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A B S T R A C T

Peer-to-peer broadcasting algorithms are a scalable and cheap way of disseminating information to a large
number of participants. However, most of these algorithms do not consider the possibility of some members
acting in an unintended way, with malicious or selfish motives. In order to be useful in a real world scenario,
these algorithms must be secure, robust and efficient, even in the presence of adversaries. This thesis presents
an overview of the challenges that peer-to-peer broadcasting algorithms face, as well as some of the security
mechanisms that can be employed to mitigate them. Thus, we present Bycast, a secure and efficient peer-to-
peer broadcasting algorithm that is able to tolerate up to 45% of malicious nodes in the system. In order to
achieve a high level of security, Bycast relies on strong membership integrity guarantees that make it harder for
attackers to successfully compromise other nodes. In order to force nodes to cooperate, and contribute to the
good performance of the system, Bycast employs an innovative auditing scheme that is able to detect nodes that
are not cooperating with their resources, and evict them from the system.

K E Y W O R D S peer-to-peer, gossip, broadcasting, Byzantine.

c



R E S U M O

Os algoritmos de transmissão “peer-to-peer” são uma maneira escalável e barata de disseminar informação para
um grande número de participantes. No entanto, a maioria desses algoritmos não considera a possibilidade de
alguns participantes agirem de forma imprevista face à especificação do algoritmo, quer por motivos maliciosos
quer egoístas. Para serem úteis num cenário do mundo real, esses algoritmos devem ser seguros, robustos
e eficientes, mesmo na presença de adversários. Esta tese proporciona uma visão geral dos desafios que
os algoritmos de disseminação peer-to-peer enfrentam, bem como alguns dos mecanismos de segurança que
podem ser utilizados para mitigá-los. Assim, apresentamos o Bycast, um algoritmo de transmissão peer-to-peer
seguro e eficiente, capaz de tolerar até 45% de nodos maliciosos no sistema. Para alcançar um alto nível de
segurança, o Bycast conta com fortes garantias de integridade no sistema de membership que torna mais difícil
para os atacantes comprometerem outros nodos com sucesso. Para forçar os nodos a cooperarem e contribuir
para o bom desempenho do sistema, o Bycast emprega um esquema de auditoria inovador que é capaz de
detectar nodos que não estão a cooperar com os seus recursos de forma a removê-los do sistema.

PA L AV R A S - C H AV E peer-to-peer, gossip, disseminação, Byzantino.
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1

I N T R O D U C T I O N

For a long time, computer engineers have turned to nature in search of inspiration for new computing techniques
by observing how naturally occurring phenomena behave, to solve complex problems. One of the areas that have
emerged from those observations is epidemic-based or gossip algorithms, used in peer-to-peer communication.
They resemble the spread of a virus in a biological community or the gossiping of a rumor in a social setting.
Gossip algorithms can reliably disseminate information, even when there are node or link failures. They are
popular as an effective solution for transmitting messages in large-scale systems, mainly peer-to-peer systems
and other types of ad hoc networks Haas et al. (2006), but also, and more recently, they have gained relevance
due to their usefulness in the sharing of information between nodes in many cryptocurrencies Yakovenko (2018),
as well as their application in decentralized machine learning Hegedűs et al. (2019). This resilience comes
however at a cost, in the form of message redundancy. To tackle this issue, some alternatives Carvalho et al.
(2007); Leitao et al. (2007); Ferreira et al. (2010) have emerged, that extract a structure from the unstructured
overlay and use it for a more efficient broadcast while relying on gossip to mask network and node failures. These
algorithms, therefore, combine the strengths of gossip, namely their resilience, with the efficiency of structured
approaches to provide a reliable broadcasting mechanism that is also efficient.

1.1 T H E P R O B L E M

Traditionally, gossip-based broadcast algorithms have focused on performance and reliability but in a non-Byzantine
environment Birman et al. (1999); Leitao et al. (2007); Ferreira et al. (2010); Carvalho et al. (2007); Pereira et al.
(2003). This means that every node follows the protocol in its entirety, without deviating from it either uninten-
tionally or on purpose. This model not only does not take into account malicious deviations from the algorithm,
such as malicious nodes who are trying to disrupt the normal behavior of the system, but also does not take
into account arbitrary failures such as message corruption. These assumptions are quite optimistic when com-
pared with what is observed in the real world. In reality, several factors can compromise the normal behavior of
the algorithm, such as selfish nodes, who will try to deviate from the protocol to their advantage, and attackers
who will actively try to compromise the security properties of the system, for example, by forging messages and
impersonating other nodes. Some peer-to-peer systems such as Gnutella have been observed to have up to
70% of nodes who shared no files Saroiu et al. (2003), laying the burden on a small number of altruistic peers.
These situations will cause a loss of performance on the system because it divides the overall computation by
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1.2. Aims and contributions 4

fewer nodes. A secure broadcasting algorithm needs to be able to handle nodes who behave rationally and are
not completely altruistic, either by tracking and evicting the nodes who refuse to cooperate with the system, or
designing the protocol in such a way that rational nodes are actively discouraged from deviating from it. It is
also essential that the protocol employs security mechanisms to prevent malicious nodes from compromising the
experience of other nodes or the security properties of the overall system.

1.2 A I M S A N D C O N T R I B U T I O N S

This dissertation aims to study the security challenges that peer-to-peer broadcasting algorithms face and create
a peer-to-peer broadcasting algorithm that is resilient against a (bounded) number of malicious and rational
nodes.

We introduce Bycast, a secure peer-to-peer broadcasting protocol that is capable of handling a significant
portion of malicious and rational nodes in the system, while still maintaining a good performance. Bycast builds
on Plumtree Leitao et al. (2007), by studying its vulnerabilities against a range of different attacks and adding
mechanisms that will mitigate their effects. To deal with membership level attacks and decrease the efficiency of
Sybil/collusion attacks, Bycast employs a new strategy when it comes to the node view calculation that allows
for nodes to not only verify their neighborhood in the overlay but also the neighborhood of every other node in
the system. Bycast also employs a decentralized auditing scheme that provides the ability to detect the nodes
that are not contributing to the dissemination of information in the system. In order to test Bycast, a extensive
evaluation process was created, with the purpose of corroborating Bycast’s resiliency against malicious and
rational behavior, as well as to evaluate the performance of the algorithm.

1.3 T H E S I S S T R U C T U R E

This document is structured in the following way:

• Chapter 2 presents the background on decentralized broadcasting algorithms, with a focus on gossip and
tree-based approaches.

• Chapter 3 presents the threats that peer-to-peer broadcasting algorithms face, as well as an overview of
some of the mechanisms that are used to mitigate them.

• Chapter 4 introduces Bycast. It starts with an approach for a fully decentralized membership service,
and then a description of the semi-centralized membership service used by the protocol, as well as its
broadcasting algorithm and security mechanisms.

• Chapter 5 presents simulation based evaluation process of Bycast.

• Chapter 6 presents the conclusions and future work.



2

B A C K G R O U N D

2.1 B R O A D C A S T I N G P R O T O C O L S

The broadcast problem is described as an operation in which a message generated by a network node is sent to
all other network nodes. Our definition considers that the source node can use the cooperation of intermediary
nodes which allows for the cost of a broadcast operation to be shared across all nodes involved in the activity.
Broadcasting protocols can be characterized by four main properties: whether they have a defined structure,
their level of centralization, the amount of information they have of the system, and whether random decisions
are incorporated in the algorithm.

2.1.1 Structured vs Unstructured

In a structured broadcasting algorithm, the overlay is organized into a set topology, either by a central authority
or in a decentralized manner, in a way that will facilitate the efficient propagation of information. This approach
usually results in better resource utilization, however, usually these algorithms are less reliable in a high churn
setting, meaning an environment in which nodes enter and leave the system with a high frequency. In a struc-
tured broadcasting algorithm, usually the entrance or departure of a node needs to be accompanied by a repair
mechanism that will ensure the maintenance of the structure of the overlay. On the other hand, unstructured
approaches do not impose restrictions when it comes to the topology, and instead, nodes form connections be-
tween each other. This lack of restrictions mean these topologies are easier to build and to make more robust in
a high churn scenario. The unstructured approach is less efficient, since there is no direct coordination between
nodes. Each node needs to make decisions by itself, even though it can rely on information that was gathered
from other nodes as well.

2.1.2 Centralized vs Decentralized

Broadcasting algorithms can be distinguished in their level of centralization. In centralized protocols, there is a
main coordinator that makes the decisions regarding the algorithm for every node. This decision-making process
can be assisted by gathering information from the nodes in the network. This architecture is usually associated
with a concentration of the effort in the coordinator of the system which could result in latency increase and
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the compromise of the scalability of the algorithm. Additionally, in the centralized approach the coordinator
constitutes a single point of failure that can cause the failure of the whole system. The other alternative is a
decentralized solution in which every node is responsible for its own decisions regarding the protocol. This
approach does alleviate the risk of a denial-of-service of the system, by not relying on a central coordinator, as
well as providing a better distribution of effort in the network, however it is hard to reach the levels of efficiency of
a centralized approach, due to the inherent discordance of decentralized decision-making.

2.1.3 Global vs local knowledge

An algorithm is said to have global knowledge if the decision-making by the node uses information on the whole
network, such as the available links, nodes positions and the overlay in general. This is a difficult property to
achieve since nodes need to get information from all the other nodes. This may be viable in small networks,
but gets harder to sustain as the overlay grows. Therefore there is another group of algorithms that rely on an
incomplete amount of information regarding the system, or local knowledge. This information can for example
be aggregated from communication with neighbors, and will be used by the process to make decisions regarding
the routing of information.

2.1.4 Deterministic vs Stochastic process

It is also possible to distinguish algorithms in terms of how predictable they are. They can work with deterministic
or stochastic approaches. When a process is said to be deterministic, no random decisions are made by the
nodes. In contrast, a process can be considered stochastic if part of the decisions taken by the nodes are
random. When a process is deterministic, multiple executions of the protocol in the same conditions will yield
similar results while the results of the execution of stochastic processes will be unpredictable.
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2.2 G O S S I P P R O T O C O L S

Gossip algorithms are a subset of broadcasting algorithms that are inspired in the way rumors spread. They can
usually be characterized as unstructured, decentralized, and stochastic algorithms that rely on local knowledge
of the overlay. The algorithm relies on the cooperation of the peers in the system to forward the information to
other peers, meaning that the original source of the information does not need to send the information, or even
know, every node in the system. When a node wishes to broadcast a message m, it chooses n (parameter called
fanout) nodes to whom it will send the message directly, and upon receiving the message m, each of those nodes
will forward that message to n nodes chosen at random as well. When a node receives a duplicate message,
which can happen frequently since nodes choose the n nodes randomly, it drops the message, so each node will
only forward a message to n peers once for every message. Each message possesses as well a maximum hop
count that registers the number of hops that it has traveled, and upon receiving a message, a node will discard it
if the hop counter has reached the maximum (which is usually a tunable system wide parameter). It is important
to note that the tuning of these two parameters is associated with a trade-off between fault tolerance and the
overhead caused by the protocol. A smaller fanout value will mean that there is less bandwidth overhead, since
a node forwards a message to less neighbors, however there is also less reliability, since the aspect that gives
the algorithm its resilience is the fact that nodes receive the same message through different paths. Similarly, if
the max hops value is very high, then the message will reach all the other nodes of the network with a higher
probability, at a cost of a higher number of messages exchanged in the system. If the value is too low, then the
number of messages exchanged will be lower but the probability of a node not receiving a message due to it
being discarded is higher.

This algorithm combined with the tuning of parameters fanout and max hops can provide a reliable broadcast-
ing mechanism even in the harshest of environments in a system with a considerable amount of faults. However,
this resilience comes with a price. In order to achieve a high level of resilience, gossip protocols also have a high
level of redundancy that allows for tolerance to node and network failures, which means the protocol is inefficient
when it comes to bandwidth utilization.
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Figure 1: Gossip algorithm illustration in a round-based setting.

Figure 1 showcases a small example that illustrates the algorithm. Node n1 starts by transmitting this message
to two random members of the network, in this case n2 and n5. After that, in round two, both n2 and n5 choose
two random peers each, to which they will forward the message. In this case n2 forwards the message to n3 and
n5, and n5 forwards the message to n3 and n4. Finally, n3 and n4 also choose two random members each to
forward the message to, n3 choosing n1 and n4, and n4 choosing n1 and n2. Note that nodes can receive the
message from different neighbors, and this is the main factor that contributes to gossip resiliency.

2.2.1 Gossip strategies

There are three main gossip strategies for message transmission in a gossip protocol:

• Eager Push: The traditional behavior of a gossip algorithm. Each node will forward a message to other
nodes as soon as it receives it.

• Pull : Nodes do not immediately forward a message to other nodes. Instead, nodes query randomly
selected peers for new messages and if they have new messages, then they will request that the message
is forwarded to them.

• Lazy push: This mode of operation is similar to the Eager Push approach but instead of nodes directly
forwarding a message to other peers, they forward only the message identifier. Upon receiving a message
identifier, a node will make a pull request if the message is new, or discard the message if it is duplicate.

There is a trade-off between Push and Pull strategies. Push strategies achieve lower latency but at a cost of a
higher level of redundancy. On the other hand, Pull strategies are more conservative in the way they operate and
therefore have a higher latency but less overhead in terms of communication cost. These modes of operations,
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combined with the configuration of the parameters which were discussed, namely max_hops and fanout, must
be optimized for each use-case, taking in consideration the performance and reliability requirements of system.

2.2.2 Bimodal Multicast

Bimodal multicast Birman et al. (1999) was one of the first approaches for building a reliable multicast algorithm
with gossip. It works with a two-phase mechanism. In the first phase, the protocol disseminates the messages
using a simple but potentially unreliable tree-based multicast algorithm. In a second phase, participants engage
in exchanges, in order to mask the omissions that occurred in the first phase. They do this by exchanging a
summary of received messages identifiers. After this process, the nodes request the messages which they need.
In the bimodal multicast algorithm, each peer stores and gossips the messages for a maximum number of rounds.
When this limit is exceeded, for any given message, the actual message is purged.

One of the downsides from this approach is the complexity of the two-phase nature of the algorithm. Therefore
a pure gossip algorithm could potentially achieve a better efficiency.

