
Universidade do Minho

Escola de Engenharia

Jorge Miguel da Silva Brandão Gonçalves

Development of tools for sentiment analysis

in the Portuguese Language

November, 2022



Universidade do Minho

Escola de Engenharia

Jorge Miguel da Silva Brandão Gonçalves

Development of tools for sentiment analysis

in the Portuguese Language

Master Thesis

Master in Informatics Engineering

Work developed under the supervision of:

Miguel Francisco Almeida Pereira Rocha

Vítor Manuel Sá Pereira

November, 2022



COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Acknowledgements

Firstly, I would like to sincerely thank my family for all their love, care and support, especially my

parents Abel and Alice, my older brother José and my twin brother João. Without their love and encour-

agement, all these years would have not been possible.

Secondly, I would like to thank Dr. Miguel Rocha and Dr. Vitor Pereira for giving me the great

opportunity to work with them and the Omnium AI team. I would like to praise the availability, support

and expertise shown by both.

I would also like to thank them for integrating me with the Omnium AI Team giving me access to

everything I needed.

I would like to thank Omnium AI members, especially Rubén Rodrigues, Nuno Alves and Fernando

Cruz, for their unwavering help.

This thesis would not have been possible without the help of both Professors and the Omnium AI

members patient guidance throughout the thesis.

I would like to praise Universidade do Minho, specifically Departamento de Informática and their

teaching personnel for giving me the knowledge and the means throughout my degrees.

Finally I would like to thank all my friends for their help, care and support throughout these last 5

years.

iii



STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used pla-

giarism or any form of undue use of information or falsification of results along the process leading to its

elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

iv



“Perfection is not attainable, but if we chase perfection we can

catch excellence.” (Vince Lombardi)

v



Resumo

A Análise de Sentimentos é uma das áreas mais importantes na ciência da computação, nomeada-

mente no Processamento da Linguagem Natural. As suas aplicações vão desde a análise de produtos

até à contenção do cyberbullying. A importância da análise dos sentimentos é inigualável, mas quando

se trata de línguas menos faladas, o campo parece ficar para trás.

Neste contexto, Omnium AI propôs uma dissertação onde exploramos a Análise de Sentimentos para

a Língua Portuguesa, com a intenção de criar uma nova ferramenta computacional. Esta dissertação

vai examinar o campo da análise de sentimentos e o desenvolvimento do package Omnia. Este package

é composto por ferramentas para a leitura de dados, o seu processamento e a criação de modelos

Machine Learning (ML) e Deep Learning (DL) a partir dos dados lidos. Em específico, vamos concentrar-

nos no desenvolvimento do package Omnia Text Mining, com o objectivo de criar ferramentas de pré-

processamento e modelos de ML e DL para a análise de sentimentos para a língua portuguesa.

Esta dissertação vai criar uma abordagem para lidar com problemas de análise de sentimentos com-

posta por um processo de recolha de dados, seguido de um passo de pré-processamento e acabando

com o desenvolvimento de modelos de ML e DL. Esta abordagem será aplicada ao tópico do Covid-19.

Após serem criados os modelos para os datasets relativos ao Covid, avaliamos os resultados para as

diferentes combinações de métodos de pré-processamento e modelos onde apuramos que as Long Short

Term Memory (LSTM)s e o HFAutoModel com o embedding Bert foram os melhores modelos. No geral,

os modelos de DL e Autogluon obtiveram melhores resultados que os modelos de ML. Nos métodos de

pré-processamento visualizamos que não existe uma Pipeline geral que possa ser utilizada para todos os

casos.

No final, iremos discutir as conclusões que podemos retirar desta dissertação juntamente com uma

secção de trabalho futuro, onde exploraremos os próximos passos possíveis para este projecto.

Palavras-chave: Deep Learning; Machine Learning; Text Mining; Sentiment Analysis
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Abstract

Development of tools for sentiment analysis in the Portuguese
Language

Sentiment Analysis is one of the most important areas in computer science, namely in Natural Lan-

guage Processing. Its applications range from product reviews to cyberbullying containment. The im-

portance of sentiment analysis is unprecedented, but when it comes to lesser-used languages, the field

seems to be lagging behind.

In this context, Omnium AI proposed a dissertation where we explore Sentiment Analysis for the

Portuguese Language with the aim of creating a new computational tool. This dissertation is going to

delve into the sentiment analysis field and the development of the Omnia package. This package is

composed of tools for reading datasets, processing them and creating ML and DL models from the data

read. Specifically, we will focus on developing the Omnia Text Mining package, with aim of creating

pre-processing tools and models for Sentiment Analysis (SA) in the Portuguese Language.

This dissertation creates an approach to tackle SA problems that involve a data gathering step followed

by a pre-processing step and finishing with a model step where we develop different ML and DL models.

This approach will be applied to a Covid-19 topic. From this approach, we obtained two datasets, from

which we created ML, DL and Autogluon models. After creating the models we evaluated the results

from the different combinations of pre-processing methods (Pipelines) and ML and DL models where we

ascertained that LSTMs and HFAutoModel with a Bert embedding were the best models for the datasets

we used. In general, DL and Autogluon models gave us better results than ML. For the pre-processing

Pipelines, we were able to visualise that there is no one Pipeline fits all solution, each model had different

Pipelines working better.

Lastly, we will discuss the conclusions we can take from this work along with a future work section,

where we explore the possible next steps for this project.

Keywords: Deep Learning; Machine Learning; Text Mining; Sentiment Analysis
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1
Introduction

The first chapter gives an introduction to the research conducted in this dissertation. The intention is

to provide a sharper look into this dissertation’s context, motivation and objectives.

1.1 Context & Motivation

SA (or Opinion Mining) is the process through which one can analyse segments of text in order to

determine the sentiment behind it.

SA can be used for determining the market sentiment on any given topic, which makes it a powerful

tool for researchers. SA can also be used for brand monitoring through social media and to identify

customer intent.

The SA process typically involves the use of ML models trained with labelled examples of emotions

in text. The ML models can then detect emotions on unlabelled inputs without the need for human

intervention. ML allows computers to learn tasks without being expressly programmed to perform them.

DL can also be applied in sentiment analysis. DL is an ML technique that uses Neural Networks (NN)

to extract features from the input to train a model to make predictions on a given set of data. NNs works

by trying to identify patterns in data with close to no human interaction. DL and ML techniques have been

very successful in performing sentiment analysis and are used daily by all the big brands.

SA models can focus on different types of sentiments. These sentiments range from the analysis of

polarity (positivity, negativity and neutrality) through feelings/emotions (such as anger and happiness) to

urgency/intention (is it urgent?, is it interesting?). Due to this versatility, sentiment analysis is a powerful

and important technique in Artificial Intelligence (AI). However, despite the importance of this field and

the numerous studies on it, major challenges in its use can still be found.

One of the most significant challenges it faces is the difference between context and polarity, and the

1



CHAPTER 1. INTRODUCTION

addition of sarcasm and irony in the texts. In some use cases, these challenges are non-problematic, but

in most cases involving feelings and emotions, finding solutions to these problems may help the models

become more precise. Other common challenges in SA are how to deal with comparisons, emojis, the

definition of neutral and the accuracy of the inputted data. Not less important is that most tools are built for

the English language, and multilingual tools are few and mostly do not involve the Portuguese language.

The main goal of this dissertation is to develop Text Mining (TM) tools able to analyse and determine

the sentiment behind segments of text in the Portuguese language. TM is the process of Natural Language

Processing (NLP) that tries to understand and sort text to make it easier to manage. NLP is a sub-field of

AI that concerns the interactions between computers and human (natural) languages, particularly helping

computers understand, interpret and manipulate human (natural) languages.

This tool will prove to be valuable in several different use cases.

1.2 Objectives

The main goal of this work is to develop a computational tool that allows one to perform SA for texts

written in the Portuguese language. The tool will be based on training and validating machine/ deep

learning models for SA, but also taking into account methods and algorithms from NLP and TM for data

pre-processing.

This dissertation was done within the framework of Omnium AI, with the aim of creating a tool the

company can use for sentiment analysis in Portuguese Texts.

The work will approach several scientific/ technical objectives starting with an in-depth review of the

relevant literature regarding SA and its applications, focusing on SA applied to Portuguese texts.

As the second objective, we will collect datasets for SA written in the Portuguese language from

different sources, focusing on social networks, more precisely from Twitter.

As a third objective, we will develop and compare various data pre-processing methods and workflows

and assess the impact on the quality of predictive models.

As a fourth objective, we will train and evaluate the performance of different machine/deep learning

models for SA in different datasets in the Portuguese language.

As a fifth and final objective, we will develop a software framework that encompasses data collec-

tion, data pre-processing, model training and validation for SA, addressing the automation of the model

optimisation process.

1.3 Document Structure

Chapter 1 defines the main objectives of the endeavoured work and presents an overview of how it is

partitioned.

2



1.3. DOCUMENT STRUCTURE

Chapter 2 discusses the State-of-the-Art which will be composed by the current landscape on SA, with

a special focus on the Portuguese language. The chapter also addresses more general subject matters

like ML, DL, Transfer Learning (TL) and NLP with emphasis on ML supervised and unsupervised models

but also on DL models. Additionally, the chapter presents the most common o NLP and TM techniques

and how they may help get better results and efficiency.

Chapter 3 overviews the problem we are tackling with this dissertation and the framework in which

we are going to be working. This framework includes an explanation of Omnium AI’s architecture and

guidelines and the technologies that are going to be used.

Chapter 4 addresses the development of the tools we need to achieve our goal. It describes how we

got our data, the pre-processing methods we created for our package and the models we developed.

Chapter 5 denotes the results of applying our tools to a specific use case. It focuses on the gathering

of data, its pre-processing and the validation of the models we trained with our data.

Lastly, chapter 6 presents us with the conclusions from our dissertation and the future work that can

be done to improve this work.

3
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2
State of the Art

2.1 Machine Learning

Nowadays, ML is one of the biggest buzzwords in Computer Science, and deservingly so. It is currently

one of the most exciting sub-fields of AI, which is proven by the great results being presented using AI

methods. The term ”Machine Learning”was coined by Arthur Samuel in 1959. He defined it as the ”Field

of study that gives computers the capability to learn without being explicitly programmed”.

In such a manner, we can define ML as a data analytics technique in which a computer is taught what

normally comes naturally to humans. ML uses computational methods to learn information directly from

data. These algorithms can improve their performance as the number of samples available for learning

increases. ML uses a couple of techniques for learning. The three most common are unsupervised,

supervised, and reinforcement learning [1].

There are also two types of learning [2], the first one is lazy learning, where one store the training data

and wait until the test data appears. The classification is done using the most similar data in the training

set. This type of learning is slower than the second type, which is eager learning. In eager learning, one

constructs a model using the training data, before getting the test data to make the predictions. This takes

much time in training, but it is much faster when predicting.

In the last years, ML has been gaining more andmore applications due to the many benefits it provides.

Even though ML is very powerful, it too has its limitations, and we are going to check some of these in a

section further ahead.

4



2.1. MACHINE LEARNING

2.1.1 Supervised Learning

Supervised Learning (SL) is one of the main paradigms for Machine Learning. SL can be defined as

the process that makes an algorithm map an input into an output. This can be achieved by using labelled

datasets. If the mapping in the datasets is correct, the algorithm will successfully learn. SL will help us

predict unseen future data. SL can be simply understood by looking at the figure (Figure 1).

Figure 1: Supervised Learning Architecture, adapted from [3]

As one can conclude from the figure (Figure 1), SL needs a set of data and their labels. The data is

used to create a model. The model aims to receive unlabelled data and predict its labels.

SL can be broadly divided into two types of problems: classification and regression[1].

The first type, Classification, occurs when the output variable is categorical (outputs such as yes-no,

male-female, etc.). In general, classification is used to identify labels or groups. Classification can be

categorised into two groups, the first being binary classification where the input variables are categorised

into two labels. The second category is the multiclass (multinomial) classification where the input data is

segregated into three or more groups.

There are several algorithms used in classification. One of the most popular classes is Bayesian

algorithms (like Naive Bayes, and Bayesian Networks, among others).

Naive Bayes is an algorithm that generates a probability table from a classification technique. It is

commonly used for statistics and machine learning. This algorithm rationale stands from Thomas Bayes’

studies where he applies the Bayesian Theorem with a strong (naive) independence assumption between

5



CHAPTER 2. STATE OF THE ART

the features of the data. Naive Bayes are highly scalable and normally use Gaussian distribution (also

known as Normal Distribution) to calculate the mean and standard deviation of the data. There are

several different versions of Naive Bayes. In most cases, they follow the same rationale but use different

distribution functions. For instance, Multinomial Naive Bayes is based on the Bayesian Theorem and it’s

used for different Natural Processing Language and Machine Learning applications. This algorithm differs

from Gaussian Naive Bayes in the manner it calculates the distribution, by using multinomial distribution.

