tries to adapt in order to reduce the loss. The adaptation

occurs in the nodes and in the connection’s functions and weights. Optimizers are responsible for

this operation and can perform differentiation or statistical work in order to succeed. In the present

work, optimizer is choice is not as important as loss function choice and, for that reason will not be

described in such an extensive way.

Cross-Entropy

Cross-entropy (CE) is one of the most common loss functions. It is a positive function that tends to

zero as the model becomes more capable of outputting the right values. For a multi-class problem,

it is possible to introduce a factor in representation of the class frequency, in order to mitigate the

class imbalance problems that often occur. This variation of CE is called Weighted Cross-Entropy

(WCE).

2.6 MODEL EVALUATION

2.6.1 Confusion Matrix

A confusion matrix (Fig. 2.20) is a matrix that shows the predicted against the true values. Each

row of the matrix represents the instances in a predicted class, for each one of the classes. The

columns represent the actual class for each one of the classes.

2.6.2 Accuracy

Accuracy (Eq. 2.2) is a metric for evaluating classification models, as a fraction of predictions

the model got right, including positives and negatives (Fielding & Fielding, 2010).

Accuracy =
Number of correct predictions

Total number of predictions
(2.2)

There is, however, a relevant point to be taken in consideration when using this metric: it only

shows the true effectiveness of the model when there classes are balanced. This could be easily
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Figure 2.20: Confusion Matrix.

explained by a situation when credit card fraud detection is imperative. In that case, the majority

of the occurrences are negative, i.e. there is not fraud, while a few of them will be positive. The

model could easily answer that every transaction was not fraudulent, therefore guessing on all the

true negative values. As the majority of the values would be negative, the model would have a great

performance by the metric by would not predict any fraud. In this situation, the cost of not predicting

a true positive is very high since a customer’s credit card would be used and the money available

could be spent.

2.6.3 Precision

Precision (Eq. 2.3) is a metric to measure the proportion of positive identification actually correct.

It takes only the positives in consideration (Google Developers, 2020a).

Precision =
True Positives

True Positives+ False Positives
(2.3)

2.6.4 Recall

Recall (Eq. 2.4) is a similar metric with Precision. Instead of measuring the relation of how

much of the positive identifications were actually correct, it tries to measure how many of the actual

positives (and not the predicted) was correctly identified (Google Developers, 2020a).

Recall =
True Positives

True Positives+ False Negatives
(2.4)
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2.6.5 F1 Score

The F1 score (Eq. 2.5) relates precision and recall in a weighted average, reaching his best value

at 1 and worst at 0. In multi-class problems, the F1 score is related to each one of the classes.

F1 score =
2 ∗ precision ∗ recall
precision+ recall

(2.5)

A more general F score (Eq. 2.6), that uses a positive real factor β, where β is chosen such that

recall is considered β times as important as precision, is:

Fβ = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(2.6)

The F1 score metric (β = 1), who gives the same importance to recall and precision, could be

used in a unbalanced dataset, instead of accuracy. It is also possible to divide it in macro-F1 and

micro-F1. The first one evaluates the performance considering that all the classes have the same

weight. The last one performs the evaluation considering the classes’ distribution, therefore being

more used in unbalanced datasets.

2.6.6 ROC Curve

A ROC Curve (Fig. 2.21) is a graph showing the performance of a classification model at all

classification thresholds. The curve plots against two axis: True Positive Rate and False Positive

Rate. There is also the AUC, or Area under the ROC Curve, which represents the probability that the

model ranks a random positive example higher than a random negative example. In conclusion,

AUC-ROC is a performance measure that represents the degree of separability of classes, that is,

how capable is the model of distinguish them (Google Developers, 2020b). The threshold is the

probability value from which a sample is considered positive.

2.6.7 Cross-Validation

Cross-validation is a method to test models’ performances on unseen data. A big mistake when

measuring models’ performances is testing in the same data in which the model was trained. Simply

removing a part of the available data is not enough to have confidence in the performance because

data could be badly separated, not representing real-life situations (Pedregosa et al., 2015). There

are two big types of cross-validation:
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Figure 2.21: AUC-ROC Curve representation (Narkhede, 2018)

• K-Fold - the data is divided in k subsets and the validation method is repeated k iterations.

In each iteration, one of the subsets is used as a test and the rest is used as training. This

greatly reduce bias because the majority of the data is used as training;

• Stratified K-Fold - K-Fold does not consider the target class when making the separation

through the subsets. Hence, there is a slight variation from the K-Fold implementation,

where each one of the subsets has the same percentage of observations of each class.

2.7 HYPERPARAMETER OPTIMIZATION

In the training phase, ML models change their internal parameters to better adjust to the problem,

in order to produce better predictions. However, models’ operation and structure is affected by a

group of parameters that could be defined by the data scientist, called hyperparameters. Adjusting

this parameters can be very important to produce better predictions since every problem is different

and finding the best combination of hyperparameters could result in significant improvements in the

model’s performance. There are several methods used to find the best combination.

2.7.1 Manual Search

The most basic search is the manual search. It consists in the usage of the data scientist’s

knowledge and expertise to build the model with the best parameters. Some iterations with different

parameters are conducted, one by one, with the data scientist evaluating the model’s performance

at each step until it is acceptable.
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2.7.2 Grid Search

Instead of having the programmer running the models and adjusting the parameters manually,

a automatic search over a set of parameters can be done. The set of parameters is still defined

by the data scientist but all the possible combinations between them are performed automatically

in the grid search. Every combination is evaluated and, in the end, the model with the best per-

formance is saved, as well as the best hyperparameters. There is, however, a problem with grid

search: the hyperparameter domain is still adjusted by the data scientist, which can result in a

lower performance if the scope is not right, and the method is computationally intensive. The data

scientist cannot simply choose all the possible hyperparameters because there could be millions of

different combinations, making the grid take a lot of time. It is better to use grid search when the

data scientist is sure of the hyperparameters that could provide good results.

2.7.3 Random Search

When exploring through possible good hyperparameters, random search is a good alternative to

grid search. Although grid search ensures that the best possible combinations is found, because

all the combinations are tested, the random search is still capable of finding a similarly good result

in less iteractions. Instead of performing calculations through every possible combinations, it tests

the hyperparameters randomly. With this method, the data scientist is able to explore much more

hyperparameters and, after seeing the results obtained from the tests, he can choose a subset of

hyperparameters that shown the best results.

2.7.4 Bayesian Search

In this search the hyperparameters are adjusted based in a regression. From a set of hyperpa-

rameters, the model tries to guess what would be the subset of parameters that could provide with

a better performance, using the previous tests’ results. The combinations could be similar to the

previous ones but, sometimes, other parameters are randomly chosen. This helps the model to

follow the best hyperparameters at each time but also to explore all the values’ hyperspace.

2.8 RELATED WORK

Over the past years, an increasing number of studies have been conducted in order to better

predict the customer´s behavior over telecommunication companies. Before the rise of ML, com-

panies used all kinds of statistical models to predict situations that could affect their financial value.

Whereas some of these models could achieve a good performance, they are not able to use all the
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data available in today is systems. ML is, therefore, used to allow a better use of this available data

and to improve the overall quality and velocity of the predictions. Special care was given to churn

situations, therefore the majority of the articles tend to cover this problematic. Customer churn de-

stroys profits and reduces the overall shareholder confidence. In the beginning of the decade, churn

rates reached 25% in Europe and acquiring new customers cost five times more than maintaining

the current ones (Yan, Miller, Mozer, & Wolniewicz, 2001). It is also expected that customers who

switched from another company continue to do so in the present one, making this strategy a more

risky one (Larivière & Van Den Poel, 2005).