2.3 H Y B R I D S T R AT E G I E S

Gossip strategies, specially the Eager Push approach, although resilient, have a considerable bandwidth utiliza-
tion due to their redundancy. Therefore there have been algorithms Carvalho et al. (2007); Leitao et al. (2007)
that have taken the approach of using an embedded structure that appears in the overlay in order to disseminate
the information in a more efficient way, while still relying on gossip to provide a level of fault-tolerance that would
not exist if only the structure was used. This approach combines the benefits of both approaches and minimizes
their disadvantages. They are, however, not perfect. The conciliation of gossip and structured broadcast does
mean that they get some of the advantages of pure gossip algorithms, like their resilience, and the advantages of
structures broadcast, such as its efficiency, but it also means that these algorithms suffer with the disadvantages
from both approaches as well, mainly some of the overhead of the gossip approach and some of the latency of
the structured approach. It does, however, make the case for an overall lightweight set of algorithms that can
provide a high level of resilience in an environment with failures and a latency that is very respectable.

2.3.1 Plumtree

The Plumtree algorithm Leitao et al. (2007) is a proposal to create a robust broadcasting solution that explores
the inherent tradeo-ff between tree-based algorithms and epidemic approaches by joining the two in an hybrid
solution. The way it works is by creating a broadcast tree embedded in a gossip-based overlay. This tree is used
to broadcast the payload, and all the other links of the overlay are used in a Lazy Push mode, in order to mask
failures in nodes or network links. The algorithm also maintains the tree in the sense that if a failure occurs in a
node that is part of the broadcasting tree, then the algorithm will do the necessary adjustments until the tree is
repaired.



2.3. Hybrid strategies 10

Architecture

The Plumtree protocol is divided by two main functions:

• Tree construction: This component is in charge of generating the embedded broadcasting tree by selecting
the links of the overlay that will be part of it.

• Tree repair: This component is in charge of repairing the tree whenever faults occur. This means that in
case of a single or multiple failures, the protocol should make sure that the tree tree is repaired until it
connects all nodes.

Tree construction

Each node maintains two sets of peers. A set of Eager Push Peers for which the node uses the Eager Push
approach (sends the full message with payload), and a set of Lazy Push Peers for which a node uses the Lazy
Push approach (sends only the identifier of a message). When a node receives a new message from a peer, it
includes that link in its Eager Push Peers, which means it will be part of the embedded tree. This action will also
assure that the link is bidirectional. When a duplicate message is received, its sender is moved from the Eager
Push Peers set to the Lazy Push Peers set (because there was another faster node which provided the message
before). A PRUNE message is also sent to the node so that it can also be aware that this link has been moved
to the lazy push mode.

After the first broadcast is terminated, the construction of the embedded tree is finished, and the algorithm
will begin to use both methods of operation, by sending IHAVE messages that contain only the id of a message
in the Lazy Push links and GOSSIP messages that contain the payload in the Eager Push links, which are part
of the embedded tree. The algorithm specifies that a scheduling policy for the IHAVE messages can be used,
by aggregating multiple IHAVE messages and sending them in a single message. This scheduling policy does
not have an impact in the algorithm’s correctness as long as it assures that every IHAVE message is eventually
scheduled for transmission.

Tree repair

Whenever there is a failure in a node or a link, at least one tree link is affected and with high probability there
will be a partitioning of the tree (this does not happen only if the failure is in a leaf node). The way the algorithm
deals with this situation is through the use of the Lazy Push messages which are exchanged in the links that
are not part of the tree. Whenever a node receives an IHAVE message and notices that it has not received its
corresponding GOSSIP message, it marks this message as missing, and starts a timer t. If the corresponding
GOSSIP message is received before it expires, then this timer is canceled, and there will be no need to make
modifications in the tree. However, if this timeout expires, then the node sends a GRAFT message to the node
which sent the IHAVE message. This GRAFT message is part of the repair portion of the algorithm. Whenever
a node sends a GRAFT message, it moves the destination node from Lazy Push Peers to Eager Push Peers as
this link will now be part of the tree, and whenever a node received a GRAFT message, it moves the origin node
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from Lazy Push Peers to Eager Push Peers and forwards the message which originated it. Therefore this GRAFT
message has not only the purpose of triggering the transmission of the missing message but also adding the link
to the embedded tree.

2.3.2 Thicket

Thicket Ferreira et al. (2010) is another hybrid algorithm that builds on Plumtree to assemble multiple trees on
top of an unstructured overlay. Single tree based algorithms are very unbalanced when it comes to the effort
that each node does in the system, since leaf nodes get to receive the information without having the burden of
forwarding it to other peers, and therefore Thicket uses multiple trees in order to balance the amount of work each
node does, by adjusting the number of trees where a node is an inner node and a leaf node. The remaining links
are used with the purpose of ensuring the complete coverage of the spanning trees, as well as fault tolerance
and load balancing. In order to ensure that most nodes are only interior in a single tree and to balance the
load imposed on each participant, each node keeps an estimate of the forwarding load of its neighbors. Nodes
aggregate this information by having their neighbors send them the number of nodes to which they forward
messages in every tree. This strategy allows for a higher level of load balancing, when compared to the use of a
single tree, but it assumes that nodes do not lie when they share the effort they are currently doing.
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2.4 P E E R - S A M P L I N G S E R V I C E

In decentralized broadcasting algorithms, every node must be provided with a view of the overlay. This view con-
stitutes a set of peers that are part of the network and that the node will be able to directly exchange information
with. The peer-sampling service is in charge of initializing and maintaining the views of the nodes, and also take
into account the dynamicity of the system. When a node joins the overlay, the peer-sampling service should
provide it a view of the system, consisting of a random set of peers, and when a node leaves it is also responsi-
ble for removing the leaving node from the views of every node containing it. Depending on the characteristics
and needs of the application, this membership service can provide nodes with a global view of the system or a
partial one. There are benefits and disadvantages to both approaches. Usually partial views are beneficial when
it comes to performance and scalability, since in the global views case, memory requirements per member will
grow linearly with the number of members in the system. Therefore a lot of algorithms rely on a partial view from
the overlay. These are normally considerably smaller than the full system membership Leitão et al. (2010).

2.4.1 Maintenance strategies

There are two main strategies for the view maintenance mechanism:

• Reactive strategy: In this strategy, the local views from the overlay only change when a trigger event
occurs in the overlay, like a node failing, joining or leaving. If the overlay conditions remain stable then the
local views will remain stable as well.

• Cyclic strategy: In this strategy, the partial views are updated every specified unit of time. This is done by
exchanging messages with one or multiple neighbors. Contrary to the reactive strategy, there are changes
in the views even if the overlay is in a stable state.

2.4.2 Properties

A peer-sampling-service should guarantee a set of properties Ruiz and Bouvry (2015) that assure its efficiency.
These properties can be seen as the set of characteristics of the graph that is defined by the views of all nodes.

• Connectivity: The overlay should guarantee that all nodes are connected. This means that at any time in
the execution of the algorithm there should be a path between any two nodes in the overlay. This property
is paramount in assuring the reliability of the broadcast, meaning that every node gets the broadcasted
message.

• Degree distribution: The degree of a node can be interpreted as the number of neighbors that it is con-
nected to. The out-degree is the number of nodes that are in his view and the in-degree is the number of
nodes that have him in their views. Ideally the degree distribution would be uniform across all the nodes,
in order to guarantee a higher level of load balance.



2.4. Peer-Sampling Service 13

• Average path length: The average path length is the average of all shortest paths between two nodes
where a shortest path between two nodes is the minimum number of edges that must be traveled to reach
node A from node B. This number should be low so that the number of edges that a message needs to
get to a node is as small as possible.

• Clustering coefficient: The clustering coefficient of a node is the ratio between that node’s neighbors
and the maximum possible number of edges between the node’s neighbors. The higher the clustering
coefficient the higher is the number of redundant messages received by nodes.

• Accuracy: Accuracy is the number of neighbors of that node that have not failed as a percentage of all the
neighbors of the node. Ideally, peer-sampling services should provide a high accuracy, meaning that the
vast majority of nodes in the views are working normally.

2.4.3 Cyclon

Cyclon is one example of a cyclic peer-sampling-service that relies on partial views. The size of the views is
an algorithm parameter that can be tuned considering the number of nodes in the overlay and the level of fault-
tolerance that is desired. The bigger the partial views are, the higher the level of fault-tolerance the algorithm will
provide. Cyclon relies on a shuffle operation that is executed every round by every node. In this shuffle operation,
the node selects the oldest node in its partial view and performs an exchange with that node. In this exchange
each node provides to the other a sample of its partial view. This works as a failure detection mechanism as well,
because if a node does not respond to a request, then it will be assumed that it failed. As it happens with many
other peer-sampling-service’s, a node who wishes to join the overlay must know another node that is already
integrated in the network.

2.4.4 HyParView

HyParView is a peer-sampling service that relies on partial views instead of the complete membership informa-
tion. This protocol relies on a hybrid utilization of the cyclic and reactive strategies. The cyclic strategy is used to
maintain a bigger passive view that is used to assure the connectivity of the overlay even in the presence of faults.
The reactive strategy is used to manage the smaller active views that will be used for message dissemination.
The links in the overlay are symmetric which means if node A is in B’s view, then node B is also in node A’s
view. This is important to assure that a node has control not only when it comes to its out degree but also to its
in degree. A TCP connection is maintained between every link in the active views, and is used also as a failure
detector. This overhead is not too big because the active views are small.

When a node wants to join the overlay, it needs to know another node that is already part of the overlay, and
when a new node A contacts a node B, B inserts A in its active view, even if B’s view is full (in that case it will
drop a random node from its view to make room for A). After that, B will propagate a FowardJoin request using a
random walk.
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As mentioned before, the active view is managed using a reactive strategy. When a node notices that another
node in its active view has failed (this can be achieved by using TCP as a reliable failure detector), it selects
another node from its passive view to take its place. When a contact is made with this node, the node which
initiated the contact provides a priority level. This priority level is high if node A does not have any other nodes
in its view, or low, otherwise. When a node receives a connection request with high priority it accepts it with a
probability of 1, even if it has to drop a random node from the view. Otherwise, if the request is low priority, a
node will only accept it if it has free slots in its view. If node B denies node’s A request, A will have to contact
another node from his passive view.

The way the passive view is maintained is by using a shuffle operation. Periodically every node chooses a
peer to perform a shuffle operation with. This shuffle is propagated using a random walk strategy. It consists of a
set of nodes present in each-others active and passive views, that are traded between them. The conjugation of
cyclic and reactive strategies combines the stability of reactive strategies with the resilience of cyclic protocols,
and the result is a protocol that is able to preserve very high values of reliability, even with a percentage of failing
nodes as high as 80%.

2.5 U N F A I R N E S S I N B R O A D C A S T I N G A L G O R I T H M S

In an ideal world, when considering a peer-to-peer broadcasting algorithm, each participant would contribute the
same amount of resources and get the same quality or experience in return. However, in reality this does not
always happen and some nodes of the system end up contributing with more resources than others. This can
happen naturally as a result of the unbalanced nature of the algorithm itself but can also happen as a result of
deliberate attempts by rational nodes to contribute less to the network by deviating from the protocol specification.

2.5.1 Inherent Unbalance

Broadcasting algorithms are not necessarily designed while considering load balancing requirements. One clas-
sic example of this are tree-based broadcasting algorithms. In tree-based algorithms, the leaves do not contribute
to the propagation of the information, as shown in Figure 2, since they only have one neighbor, which is the one
who sent them the information. This is the case in the Plumtree algorithm. The inner nodes do all the work of for-
warding information to their downstream peers, while the leaf nodes get updates for free, i.e., without contributing
back to the system.
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Figure 2: Representation of the effort in a broadcasting tree.

If we simulate the scenario of the Plumtree algorithm where a node is broadcasting information, we can
observe in Table 1 that more than half the participants are leaf nodes, which means that more than half the
nodes in the system do not contribute any resources to the system, leaving that burden in the inner nodes of
the tree, who end up forwarding those messages to multiple neighbors. Furthermore, this situation worsens
as we increase the degree of each node in the system, causing therefore a tradeoff between latency of the
received packets and the percentage of leaf nodes in the tree. Another aspect that is worth noting in tree-based
systems is that the nodes which are closer to the source receive the updates earlier than the ones that are
further downstream. This situation can seem appealing at first, as it seems a natural penalization for the leaf
nodes to get updates slower than the upstream nodes who are contributing with their resources for the algorithm,
however, this is only true for the leaf nodes. For example, as shown in Figure 3, the nodes which are on the
level immediately above the leaf nodes, (node B) get a latency that is almost similar to the leaf nodes (node C),
however, they contribute with the same effort as the nodes that are on the first level of the tree (node A), receiving
updates directly from the source.

Degree of nodes Percentage of leaf nodes Latency (in hops since source)

3 33% 4.8

4 49% 3.7

5 55% 3.0

6 61% 2.7

7 64% 2.5

Table 1: Percentage of leaf nodes and latency in hops from the source as the degree changes.
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Figure 3: Unbalance of contribution in a broadcasting tree.

On the other hand, an example of an inherently balanced broadcasting protocol is a simple gossip algorithm.
Due to the fact that every node chooses randomly the nodes to which they will forward the new updates every
round, every node has the same chance of receiving the update early. If we consider the scenario of a standard
gossip broadcast algorithm, where each of the nodes always forwards the information to a predetermined number
of peers, every node will forward the same amount of messages, assuming they are all following the protocol to
its extent.

2.5.2 Selfish behavior

The second reason that a particular peer-to-peer system might not be fair is due to the existence of selfish nodes
who do not follow the protocol and instead try to minimize their work (bandwidth utilization) while maximizing
their gain of the system (minimizing latency). These nodes can be described as free-riders, and their existence,
as well as possible strategies to mitigate them, have been the target of a lot of research Zhang et al. (2009);
Guerraoui et al. (2010); e Oliveira et al. (2013); Alotibi et al. (2019). By not contributing with resources to the
system, free-riders cause the overall resource utilization from altruistic nodes to grow and also ultimately prevent
nodes from receiving updates.



3

B A R M O D E L

Most broadcasting algorithms and peer-sampling services consider a model where faults exist, meaning that
nodes and links can fail, however they do not consider the possibility that nodes might deviate from the specifica-
tion of the algorithm on purpose, if their interests do not align with the main goals from the system. This leaves
algorithms vulnerable to unexpected behavior from nodes that can compromise the experience of other correct
nodes, or in the worst case the security properties of the system as a whole.