Random forest is another classification (and regression) algorithm which combines the output of mul-

tiple decision trees to reach a single result. Random forest algorithms have three main hyperparameters:

node size, the number of trees, and the number of features sampled. The random forest algorithm is

composed of a collection of trees, each tree consists of a data sample drawn from a training set with

replacement. Then through feature bagging, it added more diversity to the dataset and reduced the cor-

relation among decision trees, and added more randomness to the trees. In the end, for a classification

problem, the class that was output more times by the trees in the predicted class. Random Forests present

us with several benefits that include reduced risk of overfitting due to the number of robust trees being

calculated, and provide flexibility because it can be used in both regression and classification problems.

There are some setbacks such as its complexity, its time-consuming process and the requirement of more

resources than other ML alternatives.

Algorithms that calculate Nearest Neighbours (algorithms like KNN) to classify according to similarities

between neighbours are also extensively used. As previously stated, KNNs is an algorithm that calculates

the nearest neighbours for their classification. It works by calculating the distance between unknown data

points and all the training examples. Then it searches for the : (a predefined value) observations in the

training data nearest to the measurements of the unknown data point and calculates the distance between

the unknown data point and the training data. In the end, the training data which has the smallest value

will be declared as the nearest neighbour and used for the classification of the unknown data point.

In this type of algorithm, the choice of : , and the metrics used to calculate the distances can have

major impacts on the final results. This type of algorithm can be very computationally expensive compared

to Bayesian algorithms, but it can be a simple and easy way to predict labels for small datasets.

Decision trees are another algorithm for classification that presents us with great results. Several

other types of algorithms present good results for classification, like Support Vector Machines (SVMs) and

discriminate analysis.

The second type of problem in SL is Regression [4]. Regression is a technique that predicts continuous

or real values. We can have three types of regression; linear, multiple and polynomial regression. In linear

regression, we have only one independent variable used to predict the output. In multiple regression, we

have more than one independent variable used to predict the output, and in polynomial regression, the

relationship between the dependent and independent variables follows a polynomial function.

Ensemble Methods (like Bagging, Boosting and Stacking) are also used to reduce variance and thereby

increase the accuracy of predictions. Ensemble methods work by combining different models to create

better predictive models, and they can be used in both classification and regression algorithms. Bagging
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works by combining a bootstrapping step followed by an aggregation step to increase accuracy by reducing

variance. The reduction of variance comes from the elimination of overfitting, helping models to reach

higher accuracies. With the Bootstrapping step, we derive samples from the whole population using

a replacement procedure, which helps to randomise the selection procedure. Then the base learning

algorithm is run on the samples. With the aggregation step, we incorporate all possible outcomes of the

predictions and compute an outcome. Without this step, the predictions will not be accurate because we

will not consider all the outcomes.

Boosting works by learning from the last predictor mistakes to make better predictions in the future.

This technique combines several weak base learners to form one strong learner, improving the predictabil-

ity of models. It works by arranging weak learners in a sequence, such that weak learners learn from the

next learner in the sequence to create a better predictive model.

Stacking works by allowing a training algorithm to ensemble other similar learning algorithm predic-

tions.

SL is important due to the many benefits it provides us. It lets us be specific about labels and classes

we use in the training data, helping us define perfect boundaries between classes. It is easy to understand

the process in comparison to, for example, Unsupervised Learning (UL). Even though SL gives us so many

benefits, it also provides limitations. SL is prone to overfitting algorithms. Overfitting happens when a

model fits with its training data, making it perform really good with this data but not achieving accurate

results with new data inputs. There are several paths to avoid overfitting, one of the most common is the

utilisation of the aforementioned ensemble methods (bagging, boosting and stacking). Another limitation

is if the training data is not good (i.e incomplete data or wrongly labelled data), the algorithms will give

wrong predictions, and the computation time may be very large (even more significant for big training

datasets). We also have to consider pre-processing in supervised learning, which can be challenging.

2.1.2 Unsupervised Learning

Unsupervised Learning is another technique for ML, and it differs from SL because we do not need to

label data. That means that UL uses unstructured data to learn structures and patterns in the data.

We can understand how UL works by looking at the following figure (Figure 2).
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Figure 2: Unsupervised Learning Architecture, adapted from [3]

As we can see in the figure (Figure 2), UL receives an unlabelled set of data and outputs the data organ-

ised according to the similarity between them. UL can be broadly divided into three types[1]: Clustering,

Association Rules and Dimensionality Reduction.

Clustering

In Clustering [5], we have a technique that tries to divide the data into a number of groups where data

points in the same group are more similar between themselves than data points outside their group. It

creates a cluster of different data points with a lower inner variance There are several methods to cluster

data. The four most common are density-based, hierarchical-based, grid-based and partitioning methods.

In Density-Based methods, we consider the clusters as the dense region that has some similarities between

points in that region and differences from another dense region of the space. The most common density-

based algorithms are DBSCAN [6] and OPTICS [7]. In Hierarchical based methods, the clusters formed

are in a tree-type structure based on a hierarchy, which can be performed by a bottom-up approach (i.e.

agglomerative approach) or a top-down approach (i.e. divisive approach). The most common hierarchal-

based algorithms are CURE [8] and BIRCH [9]. For Partitioning methods, we partition the objects into k

clusters, and each partition forms one cluster. The most notable partitioning algorithms are K-Means [10]

(and its multiple variants, like k-Mode [11]) and CLARANS [12]. The last methods for Clustering are the

Grid-Based methods. In Grid-Based methods, we formulate the data space into a finite grid-like structure

of cells. The operations to the cluster data points are performed on this grid. The most notable grid-based

algorithms are STING [13] and CLIQUE [14].

Association Rules

In Association Rules [15], we try to find relationships between the data in a given dataset. Association

Rules are descriptive models and not predictive ones, which means they do not predict labels, but instead

show us interesting relationships between data points.

Association Rules algorithms follow a two-step approach, where we first generate the frequent itemset

and then generate the rules. The first step can be computationally expensive. Association Rules can be
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divided into three types of algorithms. These are Apriori [16], Eclat [17] and FP-Growth [18].The Apriori

algorithm uses frequent datasets to generate association rules and uses a breadth-first search and Hash

Trees to calculate the itemset efficiently. The Eclat (Equivalence Class Transformation) algorithm is a

method that uses a depth-first search technique to find the frequent itemsets in a dataset. It is more

efficient than Apriori Algorithm. FP-Growth (Frequent Pattern) represents the dataset as a tree called a

frequent pattern tree. The purpose of this frequent tree is to extract the most frequent patterns in the

dataset. FP-Growth is another improved version of the Apriori Algorithm.

Dimensionality Reduction

In Dimensionality Reduction [4], we map the data points in a lower dimension space. A simple way

to see this is to try and map a 2D space in a line. The following figure (Figure 3) depicts a reduction from

a 3D space to a 2D space.

Figure 3: Dimensionality Reduction from 3D to 2D, adapted from [19]

Dimensionality reduction works by reducing the number of features in a given set. There are two

components to dimensionality reduction, we have a feature selection component that tries to find a smaller

subset of the original set of variables (i.e. features). This subset is then usually used to model the problem.

The second component of dimensionality reduction is feature extraction where we reduce the data in a

high dimensional space to a lower dimension space.

There are several methods for reducing the dimension we are working with, but the two most no-

table are principal component analysis (PCA) [20] and latent Dirichlet allocation (LDA) [21]. PCA works

by transforming the features of a dataset into a new set of features called principal components. This

transformation aims to compress the information present in the dataset into fewer features. LDA achieves

dimensionality reduction by using a Dirichlet distribution.

As we have seen, UL is very powerful and lets us see what human minds may not even visualise, it

can dig hidden patterns. It can be less complex in comparison to the other types of techniques for ML. It

is easier to start because we do not need labelled data. UL has its disadvantages, such as being costlier

than SL since human intervention may be needed to understand the patterns and correlate them with

the specific use case being studied. The results are not always useful since there is no label or output to
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measure their usefulness. The results are often less accurate (in terms of accuracy in predictions) than

the other techniques.

2.1.3 Reinforcement Learning

The last technique for ML we are going to talk about is Reinforcement Learning (RL) [4]. It works

by taking suitable action to maximise reward in a particular situation. RL is different from SL because

the training data has the correct output in SL, so the model is trained with the right answer. In contrast,

there is no answer in RL, the reinforcement agent decides what to do at each step to perform the given

task, maximising a reward function. Because it does not have a training set, it is bound to learn from its

experience. The training is based on the input (the initial state from which the agent starts). The agent

will return an action, and the user decides to reward or punish the model based on the output. The agent

keeps learning, and the best solution is decided based on the maximum reward.

There are two types of reinforcement. One is positive reinforcement, where a positive effect will be

seen in an event. The second type of reinforcement is negative reinforcement, which works as the exact

opposite of positive reinforcement. We can easily understand RL with the figure below (Figure 4).

Figure 4: Reinforcement Learning Architecture, adapted from [22]

As we can see, we input raw data to the environment then we have a cycle where we are learning by

experience through the use of the agent. The agent will adapt its learning in accordance with the rewards

it gets from the environment.

There are several algorithms and approaches for RL. The most notable ones are Markov Decision

Processes (MPDs) [23], SARSA [24], Q-learning [25].

Markov Decision Processes is the root concept for the process of learning from the current state and

actions. This process has 4 important areas: states, actions, transitions and a reward function. It works

10



2.1. MACHINE LEARNING

by taking the current state information to make a decision. The reward function determines what action to

take in order to make the transition to the next state. This methodology is the base for most reinforcement

learning algorithms. Q-learning uses this methodology using a Quality that depicts the quality of the action

chosen. Q-learning is an off-policy method, meaning it is a greedy learner because it learns from random

actions. SARSA stands for state-Action-Reward-State-Action and is similar to Q-learning with the main

difference being it’s an on-policy method, meaning it learns from the current state and actions.

RL is a cutting-edge technology with a very powerful set of applications with no need for a large

amount of labelled data, it is an innovative technique that is imitating whoever provided the data. It is

biased resistant because it does not have a bias from the beginning as SL has from its labelled data which

a lot of times may be biased (from the labelling methodology). RL is adaptable and goal-oriented, which

are another two advantages, but it has a couple of disadvantages like the need for a large amount of data

(from experience). As the complexity increases, the algorithms need more and more data to be acquired

from interaction with the environment. The results of RL models depend on the agent’s exploration of the

environment, bringing limitations to the model.

2.1.4 Applications

There are many applications for ML, which range from several areas. Companies across all industries

use SL to address issues like customer churn detection [26], customer lifetime worth assessment [27],

personalising reviews for goods, human resources distribution, sales forecasting [28], supply and demand

analysis [29], identifying fraud [30], predicting repair of equipment. It is to notice that given a well-labelled

dataset, we can predict pretty much everything, using supervised learning methods, provided there is a

statistical relationship between inputs and outputs.

UL is used by companies across all industries to address issues like anomaly and similarity detection

[31], products and customer segmentation [32], recommendation systems [33], and even labelling of

datasets to be used in supervised methods.

RL is also being used by companies across all industries. For instance, it is being used in the gaming

industry with much success for some time now. It is also used to test reinforcement algorithms by training

them to learn how to play certain games such as chess, go [34] and Othello [35]. RL is used in the financial

industry to generate more return on investment, reduce cost, and improve customer experience. It can

also improve execution while approving loans, measuring risk factors, and managing investments, among

other use cases in the financial industry and financial markets. RL can also be used in the healthcare

industry; two big examples are the healthcare domain Quotient Health [36] and the application KenSci

[37]. Quotient Health uses reinforcement learning to reduce the expenses of electronic medical records

to improve healthcare systems with lower costs. KenSci tries to help medical practitioners and patients

intervene in earlier stages of diseases by using reinforcement learning to predetermine ailments and

treatments. A lot more use cases use RL like the marketing industry, image processing and even the

robotics industry.

11



CHAPTER 2. STATE OF THE ART

2.1.5 Limitations and benefits

After explaining ML, in a general way, two questions remain: Why is Machine Learning important?

What are its Limitations?

ML is important because it can easily identify trends and patterns, it (mostly) does not need human

interaction, it can handle all types of data, and consequently, impact many industries. Machine Learning

keeps learning and thereby keeps improving with time. ML is energy and time efficient and can work in a

big range of applications which can help companies gain money with little investment. However, ML has

its limitations too. Limitations such as being prone to errors and being very expensive for more complex

use cases. From the data acquisition costs to the time and resources to create models, and to the people

needed to create tools and interpret results makes it almost impossible for smaller businesses to use it.