In (Hung, Yen, & Wang, 2006) were used two approaches to predict churn that consisted of a

decision tree and a back propagation neural network. In order to better classify the probability of

churn, a K-means clustering method was used to divide customers in different churn sections, which

replicate value-loyalty segments. The division took in account the billing amount (and, therefore,

the raw current value of the customer), tenure months (to introduce the importance of loyalty in the

model) and payment behaviors (to replicate credit risks). This division allowed to assess if the cus-

tomer is behavior over the different clusters is different, which would lead to the creation of distinct

models for each one of the clusters. The data elements fed to the models consists of demography,

customer usage, billing and customer service interactions. The group measured the performance

of different models and applications and concluded that clustering the customers in different seg-

ments contributed to a better performance. They found some difficulties due to the limited number

of churners present in the dataset. They were also presented with a decrease in performance in

the sixth month of validation. This could be due to several external factors like competition, natural

disasters, and others. A method to counter this fluctuations in performance could be adjusting the

data fed to train the model to a lower interval. The importance of using more or less historical data

is approached in (Yan et al., 2001), where the use of more data in the same time window and the

extension of this time window is debated. In the study, it was concluded that using only 50% of the

data available in the defined time window did not contributed to a loss in performance. Sometimes,

more data does not translate in more quality or performance for the model. When trying to get more

historical data by increasing the time window, a new problem emerges: the customer may have a

tenure of less than the time window. The work around found was to create several aggregations

considering several time windows and from shifted moments in relation with the test data. When

doing extractions from different moments and with different time windows the storage needs and the

training difficulty increase. A solution to reduce the training difficulty is to produce several individual

models for each one of the time windows and shifted time frames. Each one of the individual models

would then be combined in a ensemble and retrieve a weighted prediction. The conclusion was that

the ensemble method contributed to a better classification and should be taken in consideration in

future or similar approaches, like the one being studied. A common problem when training models

is including false predictors or information that is not available when the model is put to the test. In

(Yan, Biosciences, Wolniewicz, & Computing, 2004), this situation is discussed and batch updates
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are identified as the most probable cause for this types of error. The data sources provided to our

study come from different systems and are built in different ways. Some are constantly updated,

others perform batch operations overnight and others perform operation at the month end, turning

this into a real problem that should be taken in consideration.

Probably, other studies using machine learning techniques have been conducted in telecommu-

nication companies. However, this companies tend to keep them hidden from competitors, since

the studies can reveal information about the business model or motivate them to explore similar

situations.

In Neural Networks and other ML models it is not possible to introduce domain knowledge in

the training phase. In (Yan et al., 2004), the solution for this problem is to modify the data fed

to the model in order to represent this knowledge. This can be through clustering or techniques

that modify the data but do not increase the feature cardinality or just by creating a new feature

that could introduce the domains knowledge into the data. Feature extraction done with a good

domain knowledge also contributes to a good model training, as the quality of the features extracted

can impact a lot on the model is performance. Prior to the feature extraction phase, however, the

features selected from the data available are also important. People tend to maintain all the possible

attributes they have but some only add noise or complexity when training the model.

However, even thought deep learning approaches show better performance in solving several

problems, when compared to classical machine learning, there are not studies applying them to

telecommunications or other related fields. This could be due to data being often in a tabular

format, whereas deep learning techniques are more often used in image, sound or text contexts.

37



3. RECURRENCES DATASET



3.1 MATERIALS

The goal of this work is to develop a ML model to predict when a client will suffer a recurrent

problem in a telecommunication service. To make this possible, the complete historic of problems

and efforts done in his resolution is needed. Each client being different, according to factors like

age, literacy, need for the service and other variables, acts in a different way when a problem occurs.

There is also a big amount of different problems in each field of service of the telecommunication

company, making harder the process of identification of the problem and troubleshooting. Technical

diagnosis and technical reparations could also be needed and should therefore be considered when

trying to predict if a recurrence will happen. The complete dataset will then summarize all the

interactions between client and customer service, all the technical analysis and all the technical

interventions. It will also compile information about the client profile and services usage. Python

will be used as the main programing language to conduct the work as it has many libraries and

frameworks that support ML development, with efficient and simple implementations found easily.

Python was used along with other tools like Jupyter Lab, Keras, TensorFlow and Docker.

3.1.1 Working Environment

Docker

Docker makes possible to implement Operative System (OS) virtualization in a simple and self-

contained environment. The containers docker creates act like a simple and stripped OS version,

isolating all the main system in a kind of virtual machine. Even though it allows to make an isolated

system, several containers could work simultaneously in the same system using the same physical

resources like the CPU, GPU and RAM. Working with amounts of data like those available com-

promises the efficiency of the common laptops and workstations, making Docker a go-to solution,

allowing corporate users to efficiently use company servers. To start a Docker, the software builds

the software images available from the base environment and adds the specific changes required.

Some changes are due to the necessity of the user and the work that must be done. In this specific

case, modules like Keras, TensorFlow, Numpy and others will be needed.

Table 3.1: Hardware in which Docker was running.

Resource Amount
CPU Cores 12

RAM 64 Gb
HDD 1 Tb
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Jupyter Lab

In order to better organize and develop the code for the project, the Jupyter Lab IDE was used.

Jupyter Lab is an evolution of the well-known Jupyter Notebook, a browser-based tool that supports

workflows, code, data and visualization. The tool allows to split pieces of code, text and output in sev-

eral different cells. This allows to run pieces of code independently, removing all the computational

overhead that happens every time something fails.

Keras and Tensorflow

Keras is a high-level library that provides an easy and quick way to develop DNNs. Together with

Tensorflow, who also allows to efficiently build powerful bases for the network, they allow for fast

prototyping. Having high capability GPUs available also makes the use of this tools more important,

because they can use the computational power available with their GPU support. In fact, although

Keras running on top of TensorFlow, sometimes it is needed to use plain TensorFlow to better tune

the network structures.

Python and Packages

Python was used as the base language for the project. It offers a wide range of packages that

allow to read and transform data as needed. pandasis one of the main packages, used to read the
data from the sources and to create dataframes with it. Dataframes are structures that facilitate

an efficient data manipulation. numpyhas a wide range of mathematical functions that allowed for
transformations and calculations in the dataframe. seabornallowed to get better data visualization,
a very important measure to understand the data and what exactly is needed to do. In the end,

scikit-learnwas used to apply sampling techniques and to create and optimize classical machine

learning models, as it offers a very good support for a wide variety of models.

3.1.2 Data Description

Customer Support Dataset

In the customer service dataset, each line represents an operator’s interaction in the system,

relative to a customer. It’s possible to verify that each ticket has, associated to it, columns with

information about the following subjects:

• Administrative: what are the systems that promoted the creation of the ticket and if the

administrative team, responsible for internal problems, was needed;
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• General customer data: identification key, type of contract, obligations, previous recurrences;

• Ticket related data: identification key, service in observation, motive for the call, responsible

department, receiving call operator.

Customer’s Personal Data Dataset

Each line describes the useful information that the company has for each customer. It consists

of attributes such as the region of the country where the customer lives, the amount the customer

pays monthly, gender, whether the electronic invoice is active or not, whether it meets the payment

deadlines and also in which billing cycle it is inserted. There’s also information about the calculated

customer’s age.

Customer’s Service Usage Dataset

Each line of this dataset stores information about the usage of the contracted service of a cus-

tomer, from mobile data to broadband call time used.

Technical Interventions Dataset

This set of data represents all the technical surveys that have been performed remotely on cus-

tomers, as well as the on-site interventions needed.

Therefore, when a customer has a technical problem with their services, they try to solve the

problem by phone call instead of immediately scheduling a personal intervention at the customer’s

home, which has an additional cost for the company. This dataset is, therefore, made up of attributes

such as the client’s equipment model, contracted tariff, problem and symptom described, some

steps taken, which results from the screening, etc.

If there’s a need for a specialized team to solve the problem on the customer’s location, that

intervention is also registered. In this case, information about the technician, the time spent and

the tests performed are able to be used in the dataset.
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3.2 DATA UNDERSTANDING AND PROCESSING

3.2.1 Business Understanding

Telecommunication companies have made a huge contribution to the increasing use of digital

devices by providing the infrastructure for ordinary users. They end up with large data pool from

which information can be extracted and converted into knowledge.