One model that is more realistic in the sense that it captures the characteristics of a real life peer-to-peer
network is the BAR model. The BAR model contemplates three types of nodes: Byzantine, Altruistic and Rational.
They differ from each other due to their different goals in the system. Altruistic nodes are those that follow the
protocol without deviating from it for any reason. Rational nodes deviate from the protocol when such action
benefits them in any way, but have no inherent malice in their actions, meaning that they will not deviate from
protocol unless they have something to gain from it. And finally, Byzantine nodes deviate from the algorithm
specification arbitrarily, and this includes acting in such in a way that will cause the most harm to the other nodes.
Note that Rational nodes do not necessarily need to be analyzed as a different category from Byzantine nodes.
By behaving in a selfish way, they are damaging the experience for other nodes, and therefore that could be
considered Byzantine behavior. The importance of distinguishing Byzantine from selfish nodes does not arise
from the effect they have on the system, but rather their motivations. Since selfish nodes act in a way that
would benefit themselves, the argument could be made that if selfish nodes could be punished and have a worse
output from the system as a result of misbehaving, they would follow the protocol, since that would be the form
of maximizing their output from the system Li et al. (2006); Zhang et al. (2009).

3.1 B Y Z A N T I N E N O D E S

Byzantine nodes are characterized as peers that can deviate indefinitely from the algorithm’s specification. This
behavior includes purposely acting in a way that will cause the deterioration of experience of other users. They
are not necessarily interested in the broadcasted information, meaning that they are cannot be expected to
operate in such a way that will maximize their gain from the system or even minimize their effort. This means
that a Byzantine node can act in a way that will hurt its performance if it means that it will cause the most overall
harm to the system, or to a target victim.

17
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Byzantine nodes can furthermore join together, and collude, with the objective to cause even more damage to
the system. This can further increase the difficulty of detecting and punishing these malicious nodes, since they
can unite their efforts to hide their steps.

Byzantine nodes can perform a number of different attacks. These attacks range from attacks to the member-
ship service, as well as to the broadcasting algorithm itself.

In order to analyse and study the effects that Byzantine nodes can have on distributed peer-to-peer networks,
it is important to establish what the relevant security properties are Gheorghe et al. (2010). These properties can
be intrinsic to the data that is exchanged, the nodes that are part of the network, or the network in general:

• Authenticity A node that receives a message should be able to verify the source of the message. This
property allows, for example, for nodes to verify that the messages that they are receiving are authentic
and originated from the intended source.

• Non-repudiation The property where a node who has sent a message is unable to deny he has sent it.
This is important for example to proof that a node has misbehaved and should therefore be punished.

• Integrity A node that receives a message should be able to verify that the message has not been tam-
pered with. A node should be able to detect modifications to messages originated from the source, or
from its neighbors.

• Confidentiality The messages flowing in the system should only be visible and received by members of
the system. The need for confidentiality is dependent on the nature of the system using the broadcasting
algorithm.

• Anonymity The capacity for a node to remain undetected when it comes to its presence and actions in
the system.

• Access control The ability to validate and verify the identity of the nodes that want to join the system.
This property clashes with the anonymity, and that balance usually constitutes a trade-off that peer-to-peer
systems must deal with, depending on their specific needs.

• Availability The ability of the overall system to be up and running in its normal state.

These malicious nodes can perform a range of different attacks, that try to compromise a number of these
properties, from the membership service to the broadcasting algorithm. We describe each one in general and
their particular effects in Plumtree.

3.1.1 Content-poisoning attacks

Content poisoning attacks break the condition of integrity and authenticity of the information transmitted in the
system. They occur when an attacker creates false message updates, or modifies the existing ones, and for-
wards them to its peers. This attack has a cascading effect, since peers that receive the faulty update will also
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forward it to their peers, therefore its consequences are not limited to the immediate neighbors of the attacker.
The motivation for this behavior can range from censorship to pure malicious reasons and the degree of the
consequences are influenced by the structure of the system, as well as the number of attackers.

In tree-based algorithms, the consequences from a content-poisoning attack heavily depend on the position
of the malicious node in the broadcasting tree. If the attacker is a leaf or is positioned in the lower levels of the
tree, the effect of the attack will be reduced since the faulty update will be forwarded to a low number of peers.
On the other hand if the malicious node is positioned close to the source, then it will affect a higher number of
peers. As we can see on Figure 4, if an attacker is positioned in the first level of the tree, (in this case assuming
a binary tree), then it will have control over the updates of half the nodes in the system.

Figure 4: Effect of a malicious node on a broadcasting tree.

If we simulate a tree-based algorithm with 100 nodes, with an overlay of degree five, we can see that, when the
attacker is situated in the upper levels of the tree, the number of nodes affected is substantially higher, because
more nodes are downstream from it. As shown in Figure 5, on average, a malicious node provided malicious
updates to around 20% of the nodes when it was positioned in the first level of the tree, and this reach decreased
as the node was positioned in lower levels.

Furthermore, since the tree remains static unless it needs to be repaired (e.g., due to churn), it means that
the affected nodes are always the same ones, namely the nodes that are downstream from the attacker. It is
also important to note that these observations assume that the attacker does not have the ability to change his
position on the broadcasting tree, and is only available to corrupt the peers that are downstream from it.

If we consider a traditional gossip algorithm, the effects of content poisoning are considerably different. Due to
gossip’s unstructured and random nature, the damage that a malicious node causes is more spread out through
the whole network, and reaches on average a higher number of nodes. In our simulations, after the gossiping
of 100 messages, 47% of the nodes had received at least one faulty update, however the global percentage of
faulty updates received was only around 0,5% for each node. This means that in traditional gossip algorithms
attackers are able to influence a bigger number of nodes, but contrary to the tree based approach, they influence
a small percentage of updates for each of those nodes.
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Figure 5: Percentage of affected nodes considering the level of the attacker in the tree.

When we consider Plumtree, due to the actual forwarding of information being done using a broadcasting tree,
the effects of content-poisoning attacks are similar as the ones observed in traditional tree-based approaches.
Since Plumtree did not have any security measures, a node which behaved in such a way would not be penalized,
and the nodes that received the messages forwarded by him would not notice the attack since no checks are
done.

Methods for mitigation of content-poisoning attacks

Mitigating content-poisoning attacks can be done in a variety of ways, and depends on the nature of the sys-
tem. For example, if peers are able to distinguish legitimate updates from malicious updates, mitigating content-
poisoning will be easier, since correct peers next to the attacker would immediately notice that the updates are
faulty, and could take actions against the attacker, therefore canceling the cascading effect that was mentioned
earlier. However, if peers are unable to distinguish faulty updates from truthful ones, it will be harder to stop the
attack at the source, since the peers do not immediately recognize faulty updates, and even a correct peer could
forward faulty updates.

One mechanism that would circumvent this issue is using the redundancy of updates that is typical of peer-to-
peer systems to verify the authenticity of these updates. If a node received multiple instances of the same update
from different neighbors, as it happens in push-based gossip algorithms, and they all matched when it comes
to their content, then it would have a high degree of confidence that the update was authentic. If however the
content of the update differed, then it would know that one of the neighbors is lying, and therefore could employ
a mechanism to deal with the situation.

In the Plumtree algorithm, an update is received by a node from only one neighbor, however, the node also
receives the alert that there is the new update (IHAVE message) from the neighbors whose links do not belong in
the broadcasting tree. This means that if these IHAVE messages contained the hash of the update, for example,
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a peer could use them as a source of confidence that the update it received is correct. This does however
bring the disadvantage of a node not being able to deliver an update to the application before it received the
corresponding IHAVE messages from its neighbors, to verify its integrity. One important aspect that should
also be considered is how to deal with conflicting IHAVE messages. When this happens, the node knows with
certainty that one of the messages is malicious but it does not know which one. The node could use a majority
system to select the update which it considers truthful, but this means that it could deliver the wrong update in a
situation where more than half of the IHAVE messages point to a wrong hash of the update.

S I G N A L L The most intuitive approach to combat content-poisoning attacks is to use asymmetric cryptogra-
phy to guarantee the authenticity and integrity of the updates. In this scenario, the source calculates a signature
of each update, by using its private key, and joins the signature to the update, while every node that receives
an update verifies it by using the source’s public key. This means that, assuming the cryptographic functions
used are safe, an attacker cannot spoof an update to a neighbor, since they will not be able to sign it without
the source’s private key. This approach has the advantage of being secure, however there is a considerable
overhead caused by the signing and verifying of each packet. For example, a source that is sending information
at 3000 kbps bitrate, with an update size of 1024 bytes, would mean that the source would have to sign around
366 updates per second, and correspondingly, a receiver would have to verify 366 updates per second as well.
Thus, we consider this approach too expensive to be viable.

L I S T S I G N I N G One way of optimizing the “sign all” approach, would be for the source to calculate the
hashes for a group of updates, and sign this checksum. The source would then forward this signed checksum
first, followed by all the updates that were considered in it (unsigned). This means that the receiver will use this
checksum to validate all the updates that are considered in it. One of the problems with this approach is that the
source needs to delay the forwarding of messages until it has enough available to create the signed checksum.
Meaning that a signed checksum of n messages, which will amortize the cost of a signature by those same n
updates, will correspond to a delay of n messages in the source. Another problem with this approach is that if
the receiving node receives the updates before receiving the signed digest in which that update is considered,
it will not be able to verify the update until it receives the signed digest. One possible solution is to use a more
resilient broadcast for these signed checksums such as flooding, since the benefit of the timely arrival of these
signed checksums outweighs the added bandwidth usage of flooding these updates.

M E R K L E - T R E E C H A I N I N G Merkle tree’s chaining can be seen as a generalization of signing lists, and
in this approach, the source builds an authentication tree that corresponds to a block of updates. Each leaf of the
tree corresponds to an update, and the other nodes of the tree are built as the hash of the concatenation of their
children. The hash of the source of the tree is then signed by the source, as illustrated on Figure 6, providing
authentication guarantees to all the updates that belong to it. For receivers to verify an update, they need the
signed top hash, the update position in the block, as well as all the neighbors nodes in the tree path to the source.
This can mean that a node does not necessarily need access to the whole authentication tree to verify an update,
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Figure 6: Generation of the Merkle-tree.

Figure 7: Verification of the Merkle-tree.

as depicted in Figure 7, at the cost of a slightly higher bandwidth overhead, as well as computation overhead.
While in the list signing approach, the source must perform n hashes and 1 signature, with binary merkle-trees,
the source must perform 2 ∗ n− 1 hashes and a signature. Similarly, the receiver must perform n hashes and 1
signature in the list signing approach while 2 ∗ n− 1 hashes and 1 signature must be performed by the receiver
when Merkle-trees are being used.

H A S H C H A I N I N G Hash chaining is one of the approaches that enables the authentication of a continuous
stream of packets, broadcasted over an unreliable medium to a group of receivers.

This form of amortizing digital signatures is different from the previous ones presented in the sense that a
continuous stream of messages is broadcast by a sender. the authentication of the nth message in the stream is
achieved on the receipt of the n + 1th message. Thus, receivers use information in later packets to authenticate
earlier packets, and this authentication can be traced back to the first message sent by the source, which was
signed using conventional asymmetric cryptography.

TESLA Perrig et al. (2000, 2002) is a hash chaining algorithm that is based on this concept. It uses pseudo
random functions and message authentication codes, or MACs, and it is based on the timed release of keys by
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the sender. The sender starts by creating a signed hash of a generated key k without revealing it and transmits
it to the rest of the network. The sender then generates a MAC that will authenticate the first packet using the
key k. This authenticated packet will also carry a newly generated hash of a new key k1 that will authenticate
the following packet. This way, the signature of the first hash of k will be the root of authentication for all the
following packets. This approach allows authentication of all messages using only one digital signature for
the first message, while relying on the utilization of hash functions and message authentication codes for the
following. However this approach has some security vulnerabilities that must be considered. If an attacker is able
to receive the packet Pi+1 before his neighbor receives packet Pi, then he will be able to spoof the contents of
the packet Pi to this neighbor, since the key that is used to authenticate packet Pi is disclosed in packet Pi+1.

3.1.2 Sybil attack

The Sybil attack Douceur (2002) is a type of attack on a peer-to-peer networks in which an attacker creates
a large amount of pseudonymous identities, to increase its influence in the system and therefore subvert the
system’s behavior.

The consequences from a Sybil attack vary from system to system, depending on the characteristics of the
environment and the security features it presents. The attacker can use this increased control over the system
to subvert reputation systems, to deny service to some peers, subvert a voting result, etc. The Sybil attack can
be thought of as a stepping stone to perform another, more disruptive attack, such as content poisoning. If an
identity is able to control a large number of entities/peers of the system, the reach of the attack will be far superior
compared to if the attack was performed by a single peer. Sybil attacks are usually performed at the membership
level of a system, and are difficult to counter unless rigid mechanisms for identification assignment are used.
The entrance barrier in a peer-to-peer network depends on how difficult it is to obtain a new identification Dinger
and Hartenstein (2006). If nodes’ identification can be easily spoofed and are not verifiable by other nodes, it is
trivial for an attacker to create an arbitrary number of different identities. This process should also be safe and
resilient, to avoid being attacked by malicious nodes. There are two main strategies when it comes to identifier
assignment:

C E N T R A L I Z E D I D E N T I F I E R A S S I G N M E N T Identifiers are issued by a centralized authority such
as a CA, that signs id’s and entrance requests. Relying on a centralized authority can help mitigate against Sybil
attacks by, for example, employing identity validation measures such as identity cards, or add a cost to a node
that wishes to enter the system like a small fee, to discourage and make Sybil attacks impractical.

One disadvantage of the centralized approach is that it constitutes a single point of failure because even if it is
not crucial for the actual sharing of information, it is impossible for new nodes to join if it is unavailable. The cen-
tralized authority also has a computational overhead that is not amortized by all nodes, which can mean higher
costs, and the need for additional infrastructure. In this approach, the way nodes would verify the authenticity of
the id could be the traditional CA (Certificate Authority) scenario, in which the CA signs the certificate issued to
a determined node with its private key and every node has the chance to verify it with the public key of the CA.
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D I S T R I B U T E D A S S I G N M E N T W I T H E X T E R N A L I D E N T I F I E R S We assume that all the peers
have an external identifier, agnostic to the system, that we can use to deterministically generate the node id for
the system. One example would be for the system id of a node be the hash of his IP address. In this scenario, the
security of the identification process for our system is transferred to the security of global IP address issuance,
which is ensured by the providers, sub-registries, etc, meaning that the level of security of the ids of the system
is the level of security of the issuance of IP addresses. The advantage of this mechanism over a centralized
authority is that there is not a single point of failure and there is no computational overhead. In contrast to central
ID assignment, using external identities does not require an additional entity.