But with the growth of the area inevitably it will be easier and cheaper for everybody.

A limitation that is sometimes overlooked is the automation itself, ML is not the right answer for every

use case because automation itself may take a bit of personalising of methods out of the equation. Another

limitation is the lack of good data. As ML is a relatively recent field, a lot of areas need to be explored and

the biggest problem right now is having good data, which is an essential element in machine learning.

Another big limitation of ML models is overfitting, which occurs when a model corresponds closely to the

training data. This makes the model good at predicting data similar to its training data but if the test data

is not similar to the training data the model will not be able to have good predictions.

2.2 Deep Learning

Deep Learning is a Machine Learning technique based on NN [38]. It works by using multiple layers

to extract features from the input, thus learning the best representation from the data.

We can better understand how DL works with the figure below (Figure 5). As we can see, we have a

set of input values that feed the input layer. The input is then passed through several layers (in this case,

2 hidden layers) where information is extracted and given to the user.

In this section we are going to discuss a bit about NN, going deep into some of the most common

types of networks. We are going to deliberate on the best way to train models. At the end of the section,

we will debate the main differences between ML and DL and the limitations and benefits of DL.
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Figure 5: Deep Learning Architecture, adapted from [39]

2.2.1 Artificial Neural Networks

Artificial Neural Networks, normally called Neural Networks, are computing systems inspired by bio-

logical brains. They are based on a collection of connected nodes (artificial neurons). Each connection

(called edges), like biological brains (with synapses), can transmit a signal to other nodes [40].

An artificial neuron receives a signal, processes it and signals the next neuron (connected with it).

The ’signal’ is a number and the output of each neuron is typically computed by applying a non-linear

activation function to the sum of its inputs multiplied by the weights of connecting edges. Indeed, edges

connecting neurons have weights that are adjusted through a learning process. Each weight increases or

decreases the strength of the signal at their respective connection.

In feed-forward networks, neurons are typically aggregated into different layers, with each layer being

able to perform different transformations on their inputs. Signals go from the first layer to the last layer.

Artificial Networks can implement the different machine learning paradigms (Supervised, Unsuper-

vised, Reinforcement).

DL has a few types of networks and technologies with the main ones being Feed Forward Neural

Networks (FFNN), Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), Restricted

Boltzmann Machines (RBM), Autoencoders, Embeddings and Transformers.
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FeedForward Neural Network

A Feed-Forward Neural Network is a network that ensures that the nodes do not form a cycle [41].

All the neurons are organised in interconnected layers. In FFNNs, nodes in the same layer cannot be

interconnected, making it impossible to have back loops. To minimise prediction errors, the backpropa-

gation algorithm can be used to update weight values. These types of networks have several applications

like data compression [42], pattern recognition [43], computer vision [44], sonar target recognition [45],

speech recognition [46], handwritten character recognition [47].

Recurrent Neural Network

Recurrent Neural Networks [48] are an evolution of Feed-Forward Neural Networks. In RNNs, each

of the neurons present in the hidden layers receives an input with a specific delay in time. RNNs work by

saving the output of a layer and feeding it back to the input to predict the output. With the figure below

(Figure 6), we can easily visualise this.

Figure 6: Recurrent Neural Network, adapted from [49]

As we can see in the figure (Figure 6), RNNs use a loop to iterate to the hidden layers, giving them

the capability to remember previous states. This loop gives the model a memorisation capability that lets

it predict outputs with the knowledge gained in previous states. There are four types of architectures in

RNNs. These are One-to-One, One-to-Many, Many-to-One and Many-to-Many. The names relate to the

number of inputs and outputs, and the format of the names of these types denotes InputNumber-to-

OutputNumber. In the Many-to-Many architecture, we have a set of three matrices. The first is between

the input and hidden layer, the second is between hidden layers and the third is between the hidden layer

and the output layer. The model will learn by using these matrices and a couple of bias vectors. These

parameters often use the back-propagation through time algorithm [50], where after a forward pass, we

perform a backward pass adjusting the model’s parameters. This helps to repeatedly adjust parameters

so that it can minimise the cost function.
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RNNs were created to tackle two main issues of feed-forward networks. These issues are the incapa-

bility of those networks in handling sequential data and memorising previous inputs.

The most used RNNs are LSTMs (Long Short Term Memory) [51] and GRU (Gated Recurrent Unit)

[52]. LSTM is a RNN that was created to deal with the two main problems that RNN deal with. LSTM

prevents the output of the model from either decaying or exploding as it cycles through feedback loops.

These feedback loops allow the network to be better at pattern recognition.

These networks are used for different applications like machine translation, robot control, time series

prediction [51], speech recognition, speech synthesis [53], sequence modelling [52], music composition

[54].

Convolutional Neural Network

Convolutional Neural Networks [55] are NN that differentiate themselves from other NNs by having

superior performance in the classification of visual content, recognition of objects within its scenery (for

example, street signs), and group the recognised objects into clusters (e.g. facial recognition on a pool of

faces). It can accomplish this by having an architecture composed of threemain layers (convolutional layer,

pooling layer and fully-connected layer). The convolutional layer is the first layer of a CNN, it is followed by

other layers (including more convolutional layers and pooling layers) and it has a fully connected layer as

its last layer. With each layer, CNNs can identify more complex portions of what we are analysing, in the

case of an image the first layers try to identify edges, colours and other simple features. As the process

evolves, layers start to recognise the shapes of objects until they finally identify the object in the image.

The convolutional layer is the main building block of the NNs. It needs to have the input data, a filter and a

feature map. The filter is a feature detector that will search the input for the feature, this process is called

convolution. The pooling layer, also known as downsampling reduces the number of parameters in the

input (dimensionality reduction). Similarly to the convolutional layer, it has a filter that will search the input

for a feature, with the difference that this filter doesn’t have weights. It works by using an aggregation

function to populate the output array using the values in the receptive field. There are two types of pooling:

max pooling where the filter sweeps the field choosing the maximum valued pixel to send to the output,

average pooling that calculates the average value of the receptive field. Even though information is lost

by reducing the number of parameters, this layer helps to reduce complexity, improving efficiency and

reducing the probability of overfitting. The fully connected layer, also known as the dense layer, performs

the task of classification using the information extracted in previous layers. Being a fully connected layer

helps by connecting every node to the output layer.

These NNs have a lot of applications with the main ones being able to identify faces, street signs[56],

tumours [57]. It can also recognise images, analyse videos and detect anomalies.

Other applications of these networks can be NLP, Drug Discovery, Time Series Forecasting [58],

among others.
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Restricted Boltzmann Machine

Restricted Boltzmann Machines are a variant of Neural Networks where the neurons of the input layer

and the hidden layers encompass symmetric connections amid them. Nevertheless, there is no internal

association within their layers, unlike traditional Boltzmann machines. These restrictions in Boltzmann

Machines help the model to train more efficiently [59].

Applications for these networks range from filtering, feature learning, classification, risk detection,

business and economic analysis.

Autoencoders

An autoencoder is a UL algorithm where the number of hidden cells is smaller than that of the input

cells. However, the number of input cells is the same as the number of output cells. These networks are

trained to display the output similar to the inputs to force them to find common patterns and generalise

the data. The autoencoder networks are mainly used to get smaller representations of the input. They

work by following two steps. An Encoder step that converts the input data into lower dimensions and a

Decoder step that reconstructs the compressed data from that latent representation.

The main use cases for autoencoders are classification, clustering and feature compression.

Embeddings

An embedding [60] is a technique that can represent high dimensional data in low dimensional repre-

sentations. A good embedding will not capture all the information in the original data but instead capture

enough to solve the problem being solved. Embeddings work by using the same idea as dimensionality

reduction. So an embedding will reduce the dimension of the original input while maintaining the essential

data to solve the problem. Embeddings are often used with distance matrices to solve real-world problems.

Embeddings have several applications, from word embeddings (like word2vec [61]) to social media

[62]. There are many well-known embeddings like PCA [20] and Multidimensional scaling (MDS) [63].

Transformers

In 2017, Vaswani et al. [64] proposed a new architecture that could maintain the attention mechanism

while processing sequences in parallel. By doing this we could process all words together relatively to a

word-by-word basis. With this architecture, parallelism became real. The use of parallelism gives us a

solution that is computationally inexpensive in comparison to sequential solutions.

Transformers are a classic sequence-to-sequence model which architecture as two interdependent

segments: an encoder segment and a decoder segment.

This process can be simply understood by the figure below (Figure 7).
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Figure 7: Transformers, adapted from [64]
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The encoder segment takes the inputs from the source language and generates an embedding for

them encoding the positions. Then it computes where each word has to attend in the multi-context setting.

Finally, it outputs an intermediary representation.

The decoder segment takes inputs from the target language and generates an embedding for them

encoding the positions. Then it computes where each word has to attend to, with what was already

produced. Afterwards, combines it with the encoder output with what it has already produced. The

outcome is a prediction for the next token (using softmax and hence argmax class prediction, where each

token or word is a class).

In the encoder segment, we have the ability to transform inputs into an intermediary language. This

segment is composed of a couple of individual components (input embeddings, positional encodings, the

actual encoder segment). The input embedding converts tokenized inputs into a vector so that they can

be used. Positional encodings change the vectors created in the input embeddings and add positional

information to these vectors. The actual encoder segment can be divided into two sub-segments. The

first sub-segment is a multi-head attention segment that performs a multi-head self-attention adding the

residual connection and performing the normalisation of the layer. The second sub-segment is the feed-

forward segment that generates the encoder output for each token. These sub-segments can be repeated

N times ([64] chose N = 6).

In the decoder segment, we can convert the intermediary into predictions for the output tokens. This

segment has a couple of individual components (output embeddings, positional encodings and the actual

decoder). The output embedding converts tokenized outputs into vector format (like the encoder with

the input embeddings). Positional encodings add positional information to the vectors created by the

output embeddings. The actual decoder can be divided into three subsegments. The first is the masked

multi-head attention segment that performs a multi-head self-attention on the outputs but does it in a

masked way so that the positions only rely on the past. The second is the multi-head attention segment

that performs a multi-head self-attention on a combination of the outputs and the encoded inputs. The

purpose of this step is for the model to learn to correlate encoded inputs with outputs. The last segment

is the feed-forward segment that processes the tokens individually.

There are several transformers implemented like Google’s BERT that revolutionised NLP [65]. BERT

also known as Bidirectional Encoder Representations from Transformers, is pre-trained on a large corpus

(including the entire Wikipedia). Being bidirectional means it learns from both the right and the left of a

token during the training phase which makes it easier to learn the context of a phrase.

2.2.2 Training Models

There are two main ways to train and create deep learning models. The first way is by training from

scratch, where we gather a large amount of data and design a network architecture that can learn the

features we need. The other way to train is Transfer Learning [66], where we fine-tune a pre-trained

model. We start with an existing network and feed it new data containing previously unknown classes.
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After making some changes to the network, we can perform new tasks.

TL needs much less data, which massively reduces computation times.

2.2.3 Machine Learning vs Deep Learning

We have explored how DL works, but why would we use it instead of traditional ML techniques? There

are several differences between DL and ML [67]. In this section, we are going to explore some of them.

The first difference is the amount of data; DL works with a larger amount of data while ML works

with smaller datasets to improve accuracy. This difference can be a helpful indicator of what to use

depending on the amount of existing data. A second difference is that DL commonly relies on high-end

machines while ML can work on lower-end machines. DL needs higher-end machines due to the huge

amount of operations needed (and it gets even worse because we normally get more data than in ML).

The bigger amount of computational operations means it might be too much for CPUs to run it (in a

reasonable amount of time) making DL users have GPUs (computing units that have a higher capability

to compute operations faster than CPUs due to parallelism and a more specialised set of operations).

Another difference is time; complex DL models normally take longer to train compared to traditional ML

algorithms. In contrast, DL normally takes less time to test.

2.2.4 Limitations and benefits

The last thing we are going to talk about regarding DL is its limitations and benefits. We will start by

stating the limitations. The most significant limitation is learning through observation, which means that

models only know whatever is on the data they train. If there is only a small amount of data, the model

will learn very little information, resulting in an inaccurate model. The second biggest limitation is bias.

Data can contain bias, which has been a vexing problem in the area. Models recreate the bias in the

data, consequently resulting in biased models. One big example is biased facial recognition software that

uses racial bias in its recognition. This has been happening everywhere, with a good example being the

UK’s passport checking system that was knowingly being used even though the governing bodies knew

the inaccuracy of correctly identifying faces with darker skin tones [68].