Customer support services have evolved significantly in recent years, and most simple problems

can usually be solved with specific software without direct human interaction. Nevertheless, cus-

tomers sometimes still have to contact a specialized operator directly. In order to provide the most

cost-effective support service, customers usually first contact the general support operator, who is

not specialized in any type of problem. As a rule, generalist operators are unable to solve technical

problems and to schedule a call between technical support and the customer. Accordingly to the

protocol, operators typically apply a number of automated processes that can solve the reported

problem. Sometimes the problem seems to be solved, but the solution is temporary and the devices

show the same symptoms later on. According to the data in our study, customers call the customer

support again in about 10% of cases within a month recurring in the previously claimed problem.

Operator time was then wasted and the solution was unsatisfactory, which added to the customer’s

annoyance. It is therefore important to avoid these situations, but also to predict whether customers

will recur.

Nowadays, companies store a lot of information about their interactions with customers, including

a detailed history of previous calls. This information can be used to determine how often customers

return and why the complaints were motivated. The perfect scenario is that no customers complain

because the contracted service is fully functional. Improving the customer support efficiency and

the relation with the customers is of great importance since it promotes the decrease of churn,

increasing company’s profits. The goal of this work is to improve customer satisfaction by lowering

the number of recurrent problems, i.e., problems that occur within a month for the same reasons,

following the company’s norms. A monthly time frame is useful in telecommunication companies

because all the processes and payments are in that same time frame. This will be achieved by

predicting when a problem will be recurrent for a customer after each interaction between him

and the support service. With this information, companies can use automated processes that are

typically used by a technical support agent and can sometimes solve the problems described.

The historical service data of the dataset being used has registered all the interactions between

customers and support services operators, as well as the history of service usage of each individual

customer. The goal is to use this data to train a deep learning model to predict when a customer’s

problem reported in a call will recur, with the complete process being presented in figure 3.1.
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Figure 3.1: Predictive model usage in business.

3.2.2 Data Integration

The data was cleaned and transformed to achieve the best possible performance in the predic-

tions. Since the data comes from different sources, the main data set must be selected, in which

all other information is added. In this data set, for each entry that corresponds to an interaction

between customer service and the customer, there is information about: the contracted service and

technology, the data for the start and end of the interaction and the corresponding follow-up, the

problem described and which of the support areas took care of the situation, as well as information

about the start and the end of the expected term of the contract. Finally, to learn more about the

customer, information about service usage of the last few months was collected. This data source

contains information about which services have been contractually agreed and how often they are

used (Fig. 3.2).

Figure 3.2: Data sources that make up the dataset.

Altought not every entry corresponds to a call, the majority of them do. The ones that are not

related to customer support call were removed from the dataset.
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Target Variable Creation

When a customer calls to the customer support service, the problem reported by him is registered

by the operator. The problem is typified in 4 levels of detail, hierarchically.

As the objective of the work is to predict if a customer will recur, i.e. if within a month a customer

will need to contact the customer support for the same unsolved problem, the target should be

created. In order to do so, firstly it’s needed to identify what is the problem that the customer faced

and if it could be considered the same as other problem with a different typification. In fact, an

internet problem could have the first 3 levels with the same value (level 1 - Technical Problem, level

2 - Internet, level 3 - No connection) but the 4th level could have a different value (Lights blinking vs.

No lights), although the customer is having the same problem: an non-working internet connection.

After taking a deep analysis, the first 2 levels of problem description were considered enough

to represent the customer’s problem. There are 148 distinct values for the 1th level of typification

but the 25 most frequent are able to represent 88% of the dataset. For this reason, a manual

mapping of the first 25 most frequent level 1 typifications were mapped with the corresponding

level 2 typifications, whereas the rest was done automatically. This step was needed to ensure that

different typifications about the same problem didn’t exist among the most common problems.

After the join of the two levels of typification, the target problem has 1009 distinct values. With

the 100 most frequent typifications (10%) is possible to represent 90% of the calls, like shown in

figure 3.3.

Figure 3.3: Amount of data entries covered by the Top N most frequent typologies.

With the problems correctly defined, each customer and his corresponding tickets were filtered

and compared to all his other tickets. That allowed to know if a specific ticket had a similar one

within a month, indicating a recurrence. When considering the time difference between tickets, it

was possible to observe that some tickets reported the same problem in a small interval of time
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between them. This occurred because sometimes needs to propagate information to other systems,

generating duplicated entries. The operators can also do a mistake and submit the same problem

twice in the system, generating more duplicated entries. Transmitting the call to another operator

can also be a cause of this situation. Ir order to fix this problems, a deep analysis on the time

between possible recurrence calls was conducted. In figure 3.4 it is possible to see that in the first

30 minutes the number of calls is quadratic, while past that time it gets linear. Figure 3.5 shows

the volume of call after the first 30 minutes between a call, with a linear descend. This was the

threshold considered necessary in order to avoid duplication, so all the entries that have the same

problem (from the same customer) within 30 minutes were deleted.

(a) Between 1 minute and 1 hour. (b) Between 1 minute and 30 minutes.

Figure 3.4: Recurrence volume of call with the same problem in short time.

Figure 3.5: Recurrence volume of call with the same problem between 30 minutes to 1 hour.

In the end, there were about 3.4 million (90,9%) entries without recurrence and 340 thousand

(9,1%) with recurrence.

Exploratory Data Analysis (EDA)

Problem category and typification After the join of the two levels of typification, the target

problem has 1009 distinct values. With the 100 most frequent typifications (10%) is possible to
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represent 90% of the calls, like shown in figure 3.3. It is also possible to understand that the 20

most frequent typifications have the highest percentage of dataset with the value decreasingly fast

after those. Therefore, it is worth to analyze the 20 most frequent typifications (Fig. 3.6a).

As seen in figure 3.6a, different typifications show different probabilities of recurrence. When

comparing the first typification of the graphic (”ADESÃO / ALTERAÇÃO SERVIÇOS - SERVIÇOS ADI-

CIONAIS”) with the eighth (”DESATIVAÇÃO @@@ SERVIÇO BASE”), this becomes even more clear.

The first typification, related with customers calling to add or alter extra services to their base con-

tract, shows a higher number of recurrences. This may be due to the fact that customers call several

times before actually making a new addition to the service, either for knowing better the technical

aspects of the service or to get price information. Changes to the service can also incur in this

motivations for recurrence.

This typifications fit in higher-level groups called categories. There are more than 1000 different

typifications but only about 100 categories. The 10 categories with higher frequency are represented

in figure 3.6b. Like in figure 3.6a, it is possible to observe that some categories show a higher

probability of recurrence.

Previous interactions with the customer support service Knowing of previous problems

of the same typification can hint difficulties in solving some of them. More than that, knowing if

any problem of the same typology has even occurred can help to understand if a recurrence will

happen in case of a new problem report. From figure 3.7a it is possible to understand that problem

who have happened already in the past 180 days tend to happen again and recur. This can be

due to a problematic service installation, where the customer feels month after month problematic

behaviors. On the other hand, a customer may also start feeling that his service is not working

properly and his dissatisfaction makes him call more frequently and being more sensible to the

service problems. That being said, customer with no incidents of the same typology in the past 180

days tend to not recur, whereas those who already had similar problems tend to recur when trying

to solve a new one.

The number of previous incidents of the same typology in the past 180 days also helps to under-

stand how interactions with customer service happens. As expected, the frequency of the number

of previous incidents decreases the higher the number of incidents. Naturally, just one customer

service interaction is needed to solve a certain problem and that is reflected in figure 3.7b. But

more than this, it is possible to observe that as the number of previous incidents increases, the

recurrence ratio decreases. This shows that the higher the number of contacts with the customer

service, the lower the probability of recurrence. It is also possible do understand that the ratio of

recurrence tends to decrease rapidly from a number of incidents between 1 and 4. Nevertheless,

there’s always a higher probability of recurrence on customer who have already have incidents than

those who did not.
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(a) Problem’s typification relation with recurrence.