3.1.3 Eclipse attacks

An eclipse attack builds on the Sybil attack or collusion between different attackers to cause damage to other
peers and the overall system. It happens when an attacker is able to surround a benign node or group of nodes,
for example, by filling their view with attacker’s identities, giving it full control of the benign peer’s interactions
with the system. With this control, the malicious node can for example starve the victims of messages from the
system, or partition the overlay in a way that peers from one side cannot communicate with peers from the other.

As it happens in a Sybil attack, an eclipse attack is performed at the membership service level. If a malicious
node is able to influence or control the view of the other nodes to the point where he can starve the victim’s view
of benign nodes, he will be able to successfully eclipse the victim from the rest of the system. The effectiveness
of an eclipse attack depends on the nature of the membership service. Partial membership views are more
vulnerable to this type of attack than full membership views, since it becomes easier to control a node’s view
when it is smaller and maintained using a fixed policy, which can usually be exploited. Another important aspect
is whether the peer-sampling service is reactive or cyclic in its nature. By constantly changing the views from
time to time, cyclic strategies are more naturally resilient to eclipse attacks, as it becomes harder for an attacker
to encircle a benign node, since an attacker would have to actively prevent the peer from inserting a correct node
into its view. One other aspect that affects the effectiveness of eclipse attacks is the method used to dissipate
membership information among nodes. When push strategies are used, meaning that peers will take the initiative
of sending their membership to other peers, the membership service is more vulnerable since an attacker can
exploit this mechanism to target legitimate nodes with poisoned views. If the membership dissipation is mostly
based on pull approaches, the legitimate node will have control on who to ask for the membership so an attacker
does not have the same ability when it comes to targeting another peer.

Security measures to deal with this attack revolve around preventing a malicious node from influencing or
taking control over correct nodes’ views. One way this can be done is by putting some restrictions on the peer
selection process so that contacted peers can verify that the contacting peer is acting according to the algorithm.
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3.1.4 Man-in-the-middle attack

A man-in-the-middle attack is when an attacker secretly intercepts, relays and possibly alters the communications
between two parties who believe that they are directly communicating with each other.

To pretend to be both parties, the attacker listens in on a communication session. An attacker uses a clever
technique to place itself between two nodes that are exchanging data in a network so that the attacking host
receives all data that should only travel between the two original hosts. If the attacker is passive, the attack may
go undetected. The attacker in the active attack method has the option of altering the data being exchanged
with the objective of, for example, performing a pollution attack, or affect the reputation of the node that it is
spoofing. Most mechanisms that counter this attack revolve around providing authentication for the peers that
are communicating. Considering Plumtree, the man-in-the-middle attack can be used by a malicious node to
force it to be cut off from the broadcasting tree. If the malicious node, for example, forwards old messages
to node A while impersonating node B, node A will detect this duplicate message and prune that link, as per
Plumtree specification. If the malicious node does this for every link that node B is connected to, then it will
be completely separated from the broadcasting tree. Fortunately, due to the tree repair mechanism already
incorporated in Plumtree, consisting of the IHAVE and GRAFT messages, node B would be able to detect that
it was cut off from the broadcasting tree, since it would receive IHAVE messages referring to an update while
not receiving the update itself, and it add that link to the tree. This means an attacker would need to perform the
attack repeatedly, to force the correct node to be constantly repairing. However, even if an attacker were to do
that, it would not affect the reliability of the correct node.

Existing security measures that can be used to counter man-in-the-middle attacks revolve around providing
some form of authentication between both parties, so that each party can be confident they are talking to the
desired entity, and not an attacker impersonating said entity. The most intuitive mechanism would be for each
node to have their own pair of keys, issued by a centralized authority, so that a node A could sign its messages
to node B with its private key, and node B could verify these messages with node A’s public key. The downside
of this approach is that signing each message will add a significant overhead that is not be sustainable in real
world scenarios.

One more efficient mechanism that can be used is a KEM (key encapsulation mechanism) where both sym-
metric and asymmetric encryption are used to ensure the authenticity of the exchanged communication between
two nodes. In this mechanism, a node generates a session key, encrypts it with the other node’s public key, so
that the other node can decrypt it with its private key. After that, all communication between the nodes can be
authenticated using a symmetric key mechanism such as a CMAC Dworkin (2005). In this case, asymmetric
encryption is only used to verify and safely exchange the session key, and after that only symmetric key algo-
rithms will be used, which are a lot faster. One downside of this approach is that even though every message
is authenticated, there is no guarantee of non-repudiation for the exchanged messages. Meaning that node B
knows for sure that node A sent that message because node A is the only one that knows the session key, but
they cannot prove it since node B is not be able to prove that it did not generate that message itself. This could be
an important factor when we consider peer-to-peer systems since nodes will be unable to prove the wrongdoing
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of other nodes. Another important aspect of this mechanism is that it is only efficient in peer-to-peer systems
where the views are not constantly changing. If the membership service on the basis of the peer-to-peer system
is cyclic, meaning that views change from time to time, this would mean establishing a new connection with all
the new nodes that are part of that new view and performing the symmetric key exchange. Depending on how
often the nodes views’ change, this could mean a considerable overhead impact.

3.2 R AT I O N A L N O D E S

In peer-to-peer systems, usually there is no central authority, and peers are organized and operate in a self-
sufficient way Hoffman et al. (2009). This means that the performance of the system largely depends on the
cooperation between peers. In an ideal world, all peers would follow the protocol without deviations, contributing
for the optimum level of performance for the system. However, this assumption is rather optimistic, and in
reality it is observable that there are nodes that act in a selfish way rather than contributing for the maximum
system performance. These nodes are usually given the name of free-riders or rational nodes e Oliveira et al.
(2013); Gheorghe et al. (2010). The goal of these nodes is to contribute with the least resources possible (e.g.,
bandwidth) to the system, while getting the best service possible. These nodes hurt the system by overloading
the peers which are following the protocol and providing resources. This can in turn affect the performance of
the overall system since overloaded nodes might not be able to keep up with demand. Furthermore, selfish
they can adapt their behavior to avoid suspicion by other nodes even when there are security mechanisms in
place, making it harder to detect and punish nodes that do not follow the specification of the algorithm. The
consequence of free-riders in peer-to-peer broadcasting systems depends on the nature of the system itself.
Strategies such as gossip that have a higher level of inherent fault-tolerance will be more resilient to free-rider
behavior since it is masked by the redundancy associated with gossip algorithms. If we consider the simulation
of a standard gossip algorithm with 100 nodes in which each altruistic node forwards the message to 5 other
nodes, we can see in Figure 8 that the impact of the free-riders is very low on the resilience of the system up to
35% percent of rational nodes. The reason for this is that since every node chooses 5 random nodes to forward
messages to, and every (correct node) forwards each message once, that means that on average, each node
receives each message 5 times, from different sources.
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Figure 8: Resiliency (as a percentage of delivered messages) by percentage of free-riders in traditional gossip.

Another important aspect to consider is average last delivery hop for the received messages. As depicted in
Figure 9, the increase in the percentage of rational nodes in the overlay leads to an increase of the latency. This
happens because since the number of forwarders is decreased, it will take longer on average for the message to
reach the nodes.

Figure 9: Difference in latency as a the percentage of free-riders grows.

In comparison, considering a traditional tree broadcasting algorithm on an overlay with 100 nodes, we can
see, in Figure 10, that the impact of the Rational nodes on the resilience is considerably larger. The reason
for this is because of the rigid structure and lack of redundancy of this approach. When a Rational node is an
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inner node of the tree, all of the downstream peers from him will fail to receive the messages. As the amount of
Rational nodes increases, the chance at least one of them is an upper level node will increase, leading to the
quick decline of the resiliency of message delivery.

Figure 10: Resilience (as a percentage of delivered messages) by percentage of free-riders in a broadcasting tree.

In the traditional tree broadcast it does not make sense to measure the evolution of last delivery hop as a
function of the percentage of free-riders since the nodes either receive the messages with the same latency
(since the tree is static), or do not receive the messages at all, due to the fact of being downstream from a
Rational node.

3.2.1 Effects on Plumtree

Plumtree has a natural resiliency to Rational nodes that do not forward messages. This is ensured by the tree
repair mechanism that was originally created to handle faults. When a node does not receive a message through
the broadcasting tree, due to its parent being a Rational node, it will receive an IHAVE message corresponding
to that message through another neighbor and the node will then ask for the associated message, as well as
change the links in the tree. This means that the reliability of the Plumtree algorithm even in the presence of
Rational nodes remains very high unless the node is surrounded by Rational nodes, meaning that it could not
receive the information of a new message through any channel.

Even though Plumtree is naturally resilient against Rational nodes, it is still important to create mechanisms
to discourage nodes from being selfish. The first reason is that as the percentage of Rational nodes grows in
the system, the average latency for the messages received by altruistic nodes also increases. Depending on
the nature of the content being broadcasted, this increase in latency might make a difference between a good
experience and a bad one. While in file-sharing peer-to-peer networks this increase in latency could be negligible,
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the same cannot be said for streaming peer-to-peer networks where an increase in latency, even if small, might
compromise the utility of the update received and lead to a worse user experience.

The other reason why it is important to discourage selfish behavior in Plumtree is that the higher the number
of Rational nodes in the system is, the bigger the strain will be on altruistic nodes. This happens because that
if a large percentage of nodes are unwilling to reciprocate with the forwarding of messages, that effort will fall
upon the altruistic nodes who are following the protocol correctly. This situation is not only unfair but will also
lead to a worse overall performance of the system since overloaded nodes might have trouble keeping up with
the forwarding of messages to a high number of peers.

3.2.2 Mitigating Rational behavior

The task of mitigating free-riding behavior is not trivial. If it imposes a high overhead for the system, then it
outweighs the damage that free-riders do to the system. Furthermore, the free-riding detection mechanism itself
can be a target of malicious nodes, and therefore it must be resilient to manipulation to a certain extent.

Inherent generosity

The first mechanism that should be considered when it comes to mitigating Rational behavior is the existence
of altruistic nodes that gain utility from the mere act of giving. The effect of these nodes in the system have an
opposite effect to free-riders. They are willing to dedicate more resources to the system than they are consuming.
The argument can be made that if the system model considers the existence of free-riders, then it should also
consider the existence of altruistic nodes who are willing to provide help to their peers without an immediate
reward.

Monetary payment scheme

Monetary payment schemes dictate that peers which consume resources from the system must pay the peers
who provided those resources. Each node would start with a pre-determined balance. Every time a node
forwards an update to another, they will a certain amount added to their balance. Alternatively, every time that
a node receives an update from a peer, they will pay a certain amount to that peer. This scheme discourages
peers from free-riding in the system. If a peer is not willing to forward its newly received updates to other peers,
while still consuming and paying for updates from other neighbors, then their balance will decrease until it would
reach 0, leaving the node unable to get further updates.

The first and most obvious problem that arises from this mechanism is the feasibility of implementing this
virtual currency in the system. A node could, for example, tamper with its own balance and change it to a higher
amount, or could also refuse to pay for the services of another peer. One solution for this problem would be
in the form of a central authority which would be responsible for authorizing the payment between peers and
also updating the balance of the peers. That way, the central authority could keep the balance of every peer,
updating it at every transaction that would occur, and therefore be successful in preventing a peer from lying
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about its own balance. There are, however, two main problems with this approach: The first one is that this
central authority would constitute a single point of failure that could be the target of attackers. If this central
authority was compromised, then it would be impossible to provide authenticity to transactions or the balances of
the nodes, therefore blocking transactions altogether. The second problem is that depending on the number of
nodes on the system, as well as the volume of transactions, the load on this entity would be substantial, therefore
affecting not only operating costs but also compromising the scalability of the system.

One alternative to this centralized approach is Karma, an economic cooperation incentive system, that works
by keeping track of the resource purchasing capability of each peer Vishnumurthy et al. (2003). This capability is
presented in the form of a single scalar value, called karma, which captures the amount of resources that a peer
has contributed and consumed, and represents the user’s standing within the global system. Users are initially
awarded a fixed amount of karma when they join the system. Karma uses groups of nodes, called bank-sets, to
keep track of the karma belonging to the users. The karma balance is increased whenever the user contributes
resources, and decreased whenever he consumes resources. A transaction will only be able to proceed if the
consumer has enough karma for the resources involved. Thus, participants are ultimately forced to achieve parity
between the resources they contribute and those they consume. The process of a payment between two nodes
is the following:

• Node A sends Node B a signed message authorizing A’s bank-set to transfer a certain amount to B

• Node B forwards this message sent by A to his own bank-set who in turn check the feasibility with A’s
bank-set

• If A’s balance is enough to pay for that amount then that value is deducted from A’s balance and added to
B’s balance

The integrity of a node’s balance depends on the integrity of the corresponding bank-set. If an attacker is able
to control a majority of a bank-set of a node, he will be able to tamper with the balance of that node. For big
enough networks, it becomes infeasible for an attacker to do this. Considering an overlay of 106 nodes, if an
attacker somehow gained access to 10% of the whole network, the odds of him controlling the majority of the
bank-set of a node is less that 5.6 ∗ 10−10.

This approach would be feasible in a system where the objects exchanged are of a larger size and such ex-
changes are initiated less often, such as a file-sharing service. However, for a broadcasting based algorithm such
as Plumtree, it would be unreasonable to initiate the process of verifying the feasibility of an update forwarding
between two nodes for every update.