There are other limitations like the learning rate. If too high, it gives a model that converges too

quickly, producing a less than optimal solution. If it is too low the process may get stuck, and it will be

even harder to reach a solution. Another limitation is the hardware requirements that can be prohibitive

due to the high cost of high-end machines. There are many more limitations like a large amount of data,

which may be a problem in terms of storage space and processing power. It can also be a problem in

terms of overfitting and bias.

We will now talk about the benefits of DL. Let us start with the most obvious, in terms of performance

it beats the other types of ML. Another benefit is the reduction of the need to do feature extraction. It

can also eliminate costs by being able to identify defects easily that otherwise would be difficult to detect.
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Another benefit from DL is it provides great results with unstructured data in comparison to traditional ML

models. The last benefit we are going to discuss is scalability, in DL we have a more scalable solution to

our problem due to the ease of working with bigger amounts of data in comparison to other solutions.

2.3 Text Mining

With the advances in technology, more and more data are available. With most of these data be-

ing unstructured text, there was the need to develop techniques to extract knowledge from these data.

Consequently, the area of Text Mining flourished.

Hence, the area of Text Mining can be defined as the process of transforming unstructured text into

structured data for more straightforward analysis. TM accomplishes that by using NLP to allow machines

to understand human language.

In general, TM can be divided into three areas: Information Retrieval (IR), Information Extraction (IE)

and NLP. In the following subsections, we will talk about these areas of TM in more detail, starting with

the first area, Information Retrieval.

2.3.1 Information Retrieval

Information Retrieval [69] can be defined as the process of retrieving useful data from the unstructured

data stored. Common techniques used for this area are summarization, compound term processing, and

cross-lingual search. IR has many applications, mainly information filtering (like we find in recommender

systems) and search engines.

2.3.2 Information Extraction

Information extraction as the name tells us, this area tackles the extraction of data from texts [70]. It

can be defined as the process that deals with the automatic extraction of structured data from unstructured

data sources. Typically, the process of IE follows a couple of steps. It starts with a pre-processing of the

text, which is accomplished by using techniques like tokenization and sentence splitting. It is commonly

followed by a step that tries to find and classify concepts where we detect and classify mentions of people,

things, locations, events, and other pre-specified concepts. After detecting and classifying concepts we

try and connect them by identifying relationships between the extracted concepts. In the end, the data

is unified, meaning the data is put into a standard form where noise is eliminated with techniques like

eliminating duplicate data. The process of IE can be entirely automated.

The most common applications for IE are information extraction in digital libraries, emails, personal

profiles in social networks among many others.
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2.3.3 Natural Language Processing

Natural Language Processing [71] is a component of Artificial Intelligence to get computer software

applications to understand human language. The development of NLP applications can be hard because

computers don’t, generally, receive information in human speaking form. They normally receive it in a

programming language that is a structured, simple way to transmit information.

Human speech is usually not well structured, so it can depend on many complex variables like slang,

social context, and regional dialects, which is a complex situation we face while creating NLP applications.

There are many useful methods for the NLP area, with the main ones being Named Entity Recogni-

tion, Summarization, Topic Modelling, Text Classification, Keyword Extraction, Lemmatization, Stemming

among many others.

With NLP being such as powerful area, many use cases exist, with the main ones being Autocorrect

and Spell-check, Text Classification, Sentiment Analysis, Question Answering, Caption Generation, among

many others.

NLP is a term that can, sometimes, be used interchangeably with TM, especially when speaking of

NLP for text data.

2.3.4 Limitations and benefits

The biggest limitation of TM has nothing to do with technology but with copyright legislation [72]. The

right to copy, digitise, and then to text mine is severely curtailed by the necessary restrictions placed on

many texts to preserve the rights of copyright holders.

The second most significant limitation is the potential to gather garbled or false results due to poorly

formed questions being asked of data or the nature of the text(s) under study.

Even though TM has its limitations, its benefits outweigh them a lot. The ability to access more facts

and uncover relationships are probably the two main benefits for TM that make it a powerful tool for

virtually every area.

2.4 Sentiment Analysis

We are living in an Information Age, where an abundance of data is created both by humans and

machines. With data being created at an unprecedented rate, it is nearly impossible to gain insights into

such data manually. The software comes to the rescue by letting us acquire insights into data by assessing

it purely computationally.

One of the biggest areas explored is Sentiment analysis. Sentiment Analysis refers to the process in

which computers try to find patterns to infer the emotion of a given piece of information.

SA works by following a simple life cycle that comes down to retrieving information, analysing it to get

the emotions in the information gathered and then typically classifying the texts based on these emotions.

21



CHAPTER 2. STATE OF THE ART

SA can be divided into four main types[73]: Fine-Grained Sentiment Analysis, Emotion Detection,

Aspect Based Sentiment Analysis and Intent-Based Sentiment Analysis, which will be explored in the

following sections.

In general, SA follows 3 simple steps which encapsulate its essence. The most important step,

considered to be the first one, is: we have to understand the data. It is used, for example, with assessing

the engagement with customers and delineate the causes so that we can improve their service later.

Nevertheless, analysing data is often difficult to perform, since data can be unstructured, opinionated

and in some cases incomplete. These data have to be cleaned, to mature into usable data. In most cases,

these cleanse must focus on deducing the polarity of the information, while clearing pieces that might lead

to ambiguity.

At the end of the cleanse, we want to have the information good enough to deduce the polarity easily.

We can use techniques like NLP [74], TM [75] to help prepare and analyse data for SA. Other areas like

ML [76] , DL [77] and others are also used for SA.

2.4.1 Fine-Grained Sentiment Analysis

The first type we are going to talk about is the Fine-Grained Sentiment Analysis [78] where we try to

capture the polarity of the inputted information. Polarity can be divided into two categories (positive and

negative), 3 categories (positive, neutral, negative) or up to 5 categories (ranging from very negative to

very positive). This type of analysis is very important to businesses to be able to gauge the popularity of

products taking into account customer feedback in real time. This takes different importance when sorting

data at large scales, because a business can, in real-time, be able to know how good their product is doing

using consistent criteria. For example, these data can help with customer service [79] and deliver a better

product to their clients, consequently being able to increase sales. This type of analysis is also used for

image recognition [80].

2.4.2 Emotion Detection

The second type is Emotion Detection [81], which can detect sentiments like happiness, sadness,

anger, surprise, among others. These emotions can give a more nuanced view on their products to

a business, helping them to fix in a more precise way what they want to get better. It can also help

businesses check the market sentiment on their products, and consequently help with their customer

service. These emotions can also help to assess the cultural views on a topic [82].

2.4.3 Aspect Based Sentiment Analysis

The third type is Aspect Based Sentiment Analysis [83] which has as its objective to know what aspects

are related to a sentiment. For example, in a product review where customers complain that the deliveries

are slow, this type of SA must be able to tell them that the sentiment towards the reviews is negative
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for the aspect of delivery. However, it is important to mention that this can get more complicated when

several aspects with different sentiments are in the same inputted text. Aspect Based Sentiment Analysis

can give even more specific information about the popularity of their product, making it even easier to

determine what the customers want to see changed and what is already working.

Aspect based sentiment analysis is also used for rating predictions [84].

2.4.4 Intent-Based Sentiment Analysis

The last type is Intent-Based Sentiment Analysis [85]. This type of SA is very helpful for businesses

that want to know the intent of customers. This type of analysis can tell businesses if a sudden increase in

product views may indicate an increase in sales or simply an increase in people browsing their products.

This can help marketing departments to know what products to market better to increase sales.

2.4.5 Sentiment Analysis in Portuguese

SA tools and resources on the market nowadays, including Vader [86], TextBlob [87], SentiwordNet

[88], among others tend to be very good for the English Language. Even though a lot of work has been

put into this area, most languages are still falling behind. This problem is the one we are going to tackle

in this dissertation.

Tools like Textblob and Vader have multilingual capacity but they tend to first translate from Portuguese

(or any other language) to English and then use the English models to evaluate the inputted information.

Even though this seems to be a good solution in principle, in practice this does not seem to obtain great

results due to the state of translation tools.

Several papers and projects have tried to help further the Portuguese language case in the Sentiment

Analysis area.

Projects like Projeto Natura from José João Almeida [89] is a good example of a project trying to

further the fields of NLP and SA in the Portuguese language. It tries to further this cause by releasing

helpful tools, dictionaries and corpora, among many other tools.

Another good project trying to further this cause is the Netlang project [90] [91], which focuses on

finding online hate speech. Another area being explored for sentiment analysis is the social networks area

[92].

The use of embeddings and transformers is the new big thing in SA. There are, already, a couple

of projects that present us with pre-trained embeddings [93] and transformers [94] [95] [96] for the

Portuguese Language. Projects like these are a fundamental part for the advancement of the Portuguese

Language and the field of sentiment analysis, because it allows anyone to use them simply (often explained

how to use with step-by-step guides by the authors).
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2.5 Previous efforts and tools

There are many approaches to Sentiment Analysis but they can be assigned into 3 categories.

The first is a lexicon-based approach that uses lexicons and corpora of words that already have a

sentiment assigned and we compare words in the inputted text with the words in the lexicon(or corpus) to

see what are the most prevalent sentiments.

The second approach is an ML Based approach, where a labelled dataset is used with (at least) two

fields, one for the inputted text and another for the sentiment associated with the text. Then, we create ML

models with the aforementioned dataset as the training dataset; in the end, we get a model that can predict

sentiment, where the quality of the predictions is dependent on the quality of the dataset, pre-processing

and the model itself.

The last approach is a Hybrid Approach where we use both lexicons/corpus and Machine Learning.

In the next subsections, we will discuss the most used tools for each approach, starting with the most

known lexicons and followed by the hybrid (or machine learning only) approaches on the market right now.

2.5.1 Lexicon Based Approach

The Table below (Table 1) shows some of the tools for the lexicon-based approach.

Name Authors Year

LIWC James Pennebaker

et al

1993 - 2015 [97]

ANEW Margaret Bradley,

Peter Lang

1999 [98]

NRC Saif Mohammad,

Peter Turney

2013 [99]

AFINN Finn Nielsen 2009 [100]

SentiWordNet A. Esuli, F. Sebas-

tiani

2006 - 2010 [88]

BING Minqing Hu, Bing

Liu

2004 [101]

Loughran Tim Loughran, Bill

McDonald

2011 [102]

SenticNet Erik Cambria et al 2010 - 2020 [103]

SO-CAL Maite Taboada,

Jack Grieve

2004 - 2011 [104]

SemEval Adam Kilgarriff 2002 - 2018 [105]

Table 1: Lexicons for Sentiment Analysis

As one can see, these lexicons, which started (in some cases) a long time ago, have been improved

consistently. LIWC and SO-CAL are the most significant examples of the previously mentioned phenomena.
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LIWC is updated every 6/7 years, while SO-CAL every 2 years has a new version out to keep being up to

date.

Some of these lexicons are free to use (or free to use for educational/research matters), making it

very friendly for researchers to use them. Being free to use means that even if the initial creator stops

updating them, researchers can use their work to create better and more updated lexicons or even use

the same methodologies to create similar lexicons for other languages.

The lexicons themselves work by having a set of words classified by sentiment. Most lexicons classify

words by either positive or negative. Newer lexicons are starting to get a set of emotions, giving each word

a set of emotions to get more specific results.

The sentiment outputted is normally calculated by the sum of the words present in the inputted text.

It can also be calculated by non-linear functions giving weights to some emotions compared to others.

The biggest difference between these lexicons is the sentiments they are classifying. For example,

LIWC has an output of 90 variables that give us information ranging from general descriptors to linguist

dimensions to psychological constructs. This lexicon is probably the most complete but sometimes we do

not need so many outputs. For example, if we want to know whether a phrase is positive or negative we

can use a simpler lexicon like sentiwordnet. We may want to get more or less specific in our predictions

and so we choose the lexicon to use accordingly.

Another thing we have to take into account is the way the lexicon entries were evaluated (in terms

of the sentiments present in certain words). In some cases like LIWC, ANEW, NRC they were manually

evaluated by several people using the same methodology. In other cases, it is manually evaluated by only

one person like AFINN in which the author uses the same methodology as the ANEW lexicon to evaluate

more words and create a new version of ANEW. The last case is evaluating using other tools and lexicons

in an automatic way like some versions of Sentiwordnet. According to the methodology used it can better

match our problem and give us better results.

In the case of lexicons translated to other languages we need to explore the possibility of certain

words having different meanings (in terms of sentiments associated with them), this may incur unwanted

mistakes.