(b) Problem’s category relation with recurrence.

Figure 3.6: Typifications and Categories relation with recurrence.

These problem can be reported to several teams, depending on several factors. As an example,

is a customer reports a problem in a store, then the team responsible for opening a new ticket will

be the ”LOJAS” (stores), like seen in figure 3.8. Naturally, not all the problems are the same and

usually stores are reached by customers asking for informations more than reporting for a technical

problem. In the same figure, it is possible to observe that the team ”TÉCNICO” (technical) is the

one with the higher ratio of recurrences. This is understandable since technical problems usually

need more resources to be solved and frequently need tests and iterations, leading to recurrent

contacts.
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(a) Occurrence of same typification problem and target relation.

(b) Number of occurrences of same typifications and target relation.

Figure 3.7: Same typology problem occurrences within 180 days target relation.

Time spent in a customer support call In a similar way, the time spent in a call with the

customer service support may also give an indication about the probability of recurrence. Figure

3.9 shows the relation between time, in minutes, spent in a call and the probability of recurrence

of a problem with the same typology. As it is possible to observe, shorter calls often result in no

recurrence. This is not the expected outcome of a shorter call time, since a higher time should

mean more resources into the problem’s resolution. However, when taking in consideration the

behavior of the company’s information systems, this figure is understood. In fact, for the majority

of the problems who are solvable in a single call (like customers asking for informations), customer

support operators often create and end the support ticket at the same time. This causes the lower

call time registries to have this noisy data into them, showing lower recurrence ratios than the rest

higher call time ones.
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Figure 3.8: Teams responsible for ticket openings.

Figure 3.9: Time spent in a customer support call importance.

Time left to the end of the contract The time left until the end of the contract is also really

important to explore, since it could represent an opportunity for customers to renew their contracts

with better benefits or even changing to a new service provider. This opportunity to change could

make customer more susceptible to complaints about the service. In figure 3.10a, it is possible to

see the recurrence and non-recurrence percentages of customers with different months left until

the end of the contract. The 0 months mark represents customers that are not under any kind of

retention. The rest of the figure shows the increase in customer complains the farthest they are

from their end of the contract. The most frequent categories (Fig. 3.6b) suggest that this could be

due to initial contract complains (in case the service is not going accordingly with the contracted

or expected), addition of extra services, equipment requests or changes or even informations about
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the service. It is, however, interesting to see that a small bump occurs in the 12 month mark. This

could be due to customers trying to get new benefits, changes in promotional offers (as an example,

TV Boxes are often offered with a discount in a yearly base, instead of a full contract) or just because

some customers have contract of only 12 months. It is important to note that the majority of the

contracts are established for a 24 month time period.

It is also interesting to observe that customers within a range of 0 to 2 years of account age

tend to recur more often (Fig. 3.10b). This situation can occur due to initial service setup but also

because customers who frequently change between different service providers have higher level of

technical needs.

(a) Time left to the end of the contract importance.

(b) Customer’s account age importance.

Figure 3.10: Retention and account age relation with recurrence.
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Maintenance works Similarly to the time spent in a call, maintenance works show how many

resources were applied to solve a certain problem. A higher number of maintenances shows either

signs of a bad maintenance procedure or a location with an infrastructure problem. In figure 3.11a

it is possible to see how previous maintenance works hint about the recurrence probability. When

customers don’t have any previous maintenances made they more often don’t recur. In opposite

way, customers who have already seen their service maintained tend to recur.

The amount of maintenances work performed, in figure 3.11b, show that the more maintenance

works are performed, the higher the probability for recurrence. This supports the idea of customers

having problems or complains that are not fixable with a maintenance but instead are due to an

infrastructure problem.

(a) Previous maintenance needs.

(b) Number of previous maintenances performed.

Figure 3.11: Maintenance’s relation with recurrences.

Customer’s Services Contracted Users with more services contracted have, naturally, a

higher probability of their service failing. Furthermore, these customer tend to be more techno-

logical and demanding, noticing any failure and reporting that same problem. In 3.12a it is possible
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to see that customer that don’t have TV service included tend to recur less, which may be due to

having a lower probability of failure or due to them being more demanding of the service.

The technology used in the base service installation is also to be taken in consideration when

trying to understand the outcome of a customer contact. By the figure 3.12b it is possible to

understand that customer with DTH will more probably recur in a problem in comparison to the

ones who have FTTH.

(a) Predictive model usage in business.

(b) Predictive model usage in business.

Figure 3.12: Contracted services and technology relation with recurrences.

The customer’s expectations are also to be taken in account when trying to predict recurrences,

since more demanding customers tend to recur more often. Through figure 3.13a it is possible to

observe that customer who have internet service contracted usually recur more often but there are

no hints about the motive this happen, like in figure 3.12a. However, after analyzing the figure 3.13b

it is possible to observe a higher recurrence in customers with higher internet speeds contracted.
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(a) Predictive model usage in business.

(b) Predictive model usage in business.

Figure 3.13: Contracted services and technology relation with recurrences.

3.2.3 Data Preparation

Cleaning

In order to reduce the noise fed to the models and improve the performances, the dataset needed

to be cleaned. Among other problems, this cleaning tried to remove rows and columns with data

having no variance, repeated, unnecessary or null. Furthermore, specific rows also needed to be

eliminated due to repetition, errors or simply because they had data not related to the problem,

created by the internal information systems’ operation.

Remove Unwanted Observations Firstly, all the rows not related with the base (TV, Internet

or Landline) or mobile (Cell phone or Broadband) services where removed. Also, all the entries

which state could still be changed (due to ongoing resolutions) were removed, as they didn’t allow
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to correctly trace the procedures and their outcomes. Some entries also didn’t have customer

account information or where null, making it impossible to have important data about the customer

itself and were also removed. This situation could occur when people reaching out to the service

provider aren’t customers yet.

Customer support operators have the possibility to insert additional information to the ticket,

which leads to great inconsistency in the field that stores this data. There are also personal infor-

mation fields that are all filled with the same data or repeat other columns information. Some fields

with information about the internal system who created the entries were also unnecessary and were

removed.

In opposition to the previous related situation, which were full columns or rows to delete, there

are several rows to delete by specific conditions. Some examples are:

• Entries from different systems that the one encharged by customer complains;

• Entries that are not caused by the customer but, instead, by the customer service reaching

out to the customer in a pro-active way, as this situation cannot be considered a recurrence;

• Entries created by very specific teams, that do not participate in the customer support ser-

vice itself but, instead, have the permissions to work some problems related with customer

support;

• Entries duplicated due to automatic system propagation procedures.

HandleMissing Data Although customer support operators have the possibility to add their own

ticket information this doesn’t occur frequently. In fact, there’s not enough detail on the problem to

complete all the automatic fields on a new customer support entry. These fields have a very high

null frequency and were deleted from the dataset.

In order to clean the data is also important to not only delete rows or columns but also to complete

the fields with null values. This is important because deleting any entry that has a completable null

field means a lost of information about a particular individual, meaning that all the entries related

to it would loss their value to the model. Some examples are:

• Customer age values, replaced by the median;

• Account age, replaced by the median;

• Service information (like TV box count, internet speed) that, sometimes, is not registered in

the ticket but it available through other data sources.
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Fix Structural Errors Some columns had information about previous recurrences of the same

problem for each level of description available. Those, however, were filled incorrectly. After an-

alyzing the data it was possible to see that due to system propagation a entry could be repeated

for several times. This lead to an extensive work of filtering the repeated entries through several

conditions.

Table 3.2: Examples of target problems count and distributions during the cleaning process.