Tit-for-Tat mechanism

The tit-for-tat mechanism, or direct-reciprocation mechanism, is an incentive approach that tries to mitigate the
free-riding problem by demanding that exchanges of information are bilateral. This means that node A is only
willing to trade updates with node B if node B also has something to offer. In this way, it would be impossible for
nodes to act selfishly since they would not get any updates if they also refused to cooperate with other nodes.
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At a first glance this mechanism seems flawless. If nodes can’t get updates without also sharing their resources,
then it’s impossible for them to cheat the system. The problem with this mechanism is that the number of updates
that each node has to offer needs to be extremely balanced, otherwise the nodes with less capabilities will starve
Li et al. (2006). Even considering a naturally balanced broadcasting algorithm such as traditional pull-gossip, the
reliability of the message delivery is impacted by the constraint of both nodes having valuable information to the
other node in order to be successful in an exchange. When simulating the standard pull-gossip mechanism with
an updated version implementing the tit-for-tat mechanism, where every round a node chooses a neighbor at
random and trades the maximum amount of useful updates, we were able to observe that, while the traditional
pull-gossip approach had a reliability of about 99% when it comes to message delivery, the version with the tit-
for-tat mechanism got only a reliability of about 79%. Furthermore, the latency also deteriorates when it comes
to the tit-for-tat approach, from about 2.0 hops in the standard version to around 2.8 hops in the tit-for-tat one.

One possible solution for this issue is to allow for exchanges of updates between nodes, even if one of the
nodes does not have anything to offer, by demanding that the node without valuable updates to still make the
same effort of the other node, sending dummy updates. These updates would not be useful for the node receiving
them, and their only purpose is to force the node receiving the legitimate updates to also make an effort. The
idea is that if the cost of sending these dummy updates is as high or slightly larger than the legitimate ones, then
a Rational node will be encouraged to contribute with legitimate updates, eliminating free-riding behavior from
the system. However, this approach presents two major problems. The first one is that this mechanism leads to
a high level of bandwidth waste, since the nodes still need to make the effort of sending these dummy updates,
and the other one is that there are no guarantees that a node would not provide legitimate updates only to then
receive dummy updates from a node with no valuable information to them. If a node observes that its neighbor
does not have any valuable information to them, then it still does not have any incentive to continue with the
exchange.

When we consider an application of the tit-for-tat mechanism to Plumtree, it is clear that it would not be
successful. Due to its tree-based nature, the information exchanged between peers is far from balanced, and
therefore the amount of dummy updates sent by the leaf nodes, for example, would be enormous. Furthermore if
we consider a scenario where only one source is streaming, this would mean that all the information flows in the
broadcasting tree in only one direction, therefore originating one dummy update per legitimate update, doubling
the amount of bandwidth used.

3.2.3 Reputation systems

In reputation based-systems, peers gain reputation by participating in exchanges of information with other nodes.
This reputation can be calculated in a decentralized way, by the nodes that are part of the system, or by a
centralized authority that keeps a registry for each node of the overlay. Centralized approaches are simpler
to design and offer a higher degree of efficiency, since a peer will be provided with the reputation data that
was collected from all the peers in the overlay. The main drawback of this approach is the fact that the central
coordinator constitutes not only a single point of failure but also a bottleneck for large systems, since it will need
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to receive and send reputation data to all the nodes in the overlay. In turn, decentralized approaches have the
advantage of being more robust and scalable, since there is not a central coordinator does not oversee every
reputation exchange, but there is a high message overhead that is necessary to maintain the reputation data.

In reputation systems, nodes can collect information about other nodes directly, by analyzing their past in-
teractions with those nodes, or by collecting information about the participant from other peers. Nodes then
use that information to compute a score for every peer on the overlay. With that score nodes decide to punish
low-reputation nodes, therefore creating the incentive for nodes to cooperate with the system so that they can
maintain a good reputation.

Even though indirect reputation schemes are more effective when it comes to the calculation of a node’s
reputation, since they can use not only their own experiences but also the experiences of other nodes in the
overlay, they are also vulnerable to malicious behavior from nodes that wish to subvert the system. Attackers can,
for example, target other nodes by reporting a low score for them, with the objective of getting them penalized.
Attackers can also perform a “cleaning” attack by banding together and reporting a high score for each other,
to increase their reputation. Therefore in order to be secure, reputation systems must take into account the
possibility of false reports and employ security mechanisms that prevent malicious peers from influencing them.

3.3 B A R G O S S I P

BAR Gossip Li et al. (2006) is a peer-to-peer data streaming application that is capable of providing a low latency
and stable throughput in the BAR model (Byzantine/Altruistic/Rational). To achieve this goal BAR Gossip uses
a verifiable pseudo-random partner selection method that allows for the elimination of non-determinism in the
algorithm execution but also keeping the advantages of traditional gossip. It also relies on a fair exchange
primitive that entices the selfish nodes to collaborate with the algorithm.

The architecture of BAR Gossip relies on the assumption that randomness is inherently bad in algorithms
that function in the Byzantine environment, because it gives a chance for Rational nodes to hide selfish actions
as legitimate, non-deterministic behavior. Because of this, BAR Gossip uses verifiable pseudo-randomness
to build a verifiable pseudo-random partner selection algorithm. This mechanism has the finality of removing
the randomness aspect of the algorithm, in order to provide the possibility of verification when it comes to the
partner selection, but maintains the unpredictability and rapid convergence of traditional gossip. This approach
is joined by a fair exchange mechanism that encourages nodes to trade information with each other, therefore
discouraging Rational nodes from free-riding in the system. The authors argue that enticing cooperation over
short timescales is more effective and simpler than other approaches based on long term reputation.

3.3.1 Partner selection

In traditional gossip, a node periodically selects a partner to exchange information with, randomly. Also, the
node which is contacted always accepts that request. This allows for a malicious node to choose the partner
which he wants to contact and disguise that decision as random behavior, and compromise the resilience that
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comes with gossip. Therefore, BAR Gossip makes nodes generate an unpredictable, deterministic seed for the
pseudo-random generator and will provide all that information to the node that is chosen, so that he can verify
the integrity of that process using the same pseudo-random generator with the corresponding seed.

3.3.2 Balanced exchange

Balanced exchange is the mechanism which is used by nodes to exchange updates. It works by having two
nodes determining the largest number of new updates they can exchange while maintaining the trade equal. In
each round, a node does both roles. It initiates an exchange with another client and responds to a balanced
exchange request from another node. An exchange consists of four phases. The first phase consists of the
partner selection, which is done using the partner selection algorithm. In the second phase the two nodes learn
about each other’s unexpired updates and determine the maximum number of updates that can be traded, as
a one-for-one trade. In the third phase, the nodes encrypt the updates that were determined to be traded and
send them to the other node, and finally, in the fourth phase, the nodes exchange the keys which are necessary
to decrypt the updates. The reason why first the encrypted updates are exchanged and only after the keys are
exchanged is to discourage Rational nodes from retaining from sending the updates after getting the other node’s
updates. This process can be seen as a Nash equilibrium and completing it is in the best interest of nodes that
want to maximize their gains from the algorithm.

3.3.3 Proof of misbehavior

Proof of misbehavior is the mechanism which is used by BAR Gossip, to ensure that the nodes who send
inconsistent messages risk eviction. One example of a proof of misbehavior is a client receiving updates that
differ on what was agreed upon. A single client cannot have the authority to evict other nodes, and therefore
BAR Gossip introduced a trusted agent of the broadcaster that audits possible POM’s (proof of misbehavior). He
does this by policing the system every round, and ordering random nodes to provide the POM’s that they have
gathered. If the node does not have a POM against another peer, it must send a dummy message. This is to
discourage Rational nodes from lying to the auditor to save on bandwidth. If the auditor reaches the conclusion
that a node has misbehaved, then it will inform the broadcaster by sending it a signed eviction notice, and the
broadcaster will include all eviction notices in every update it broadcasts.

3.4 F I R E F L I E S

Fireflies Johansen et al. (2015) is a Byzantine resilient membership service that uses decentralized monitoring of
the overlay in order to provide nodes with reasonably current views of the system. Fireflies is composed of three
different sub-protocols. One pinging protocol which is used to detect failures of other nodes, a gossip algorithm
that is used to propagate information between members in a bounded time, and a membership protocol that uses
accusations and rebuttals in order to maintain the views.
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In Fireflies, nodes monitor each other for failures, by using the pinging protocol. They are organized into rings,
and their position in the ring is calculated with their identifier. On each ring, every node monitors their successor
and if they detect that it has failed, they will issue an accusation and gossip it to other nodes. When a node
receives an accusation for another node, it starts a timer with a predefined timeout. If that timeout expires, they
remove the accused node from their view. A node who is incorrectly accused can also issue a note, or rebuttal
to that accusation, so that the nodes in the system can cancel that timer and the node which was accused will
therefore remain in the views from the nodes. In order to deal with Byzantine members that could issue incorrect
accusations for other nodes, each node is able to invalidate a portion of the rings, so that accusations generated
by predecessors of those rings will be ignored by the nodes in the system.

Byzantine members can disguise themselves as correct members by executing the protocol, or as stopped
members by not executing at all, and so a correct member cannot determine which members are Byzantine
unless they reveal themselves by sending messages that prove that they are not following the protocol. Fireflies
also depends on a central authority to provide potential members with a certificate that will authenticate their
identity as well as provide access control to the system if necessary.

3.5 B R A H M S

Brahms Bortnikov et al. (2009) is a peer-sampling service that is able to sample random nodes in large dynamic
systems prone to Byzantine failures. It does this by using small local views, which means the maintenance
overhead is kept small. Brahms provides independent uniform samples even in an environment with Byzan-
tine failures, as opposed to traditional gossip-based membership services which only ensure that the average
representation of nodes in local views is uniform.

The way Brahms achieves uniform independent samples is by introducing a sampler that is able to obtain
independent uniform samples from a biased stream of identifiers. By using this sample to update part of the local
view, Brahms avoids partitions and assures that long-standing nodes cannot be isolated from the overlay.

3.5.1 Sampler

The sampler uses min-wise independent permutations to uniformly sample elements from a data stream, even
if this stream is biased. It can be implemented with a pseudo-random function. Consider for example a stream
of id’s a, b, a, a, c. If we feed this stream to the sampler it will compute the hash of each one and maintain the
lowest found so far as the sample. The odds that the sample is a, b, or c is the same, meaning each of these
id’s hashes has the same probability of being the lowest, as illustrated in Figure 11. Brahms maintains a tuple of
sampled elements in a vector of samplers, which are independent and work as a history sample used to update
the views.
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Figure 11: Sampler used by Brahms in order to achieve uniform independent samples.

3.5.2 Id propagation

The Brahms view is maintained by using a gossip algorithm. It uses two means for propagation: push and pull
strategies. The push strategy consists in a node pushing its id to some other nodes, and the pull strategy consists
in getting other node’s views. These two methods are not enough to guarantee that the overlay is not partitioned
in face of an attack, so Brahms uses history samples to update a small portion of the view. This guarantees that
a node always has at least a small amount of correct nodes in its view.

3.6 S E C U R E S T R E A M

SecureStream Haridasan and van Renesse (2008); Haridasan and van Renesse (2006) is a peer-to-peer live-
streaming system built to tolerate some kinds of malicious behavior. It uses the fireflies membership service as
its secure peer-sampling service and counts on its resilience against membership level attacks. The way it deals
with content pollution is by employing the list signing approach as a way to amortize the cost of digital signatures
and avoid the large overhead that comes with the signing of every individual message. Its broadcasting medium
is based on a pull approach, which is naturally resilient to some forms of abnormal behavior such as free-riding.
To combat some forms of malicious behavior such as the refusal to forward messages and abundant request of
messages by nodes, SecureStream employs an auditing mechanism that joins the efforts of a global auditor as
well as the cooperation of the nodes of the overlay in order to detect and punish malicious nodes.

SecureStream opts to model selfish behavior as Byzantine, however there are advantages to doing it sepa-
rately. The case can be made that it is more realistic to separate the two kinds of nodes, since Rational nodes will
follow the protocol to its extend if it’s the way they can get the maximum utility from the system while Byzantine
nodes might cause harm to the system even if they impact their own experience in the process.

These mechanisms allow SecureStream to handle up to 25% of non-colluding Byzantine nodes in the system.
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B Y C A S T

This chapter introduces Bycast, a Byzantine resilient peer-to-peer broadcasting algorithm that builds on Plumtree
and its hybrid gossip philosophy. First, an approach for a secure decentralized peer-sampling service is pre-
sented. After that, an approach using a semi-centralized coordinator, that is used by Bycast, is presented. Next,
the broadcasting algorithm is specified, including the modifications to Plumtree and the security mechanisms
used to prevent man-in-the-middle and content-poisoning attacks. The free-riding detection is presented after
that.

The security of a peer-to-peer broadcasting algorithm needs to be considered at two different levels. The
peer-sampling service, and the broadcasting algorithm itself. One of these being compromised is enough for an
attacker to impact the efficiency and reliability of the system.

4.1 M E M B E R S H I P

The importance of securing the peer-sampling service against attacks has two major justifications. First, access
control is fundamental for the security of a peer-to-peer system Gheorghe et al. (2010); Liu et al. (2008). If
the creation of new identities is feasible for an attacker, then the system will be vulnerable to Sybil attacks. An
attacker can simply create a number of identities that will allow them to get a bigger representation in the system,
making it easier for them to influence the system. Making the task of creating new identities more difficult is
the most effective way of handling these attacks. The other reason it is necessary to secure the peer-sampling
service is because if an attacker can control its view or even more importantly, the view of other nodes, it will be
easier for them to perform eclipse attacks, by partitioning one or more nodes from the rest of the overlay. It will
also facilitate collusion attacks, since malicious nodes will be able to unite their efforts in an attempt to disrupt
the system.

Considering these two aspects, as well as the requirements that the Plumtree algorithm imposes to the peer-
sampling-service, the following properties must be assured by our the sampling service:

• Random uniform views: The views generated by the peer-sampling-service should be as close to random
as possible. This will make it harder for an attacker to target a single node from the system since it would
not be able to choose its own neighbors, the odds of the victim being in the attacker’s view would be the
same as for any other node, which considering a big enough overlay, would be quite low.

36
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• Verifiable views: The views of a node should be verifiable by any other node in the system. If this is not
true, then it would be possible for a malicious node to tamper with its view and target the desired victim,
whether the victim really is on the attacker’s original view or not.

• Balanced size views: The views for each node should be the same size. The justification of why this
property is necessary is that it will allow for a more balanced work distribution between the nodes. If a
correct node had a substantially bigger view then another, the effort performed by this node would be
higher. This would not only mean an increase in the unfairness of the system but would also make it
harder to detect free-riders in the system, since it would be possible for a free-rider to be perceived as just
a correct node who happens to have a smaller view, and therefore dedicate less effort to the system.