2.5.2 Hybrid/ ML Approaches

In this section, we will tackle hybrid and ML approaches. We decided to join these two approaches

into one section because, in most cases, the tools already created for machine learning are not open

source code, and because of this, we may not know if they are hybrid or not. In most cases, these tools

do have hybrid approaches.

The Table (Table 2) shows some tools and embeddings, and then we will discuss them.
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Name Author Year

Vader C. Hutto, E. Gilbert. 2014 [86]

TextBlob S. Loria et al. 2013 [87]

MonkeyLearn Monkey Learn 2015 [106]

Rosette Rosette 2015 [107]

Aylien Aylien 2016 [108]

Glove J. Pennington et al 2014 [109]

Word2vec Tomas Mikolov 2013 [61]

C&W Ronan Collobert et

al

2011 [110]

SSWE Duyu Tang et al 2014 [111]

Bert Jacob Devlin et al 2018 [65]

ELmo Matthew E. Peters

et al

2018 [112]

Flair Alan Akbik 2018 [113]

FLERT Alan Akbik 2020 [114]

Table 2: Tools for Sentiment Analysis

In these approaches, we have three types of sub approaches embeddings and neural networks, trans-

formers and applications.

The applications are Vader, textblob, monkeylearn, rosette and aylien. This is the easier way to

evaluate, in most cases, we can have an application where we input the phrase to be classified and the

program returns the answer. In this specific situation, anyone can classify a set of their phrases. The

second way these applications work is by giving us access to an API where we can classify our set of data.

There are several things to take into account when choosing the one to use. For some of these like rosette

and aylien we will need a paid version to use, this may be a hurdle for some projects. If we were not a

programmer, we may need to consider only these applications, because we may not know how to work

without them otherwise. Another thing to take into account is that these applications (especially the paid

ones) have complimentary extras that may be beneficial to our use case.

The next two approaches are very helpful to let us create our classifiers. With embeddings and NNs

like SSWE, C&W, Glove and Word2vec we can have word embeddings trained specifically to our use case.

The last approach is more advanced than the two we have previously spoken of. Transformers are

a cutting-edge field that emerged recently; and with transformers like BERT, FLAIR and ELMo we have

a great way to start creating transformers. FLERT is another transformer, that emerged from FLAIR and

BERT, that we can use. In general, the most important step is to choose wisely the tool to use according

to the problem we want to solve and the resources we possess.

In ML approaches we usually create models that evaluate sentences for the predominant sentiments.

Using a pre-trained model is typically faster than lexicon-based approaches to give outputs because the

”slower”bit of the process is already done before the users input their texts.

A good example of a hybrid approach is using lexicons to evaluate a set of sentences for their emotions
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and using the result as the training input for the model created.

These approaches, when done right, give us excellent results in a fast way.
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3
Development Approach

In this chapter, we will explore the problem we want to tackle and how we will tackle it.

We will delve into the architecture and guidelines created for Omnium AI, for the sake of creating an

organised project that can be used by the company. Some details may be omitted for the protection of

the company’s Intellectual Property.

We will examine the technologies used in order to achieve a solution to our problem.

3.1 The Problem

This dissertation aims to give a path on how to approach a Sentiment Analysis (SA) problem in the

Portuguese language.

The approach we are going to propose is subdivided into 3 major steps.

First of all, we will do an exploration of how to get data from different sources with the purpose of

creating our datasets. We are going to evaluate the quality of the data by using different methods. We

will delve into Exploratory Data Analysis (EDA), to summarise the main characteristics of these datasets

by employing different visualisation methods.

Secondly, we will prepare different pipelines of Transformers for pre-processing to normalise the text

our models will have as input. We are going to use different transformers and explain how we can use

them for the Portuguese language with less commonly used tools.

Furthermore, we will show a simple way to use and create different models using these datasets.

These models will range from simple Machine Learning (ML) models to more complex Deep Learning

(DL) models.

Lastly, we will streamline this 3-step process by creating a package that will give its user an easy way

to create SA models in Portuguese.
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For an easy-to-use result, our Models and Transformers will be added to the company’s API in accor-

dance with their architecture and guidelines.

Throughout the next chapters, we will follow the proposed approach by explaining the aforementioned

steps one by one, in detail.

Before exploring this approach, we will delve into the architecture we are going to follow and the

technologies we used to reach our end goal.

3.2 Architecture

In this section, we will present an architecture that was used as a baseline to create sentiment analysis

models.

We will start with an explanation of Omnium AI’s architecture and the addition to their package.

3.2.1 Omnium AI - Architecture

Omnium AI created the following architecture (Figure 8), in order to achieve a tool that can create

models for different applications. This architecture was inspired by the Autogluon architecture and some

of the implemented methods are wrappers from Autogluon and other open-source libraries.

Figure 8: Omnium AI Architecture
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This architecture allows the reading and writing of datasets with the CSV modules, also allowing the

creation of Pipelines with Transformers and Predictors to process the data read and run it through an

already trained predictor. More, it also allows the creation of several models with the data read and saves

the predictors to use to evaluate data later.

This architecture is achieved in the following Python package called Omnia (Figure 9).

Figure 9: Omnia Package Composition
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This package is composed of sub-packages for each project undertaken by Omnium AI.

For our project, we will focus on 3 sub-packages: Omnia-core, Omnia-generics and Omnia-Text-Mining.

In the next figure (Figure 10), we can analyse these packages in a more in-depth way.

Figure 10: Omnia-Core, Omnia-Generics and Omnia-Text-Mining Package Composition
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Omnia-Core is the core of the platform, that achieves the architecture above (Figure 8). It includes the

several classes seen in the architecture. These classes are Estimation which regulates the Estimators, the

IO handles the reading and writing of data, Model which controls the creation of models, Prediction which

regulates the predictors, Transformation which handles transformers, Utils which controls the Serialisation

and Validation used to regulate the TAG validation. Tag validation is a validation method that uses tags

to validate data. Furthermore, Omnia-Core has the Pipeline class that handles the creation of pipelines of

transformers and predictors.

These classes are abstract classes that abide by an object-oriented way of programming.

Omnia-Generics is the sub-package that gives a compilation of useful classes that may be common

to different sub-packages in Omnia.

Omnia-Generics gives us a way to read, write and store data in Array, Dataframe and IO. Even though

we are only using CSV and pandas dataframes we can read and write data in JSON and YAML. We can

also work with other types of dataframes that are not Pandas.

Omnia-Generics gives us a couple of pre-processing methods created as Transformers in Encoding,

Scaling, and Transformers.

Omnia-Generics has a couple of models and predictors in Models and Predictors, that are generally

used by several other projects.

Omnia-Generics has a setup and pipeline class so that the different projects can create their pipelines

in a standardised and streamlined way.

Omnia-Generics also gives us several standard tags created for the tag validation.

It is in this package that we are going to code our models and the pre-processing methods that can

be used by other projects, while having access to materials created by other Omnium AI projects.

The last package, Omnia-Text-Mining, was created for our specific project, which includes 2 disser-

tations: ours and Tiago Silva’s dissertation. It is here that we will create all the needed pre-processing

Transformers, that are specific to our Text Mining (TM) projects.

All the code provided to these packages follows a strict set of rules created by Omnium Ai. These

rules will be explored in the next subsection.

3.2.2 Omnium AI - Guidelines

In this section, we will delve into the set of rules created by Omnium AI.

These rules help to maintain a standard so that everybody can easily understand the projects and

make future changes.

The most important rules are the creation of a requirements file to avoid import version problems; it is

asked that every package follows the same package Hierarchy that includes a README file explaining the

package objectives, the requirements for the aforementioned package (and the versions needed), a setup

configuration file, the source code and their unit tests and an example using the package. This Hierarchy

makes the comprehension of the package easier.
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There is a strict guideline for imports to avoid circular import errors.

The code itself needs to have all its functions typed and documented using Python Docstring. This

documentation must have an explanation of the inputs, outputs, the objective of the code and an example

of the code being used.

To submit our code to a package or to create a package we use Version Control System where for

each task we code we create a branch. When a task is finished, a pull request is created for an Omnium

AI member to evaluate the solution to the task. If the solution is satisfactory, according to the company’s

standards, the branch is merged into the development branch until another version of the project is

released. When a new version is released, the developed branch is merged into the main.

3.3 Technologies

In this section, we will go into more depth on what technologies we are going to use.

Our project was developed using Python and some of its open-source packages.

The main packages used in this dissertation were:

1. Numpy [115]: Package fundamental to computer science, provides an assortment of routines for

fast operations over arrays;

2. Emoji [116]: Package that converts Unicode emojis into emoji names in a given language;

3. Spacy [117]: Package that offers many methods for Natural Language Processing;

4. NLTK [118]: Package that deals with text, providing methods to perform, among others, tokeniza-

tion, lemmatization and part of speech tagging;

5. Autogluon [119]: Package that enables an easy-to-use Automatic Machine Learning tool with a

focus on creating models;

6. Pytorch [120]: Framework that allows an easy implementation of several Deep Learning models;

7. Tensorflow [121] and Keras [122]: Framework that allows an easy implementation of several

Deep Learning models;

8. Scikit-learn [123]: Package that offers simple and efficient tools for predictive data analysis;

9. Pandas [124]: Flexible package that offers a straightforward data analysis and data manipulation

tool;

10. re [125]: Python library that helps to deal with regular expressions;

11. Google Translate [126] and OpenNMT [127]: Packages that provide a simple way to translate

text.
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12. Twint [128]: Advanced scrapping tool that allows, among others, the scrapping of Tweets;

13. MatPlotlib [129]: Library that helps to visualise data.

We will also use available resources in Omnium AI’s Omnia package.

The usage of these packages helps us achieve a more efficient product. Without open-source projects,

like those aforementioned, it would be a very challenging job to create tools like the one being created in

our dissertation.

Summary

In a nutshell, the objective of this dissertation is to give us a stepping stone into SA and give Omnium

AI a tool to create ML and DL models.

We will be able to create pipelines that generate models, for a specific project we are tackling simply

and concisely.

These Pipelines are a combination of a Reading step where we will read the data, a pre-processing step

where we will use Transformers to normalise text and the last step where we generate models according

to our data. These models can, subsequently, be used to evaluate text on the same topic as the data that

created the model.

By creating more than one model, we will be able to compare results on our projects choosing the

best models and the best pre-processing for our data so that we have the best possible models for our

projects.

We will also have an idea of the next steps we may take to get other models that may be good for our

projects.

To achieve our goals, we can use an architecture like Omnium’s, using the same rules and packages

they did, to create a tool that can be used effortlessly.

In the next chapter, we will give a detailed explanation of how we tackled the aforementioned approach,

offering a thorough description of all 3 steps we articulated previously. We will start by exploring datasets,

followed by Transformers and finalising with Models.
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4
Development

In this chapter, we will discuss how to develop a 3-step architecture. We will start by exploring how to

gather data, followed by a breakdown of different methods to transform data and ending with an exploration

of the models we created.

4.1 Datasets

This section will start by explaining how we can gather data, which stands as the first step to be able

to create SA models.

There are two methods for collecting data. The first method to collect data is to start with pre-built

datasets. There are various sources that provide us with free-to-use data, such as Kaggle [130], Data

Driven[131], Crowd Analytix [132], and CrowdAI [133].We used the Kaggle platform to collect data. The

second method is to create the dataset from scratch. It is common to collect social media posts, we

utilised Twint to collect Twitter posts and create a dataset [134]. Either way, there is a need to ascertain

if the dataset belongs to our project topic. The best way to substantiate this is by doing an EDA.

Sentiment must be defined before searching or creating datasets for SA. For this project, sentiment

is defined as positive or negative connotations of text. With this, we can proceed with the search for a

dataset. We found a couple of results for our topic of Covid19, with the best version being a dataset in

Portuguese with the same definition of Sentiment as us, which we will explore in the next chapter.

Several datasets within our topic were in another language, we could have used translation resources

to transform these datasets into viable data for our project. The results of the translations may not be

good enough ultimately, but it’s a path that could have been taken. Sources like OpenNMT [127] is a

good approach to translating our data, through the use of pre-trained models. As we are using python,

the Translators’ package [135] is another useful alternative that lets us choose several sources to use to
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translate our text.

Once we have exhausted these paths, we can always create our dataset from scratch using Twint.

Twint allows us to retrieve posts from Twitter according to a set of filters. This approach would imply

manual labelling of the posts to get the best possible dataset. This step is very important, without a well-

labelled dataset we can not get a good model. We created a small dataset from this source as a sample

of what can be done, we will explore this dataset in more depth in the next chapter.