Target Problem Before Cleaning After Cleaning
ADESÃO / ALTERAÇÃO SERVIÇOS - SERV. ADICION. 621395 (10,6%) 360025 (9,6%)
EQUIPAMENTOS - 2A VIA CARTAO SIM 305890 (5,2%) 135228 (3,6%)
EQUIPAMENTOS - PRESTAÇÕES 198729 (3,4%) 77094 (2,1%)
EQUIPAMENTOS - TROCA EQUIPAMENTO 150427 (2,6%) 70540 (1,9%)
Informações @@@ CARACTERÍSTICAS PRODUTOS 121885 (2,1%) 115261 (3,1%)
PEDIDOS @@@ TRANSFERÊNCIA DE MORADA 112655 (1,9%) 984 (0,0%)
FATURAÇÃO - VALORES 108315 (1,8%) 98424 (2,6%)
DESLIGAMENTO @@@ MÓVEL PRE-PAGO 97203 (1,7%) 27123 (0,7%)
PEDIDOS @@@ FORMULÁRIO MÓVEL 88767 (1,5%) 43103 (1,2%)
PEDIDOS @@@ ALTERAÇÃO TITULARIDADE 71437 (1,2%) 321 (0,0%)

Total (including all the other problems) 5884432 3746847

After doing performing this operations, the data suffered heavy changes in number of entries but

also in the problem’s distribution, as seen in table 3.2.

Feature Extraction

Extracting additional features increases the data quality, thereby improving the chances of a

higher performance model. As many of the problems reported are due to technical difficulties or

malfunctions, getting information about the installations is very important. For this reason, the

following features were extracted:

• #Manutencoes - a count of the number of maintenance works performed up to the date of

the ticket; This includes all the works related with fixing reported problems.

• #Instalacoes - a count of the number of different installations performed; This includes all

the new installations of the different services a customer may have gone through.

• #OTAlteraServico - a count of the number of times the service has changed and a technical

team had to do equipment changes; This includes all the works performed due to service

changes like changing internet routers due to higher speed contracts or changing TV boxes

due to higher quality sources.
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• #OTRestabelecimento - a count of the number of times a technical team had to perform works

to re-establish service connection; This includes situations where, for example, a cable gets

destroyed by an environmental situation.

There is, however, much more data that can be extracted from the data sources. As the objective

of the model is to predict recurrences, it is important to get information about previous problems,

the time of customer reporting a problem, the alterations in service usage and the timings in which

the problem is reported. In or to better understand how the reported problem affected the user, the

following features were engineered:

• delta_ultima_inc - which indicates the amount of time that has passed since a problem with

the same typification has occurred. This could be months ago if the problem is not happening

frequently or a week before it is recurrent already. If it never happened, the value would be

virtually infinite;

• #Incidencias Tipo (X dias) - that holds a count of the number of times the reported problem

has happened in the last X days (with X = 30, 60, 90, 180). This helps to understand if a

problem is common and if it is becoming more recurrent or not;

• Dias existência CA (Ativação) - holding information about the number of days a customer

has his account registered with the service provider. This gives an idea of the customer

relationship with the company. This value could be binned into years to facilitate his under-

standability.

• Dt_min_Fim_Permanencia_SA - which indicates the number of days until the end of the

service contract. After this period a customer can leave the service without any penalization.

This helps to understand how prone a customer could be to terminate the contract or asking

for a renewal.

• up_down_ratio - representing the ratio of data used in upload or download;

• var_up and var_down - which relate the upload and download data used in the month before

the problem was reported with the usage average of the previous months. This helps to

understand if a customer usage profile has changed and, if so, it may be due to service

constraints;

• var_t_airt_fixo - which is the variation of time used of the fixed phone in comparison with the

previous months average;

• var_qtd_seconds_mon - that holds the variation of television watch time in comparison with

the previous months;
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• t_sms and t_data_vol and t_airt - the variation of SMS, mobile data and call time spent in

comparison with the previous months of service usage;

• delta_fecho_criacao_X - that holds the time spent to solve a customer report, with X = min-

utes, hours, days. This helps to understand if a problem is taking a lot of time to solve or if

it not enough time has putted on into it;

Some temporal features were extracted and a cyclical transformation was applied. This is very

important because, for example, the day 30 of a month is very close to the day 2 of the next month.

By representing the days of the month in a range from 1 to 31, this proximity is not represented.

Applying the sine and cosine functions the days get

• day_of_the_year and month_of_the_year - allowing to get a better sense of the dates which

customers use to call;

• parte_dia - giving information if the customers called in the morning, afternoon, night or in

the dawn. This could hint about a possibly different quality in the solving of the problem;

• week_day and feriado - representing the day of the week in which a report was made and if

that day was an holiday or not;

• estacao - indicating what the season in which the problem was reported. This could be

important because meteorological factors sometimes impact the signal’s quality.

Transformation

The transformation performed in this work consisted in both outlier treatment and encoding.

A vast majority of outliers were removed after the cleaning process, but some features still pre-

sented information that could result in a wrong interpretation for the models. This outliers are cre-

ated by input errors or system anomalies and should be removed since some of the used models

could be sensitive to them, as normalization is needed. The variables affected by the transformation

were:

• Customer account age - the amount of years that the customer has been associated with the

company. Since the company has 25 years of existence, any customer with an entry superior

to that is an outlier. The value was replaced by the number 25, which is the maximum real

value.

• Remaining contract time - the time left for a customer to end his subscription plan, which then

is free to shut the service without any penalty. The maximum time of a customer retention

is 2 years, so any value superior to that is also replaced by the 2 years limit.
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• Customer support call time - the time a customer is engaged in a customer support call. In

some cases, this calls are reported to take up to 4 hours, which are probably wrong values

and were replaced by the value at 95% percentile.

The encoding was also necessary for the neural networks models, as they cannot handle multiple

values in one column. The necessary strategy was, therefore, one-hot encoding.

In other models that did not require having one column for each different feature, the used

method was label encoding as it is simple and fast to reproduce, without high computational or

memory costs.

58



4. MODELING AND EVALUATION



4.1 MODELING

After the data processing phase, several experiments are needed to conclude about the best

models to solve the problem. Predicting if a customer will recur in a contact with the customer

support is a classification task. In order to deal with the numerical features’ different scales, Min-
MaxScalerwas used. Normalization was applied since it keeps the data’s distribution but scales

it to a range between 0 and 1. This range allowed for a direct use in deep neural networks (that

need non-negative values), that being the main motivation to use it. Although standardization is

useful in some situations, a lot of numerical features were not normally distributed, making it’s use

unreliable. Due to the data unbalancing, some sampling methods were set to be used. However,

using the methods would change the meaning of each entry in relation to the previous ones from

the same customer, reason why they ended up not being applied. Hold-out was the method chosen

for testing. The data set was divided in a 65%-15%-20% way, with the first set being used to train the

model, the second for validation purposes, and the latter for the final test. It is important to notice

that no cross-validation was applied because that would not allow to keep the temporal sequence

of data in the training phase.

Solution using classical machine learning models were tested, as well as deep learning alter-

natives. TabNet, a model developed by Google, who’s claimed to outperform existing methods on

tabular data was also tested. Because the problem to be addressed is an unbalanced problem

with only 9.1% of cases recurring, accuracy is not the best metric to evaluate model performance.

Instead, AUC-ROC and F1 scores were used to evaluate the models. Since these models are to

be deployed by the company, the computing resources must also be taken into account. For this

reason, the memory and the time that each model needs to train were taken into account.

4.1.1 Classical Models

Several classical models were trained in order to access their capability of solving the problem.

CatBoost, Random Forests, Logistic Regression, KNN, Naïve Bayes and SVM (with Linear kernel)

were the classical estimators used, like seen in table 4.1, with different hyperparameters. Those

hyperparameters were chosen to be tested due to their possibly meaningful impact on each one of

the model’s performance. The train was performed with 640k entries among all the estimators.