• Stability: One of the requirements of the Plumtree protocol is that the views of the nodes are stable, due to
its structured nature. If the views of the nodes change often, for example by using a cyclic peer-sampling
service, then the broadcasting tree would be constantly repaired.

• Symmetric views: Another requirement of Plumtree is symmetry. Since the tree in the Plumtree algorithm
is undirected, that means that if A has node B in its view, then node B also needs to have node A in its
view as well.

4.1.1 Fully decentralized approach

The first approach at the creation of a peer-sampling service that would meet the list of requirements presented
above as an adaptation of the Brahms Bortnikov et al. (2009) peer-sampling service to fit the needs of the
Plumtree broadcasting algorithm. The original Brahms protocol guarantees already two of the requirements
above without need for modification.

• Random Uniform Samples: The clever use of the sample mechanism by Brahms guarantees that every
correct node that follows the protocol will have an approximately uniform sample of nodes in the system,
therefore guaranteeing resilience against eclipse attacks by malicious nodes.

• Stability: The sample of each node will converge into a uniform sample of the overlay, and changes to the
sample of a node will then only occur if a neighbor leaves the system.

However, Brahms fails to comply with the following requirements:

• Symmetric views: Since every node gets an independently generated random sample of the overlay, the
samples of each node are not symmetric.

• Verifiable views: Brahms does not provide a mechanism for the verification of the samples generated by
each node. This means that malicious nodes can tamper with their samples and add to them the victim
node, or for example another malicious node which he wishes to collude with.
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• Balanced size views: Every node in Brahms has the same number of nodes in its sample. However, since
samples are generated randomly, the number of times each node appears in the sample of all the other
nodes in the system will vary.

An adaptation of the Brahms protocol can be made for it to support symmetric views: Every time that a node
A adds a node B to its sample, then it sends a message to node B, so that it will add node A to its in-sample.
This way, both nodes are in each others’ views.

For verifiable views, it is also possible to add a mechanism to Brahms that would allow for contacted nodes
to check, to an extent, the authenticity of the sample of the node contacting it. Brahms specifies that each node
possesses a list of samplers, instantiated as different pseudo-random functions to choose the lower node id
generated by the function as the sampled id. One possible modification would be for a single well known pseudo-
random function to be used for the list of samplers, but each one using a seed that is standardized for all nodes
in the system. The reason for this change, is that in this way, a node receiving a message to add another node
to its in-sample can calculate the the result of the hash of its own node id, using the contacting node’s seeds, in
order to judge the credibility of the connection.

As more and more node identifiers go through the sample of a node, the hash value of the sampled node
identifier decreases (since the sampled id is the lowest hash value calculated so far). This means that considering
a big enough overlay, it is reasonable to expect that the value of the sampled node should be below a certain
threshold. The contacting node could compare the calculated hash with this threshold, and if it was below it, it
would accept adding this node to its in-sample. If the result of the hash is higher than the threshold, then the node
would not accept the connection. This mechanism excels at targeted attacks by malicious nodes. A malicious
attacker will only be able to add its target to its view if the resulting hash of the node was below the threshold,
which is not likely. This mechanism would also be efficient when it comes to preventing collusion attacks, however
the effectiveness decreases rapidly as the number of colluding nodes grows. This is because as the number of
attacker grows, the odds of at least two of them being able to generate a hash that is lower than the threshold is
higher.

The value of the threshold represents a trade-off between the success in preventing colluding attacks, and
the false positive rate. If the threshold is very low, then even correct nodes could have authentic samples that
are higher than the threshold, meaning the nodes will not accept their connections, however, the success rate of
targeted/collusion attacks is also very low since the odds of the targeted node generating a sample lower than
the threshold will be very small. In the opposite case, when the threshold is very high, the false positive rate is low
but the success rate for targeted/collusion attacks is higher since the odds of the target of an attacker generating
a lower value than the threshold are higher. Simulating the Brahms protocol in an overlay of 100 nodes, each
with a sample list of size 5, it is possible to see the change in the success rate for an attack and also the evolution
of the false-positive rate. When the threshold is 1, meaning that the first byte of the hash generated for a node id
has a value of equal or smaller than 1, (taking into account that the possibilities for the value of the first byte range
from 0 to 255), the success rate of an attack is around 3%, however the false-positive rate is extremely high, at
around 46%, as shown in Figure 12. This would mean that 46% of authentic connections would be perceived as
malicious by the contacted node. As the value of the threshold increases, the success rate of the attack grows
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as expected, reaching a percentage of around 30% when the threshold is 8. The false-positive rate decreases
to a value of around 4%.

Figure 12: Success rate of collusion between two nodes and false positive rate as a function of the threshold.

Other factors that influence the effectiveness of this mechanism are the number of nodes in the system and
also the degree of each node. As the number of nodes grows in the system, the odds of one of them generating
a hash value lower than the threshold increase, meaning that the false-positive rate will decline. However, the
odds of an attacker being successful in an attack will remain the same, since the threshold has not changed.
Assuming an overlay with a degree of 5 for each node, where the threshold is static, and set at 4, it is possible
to analyze the change in the success rate of attacks and false-positive rate while ranging the number of nodes
in the system. The success rate remains constant at about 15% despite changes in the number of nodes, while
the false-positive rate declines steadily from 38% in an overlay of 50 nodes to 2% when the number of nodes is
200, as shown in Figure 13.

Figure 13: Success rate of collusion between two nodes and false-positive rate as the number of nodes grows on
the overlay.
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It is also important to note that as the number of nodes in the system grows, it is not expected that the degree
of each node will remain the same. That would have consequences in terms of an increase in the latency for
the broadcasting algorithm. Therefore it is also important to analyze the effects of a change in the degree in
the verification mechanism. An increase in this degree will result in a higher number of samplers used by each
node, which will in turn mean that the odds of an attacker being successful in an attack will grow as the sample
also increases. This is because an attacker has more attempts when it comes to the possibility of the targeted
node generating a sample that is lower than the threshold. Considering the previous simulation, but this time
keeping the number of nodes static, at 100, and ranging the degree of a node between 2 and 10, the results are
inverted. This time, the false-positive rate remains at a constant value, and the success rate of attacks grows as
the degree increases, from 6% when the degree is 2, to around 23% when the degree is 8, as shown in Figure
14.

Figure 14: Success rate of collusion between two nodes and false positive rate as the degree of the overlay grows.

Considering both presented mechanisms that are used to modify Brahms into meeting the requirements for
Bycast, only one requirement remains unchecked, the need for views of the same size. Even though the sample
list is the same size for every node, since the samples are generated randomly, the in-samples will vary from
node to node. Some nodes will probabilistically be contacted more than others, meaning that the overall view
for each node will vary in size. For an overlay of 100 nodes, with a degree of 5, the ideal length for each node’s
view would be of about 10. The size of the out-sample would be fixed at 5 for every node, and the size of a
node’s in-sample would be of around 5 as well. However, after running preliminary tests, it was clear that there
is a substantial deviation from the average by most nodes. Even though the mean of the view size is indeed of
around 10, the standard deviation is very high, at around 2.3. This will increase the disparity in effort of each
node, which will have a big impact on the efficiency of the free-riding detection mechanism. Trying to balance the
views of each node would require increased complexity in the calculation of the views, as well their verification,
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and for this reason combined with the fact that the verification mechanism for the views presents a high false-
positive rate means that this peer-sampling service does not provide the guarantees necessary for the Bycast
algorithm, and therefore another approach must be taken.

4.1.2 Semi-centralized approach

The difficulty in the conception of a peer-sampling service that fits the requirements that were designated for By-
cast, comes from the inherent trade-off between the balance of the view’s size and symmetry and their random-
ness guarantees. It is not reasonable to seek a well defined structure that is created randomly, in a decentralized
way, and if rules and modifications are imposed in order to achieve this structure, then we relax the randomness
guarantees and open the possibility for malicious nodes to take advantage of the algorithm that generates the
overlay. However, the problem of generating random graphs with a fixed degree for each node in a centralized
way has been studied extensively, and a number of fast algorithms exist for this use. An algorithm for generating
random regular graphs is proposed in Kim and Vu (2003), with a time complexity of O(n ∗ d2). The idea is
to use this algorithm to generate the overlay that will be used by Bycast. Before broadcasting begins, a central
coordinator generates a random seed that will be used as the seed for the graph generating algorithm, and dis-
tributes it to the nodes that want to take part of the system, along with the full membership of the nodes that will
take part in it. Upon receiving this information, every node is able to run the algorithm for the view generation,
meaning that every node has at its disposal the information of the view of every node in the system. This is
the biggest advantage of this approach, since it will allow for nodes to verify incoming requests by other nodes,
as well as prevent Sybil/eclipse attacks. This approach therefore satisfies every requirement that the Bycast
algorithm needs from its membership service:

• Random uniform views: The graph generated using this algorithm is provably close to a uniform generator
when the degrees are relatively small, meaning that the odds of two nodes being in each other’s views
will be the same for every two nodes in the system. This property is fundamental to ensure that malicious
nodes cannot have an advantage when targeting or colluding with another node. Due to the deterministic
nature of the view generation, a malicious node will be powerless to influence it. If an attacker tries
to tamper with its view, for example by connecting to a victim node, the victim node can see that this
connection is illegitimate and use this attempt as a proof of misbehavior of the connecting node.

• Symmetric views: The random regular graph that is generated using the algorithm provides an undirected
graph, meaning that every edge in the graph is bidirectional, and for each two nodes in the system, if A is
in B’s view, then B is necessarily in A’s view as well. No distributed mechanism is necessary to ensure the
symmetry in the views, which is important to minimize performance issues, and could also be the target
of malicious nodes as well.

• Balanced views: One of the parameters of the algorithm is the desired degree that will be satisfied by
every node in the system, meaning that the views from every node will be the same size. This property
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will greatly improve the inherent fairness of the system, which in turn will make it easier to discern free-
riders from altruistic nodes.

• Stability: The views generated by this algorithm are static and will not change periodically, and therefore
mechanism is necessary to deal with nodes entering and leaving the system.

• Verifiable views: The seed that will be used to generate the overlay is broadcasted by the central authority
to every node in the system, and therefore, every node in the system is able to verify every other node’s
view.

J O I N I N G N O D E S If the membership was open and completely dynamic, and nodes could join while the
system was running, it would be necessary to recalculate the random regular graph, since it is not possible to
adapt it into including a new peer without sacrificing some of the guarantees mentioned before, like the balanced
view size and view verifiability. This limitation will be offset by employing a round mechanism that is used to
mitigate this issue and also to provide further fairness to the effort performed by the nodes. Periodically the
overlay is reconstructed by taking into account the nodes who left the system and also the new nodes who have
asked to join the system since the beginning of the previous round. This means that the maximum time a node
would have to wait to join the system would be the duration of one round, that is a parameter that could be
configured by the central coordinator in line with the system’s needs.

The process for a node joining the system starts with a node requesting a membership certificate from the cen-
tral coordinator. This central coordinator might have different policies when it comes to access control depending
on the application that is using the protocol and is out of scope of this work. After having its access granted by
the central coordinator (Algorithm 1, lines: 1 - 6), the node will then wait until the next round of broadcasting
begins.
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Algorithm 1 Bycast coordinator algorithm

1: upon event NodeJoining(id, PubKey) do
2: assert id /∈ BannedNodes
3: allowed← AccessControl(id, PubKey)
4: if allowed then
5: MembershipNextRound← MembershipNextRound ∪ {(id, PubKey)}
6: end if

7: upon event RoundStart() do
8: R← R + 1
9: Membership[R]← MembershipNextRound

10: Degree[R]← ChooseDegree()
11: MembershipNextRound← ∅
12: Seeds[R]← GenRandomSeed()
13: LeavingNotices[R]← ∅
14: Views← random_regular_graph(Membership[R], Degree, Seeds[R])
15: PUBLISH(Membership[R], Seeds[R], Degree[R])

16: procedure BANNODE(node)

17: BannedNodes← BannedNodes ∪ {node}
18: notice← GenerateSignedNotice(node, CurrentTime())
19: LeavingNotices[R]← LeavingNotices[R] ∪ {notice}
20: Views← REPAIRVIEWGRAPH(notice)

21: for each peer ∈ Views[node] do
22: SEND(NODE_LEFT, peer, notice)

23: end for
24: end procedure

25: upon event Receive(POM, node, proo f ) do
26: if Valid(proo f ) then
27: BANNODE(node)

28: end if

29: upon event LeavingNode(node) do
30: notice← GenerateSignedNotice(node, CurrentTime())
31: LeavingNotices[R]← LeavingNotices[R] ∪ {notice}
32: Views← REPAIRVIEWGRAPH(notice)

33: for each peer ∈ Views[node] do
34: SEND(NODE_LEFT, peer, notice)

35: end for
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1: upon event Receive(ACCUSATION, sender, accused_node) do
2: made_accusations[R][sender]← made_accusations[R][sender] + 1
3: received_accusations[R][accused_node]← received_accusations[R][accused_node] + 1
4: sender_made← 0
5: accused_received← 0
6: for r ← (R− rounds_considered) to R do // Previous rounds that are considered

7: sender_made← sender_made + made_accusations[r][sender]
8: accused_received← accused_received + received_accusations[r][accused_node]
9: end for

10: total_connections← Degree ∗ rounds_considered
11: if sender_made > total_connections ∗ threshold_made_accusations then
12: BANNODE(sender)

13: end if
14: if accused_received > total_connections ∗ threshold_received_accusations then
15: BANNODE(accused)

16: end if
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L E AV I N G N O D E S Another situation that needs to be considered is the possibility of nodes leaving the
system or failing in the middle of a round. Contrary to the entrance of nodes in the system, it is not feasible to
prevent nodes from leaving in the middle of a round. When this happens, the overlay needs to be repaired, so
that nodes that were in the neighborhood from the departed node can maintain their view size, and therefore not
be negatively impacted by the departure of their neighbor. However, the repair mechanism must still assure that
the repaired overlay is still verifiable by every node in the system. The mechanism works in the following way:
When a node leaves the system, gracefully or by crashing, the central authority issues a departure notice, signed
and with a timestamp (Algorithm 1, lines: 29 - 35). That notice is sent by the central coordinator to the departing
node’s immediate neighbors, in order to minimize the time that they have a smaller view size. That notice is then
gossiped throughout the overlay by those nodes, so that every node can be aware of that departure. When a
node receives a departure notice (Algorithm 2, lines: 29 - 37), they perform a repair operation to the overlay
graph that consists in removing the node that left the system, as well as all its edges, and then pseudo-randomly
creating links between the nodes that were left with a smaller view, therefore replenishing the degree of the
affected nodes. The repair operation is not commutative, and this means that in order to assure the consistency
of the views among all nodes, every node should apply the repair algorithm, provoked by different nodes leaving
the system, in the same order. Therefore departure notices issued by the central coordinator carry a timestamp.