As previously mentioned, we got a dataset from Kaggle and created a sample dataset using Twint.

For every dataset, we checked if it is adequate for our project by doing an EDA. Our EDA starts with an

analysis composed of feature extraction methods where we find out the words that occur more in our data.

Methods like Bags of words, Wordcloud, Tf-IDF, word counts and common terms are all good options for

this analysis. These methods are important because they provide an idea of what is being referred to in

the data. For these methods to work best we removed stopwords.

This analysis was followed by an intersection of words from different labels in order to ascertain if

there are words that are more common to a certain label. This analysis can give us extra insights into the

data and the quality of its labelling.

To get a good model, the data should be unbiased. For this, we should balance the dataset, having

more or less the same number of entries for each label. We do not need to worry about the size of the

dataset because a bigger dataset does not mean a better model.

In order to normalise the text, we took out duplicate values because they do not give any extra infor-

mation. Missing or null values in the labels were taken care of, either we manually checked each value

and classified it with the correct label or we removed the entry from the dataset.

If the results of the model we created are not good, the first point we will come back to is the quality of

our labelling and the width of information in our entries. In these cases, we may need to manually check

the quality of our labelling and our entries. If our entries are not good, we may need to scrap the dataset

and start fresh and a new set of data.

4.2 Transformers

After gathering the data, we need to normalise it. This chapter describes various methods for the

pre-processing of the data. The normalisation will reduce the amount of information the model has to

learn, hopefully improving its efficiency. Even though the normalisation of text is very important, there is

no correct set of methods we can use every time for optimal results. For each situation, we will test what

methods help us achieve a better model and what methods make us lose knowledge and give us worse

models.

Throughout the next section, we will explore a couple of techniques to normalise text. These techniques

are staples in pre-processing for Natural Language Processing (NLP) and Artificial Intelligence (AI). In the

last section, we will explore the approach to pre-processing we will employ to evaluate different pipelines.
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4.2.1 Transformers Created

There are two main ways to normalise text. We can either replace parts of the text with more ”stan-

dard”alternatives or we can remove it altogether. For each situation, we have to evaluate what is the best

transformer to achieve the best result. Across the next subsections, we will explore some normalisation

problems and our solutions to them.

Convert Case

The first problem we are tackling is Letter Case. Since models are case insensitive, the same words

written differently are seen as different entries. So it is normal to normalise the text by either converting

it to uppercase or lowercase.

We created a lowercase transformer to solve this problem. By using the lowercase method from the

String package [136], we easily convert our text into a lowercase version of it. There is also a method

to convert to uppercase. This Transformer helps normalise the text. Still, in some languages, misplaced

uppercase letters are used to express irony, anger or other sentiments. In these cases, using this Trans-

former may lose important knowledge our model could learn.

Tokenization and Lemmatization

The second problem we are addressing is the variation of some words. In languages like Portuguese,

some words have a lot of variations. For example, nouns vary from a gender and a plurality point of view;

verbs vary in terms of the tense being used. In some cases, these variations do not add any knowledge

to our model.

There are several solutions to this problem. In our work, we solved it by using tokenization followed

by a lemmatization of each token gathered.

This solution helps reduce the amount of variability of information the model has to learn. We achieved

this solution by using Spacy [117] and NLTK [118]. Spacy provides us with the ability to lemmatize and

tokenize text by using the NLP function.

Another solution commonly employed is the utilisation of tokenization followed by stemming. The

main difference between stemming and lemmatization is that lemmatization replaces a word with the

lemma of that word. Stemming replaces the word with a word with the variable part cut. For example,

the word ”studies”is replaced with ”study”in lemmatization, and it is replaced with ”studi”in stemming.

We can achieve this solution by using NLTK [118]. NLTK presents a stemmer function that stems words

in a given language, including Portuguese.

Special characters

The third problem we are solving is how to deal with special characters. Characters like emojis and

tags are common in datasets created from social media scraping. There are two paths to dealing with
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these characters, we can either remove them or replace them with their meaning.

For emojis we can replace them with a standard that encapsulates what the emoji is trying to convey.

The Emoji package [116] is a Python package that converts Unicode emojis into a string with the name

of the said emoji. This is a good solution to this emoji problem.

For name tags, we can just get the name and remove the tag character. If the tag is not giving us any

knowledge we can remove the whole tag altogether.

For hashtags, we can remove the tag character and try to separate the different words. This process

can be very computationally expensive and sometimes it does not compensate for the effort. This is our

case, so we can either remove it or count it as a single word. For these two problems involving tags, we

used regular expressions to remove the tags.

There is another solution for this problem that involves the segmentation of the tags to get the infor-

mation present in the tags. Packages like Ekphrasis [137] do this for the English language and can be a

stepping stone to creating a similar project to segment tags in Portuguese. Research papers like [138]

that can help to create a tool for hashtag decomposition are also useful for tag segmentation.

Our solution to the tag problem was to remove the tags altogether.

Stopwords

The fourth problem we are confronting is stopwords. Stopwords are words that are considered irrel-

evant to the text. These words are frequently used in texts but do not offer any meaning. Prepositions,

articles and conjunctions are good examples of stopwords. In most cases, stopwords do not add value

and can be eliminated from the text without losing any information. NLTK [118] package offers a set of

stopwords for 20+ different languages, including Portuguese. We use this set to remove these stopwords

from our texts.

Unnecessary Details

The fifth problem we are facing is what to do with unnecessary details. Details like double spaces,

new lines, links, URLs and punctuation are sometimes unnecessary information to the text and can be

removed. This problem can be easily solved by using regular expressions. These regular expressions

catch the information we want to remove and replace it with either a space, a standard or with nothing at

all.

In problems like this we should try to evaluate if any of this information, which normally is unnecessary,

truly can be removed without losing knowledge. Punctuation, for example, can give important information

in some cases. In our work, we removed these unnecessary details.

Unnecessary Entries

The sixth problem we are handling is how to treat unnecessary or wrong entries in our data. We

normally remove unnecessary entries like columns that are not being used. Another type of unnecessary
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entry are duplicate values, which do not add any informational value and therefore can be eliminated from

the dataset. Entries that have a null label, NaN or an invalid label are examples of other unnecessary

entries that can be removed or, if possible, changed to the correct label. This change should be manual

to guarantee the quality and integrity of the dataset.

As our data is being stored in a pandas dataframe, the aforementioned changes can be efficiently done

by using pandas methods. We removed duplicate values and manually replaced invalid or null labels in

this project.

Typecasting

The seventh and last problem we treated was typecasting. Every bit of data that is a yes or no, true

or false or something we can transform into a numeric value should be typecasted as an integer (or other

numeric types). Numeric values are easier to understand for our models and so if we can change nominal

data to numeric we should do it, especially if it is the label as it is easier to cast into a numeric value.

In our case we translated a positive/negative label into a 1/-1 label.

Other Problems

There are many more normalisation methods we could have explored. Methods like accent removal,

the substitution of contractions, the transformation of numerals into their number counterparts, the re-

placement of numeric values into their type, the normalisation of acronyms and abbreviations, normalisa-

tion of date formats, phone numbers and other important numbers among many other transformations

that can be specific to different situations.

These problems can be specific to some languages and to some specific problems. For each project,

we may have specific normalisation steps we can do and that’s why it is very important to study the area

of our problem before starting.

4.2.2 Transformers package and Pipelines

After exploring the aforementioned transformers, we created the Transformers we needed for our

specific use case and that Omnium AI may need in the future. There are some Transformers already

present in the Omnia package that we are not going to use and so we are not going to discuss them.

The following figure, (Figure 11) shows us the Transformers we created as solutions to the aforemen-

tioned problems. These Transformers are going to be used to create our transformers pipelines.

In order to streamline the pre-processing we created Pipelines that let us use the various Transformers.

These pipelines will normalise our texts in different forms and will output a new dataset with the text

normalised. With these resulting datasets, we will create different models that we will use to evaluate

which pipeline is best for our specific use case. The objective is to start with a pipeline with no transformers

to get a baseline. We will then add different transformers going from the most general transformers like
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Figure 11: Transformers created for the package Omnia-Text-Mining, according to the aforementioned

Transformers

removing duplicates, URLs, etc; to the more specific Transformers like removing stopwords, tokenization

& lemmatization among others.

In the next chapter, we will go more in-depth into the pipelines created.

4.3 Models

After having gathered data and normalising it, we will focus on the models. In this section, we will delve

into the models we created starting with ML models followed by DL models and finishing with Autogluon.

The ML and DL models present in this section were explained in more detail in the State of the Art

chapter.

4.3.1 Machine Learning

In this section, we will highlight the ML models we will use.

In the following table (Table 3), we will display the machine learning models that we are going to use

and their scikit-learn function [123].
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Model Function

Naive Bayes GaussianNB()

Multinomial Naive Bayes MultinomialNB()

Random Forest RandomForestClassifier()

Bagging Naive Bayes BaggingClassifier(model= GaussianNB())

Bagging Multinomial Naive Bayes BaggingClassifier(model= MultinomialNB())

Table 3: Machine learning models and their Scikit-Learn functions

4.3.2 Deep Learning

In this section, we will delve into the different DL models we will use.

Recurrent Neural Network

Recurrent Neural Networks (RNN) is a type of Neural Networks (NN) that can be used for sentiment

analysis. Our specific RNN has 3 unique layers, an embedding layer, an rnn layer and a dense layer.

The first layer is an embedding layer with no pre-trained embeddings. The second layer is a SimpleRNN

layer with a hyperbolic tangent function (tanh) as its activation function. The last layer is a fully connected

dense layer with a sigmoid function as its activation function.

The model will use binary cross-entropy as its loss function, adam as its optimizer, and it will use F1

score as its primary metric.

Convolutional Neural Network

Convolutional Neural Networks (CNN) are NN that use convolutional layers. Our specific model has 3

unique layers, an embedding layer, a convolutional layer and a linear layer. The first layer is an embedding

layer that uses a word2vec embedding. The word2Vec embedding was trained from the dataset being

applied to the model. The second layer is a list of convolutional layers, that use the hyperbolic tangent

function as its activation function. The last layer is a linear layer that uses the softmax function as its

activation function.

The model will use binary cross-entropy as its loss function, adam as its optimizer, and it will use F1

score as its main metric.

Long Short Term Memory

Long Short Term Memory (LSTM) is a specific type RNN. Our specific LSTM has 5 layers, an em-

bedding layer, an lstm layer, a dropout layer, a linear layer and a sigmoid layer. The first layer is the

embedding layer that has no pre-trained embeddings. The second layer is the lstm layer which uses the

hyperbolic tangent as its activation function. The third layer is a dropout layer with a rate of 0.3. The fourth

41



CHAPTER 4. DEVELOPMENT

layer is a fully connected linear layer. The last layer is a sigmoid layer that applies the sigmoid function to

the output of the fully connected linear layer.

The model will use binary cross-entropy as its loss function, adam as its optimizer, and it will use F1

score as its main metric.

4.3.3 AUTOGLUON

Autogluon [119] is a package that gives an easy-to-use AutoML with a focus on ML and DL models.

Autogluon is separated into several sub-modules specialising in text and tabular prediction as well as image

and object detection. We will use the Tabular Prediction and Text Prediciton sub-modules to create ML

and DL models.

The Tabular Prediction sub-module can create the following models: LightGBM, LightGBM Large,

LightGBMXT, Catboost, XGboost, WeightedEnsemble and NeuralNetTorch.

LightGBM, LightGBMXT and LightGBM are ML models created by Microsoft. They are based on de-

cision trees and have their focus on performance and scalability. Catboost is a ML algorithm created

by Yandex researchers. They are based on gradient boosting for decision trees and have their focus on

categorical data. This model prides itself on having good results without parameter tuning, providing good

accuracy in a fast and scalable manner. XGBoost is also based on tree boosting. It provides a parallel

tree boosting that solves problems in an accurate and fast way. NeuralNetTorch is a DL model that uses

the PyTorch EmbedNet as its main layer.

The Text Prediciton sub-module can create a DL model named HFAutoModel and has the capability of

applying pre-trained models and embeddings to this model. HFAutoModel is a Deep Learning model that

uses a pre-trained model or embedding as a basis followed by a Linear layer. We will use this model and a

version of this model that uses a pre-trained Bert embedding created by NeuralMindAi. This NeuralMindAi

Bert embedding is a pre-trained embedding specifically trained for the Portuguese Language.

Autogluon lets us use any embedding we have created or that is present in Hugginface. Hugginface

[139] is an AI community platform that specialises in providing tools to use for AI. This embedding and

many others, for a diverse amount of languages, are provided on this platform.