To test all the possibilities the grid search method was used. A selection of hyperparameters

was made accordingly to the problem and to what should give the best results and grid search

evaluates all the possible combinations. As there was a certain level of uncertainty using some

hyperparameters due to the problem being very complex, grid search explores a wide variety of

ranges if the user specifies them, while keeping the number of runs constant, instead of the bayesian

method, which is a more novel approach.
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Table 4.1: Hyperparameters tested for each estimator.

Estimator Hyperparameters Configurations #Combinations

CatBoost
depth

learning_rate
iterations

[5, 10, 15]
[0.01, 0.1]

[50, 100, 200]
18

Random Forest
n_estimators
max_features

min_samples_leaf

[10, 100, 500]
[sqrt, log2]
[5, 10, 50]

18

Logistic Regression

tol
C

penalty
solver

[1e-2, 1e-6]
[1, 0.1, 0.01]
[’l2’, ’none’]
[’sag’, ’lbfgs’]

24

KNN

n_neighbors
leaf_size
weights
algorithm

[5,10,50]
[5,50]

[’uniform’, ’distance’]
[’ball_tree’, ’kd_tree’]

24

Naïve Bayes - - 1

SVM Linear
dual
C

[True, False]
[0.0001, 0.001, 0.01, 0.1, 1]

10

CatBoost

CatBoost was used because it shows very interesting results against other boosting algorithms

like XGBoost in terms of performance and time. As it is a boosting algorithm it allows to weak learns

to constitute a single strong one. For the data available this could be interesting since there are lots

of distinct problems and perspectives to analyze.

The following parameters were tested with different values:

• depth - the depth of tree. Optimal values range from 4 to 10 but a depth of 15 was also

tested because the problem could need more specific analysis;

• learning_rate - This setting is used for reducing the gradient step. It affects the overall time

of training: the smaller the value, the more iterations are required for training;

• iterations - The number of iteractions is related to the possible overfit or underfit of the model.

Random Forest

Random Forest is a bagging algorithm that creates trees with splitted parts of data from the

dataset. This allows for the variance to be averaged. If the data contains columns that are very

strong predictors those could be used independently in each one of the trees.
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The following parameters were tested with different values:

• n_estimators - the amount of trees the estimator will use. This is important because the

number of trees needed to solve a problem varies from problem to problem. More trees than

the necessary would not make the performance worst but will eat more CPU time, while the

lack of trees will degrade performance;

• max_features - this resembles the number of maximum features provided to each tree in a

random forest. It is a good convention to consider the default value of this parameter, which

is set to square root of the number of features present in the dataset. The ideal number of

max_features generally tend to lie close to this value.

• min_samples_leaf - specifies the minimum number of samples that should be present in the

leaf node after splitting a node. Allow to control the growth of the tree by setting a minimum

sample criterion for terminal nodes. helping to prevent overfitting as the parameter value

increases.

Logistic Regression

Logistic Regression was used because there is no clear evidence of a high correlation among the

predictors, which could result in a good performance for this algorithm.

The following parameters were tested with different values:

• tol - tolerance for stopping criteria. The default is 1e-4 but tests for lower and higher values

were made;

• C - inverse of regularization strength. Like in support vector machines, smaller values specify

stronger regularization;

• penalty - used to specify the norm used in the penalization. The default is l2 but using no

penalization could be beneficial so that was also tested;

• solver - algorithm to use in the optimization problem. sag is faster for large datasets and

lbfgs is the default one, so both were tested.

KNN

KNN was used because similarities between entries and their problems could result in a clustering

identifiable by the algorithm.

The following parameters were tested with different values:
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• n_neighbors - represents the number of neighbors to use for kneighbors queries. Using

n_neighbors=1 means each sample is using itself as reference, that’s an overfitting case.

More neighbors usually represent an improve in the test score. If too much neighbors are

used, the performance gets worse;

• leaf_zise - leaf size passed to BallTree or KDTree. This can affect the speed of the construction

and query, as well as the memory required to store the tree. The optimal value depends on

the nature of the problem so several were tested, while the default is 30.

• weights - weight function used in prediction. In uniform all points in each neighborhood are

weighted equally. In distance, weight points by the inverse of their distance. in this case,

closer neighbors of a query point will have a greater influence than neighbors which are

further away;

• algorithm - algorithm used to compute the nearest neighbors. ball_tree and kd_tree were

tested, and brute-force search excluded.

Naïve Bayes

Naïve Bayes was used because it cannot represent complex behaviour, therefore it would not

overfit. It was tested more as a comparison and used as a guarantee that other models weren’t

overfitting. The Gaussian Naïve Bayes was used and no parameters are changeable.

SVM Linear

SVMs work very well with a huge number of features. Linear kernel was used because other

kernels are more computationally heavy and take too long to fit.

The following parameters were tested with different values:

• dual - Select the algorithm to either solve the dual or primal optimization problem. Preferably

dual=False when n_samples > n_features, so both were tested, with the default being True;

• C - Regularization parameter. The strength of the regularization is inversely proportional to

C. The default is 1 but lower penalizations were tested.

All the tested hyperparameters were selected based on the most commonly used optimizations,

which often produce the biggest impacts in the overall performance of the model. There could

be other hyperparameters that could allow for a better optimization but considering them would

exponentially increase the time of the experiments. With the limited amount of time, this would not

be possible.
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4.1.2 Deep Neural Networks

To get the best model, several experimental configurations of different fully connected MLPs

were tested. When designing the models, two main architectures were selected: the first with 3

wide hidden layers and the second with 15 narrow hidden layers. According to (Karsoliya, 2012),

architectures with one, two or three layers with about 2/3 of the neurons of the input size in each

layer can achieve similar results compared to deeper architectures, which is why the first archi-

tecture was created. Fewer layers also contribute to a less computing-hungry model with shorter

training times (Stathakis, 2009). However, deeper neural networks can sometimes find complex

relationships within the data (Bianchini & Scarselli, 2014), which led to the second architecture

being created for our tests.

Batch normalization layers, which are not shown in Table 4.2, were used between all the MLP

layers in order to improve the speed, performance, and stability of the artificial neural network (Ioffe

& Szegedy, 2015).

Table 4.2: Description of the different MLP structures used.

Structure ID #Hidden Layers Structure #Connections
1 6 4673-3100-3100-3100-3100-1000 4.32E20
2 3 4673-3100-3100 4.49E10
3 15 4673-3100-2000-(2x)1000-(5x)500-(5x)100 9.05E39
4 2 3100-3100 9.61E6

The learning process is determined by the loss function, which in turn is affected by class imbal-

ance. Various class weights have been tested to address this problem. After pre-evaluating the re-

sults obtained using equal class weights in comparison with balanced weights (King & Zeng, 2002),

the latter were chosen due to the better performance obtained. For this reason, all experiments

were carried out using balanced class weights. Binary cross entropy loss function was considered

suitable for this problem. The ADAM optimizer was also chosen since it has been showing the best

performances in similar problems (Kingma & Ba, 2014).

Since the architecture of the DNN is not the only factor that needs to be considered when creating

a model, several hyper-parameter configurations were tested for each of the structures specified

(Table 4.3).

The usual method for evaluating several hyperparameters in a neural network is to do some kind

of grid-search. However, this method has a high computational cost and was not feasible due to

time and computational limitations. Therefore, after analyzing some previous tests and leveraging

the existing team knowledge, a set of hyperparameter configurations were chosen (Table 4.3).

The following parameters were tested with different values:
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• Batch size - The batch size defines the number of samples that will be propagated through

the network. At the end of the propagation, the network’s weights are updated. This helps

to reduce the memory needed for training the model because not every samples are passed

at once, while increasing the speed of training. The risk with too low batch sizes is that they

could make the optimization fluctuate too much.