If multiple nodes leave the system or fail at the same time, then it is very likely that the order of the departure
notices received by a node is not the correct one, and it is possible that it receives a notice with a timestamp that
is smaller than the one they already applied to the graph. For this reason, nodes should keep the information of
the latest changes to the overlay, including the departure notice, the edges that were removed from the overlay,
and the edges that were added by the pseudo-random repair algorithm. With this information, nodes can rollback
on the changes made to the graph and apply them in the correct order. Note that nodes only need to keep this
information regarding the changes that are more recent, when, probabilistically, there is still the chance of an
earlier departure notice arriving.

An optimization can also be made to this mechanism to lower the need for rolling back updates made to the
overlay graph. If a node is not immediately affected by an update, meaning that node who left is not an immediate
neighbor, they can restrain from updating the overlay graph until it is strictly necessary, for example in order to
verify a connection between two nodes. This lazy strategy will lower the chances of nodes needing to perform
rollbacks to the overlay, since they have more time to receive the updates.

Resiliency to Byzantine behavior

The biggest advantage of the semi-centralized approach is the resiliency to Sybil/eclipse attacks. Due to the
deterministic generation of the overlay, the reach of a node’s attack when it comes to membership is very limited,
and the only way an attacker could subvert the security properties of the overlay is by controlling a big percentage
of the overlay’s nodes. For an attacker to partition a single node from the rest of the overlay, every peer in that
node’s view needs to be controlled by him, which is very unlikely, unless the attacker holds control over a very
big portion of the overlay.
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Algorithm 2 Round management

1: upon event InitRound(R) do
2: SeedOverlay, Members, Degree← GetOverlayIn f o(R)
3: ViewGraph[R]← random_regular_graph(Members, Degree, SeedOverlay)
4: View← ViewGraph[R][mysel f ]
5: LazyPushPeers← ∅
6: EagerPushPeers← ∅
7: missing← ∅
8: receivedMsgs← ∅
9: Digests← ∅

10: LeavingNotices[R]← ∅
11: received_pocs← ∅
12: sent_pocs← ∅
13: contribution_neighbors← ∅
14: contribution_mysel f ← ∅
15: message_count[R]← 0

16: upon event EndRound() do
17: for each node ∈ contribution_neighbors do
18: poc← BuildPoc(node, contribution_neighbors[node])
19: SignedPoc← Sign(poc, PrivKey)
20: sent_pocs[R]← sent_pocs[R] ∪ SignedPoc
21: SEND(POC, node, myself, SignedPoc)

22: end for

23: upon event Receive(POC, sender, SignedPoc) do
24: received_pocs[R]← received_pocs[R] ∪ SignedPoc
25: assert VERIFY(SignedPoc, PubKeySender)

26: if Malicious(SignedPoc) then
27: SEND(ACCUSATION, myself, sender)

28: end if

29: upon event Receive(NODE_LEFT, notice) do
30: assert VERIFY(notice, CoordinatorPubKey)

31: if notice /∈ LeavingNotices[R] then
32: LeavingNotices[R]← LeavingNotices[R] ∪ notice
33: View← REPAIRVIEWGRAPH(notice)

34: for each p ∈ View do
35: SEND(NODE_LEFT, p, notice)

36: end for
37: end if
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4.2 B R O A D C A S T I N G A L G O R I T H M

The broadcasting algorithm used in Bycast (Algorithm 3) is inspired in Plumtree but with some modifications.
Multiple trees are used for the broadcasting of information, to balance the distribution of work among all nodes in
the overlay. In Plumtree a single tree is shared between all nodes, regardless of the number of sources of infor-
mation in the overlay. As previously mentioned, this creates unfairness when it comes to the effort of each peer
in the network, since leaf peers will not carry the burden of forwarding payload messages. Another shortcoming
of the single-tree approach is that the interior nodes can be overburdened since the effort of propagation of the
information in the overlay relies solely on them and is not evenly spread out among all nodes in the system. The
utilization of multiple trees provides a more balanced effort distribution between the nodes of the system, which
will be detrimental to the success of the free-rider detection mechanism employed. Multiple trees, one tree per
source of information, will also mean that due to the way the Plumtree algorithm constructs the trees, each one
of them will be optimized when it comes to latency, and the path between the source and each node is the fastest
route between both nodes in the overlay. This will improve the latency of the message received by the nodes,
which could be an important factor in latency-sensitive systems such as streaming peer-to-peer networks.

These improvements come with some costs. The first one is the necessity of each peer in the system having
a different set of Eager Push Peers and Lazy Push Peers for each tree being used. This means that the memory
utilization, contrary to the Plumtree algorithm, grows linearly as the size of the number of sources grows. How-
ever, the only information that is present in the set of Eager Push Peers and Lazy Push Peers is the id of the node,
which means that the overhead should remain small for even considerably big overlays, especially considering
the large amount of memory available even in small devices. The second disadvantage of this approach is the
overhead of the tree construction and repair process. While in Plumtree only one tree has to be constructed, in
Bycast this number is higher. In order to mitigate this overhead, the Plumtree algorithm was modified to include
a new kind of message BUILD, that will be broadcasted by the nodes in the beginning of the round and will be
used to construct the broadcasting trees. These BUILD messages do not carry a payload and therefore will
result in the reduction of the overall bandwidth overhead provoked by the construction of the trees. This means
that even though the number of messages will grow substantially, the bandwidth used by the algorithm will only
grow a small amount. However, while in Plumtree when a node crashes or leaves it is only necessary to fix one
broadcasting tree, in this case it will be necessary to fix all the broadcasting trees. This situation should not be
problematic either, as the fixing algorithm relies on GRAFT and PRUNE messages that are very light due to not
carrying a payload.
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Algorithm 3 Dissemination algorithm

1: procedure EAGERPUSH(m, mID, hop, sender, treeID)

2: for each p ∈ EagerPushPeers[treeID] : p 6= sender, p 6= treeID do
3: SEND(GOSSIP, p, m, mID, hop, mysel f , treeID)

4: contribution_mysel f [sender]← contribution_mysel f [sender] + 1
5: end for
6: end procedure

7: procedure LAZYPUSH(m, mID, hop, sender, treeID)

8: for each p ∈ LazyPushPeers[treeID] : p 6= sender, p 6= treeID do
9: SEND(IHAVE, p, mID, hop, mysel f , treeID)

10: end for
11: end procedure

12: upon event Broadcast(m0, m1, ..., mn) do
13: D ← ∅
14: for k← 0 to n do
15: mIDk ← RandomID()

16: mHASHk ← hash(mk)

17: D ← D ∪ (mIDk, mHASHk)

18: end for
19: SignedDigest← Sign(D, PrivKey)
20: for each p ∈ V iew do
21: SEND(DIGEST, p, SignedDigest, mysel f )

22: end for
23: for k← 0 to n do
24: EAGERPUSH(mn, mIDn, 0, mysel f , mysel f )

25: LAZYPUSH(mn, mIDn, 0, mysel f , mysel f )

26: Deliver(m)

27: receivedMsgs← receivedMsgs ∪ {mIDn}
28: end for

29: upon event Receive(DIGEST, SignedDigest, sender, t) do
30: if Veri f y(SignedDigest, PubKey_t) then
31: for each d in SignedDigest do
32: Digests← Digests ∪ d
33: end for
34: end if
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1: upon event Receive(GOSSIP, m, mID, hop, sender, t) do
2: assert sender ∈ View
3: assert VERIFY(Digests, mID, m)

4: if t /∈ EagerPushPeers then
5: EagerPushPeers[t]← View
6: LazyPushPeers[t]← ∅
7: contribution_neighbors[sender]← 0
8: end if
9: if mID /∈ receivedMsgs then

10: Deliver(m)

11: contribution_neighbors[sender]← contribution_neighbor[sender] + 1
12: message_count[R]← message_count[R] + 1
13: receivedMsgs← receivedMsgs ∪ {mID}
14: if ∃ (id, node, r, t) ∈ missing : id = mID then
15: cancel Timer(mID)

16: EAGERPUSH(m, mID, hop + 1, myself, t)
17: LAZYPUSH(m, mID, hop + 1, myself, t)
18: EagerPushPeers[t]← EagerPushPeers[t] ∪ {sender}
19: LazyPushPeers[t]← LazyPushPeers[t]\{sender}
20: else
21: EagerPushPeers[t]← EagerPushPeers[t]\{sender}
22: LazyPushPeers[t]← LazyPushPeers[t] ∪ {sender}
23: SEND(PRUNE, sender, myself, t)
24: end if
25: end if

26: upon event Receive(PRUNE, sender, sender, t) do
27: EagerPushPeers[t]← EagerPushPeers[t]\{sender}
28: LazyPushPeers[t]← LazyPushPeers[t] ∪ {sender}

29: upon event Receive(IHAVE, mID, hop, sender, t) do
30: if mID /∈ receivedMsgs then
31: if 6 ∃ Timer(id) : id = mID then
32: setup Timer(mID, timeout1)

33: end if
34: missing← missing ∪ {(mID, sender, hop, t)}
35: end if
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1: upon event Timer(mID) do
2: setup Timer(mID, timeout2)

3: (mID, node, hop, t)← removeFirstAnnouncement(missing, mID)

4: EagerPushPeers[t]← EagerPushPeers[t] ∪ {sender}
5: LazyPushPeers[t]← LazyPushPeers[t]\{sender}
6: SEND(GRAFT, node, mID, hop, myself, t)

7: upon event Receive(GRAFT, mID, hop, sender, t) do
8: EagerPushPeers[t]← EagerPushPeers[t] ∪ {sender}
9: LazyPushPeers[t]← LazyPushPeers[t]\{sender}

10: if mID ∈ receivedMsgs then
11: SEND(GOSSIP, sender, m, mID, hop, myself, t)
12: end if
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4.2.1 Content-poisoning prevention

Plumtree is vulnerable to content-poisoning attacks. A malicious node could forward a modified payload and
the receiving node would have no way of distinguishing it from a genuine payload. A mechanism should be
employed so that every node is able to minimize the probability of delivering a faulty update. The mechanism
that is employed by Bycast to mitigate this risk is the list signing mechanism that was presented in the previous
chapter. The node broadcasting information computes the hash of a sequence of updates and stores them in
a digest packet which will be signed (Algorithm 3, line 19). This information is then broadcasted to all peers,
and they will verify it using the source’s public key (Algorithm 3, line 3), indirectly providing authentication for the
messages which were considered in the digest. While in traditional gossip algorithms, there would be a high
risk that a node could receive a message before receiving the digest that will authenticate it, meaning that the
node would only be able to deliver it when it finally received that digest, in Bycast that situation will be far less
frequent since the same broadcasting tree is used by all the messages from the same source, meaning that the
path they will follow will be the same in normal circumstances. The costs in terms of overhead are one signature
generation by the number of packets contained in the digest at the source node and one signature verification per
number of packets at the receiving node. This method also forces the source to buffer those packets at its side
before it is able to create the digest that will authenticate them, but if messages are delivered in order through
the broadcasting tree, it will cause no need to buffer messages at the destination.

4.2.2 Man-in-the-middle attacks prevention

If man-in–the-middle attacks are not prevented in Bycast, then the strong security properties that are provided
by membership service are compromised. This happens because malicious nodes might be able to target their
victims if they are able to spoof their neighbor’s identities. Therefore some form of authentication is necessary
between peers, to ensure that they are not being attacked by a malicious node.

The first and more obvious approach that could be taken in order to provide this necessary security property
is to have every node sign every message it sends with its private key. Considering that the private key is only
known by its corresponding node, this would allow for every destination node to verify the origin of the message,
making it infeasible for an attacker to spoof another node’s identity. The disadvantage of this approach is the
immense overhead that would be provoked by having to sign and verify each message that is communicated by
two peers, rendering it infeasible to be used.

The approach used by Bycast, and that minimizes the overhead caused to the system resembles the approach
used by the TLS protocol Dierks and Rescorla (2008), consisting of an handshake that is used to authenticate
both parties and to derive a symmetric key, that will be used for the encryption of all application data exchanged
between the two nodes for the remainder of their connection. This allows each node to have confidence it
communicating with the right entity and not an attacker that is impersonating that entity. Using this approach,
however, means that non-repudiation will not be guaranteed for GOSSIP messages. This means that even
though nodes would be able to detect content-poisoning attacks, for example, they would not be able to prove
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that the attacker has performed them, since both nodes have access to the key that signs and verifies the
messages exchanged between them.

4.3 F R E E R I D E R D E T E C T I O N

In order to make sure that all the nodes in the overlay contribute with the propagation of messages, Bycast
employs an auditing mechanism that will detect and punish nodes that do not contribute to the system (Algorithm
4).

At the end of each round, each node creates a POC (proof of contribution) (Algorithm 2, lines: 18, 21), which
identifies itself, the number of messages that the neighbor sent him, and the id of the neighbor. This POC is
signed by the node to ensure the authenticity and non-repudiation of the POC. The node repeats this process
for every neighbor, and also receives its corresponding POCs from his own neighbors (Algorithm 2, lines: 23 -
28). The POCs received from neighbors during the last x rounds will be used by the node to prove that it has
been contributing to the system when a node requests this evidence (Algorithm 4, lines: 3 - 4). This proof is
necessary due to the fact that a node working less in a determined round does not necessarily mean that it is
a free-rider. Even with the single tree per broadcaster mechanism, there is still a possibility that a correct node
works significantly less than what would be the average in a round, therefore this mechanism is used to take into
account not only the work that a node has done in the current round but all the work that the node has done in
the last x rounds.