The models in these sub-modules will be used in comparison to the models described in the previous

sections.
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5
Results & Discussion

In this section, we will explore the use case we chose to compare results. We will delve into the

datasets we used and created for our use case. We will dig into the transformers and the combinations

we will utilise to normalise our datasets. We will finish with the results our models achieved and a small

discussion about the results.

5.1 Use Case approach

5.1.1 Use case

With the purpose of evaluating the methods we explored in this section, we will create a use case.

The use case chosen is the Portuguese-speaking population’s sentiment towards Covid19. We will collect

and create datasets for our use case. We will process the data using the transformers we created. We

will build models for the specific purpose of evaluating the sentiment toward our use case.

For our use case, sentiment will be considered as positive and negative, this can be easily changed

for other interpretations of sentiment. By using the methods explored in the Datasets section in the

Development chapter, we will use Kaggle [130] to obtain a dataset for our purpose. We used Coronavirus

Twitters NLP: Text Classification (PT) [140] dataset for our purpose. We will also utilise a dataset created

in Twint [128] as a sample dataset for the creation of datasets starting from scratch, we will explore in

more depth this dataset in the Datasets section.

5.1.2 Approach

Our approach to the abovementioned Use Case can be divided into 4 steps.
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Figure 12: Use Case Approach

As we can see in the figure above (Figure 12), we collect two datasets and create a set of pipelines to

normalise the text in these datasets. After normalising the text, we apply the Kaggle dataset to our models

that are composed of ML, DL and Autogluon models discussed in the last chapter. In the end, we will

take the best combinations of transformers and models and apply them to the Twint sample dataset. In

the subsequent sections, we will discuss each of these steps.

5.2 Dataset

Following the abovementioned approach, this section will explore the datasets. We will do an EDA to

ascertain the quality of the dataset.

We will start by explaining how we obtained the Twint sample dataset. This sample dataset was

created by Constança Elias for her dissertation named Twitter Observatory: developing tools to recover

and classify information for the social network Twitter [134]. This dataset is created with her API that

uses Twint to extract data from Twitter. The extraction receives a set of options for the process to start

and returns a dataset labelled with 1 if the entry is correctly classified as being part of the topic wanted

otherwise returns 0. The user gives a set of keywords and hashtags for the topic of the dataset. If the

tweet scrapped has either one of the keywords or hashtags provided by the user, the entry will be labelled

as a good entry (being labelled as a 1), if not it will be classified as an entry that has nothing to do with

the topic requested (being labelled as a 0). The user can also input the language for the tweets, and a

date interval for the tweet. After this process we have a resulting dataset labelled for its relevance against

a pre-defined topic.

The figure below (Figure 13), shows us an example call for the aforementioned API.
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Figure 13: API call

This call to the API was made several times with different date intervals and the outputs were joined

into a single dataset (with more than 2M entries).

After getting this dataset we created a new dataset by using a random sampling technique. We

sampled 100 entries (relevant to the topic) which we then manually labelled for SA. Finally, we got a small

dataset manually labelled for SA. Throughout the next subsections, we will do a small EDA on this dataset.

The other dataset we are going to use is the dataset obtained through Kaggle, we will call it the

Kaggle dataset. The Kaggle dataset was created by Francielle Vargas [141]. This dataset has 600 entries

classified in accordance with their polarity (positive, negative classification). For the classification, the

author tested a cross-domain strategy to measure the performance of the classifiers among different

domains.

Throughout the next section, we will do an EDA on both datasets.

5.2.1 Exploratory data analysis

We will start by delving into what preparation we did for the datasets, followed by an exploration of the

datasets in terms of balance, size and common terms.

Data Preparation

Before we begin the data exploration, we initiated the removal of unnecessary data. This unnecessary

data were columns we were not going to use, duplicate entries, entries with null values as labels, stop-

words, name tags and hashtags. We also tokenized, lemmatized the text and replaced Unicode emojis
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with a standard that encapsulates their meaning.

General information on the dataset

After having prepared the data, we proceeded to gather the general information of the dataset. The

following figure (Figure 14) gives us information on the columns present in our datasets, their types and

the number of null values.

Figure 14: Description of the dataset

In our datasets, we have 2 columns, a float 64 column named polarity without null values and an

object column named twitter without null values. The polarity column will be our label which represents

the Sentiment present in the text and the twitter column will be our text.

The following tables (Table 4, Table 5), gives important information on columns with numeric values.

Count Mean Std Min 25% 50% 75% Max

Polarity 100 0.22 0.980414 -1 -1 1 1 1

Table 4: Description of the polarity column in the Twint Dataset

Count Mean Std Min 25% 50% 75% Max

Polarity 598 -0.003344 1.000832 -1 -1 -1 1 1

Table 5: Description of the polarity column in the Kaggle Dataset

In our datasets, we only have 1 numeric column and the tables above give us the count of entries

present in the dataset, the mean of values in all entries, the standard deviation, the min and max value

and the first, second e third quartiles.
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Balance of the dataset

Now that we know the general information about our datasets, we will examine the balance of the

datasets. This step is very important because an unbalanced dataset introduces a bias towards the label

that has more entries. The following Figure 15, displays the balance of entries for each of our labels, in

both datasets.

Figure 15: Balance of the dataset

As we can see, the Twint dataset is slightly unbalanced towards the positive label, which may be a

problem, specifically for smaller datasets like this one. On the other hand, the Kaggle dataset is almost

perfectly balanced.

Common Terms of the dataset

After collecting general information about the datasets and checking their balance, we need to check

the quality of the dataset in terms of labelling. In this first analysis, we will explore the most common

terms for each label.

The Figure below (Figure 16), shows us the common terms for the positive and negative labels from

each dataset.
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Figure 16: Top words from our datasets

The figure (Figure 16) suggests that the entries from the dataset seem to be good and related to our

Covid19 topic. Words like ”pandemia”, ”covid”, and ”coronavirus” (which translates to pandemic, covid

and coronavirus) are prevalent in every label which indicates that both datasets are related to our Covid

topic. Even though these images provide a good overall picture of the dataset, we will now intersect the

words from positive and negative entries to get the top words specific to each label.

The figure below (Figure 17), displays the aforementioned intersection for the Kaggle dataset. The

upper graph represents the words prevalent in the positive label and the lower graph represents the

words from the negative label. Words like ”curar”, ”vacinar” and ”combater” (which translates to cure,

vaccinate and combat) are good examples of words that seem to indicate a positive connotation, while

”morte” (which translates to death) is a good example of a word that indicates a negative connotation.
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Figure 17: Top words from each specific label in the Kaggle dataset
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The next figure (Figure 18) represents the equivalent graphs for the Twint dataset.

Figure 18: Top words from each specific label in the Twint sample dataset

As we can see words like ”vacinar” (which translates to vaccinate) is normally related to a positive

sentiment of fighting the Covid19 virus. On the other hand, words like ”hospital” (which translates to

hospital) seem to be related to more negative sentiment towards Covid19.

The next figure (Figure 19) show us the comparison between the common words in each label. The

upper half figure is the comparison in the Twint dataset, while the second half figure is the comparison in

the Kaggle dataset.
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Figure 19: Common terms from both labels
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The words present in both datasets, suggests that the common words in both labels are related to

our use case. This seems to further indicate that not only the overall dataset is within the Covid topic but

each specific label is related to the topic too.

The next figures (Figure 20, Figure 21) show us the most common words on both labels and is a good

method to confirm the abovementioned figure. The first Figure (Figure 20) shows us the wordcloud for

the Twint dataset, while the second (Figure 21) shows us the wordcloud for the Kaggle dataset.

Figure 20: Positive and Negative words Wordcloud for the Twint dataset

The first half of the picture displays, in blueish tones, the most common positive words. This figure

(Figure 20) seems to show us that the dataset has good entries for the positive label and our topic and

seems to be well labelled. Words like ”imunização” (which translates to immunization) are a good example

of this.

The second half of the figure displays, in reddish tones, the most common negative words. This

wordcloud suggests, with words like ”disseminação”, ”negacionista” (which translates to dissemination

and denialist) among many others, that the dataset has good entries for the negative label and our topic

and seems to be well labelled.
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Figure 21: Positive and Negative words Wordcloud for the Kaggle dataset

The first half of the picture displays, in blueish tones, the most common positive words. Words like

”empenhar” and ”coordenação” (which translates to effort and coordination) suggest the dataset has

good entries for the positive label and our topic and seems to be well labelled.

The second half of the picture displays, in reddish tones, the most common negative words. This

wordcloud suggests that the dataset has good entries for the negative label and our topic and seems to

be well labelled. Words like ”morto”, ”canalha” (which translates to dead and scoundrel) being great

examples of words with a negative connotation.
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5.3 Transformers

After exploring the datasets, we will create Transformer Pipelines with the purpose of normalising the

dataset. These Pipelines will receive the dataset as the input and create a new dataset with the alterations

the chosen transformers applied to it. In the next subsection, we will define the pipelines we created and

the approach we used to create them.

5.3.1 Transformer Combinations

In this section, we will specify the pipelines created for the normalisation of the dataset. For the cre-

ation of these pipelines, we will start with the least complex transformers to the most complex. We have

created 6 pipelines.

The first pipeline, pipeline 0, is the baseline pipeline where we do not apply any Transformers to the

dataset.

In the second pipeline (Figure 22), stands a pipeline where we normalise the text with simple trans-

formers and remove unnecessary information.

Figure 22: Representation of the transformers used in each step for the pre-processing in Pipeline 1

This pipeline starts by applying the drop nulls and columns Transformer that removes unimportant

columns and removes entries with null values. This action is followed by the URL Transformer that removes

the links from the text. We continue normalising the text by removing unnecessary punctuation and un-

necessary new lines. We end the pipeline by transforming the text into lowercase and removing duplicates.

In the third pipeline (Figure 23), is where we remove unnecessary information from the text and

normalise text with a more complex Transformer.

Figure 23: Representation of the transformers used in each step for the pre-processing in Pipeline 2

In this pipeline, we apply Pipeline 1 (Figure 22) followed by the Stopwords Transformers which re-

moves the unnecessary stopwords from the text. After removing stopwords, we normalise the text by
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tokenizing and lemmatizing the text.

In the fourth pipeline (Figure 24), we normalise text with another new Transformer.

Figure 24: Representation of the transformers used in each step for the pre-processing in Pipeline 3

In this pipeline, we apply Pipeline 2 (Figure 23), followed by the Emoji Transformer that replaces

Unicode emojis with a tag with the meaning of the emoji.

In the fifth pipeline (Figure 25), we apply a text normalisation Transformer to the data.

Figure 25: Representation of the transformers used in each step for the pre-processing in Pipeline 4

In this pipeline, we apply Pipeline 2 (Figure 23), followed by the tags Transformer which removes the

unnecessary name tags and hashtags from the text. For this pipeline to work properly, we cannot remove

punctuation before removing the tags because the Punctuation Transformer removes the # and @ char-

acters that are used in the regular expressions to catch the name tags and hashtags. So the Punctuation

Transformer is removed from the Pipeline 1 step and is applied after the Tags Transformers.

In the sixth and last pipeline (Figure 26), applies all the above-mentioned Transformers.

Figure 26: Representation of the transformers used in each step for the pre-processing in Pipeline 5

In this last pipeline, we apply Pipeline 2 (without the Punctuation Transformer) followed by the Emoji

Transformer, Tags Transformer and ending with the Punctuation Transformer.
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5.4 Models

After having explored the data and having created the Transformer pipelines we are going to apply

the normalised datasets to our models. In this section, we will review the results we got for the Kaggle

dataset. The results will be split into ML, DL and Autogluon models, and the tests will be standardised in

order to compare results.

In the end, we will apply the best pipeline and model combinations in the Twint sample dataset.

5.4.1 Machine Learning

In this section, we will display the results from our ML models. We will standardise the results so that

we can compare them. For this, we will have a train-test split of 70/30 for every test performed and in

order to diminish the variability of results, we will perform each test 10 times. The result present in the

table (Table 6) is the average F1 Score from the 10 tests.

We have the possibility to choose several metrics like accuracy, F1 Score, recall, and precision among

others. We chose to use the F1 Score as our metric because it is the harmonic mean of precision and

recall, meaning that a good F1 Score indicates good recall and precision.

The dataset is not being changed at all, apart from the Pipeline modifications explained previously.

The results (in percentage, %) for ML are displayed in the following table (Table 6).