• Learning rate - The learning rate is controls how much to change the model, accordingly to

the estimated error each time the model weights are updated. A value too small may result in

a long training process that could get stuck, whereas a value too large may result in learning

a sub-optimal set of weights too fast or an unstable training process. The Reduce LR option

cuts the learning rate by half (in this case, 50%) when there is not a big enough evolution in

the performance, meaning that the model is reaching close to the best point.

• Loss function - The loss function is important for calculating the error of the model during

the optimization process. Different loss functions are used depending on the problem, since

the type of problem greatly affects what is considered to be a loss.

• Optimizer - The optimizer is responsible for updating the weights on the neural networks,

accordingly to the loss function calculations. Different optimizers allow for a faster approxi-

mation to the optimum results.

Table 4.3: Hyperparameter configurations used for each different structure.

ID Structure ID Batch Size Learning Rate (LR) Reduce LR Train Size
1 1 64 0.001 50% 320k
2 2 64 0.001 50% 320k
3 2 1024 0.001 50% 320k
4 2 10000 0.001 50% 320k
5 3 10000 0.001 50% 320k
6 3 64 0.001 50% 320k
7 2 64 0.0001 no 320k
8 2 64 0.01 no 320k
9 2 64 0.001 50% 640k
10 2 1024 0.1 no 320k
11 4 1024 0.001 50% 320k
12 4 64 0.001 50% 320k
13 4 64 0.001 50% 640k

4.1.3 TabNet

TabNet is a novel high-performance and interpretable canonical deep tabular data learning archi-

tecture. TabNet uses sequential attention to choose which features to reason from at each decision
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step, enabling interpretability and more efficient learning as the learning capacity is used for the

most salient features. It outperforms other neural network and decision tree variants on a wide

range of non-performance-saturated tabular datasets and yields interpretable feature attributions

plus insights into the global model behavior (Arik & Pfister, 2019).

Among several possible hyperparameters that could have been optimized, the following ones

were selected as the ones offering the best possibility of increasing the prediction’s performance.

Table 4.4 resumes the searched possibilities.

The following parameters were tested with different values:

• n_d - Width of the decision prediction layer. Bigger values give more capacity to the model

with the risk of overfitting. The default value is 8. As the model is very complex and there is

low correlation with the target variables among the features, values higher than the default

8 were tested;

• n_a - Width of the attention embedding for each mask. According to the paper n_d=n_a is

usually a good choice, so at each step the value was equal to the n_d;

• n_steps - Number of steps in the architecture (usually between 3 and 10). The default value

is 3. As this is a very unexplored model, a value of 7 was also tested. It would allow for a

possibly better fit on the data;

• gamma - This is the coefficient for feature reusage in the masks. A value close to 1 will make

mask selection least correlated between layers. Values range from 1.0 to 2.0. The default

value is 1,3, but values of 1 and 2 were also tested because it could help with the complexity

of the problem.

Table 4.4: Hyperparameters tested for TabNet.

Hyperparameters Configurations #Combinations
n_d
n_a

n_steps
gamma

[8, 32, 64]
equal to n_d

[3, 7]
[1, 1.3, 2]

18

4.2 EVALUATION

In this section, the performances of the models are presented, based on the validation set. This

will allow to comprehend the advantages and disadvantages of each model and pick the best one

from the classical models, the deep neural networks and the best configuration of TabNet.
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With the selected models from each groups it will be possible to compare the different approaches

and conclude about the best one. Both the classical models and the TabNet were trained with 500k

entries (320k for training), with DNN being tested against a higher amount also (1M entries, 640k

for training). The DNN was tested with a higher number of entries because it doesn’t comes to a

plateau, as classical machine learning models do, accordingly to literature.

4.2.1 Classical Models Evaluation

In table 4.5 it is possible to observe the performances of the models trained, as well as the

hyperparameters that were needed to achieve those results. Memory used and time needed to

train the model were also considered because computational resources can be expensive or scarce

in a company.

The best model is CatBoost, which was able to achieve and AUC-ROC of 79% with the lowest

memory usage and one of the shortest time to train. Random Forest was the only estimator coming

close to the CatBoost’s performance, with a higher time and memory needed to train.

Table 4.5: Classical models’ performances comparison on the validation set.

Model
Best

Hyperparameters
Memory Time

Prec.
Pos

Rec.
Pos

F1
Pos

AUC
ROC

CatBoost
’depth’: 10,

’iterations’: 200,
’learning_rate’: 0.1

5 Gb 7 min 18% 75% 30% 79%

Random
Forest

’max_features’: ’sqrt’,
’min_samples_leaf’: 5,
’n_estimators’: 500

8 Gb 38 min 37% 15% 21% 78%

Logistic
Regression

’C’: 0.1,
’penalty’: ’l2’,
’solver’: ’sag’,
’tol’: 1e-06

5 Gb 3 min 15% 72% 25% 72%

KNN

’algorithm’: ’ball_tree’,
’leaf_size’: 5,

’n_neighbors’: 5,
’weights’: ’distance’

6 Gb 48 min 22% 7% 10% 63%

Naïve Bayes - 6 Gb 1 min 16% 36% 23% 67%

SVM Linear
’C’: 1,

’dual’: False
6 Gb 48 min 16% 71% 25% 67%

The CatBoost model achieved a F1 score for the positive class of 30% and a AUC-ROC of 79%,

with a low amount of training time. The precision-recall curve (Fig. 4.1) produced hints about the

possible best decision threshold to use in this problem, in case it is selected as the best overall

model.
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4.2.2 Deep Learning Models Evaluation

The best results achieved are highlighted in Table 4.6, with a AUC-ROC of 73%, and an F1-score

of 35% with a Precision of 23% and a Recall of 72%. When comparing with the other experimental

setups it is clear that the main factor is the amount of data the model was trained with. When

comparing it with the same model structure and same parameters but using only 500k (ID 12), it

is possible to see an increment of 5% in the AUC-ROC, as well as increase in both Precision and

Recall for the positive class.

Table 4.6: Results obtained with the different configurations for the validation set.

ID
Best
Epoch

Memory
Used

Time to
Train

Prec.
Pos

Rec.
Pos

F1
Pos

AUC-ROC

1 5 18 GB 16,0 H 21% 60% 32% 69%
2 7 13 GB 16,0 H 23% 47% 31% 65%
3 7 13 GB 2,0 H 19% 55% 28% 65%
4 7 15 GB 2,5 H 20% 56% 29% 66%
5 11 16 GB 1,5 H 24% 45% 31% 65%
6 6 13 GB 25,0 H 21% 64% 31% 59%
7 5 13 GB 10,0 H 20% 58% 30% 57%
8 3 13 GB 10,0 H 20% 64% 30% 69%
9 5 22 GB 32,0 H 21% 68% 32% 70%
10 none 13 GB 0,5 H - - - -
11 3 13 GB 1,0 H 19% 67% 29% 68%
12 4 13 GB 6,0 H 21% 60% 32% 68%
13 4 20 GB 12,0 H 23% 72% 35% 73%

The majority of the models were evaluated using 500k entries. From those, 320k were used to

train, 80k to validate and 100k to test. In a deployment state, the models would likely be trained

with the full 3.9 million entries. Increasing the training size would quickly increase the training time,

as seen in the table 4.6. If the network had to be re-trained due to a sudden event, it can take

weeks, which is a lot of downtime. For this reason, it can be useful to have a model with the same

characteristics as the highlighted model, but with a larger batch size to allow a faster train.

Regarding batch size, it can be seen that increasing from 64 to 1024 shortens training time

because the calculation used to measure loss is less frequent. However, an increase from 1024 to

10000 shows an extension of the training time. This is due to the fact that extensive calculations

are carried out for a much larger number of instances that have to be taken into account.

Increasing or decreasing the learning rate from the standard 0.001 to 0.01 or 0.0001 does not

have a major impact on the training time. However, if you increase this value to 0.1, it is possible

that the model train is really faster, but loses all of its predictive power.