Models Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5

Gaussian Naive Bayes 67.1 66.3 67.6 64.7 65.2 68.0

Multinomial Naive Bayes 62.9 68.6 72.7 71.9 71.3 70.6

Random Forest 60.1 73.7 74.0 73.2 73.4 71.8

Bagging Naive Bayes 56.2 63.8 66.6 63.9 66.7 67.4

Bagging Multinomial Naive Bayes 60.7 68.0 71.8 69.4 70.9 69.5

Table 6: Machine Learning results for the Kaggle dataset

The results present in the table above (Table 6) show us that the Random Forest seems to be the

best model. Each model seems to handle our pipelines very differently. Still, in most cases, Pipelines

1 and 2 appear to be improving our models while Pipeline 3 appears to be diminishing the score of our

models. This may mean that the emoji replacement is not helping us achieve better results with these

models, while the removal of stopwords, punctuation and the standardization of the data by lemmatizing

it appears to help our model achieve better results.

In general, the results of these models vary according to the pipelines, with the best result achieved

being the Random Forest model in Pipeline 2.

From the table we can also, attest that the bagging method, gives us slightly better models in both

Gaussian Naive Bayes and Multinomial Naive Bayes.
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5.4.2 Deep Learning

For DL models, we will use the exact same standards explained in the previous section, with the

addition of a standardised number of epochs that will be set at 25. We will use cross entropy as our loss

function. We will use the default hyperparameters for the models used (these values can be found in the

documentation of each model).

The results (in percentage, %) for DL are displayed in the following table (Table 7).

Models Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5

CNN + Word2Vec 68.5 73.0 69.1 71.2 73.3 71.7

RNN 76.4 76.3 75.5 78.1 75.0 75.6

LSTM 80.0 89.3 89.3 89.3 89.3 89.3

Table 7: Deep Learning results for the Kaggle dataset

The results offered in the table above (Table 7) indicate that the LSTM is clearly the best model of the

three, even though the other two models have results that are better in comparison to the ML models. The

LSTM model doesn’t seem to be affected in terms of F1 Score by the changes present in our pipelines,

apart from Pipeline 1. For RNN and CNN models, we can see that the Pipelines do change the results

overall. While in the CNN model, Pipelines 1 and 4 denote an improvement in the overall score, Pipeline

2 states a small deterioration in the results. For the RNN, Pipeline 3 improves our score, while Pipeline

2, 4 and 5 diminish our score.

In general, DL models give a good set of results (in terms of F1 Score), specifically when compared

to ML.

5.4.3 Autogluon

For the Autogluon models, we will use the exact hyperparameter and standards as described in the

last section. The table below (8) displays the results (in percentage, %) for the Autogluon models.

Models Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5

LightGBM 65.3 67.5 64.1 67.1 69.8 63.4

LightGBM Large 65.9 66.9 62.8 67.6 68.6 61.5

LightGBMXT 64.8 68.4 64.9 66.9 68.9 62.3

CatBoost 59.4 63.5 58.0 59.3 63.4 55.0

XGBoost 65.8 67.6 61.8 65.6 67.0 61.2

WeightedEnsemble 71.6 71.7 68.9 69.9 73.4 68.0

NeuralNetTorch 59.2 66.1 63.1 64.4 67.3 64.0

HFAutoModel 66.1 66.2 66.9 66.4 65.9 65.9

HFAutoModel+Bert 84.4 83.6 76.8 76.7 78.4 78.7

Table 8: Autogluon results for the Kaggle dataset

57



CHAPTER 5. RESULTS & DISCUSSION

The results displayed in the table (Table 8) reveal that the HFAutoModel+Bert and the WeightedEnsem-

ble are the best models in terms of F1 Score. In general, for these models Pipelines 1 and 4 gives an

improvement in our score, while Pipelines 2 and 5 decrease our score.

From the table, we can also ascertain a major improvement in the HFAutoModel when the Bert em-

bedding was added.

In general, the results obtained with Autogluon models seem to be as good as our Deep Learning

results.

5.4.4 Metrics

There are several evaluation metrics that we could have used. For each project, different metrics are

more relevant than others. For instance, accuracy is normally used when we need to know the percentage

of correct predictions. Recall is normally used when we need to find the percentage of correct positive

labels. Precision is used when we want to know how many positive predictions were labelled correctly.

F1 Score is commonly used to compare results as it is a combination of the recall and precision results.

In this section, we will test some combinations of models and pipelines with accuracy as its evaluation

metric. The following table (Table 9) presents us with these results.

Models Pipeline Accuracy (%)

Random Forest 1 76.7

Random Forest 2 68.9

Random Forest 3 68.5

LSTM 3 85.9

LSTM 5 85.7

RNN 3 59.1

HFAutoModel+Bert 0 80.4

HFAutoModel+Bert 1 83.6

WeightedEnsemble 4 69.0

LightGBM 4 65.1

LightGBMXT 4 65.5

Table 9: Accuracy results for the Kaggle dataset

As we can see, with accuracy as our metric, Random Forests are very affected by pipelines 2 and 3.

These pipelines make us lose knowledge previously known by the model with Pipeline 1 applied.

The RNN model was a good model for the F1 Score as a metric, while for accuracy, it is a medium

model that does not compare with the rest of the models present in the table (Table 9) in terms of accuracy.

The best models are still LSTM and the HFAutoModel+Bert. In LSTMs, we still have a very similar

model in terms of its metric. With F1 Score and accuracy, the model does not vary much with the transfor-

mations performed by the pipelines. With the HFAutoModel+Bert the inverse happens, the transformations

performed by Pipeline 1 increase the quality of our results.
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5.4.5 Twint

In this section, we will apply the best combination of models and pipelines from the previous section

to the Twint sample dataset. The hyperparameters and standards used in the previous sections will be

exactly the same here.

The following table (Table 10) provides us with the results.

Models Pipeline F1 Score (%) Accuracy (%)

Random Forest 1 74.4 63.3

Random Forest 2 76.4 63.4

Random Forest 3 73.5 63.2

LSTM 3 83.7 73.4

LSTM 5 80.7 77.2

RNN 3 75.7 68.1

HFAutoModel+Bert 0 75.4 72.7

HFAutoModel+Bert 1 81.9 77.0

WeightedEnsemble 4 81.2 75.4

LightGBM 4 76.8 68.6

LightGBMXT 4 76.5 68.6

Table 10: Results for the Twint dataset

The results present in the table above (Table 10), are not statistically important due to the low amount

of data in the Twint dataset, but still provide us with a pathway to take for other projects where pre-built

datasets can not be found. Even though the results are not as important as the results for the Kaggle

dataset, we can still visualise that ML models seem to be a bit worse, as expected, when comparing

with DL and Autogluon models. The model that seems to be the best is the HFAutoModel with the Bert

embedding, being closely followed by the WeightedEnsemble. In general, the results seem to be good,

even though we have a very small and slightly unbalanced dataset.

5.4.6 Next Steps

If the results were not satisfactory, there are a couple more steps we could have tried. Firstly, we could

have changed the pre-processing. As we can see from our results, some Pipelines work better than others.

This may be because some Transformers being used are not appropriate for our dataset, meaning that

those transformers eliminate knowledge the model could be capturing. If we look at WeightedEnsemble

(Kaggle dataset) we can see that Pipeline 4 is the best pipeline for that model. This may mean that the

Tags Transformer is a good pre-processing method for this specific model, while Pipeline 2 and 3 gives us

an idea that the emoji, stopwords and lemmatization methods appear to be bad pre-processing methods

for this specific model. We could try removing these methods and see the results. We can not expect to get

better results, whenever doing this. This simplistic way of thinking can get us better results, sometimes,

but ML and DL are not this straightforward.
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Secondly, we can optimise our model by changing its hyperparameters. In DL we can try to find the

optimal values for the different hyperparameters. We can change some global hyperparameters like the

number of epochs for training, batch size, learning rate, optimizer and loss function. For the number

of epochs, we can change to the value where the loss function starts to stabilise. We can classify this

stabilisation when the loss function has the same value for several epochs in a row. We can change the

optimizer being used during the training, the way weights are calculated during the training process may

affect the resulting model. There are several more hyperparameters including hyperparameters specific

to the model that can be optimised to get a better model. Autogluon also presents the opportunity to

optimise hyperparameters.

If these two options, would not grant us the results we want, we may have to check the quality of the

dataset itself. The best way to ascertain the quality of the dataset is to manually check its labelling. For

larger datasets, this may be prohibitively costly. In these cases, we could try to use pre-trained models or

lexicons to evaluate the dataset.
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6
Conclusions & Future Work

In this chapter, we will delve into the conclusions of this project and the possible future work. We will

start with the conclusions followed by the possible future work for the Omnia Package and its integration

of this thesis into the Twitter Observatory project.

6.1 Conclusions

The main objective of this thesis was to create a tool that could streamline the process of creating

sentiment analysis models for the Portuguese language. This objective was achieved with the development

of a set of tools as part of the Omnia Text Mining sub-package. This sub-package lets us create pipelines

composed of a reader, that reads the dataset, followed by a set of transformers and models. With this

simple pipeline, a user can create SA models in a streamlined way without the know-how to create the

models themselves.

To exemplify how we approach a SA problem we created a use case. This use case was Covid19 and

we applied this package to datasets related to our use case. Our idea for the use case was to create a

dataset and get an already existing dataset to create two different paths a user can do to get data. After

getting the data, the package was almost ready to be applied. Before applying the package we did a

small exploratory data analysis to ascertain if the datasets were well-labelled and within our topic. After

analysing the dataset, we saw that both datasets were within our topic and seemed to be well-labelled. We

also noticed that the Twint dataset was slightly unbalanced, which can be a problem in smaller datasets.

With the common terms analysis, we were able to ascertain that the most common words for each label

seemed to be related to the sentiment present in the label.

After conducting the EDA to the datasets, we created a set of pipelines composed of Transformers.
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These pipelines performed several methods of pre-processing and outputted a new dataset with the trans-

formations performed by the methods present in the pipeline.

We applied the Pipelines to the Kaggle dataset, and we used the resulting transformed dataset for the

creation of machine learning and deep learning models. We ascertained, for the Kaggle dataset, that the

LSTM model seemed to be the standout, even though the other models, like the HFAutoModel with Bert,

were close behind.

After discussing the Kaggle results, we took the best pipeline combination and applied it to our Twint

sample dataset where we ascertained that the HFAutoModel with the Bert embedding is the best model

followed closely behind by the WeightedEnsemble. The results for this dataset were good, even though

they are not statistically important due to the low amount of data. Despite this, the Twint dataset clearly

showcases a path for a creation of a dataset that can be applied to our project.

Overall the results were good. We can hypothesise that Autogluon and Deep Learning are less affected

by Pipeline transformations in comparison to Machine Learning. In general, different models were better

accompanied by different pipelines, which makes us hypothesise that there is no pre-processing Pipeline

that can be used every time for these datasets. From the results using Bert, we can infer that adding

embeddings to models seems to better their results.

In general, these two datasets showed the potential this package has for TM and SA in Portuguese.

This package, helps us create Pipelines of pre-processing methods, Transformers, to apply to datasets.

We can also create several Models and compare their results with several metrics.

This can all be streamlined by joining several models to the Transformer Pipeline and creating all the

models for that pipeline. We can later analyse the results from the different models to choose the best.

In the next section, we will delve into what possible next steps can be done for this project.

6.2 Future Work

The Omnia package, especially the Text Mining module, can be improved by adding more pre-

processing methods (Transformers). Transformers like Accent Removal, Contraction expansion, Roman

Numerals Replacement, among many others, may be good Transformers to add. Another addition, that

the Omnia package could include, is the addition of more models. In terms of DL, the Omnia package is

still lacking and the addition of more models could be interesting. The addition of embeddings like Bert

or Word2vec are good additions to the package.

After enhancing the Transformers and Models of the package we can start thinking of more complex

problems. Problems like the automatic labelling of the datasets can be a good addition to the package.

Multi-lingual support is another problem that can be tackled, this problem can be simply solved by using

translation. But this solution is not always the best.

Another step to improve this project could be the creation of a couple of modules for the Twitter Obser-

vatory Web Application. The Twitter Observatory has been started by Constança Elias for her dissertation
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[134] and is a Web Application that has the capability of creating datasets for any given topic. By adding

a labelling module, this project could label datasets in accordance with the sentiment prevalent in texts. A

good solution to this problem is to interactively classify the texts by creating a tool similar to [142], in this

project social media posts are classified as relevant or irrelevant (like in the Twitter Observatory) and if it

is deemed as relevant the post is approved to an interface where its users will evaluate it in accordance

with the Sentiment present in the post. With the utilisation of the Omnia project, we could create ML, DL

and Autogluon models for the abovementioned labelled datasets.

This would make the Twitter Observatory a powerful tool for SA, by helping to streamline the creation

of SA models without the need for any technological knowledge.
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