Our previous tests showed that a decrease in the learning rate is essential to prevent the model
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from being set to a local minimum. This can easily happen because it is an unbalanced problem.

4.2.3 TabNet Evaluation

The TabNet model showed the best results with the parameters described in Table 4.7. The

high n_d and n_a values seem to be important, due to the problem complexity. The number of

steps (n_steps = 3) has a direct impact on the amount of time that the model needs to train. The

best hyperparameters have a low number of steps, which is helpful. The best hyperparameter

configuration was able to achieve and AUC-ROC of 78%.

Table 4.7: Classical models’ performances comparison on validation set.

Hyperparameters Memory Time
Prec.
Pos

Rec.
Pos

F1
Pos

AUC
ROC

’n_d’: 64
’n_a’: 64

’n_steps’: 3
’gamma’: 1.0

5 Gb 4,5 H 17% 78% 28% 78%

4.2.4 Discussion

The CatBoost model was able to achieve the best performance among the different trained mod-

els, when considering the AUC-ROC score, the one that shows evidence of the separability of the

classes. Comparing this model to TabNet and DNNs (Table 4.8), it is also the fastest one. This

is possible because CatBoost is explicitly designed to work on heterogeneous data, while building

his trees in a symmetric way. Symmetric trees help to reduce overfitting because they keep the

decisions simple. Using gradient boosting, the branches of the trees are still organized in a way

that possibilitates to capture complex relations between multiple features.

On the other hand, both TabNet and DNNs are based on neural networks, which usually offer

better performance on homogeneous data, like the one present in sound, image or text. In the

present dataset, there are lots of categorical data columns, some with hundreds or thousands or

different possible values, whose data distribution is not normally distributed. This presents a real

difficulty to neural networks, while it is handled by CatBoost’s core.

When comparing CatBoost to DNN (Table 4.8) in terms of memory costs, it is possible to under-

stand that this is possible because of the way CatBoost works. Being based on trees, the conditions

are built layer by layer, while DNN need to work with all the features at the same time in order to

produce an output. The DNN backward propagation is also inherently more complex than adjusting

the CatBoost tree’s branches. The memory and time usage was measured when using 640k entries

to train the models, but when using 3 million entries the resource needs would increase greatly (at
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least 4.5 times more, linearly). Depending on the systems were the models would be trained, this

could have a big impact. If the model was set to be trained every weekend in the same computer

that was used for the tests, then the training phase would take more than 48 hours, exceeding the

weekend. However, if the model is set to be trained in a more capable machine, this could be a

no-problem and the extra classification performance could be achieved.

Table 4.8: Best model’s performances comparison on validation set.

Model Memory Time
Prec.
Pos

Rec.
Pos

F1
Pos

AUC
ROC

CatBoost 5 Gb 0,1 H 18% 75% 30% 79%
DNN 20 Gb 12,0 h 23% 72% 35% 73%
TabNet 5 Gb 4,5 h 17% 78% 28% 78%

4.3 BUSINESS EVALUATION

As the CatBoost model was the one obtaining better results on the validation set and would be

used in production, it is worth analyzing the precision-recall curves (Fig. 4.1) and adapt the decision

threshold. The default decision threshold for the predictions is 0.5 but accordingly to the precision-

recall curve a threshold of 0.75 would be optimal. This trade-off allows to identify less customers

who would probably recur, but with more confidence in the prediction, making the process more

efficient for the company (Table 4.9).

Figure 4.1: Precision and Recall Scores as a function of the decision threshold from CatBoost.

By doing so, a Recall of 61% and a Precision of 62% were achieved, with respect to the final

test set. The final F1-score is 62% and the AUC-ROC is 79%. This means that from every 10
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customer recurring, 6 of them would be correctly identified. Using this model in production could

result in automatic measures being taken. Moreover, the service of the customers flagged could be

inspected by free operators, depending on the occupation of the customer service, improving the

overall quality of experience without any impact on the costs for the company.

Table 4.9: Results on the test set: default vs. custom threshold.

Decision threshold Prec. Pos. Rec. Pos. F1 Pos. AUC-ROC
0,50 (default) 18% 75% 30% 79%
0,75 (custom) 32% 28% 29% 79%
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5. CONCLUSIONS



5.1 CONCLUSIONS

The telecommunications’ market is highly competitive and has seen a big increase in the past

years in the user base. Companies try to keep their customers satisfied so that they don’t quit the

service anytime later.

The evolution of machine learning and computational power, along with the data being stored

with more care, gives a great opportunity to the companies to improve their business relation with

the customers. Data from the customer support service, along with data from billing, service usage,

and personal data, can be arranged to provide a good amount of information.

More recently, deep learning techniques have presented themselves as great substitutes of clas-

sical machine learning models, as they show great performance improvements over these classical

models in several fields. The most common applications for deep learning are related with high-

complexity problems, with a high correlation between the features, like sound, image, or text. How-

ever, these fields are not the only ones with high-complexity problems, therefore using deep learning

in predicting customer related problems could be of great use. Recently, Google has shown great

results with TabNet, a deep neural network dedicated for tabular data, the same format that’s fre-

quently used for customer related problems, showing improvements comparing to other boosting

and decision trees algorithms.

In order to keep customer satisfied, a predictive model was created that is capable of identifying

recurrent problems within the services contracted by the customers. This will allow for the company

to act before the problems are noticed again by the customer. The available data suffered several

cleanses and transformations in order to be prepared to be used in the models. Several models

were tested and optimized, including classical machine learning models, deep neural networks and

even novel approaches like TabNet.

The model with the best performance, CatBoost, was able to achieve a Recall of 61% and a

Precision of 62% with real data. The final F1-score is 61% and the AUC-ROC is 79%, which are

interesting results and show that application in the industry is possible. CatBoost is a classical

machine learning approach that usually reaches a performance plateau, whereas DNNs often benefit

from an increase in the data available. For that reason, however CatBoost has been selected as

the best performing model, in future applications were the neural network approaches are able to

perform similarly to CatBoost, it could be interesting to compare both models and maybe eliminate

the plateau of classical models.

The benefits for the companies consist of a possible reduction of the churn rate, due to the

customers being happier with the service, increasing the overall profits. Having the knowledge of a

possible recurrence beforehand also decreases the time that customer service operators stay on the
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phone, decreasing the costs for the company in the long-run. For the customer, with the application

of this model in production, they will have the opportunity to experience a more fluid service and to

see their problems being solved with higher efficiency.

5.2 FUTURE WORK

The work made could see some improvements on the data and on the model. More feature

extraction could be done if more computing power was available. With the available resources,

some of the aggregations and calculations would take too long to be calculated, decreasing the time

available to the other steps of the process.

Improvements on the DNN model could also be made by using other configuration other than

MLP. Including an LSTM or other structure that was able to capture patterns of problems and mem-

orize them, could also contribute to increase the performance of the model. This would, however,

increase the computational power needed, leading to investment from the company. Providing the

network with a series of dedicated embedding layers could also result in a better classification and

an overall improvement in performance, as they are known for reduction the feature representation

memory needs (compared to One-Hot Encoding), while preserving the relations within the feature’s

values. This would, however, increase the time needed to study the problem feature by feature,

preventing the dissertation from being completed at the necessary deadline.

On the other hand, using TabNet (based on neural networks itself) could be a good approach for

higher amount of data is it becomes clear that CatBoost has reached a plateau. This would allow to

eliminate the plateau through neural networks, without the need to tweak the neural network itself.

Furthermore, separating the most frequently identified problems from the others, would allow

for a more specific training for each type of problem. Therefore, each one of the models would be

more adapted to each one of the problematics, although that increases the overall complexity of

maintaining the models in production.

Finally, in order to use this model in production, all the computational steps over the data would

need to be automatic. This is a complex task, the last of CRISP-DM, but would be necessary to

prove the efficacy of the solution.
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