The way that nodes verify if a neighbor is a free-rider or not is by taking into account the POCs issued to
him during the last x rounds and analyzing that information (Algorithm 4, lines: 5 - 23. If the overall average
of messages sent per round is less than a configurable threshold (global to the system), then that is a proof of
misbehavior and will be used to prove that the node is a free-rider. The more rounds of the past are considered,
the more balanced this average will be to all altruistic nodes, therefore lowering the percentage of false-positives
(altruistic nodes being identified as free-riders). However, taking into account a higher number of rounds will
result in a higher overhead caused by the mechanism in terms of memory and bandwidth utilization, as well
as computations necessary (to verify the signatures for each POC). Therefore, the number of rounds that are
considered in the mechanism is a trade-off between performance and accuracy of the mechanism. Since this
proof will only be necessary when a node is suspicious of its neighbor, for example, due to the fact that it is
sending a lot more messages to it than it is receiving, this means that if the nodes behave in an altruistic way, the
free-rider mechanism will not activate and the overhead caused by it will be only the issuance of the POCs at the
end of the round.

The criteria to ask for suspicion from a neighbor is an important aspect to the system to tune, since it repre-
sents another trade-off between overhead and accuracy in detecting free-riders. If this policy is very relaxed, a
lot of free-riders will not be detected, since their neighbors will not ask for their history as often. However, if the
threshold is very high, the accuracy of the detection system will increase, but the amount of times that nodes ask
for proof of an altruistic node will also increase. This does not mean the increase of the false-positive rate since
these verifications will result in the exoneration of the altruistic nodes.
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Algorithm 4 Freerider detection

1: upon event Suspicion(neighbor) do
2: SEND(REQUEST_HISTORY, neighbor)

3: upon event Receive(REQUEST_HISTORY, sender do
4: SEND(RESPONSE_HISTORY, sender, myself, received_pocs, sent_pocs)

5: upon event Receive(RESPONSE_HISTORY, sender, received_pocs, sent_pocs) do
6: for each poc ∈ received_pocs ∪ sent_pocs do
7: VERIFYPOC(poc) // Verifies signature

8: VERIFYVIEW(poc, ViewGraph[poc.round], LeavingNotices[poc.round]) // Verifies if

nodes were neighbors in that round

9: end for
10: total_message_count← 0
11: total_contribution← 0
12: for r ← (R− rounds_considered) to R do // Previous rounds that are considered

13: if Sum(sent_pocs[r]) 6= message_count[r] then // number of messages exchanged in that

round

14: SEND(POM, coordinator, sender, sent_pocs[r])
15: end if
16: for each poc ∈ received_pocs[r] do
17: total_contribution← total_contribution + poc.value
18: end for
19: total_message_count← total_message_count + message_count[r]
20: end for
21: if total_contributions < total_message_count ∗ e f f ort_threshold then
22: SEND(POM, coordinator, sender, received_pocs)

23: end if
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4.3.1 Attacks to the free-rider detection mechanism

The free-riding detection mechanism is not free from attacks from malicious nodes and therefore it is necessary
that the free-riding detection mechanism is itself resilient against misbehavior from nodes in the system. One
way that malicious nodes can potentially attack the free-riding detection system is by issuing false POCs to their
neighbors, with either higher or lower values than the real contribution from the neighbor. A malicious node can
do this with the objective of interfering with other nodes, in order to harm their experience, and lead them to be
classified as free-riders. These attacks can be done in a directed or undirected way, targeting one specific node
or random nodes in general. If a node wishes to attack another specific node in the system, their impact will
be mitigated by the inherent resiliency of the membership service. Due to the deterministic and verifiable way
views are generated every round, a malicious node cannot force another peer to be in its view unless it naturally
happens by chance. Also, because of the fact the observed contribution of a neighbor is the average of the last
x rounds, the impact of a malicious POC sent by the malicious node to the neighbor will be reduced.

In order to deal with malicious nodes issuing illegitimate POCs, an accusation mechanism was put into place.
When a node receives a POC with the incorrect value, it issues an accusation to that node, and sends it to
the centralized coordinator (Algorithm 2, line: 27). If the percentage of accusations that a node receives over
a period or rounds is higher than a determined threshold, he will be evicted from the system (Algorithm 1, line:
15). This threshold is not constant and will change from system to system. Registering received accusations by
itself would open this mechanism up to malicious attacks. A malicious node could simply issue an accusation for
every neighbor on every round, and this would lead to a significant increase in the eviction of correct nodes from
the system. For this reason the central coordinator also registers the issuer of the accusation, and maintains the
number of accusations that has been performed by them during the last rounds considered. If the number of
accusations performed by a node goes over a certain threshold, the node will also be evicted from the system
(Algorithm 1, line: 12).

Bycast employs a clever verification of a node’s issued POCs to partially mitigate the effect of attacks to the
free-rider detection mechanism. This verification is based on the observation that the overall number of received
payload messages should be the same, or close, for every node. This means that the sum of the values of
the issued POCs by a node after a round should be equal to the number of messages that were broadcasted
during that round. This property will allow for Bycast to deal with rational collusion between nodes. Imagine
that two colluding rational nodes happen to be in each other’s views during a certain round. One attack that
would allow them to save resources during that round would be issuing a POC with a high value to each other,
without actually having sent the corresponding number of messages to the other. They would be capable of not
contributing to any other neighbors without being detected by the free-riding detection mechanism because the
POC they received from each other would indicate that the two nodes indeed contributed with a high number
of messages during that round. By doing this verification, we are removing the incentive for rational nodes to
collude amongst themselves. If rational node A sends an illegitimate POC to node B, for example saying that
node B has contributed with n messages during that round, then node A will not have enough POC budget to
send the right POCs to the neighbors that actually sent messages to node A. If node sends the right value in the
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POC to these nodes then this verification will fail since the total sum of the issued POCs during that round will go
over the correct number and the node will be evicted from the system. If instead node A tries to lie in the POC to
the neighbors that actually sent messages, then those nodes will issue accusations, and that node will also be
evicted from the system.

The only way for a node to be able to issue a spoofed POC to another rational node without being detected
is by receiving less messages from correct nodes, in order to issue to them the right value in their POCs and
use the remaining budget to the POC issued to the other rational node. However, this behavior goes against
the supposition of a rational node’s intention, that is achieving the best quality of service possible while saving
as much as possible on resource utilization. Therefore we consider that Bycast actively discourages nodes from
colluding with each other in order to save resources on the system.

4.4 D I S C U S S I O N

While traditional peer-sampling services rely on partial views to allow for a better scalability of the protocol,
there are a number of benefits that come from using full memberships when it comes to security. It is not
clear for example how to provide the verifiability property of the views with a distributed algorithm without a full
membership service, specially for broadcast algorithms that rely on Eager Push strategies such as the Plumtree
algorithm. While in Lazy Pull strategies each node has more control over where it gets messages from, in Eager
Push based strategies nodes do not choose who they get the updates from, making it harder to combat Byzantine
behavior. The utilization of full memberships does however come at a cost that must be considered. The biggest
disadvantage is the high utilization of memory. Memory requirements per member will grow linearly in the number
of members. However, this is not necessarily a problem, specially for medium sized stable networks, of up to a
few thousand nodes.

The utilization of a central coordinator does constitute a single point of failure, and could potentially make it
more vulnerable to denial-of-service attacks than completely decentralized alternatives, and additional measures
should be employed to protect the coordinator against targeted attacks, but we consider that protecting this
central authority is out of the scope of this work.

Even though Bycast uses a centralized coordinator when it comes to the maintenance of the views and free-
rider detection mechanism, the effort was made to structure its responsibilities in a way that would not undermine
the scalability of the protocol. The central coordinator is responsible for two major tasks. The first one is the
maintenance of the membership information for each round. This involves the issuance of certificates for the
node that wishes to join the network on the next round, as well as the issuance of departure notices for the nodes
that leave the system. Before a broadcasting round starts, the central coordinator will close the membership for
that round, generate a seed that will be used to generate the overlay and publish this information. The duration
of the rounds constitutes a trade-off between the attractiveness of the service and the overhead caused by the
reshuffling of the overlay. If the rounds have a very big duration, nodes that are waiting to join the system in
the next round might lose their interest, and the system will lose its appeal, but the reshuffling of the overlay will
happen less quickly, meaning that its computation efforts will be amortized by through the bigger round. If in turn
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the broadcasting rounds are too short, the likelihood of joining nodes losing interest is lower, but the reshuffling
of the overlay will happen more often, meaning a higher computation effort.

The second major task of the coordinator is the collection of accusations generated by the nodes during the
broadcasting rounds. This task is very lightweight, since the only verification that the central authority needs to
do is to check if the corresponding nodes are above the accepted threshold when it comes to the made and
received accusations, and issue and eviction notice if a node is breaking it.



5

E V A L U AT I O N

The evaluation process of Bycast has two major goals. The first is to test the resilience of the algorithm against
Byzantine and rational behavior. A variety of tests were created to measure to what extent Byzantine nodes
can compromise the experience of correct nodes and get them evicted from the system, as well as to test the
efficiency of the employed security mechanisms when it comes to the detection of selfish nodes who do not
contribute with their resources. The second major goal of this evaluation process is to evaluate the performance
of Bycast when compared with the original Plumtree algorithm, taking into account the latency of message
delivery and the total number of messages exchanged.

5.1 T E S T B E D

A simulator was implemented using the Python programming language, using an round-based strategy, to eval-
uate Bycast. The simulator works as follows: Every node in the overlay has an inbox and an outbox, and every
iteration, the simulator processes every message in a node’s inbox, and deposits every message that it wishes to
send in its outbox. At the end of the round, those messages are delivered to the corresponding destinations. The
simulator allows for the configuration of a number of general parameters that will be used to model the system.
These parameters include:

• N: The total number of nodes that will be part of the broadcasting.

• BYZANTINE_N: The total number of nodes that will follow Byzantine behavior.

• RATIONAL_N: The total number of nodes that will follow rational behavior.

• D: The size of the views that each node should have.

• ITER: The number of iterations that the simulation should have, being that each iteration is defined as a
simulation of one hop for every message traveling in the overlay.

• ROUND_SIZE: The size of each round in terms of iterations. Meaning the period in iterations before the
overlay is reshuffled and the views of the nodes are recomputed.

• BROADCASTING_PLAN: The description of the iterations that each node will broadcast a message.

57
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A total of three different types of nodes were modeled: Byzantine, rational and altruistic nodes. Byzantine
nodes wish to disrupt the experience of one or more nodes, and are able to do this in two different ways: By
lying in the POC (proof of contribution) that is delivered to its neighbors at the end of a round, or by generating
false accusations directed at neighbors. Byzantine behavior is modeled in the simulator using two different
parameters. The first is the byzantine_coefficient, which varies between 0 and 1, and specifies the ratio of
neighbors that malicious nodes will attack, by generating false POCs. The second relevant simulation parameter
is the false_accusation_rate which is also a value between 0 and 1, and specifies the percentage of times
that a node will send an accusation to a neighbor, with the objective of getting them evicted. The decision
on which neighbors Byzantine nodes will attack is performed randomly or in a pre-defined way depending on a
configuration parameter, as to enable the testing of a large-scale sybil or collusion attack directed at a single node.
The security mechanism that is used to detect malicious nodes also has two parameters that are considered in
the simulation. These parameters are the threshold_made_accusations which are the max ratio of accusations
(ratio between number of made accusations over the number of neighbors that the peer interacted with over the
last x rounds) that a node can perform before being labeled as a malicious node and expelled from the system,
and threshold_received_accusations which is the maximum ratio of accusations that a node can receive before
being labeled as a malicious node and also expelled from the system.

Rational behavior is simulated by using the parameter rational_coefficient, and specifies the effort that each
node will perform when it comes to the forwarding of messages. For example, if the rational_coefficient is set
as 0.5, then selfish nodes will take part in the forwarding of messages for exactly half of the broadcasting trees,
and will refuse to collaborate for the other half of the broadcasting trees. The way the node chooses in which
broadcasting trees it will participate in the forwarding of messages is uniformly at random. The parameters that
are used to configure the free-riding detection mechanism are the following: suspicion_threshold specifies the
minimum contribution of a node before it triggers a suspicion. If a node contributes to a neighbor less than
this parameter during a round, he will request the history of the node so that it can verify that the node is
not free-riding. The second parameter is the freerider_threshold, which specifies the minimum effort (in terms
contribution over what would be expected) that a node can do before being flagged as a free-rider and expelled
from the system. Finally, the parameter rounds_freerider_detector specifies the number of previous rounds that
will be used in order to verify the effort of a node.

The random regular graphs that will be used as the overlay for every round are generated with the networkx
Hagberg et al. (2008) library. It allows for the generation of random regular graphs by specifying the degree of
each node and the total number of nodes in the graph. It further allows for the utilization of a provided seed which
is necessary in order to create the graph in a deterministic and verifiable way.

A network of 100 nodes with a degree of 5 was used for all the tests, except when otherwise specified.
The choice of a smaller overlay size was made to allow performing the testing scenarios with higher range of
configurations, such as the percentage of malicious/rational nodes, as well as to repeat the tests a higher number
of times, in order to have more confidence in the results. Each result represents the average of 10 simulation runs.
For the Byzantine resiliency tests, a false accusation rate of 0.5 was used, the threshold for made accusations



5.2. Results 59

was set at 0.4 and the threshold for received accusations was set at 0.5. The threshold for the minimum effort of
a node was set at 0.5, meaning nodes have to contribute with at least 50% of the messages they receive.

5.2 R E S U LT S

5.2.1 Resiliency to Byzantine behavior

We start by studying the resiliency of the Bycast protocol in the presence of malicious attacks.

Figure 15: Percentage of correct nodes evicted from the system as the percentage of malicious nodes in the
overlay grows - Illegitimate POCs.

Figure 15 depicts the percentage of correct nodes that were wrongfully evicted from the system as the result
of illegimitate POCs that were issued by Byzantine nodes. In this case, each malicious node picks, every round,
two random neighbors. It will send a POC with the value of 0 to one of them, and the sum of the expected values
for both to the other. This strategy will allow for the malicious node to still have the expected overall sum of the
issued POCs, meaning this situation will not result in the immediate eviction of the malicious node. Also, since
the threshold for received accusations was set at 0.5, and the node will only receive accusations from these two
neighbors out of 5 total, their rate of received accusations is below the threshold, meaning that this strategy is
able to avoid detection and eviction of the malicious node. Even as the percentage of Byzantine nodes in the
overlay grows, it is possible to see that the reach of the malicious behavior is limited, with less than 1% false-
positive rate with up to 60% of malicious nodes in the system. The reason for the low efficiency of the attack is
firstly justified by the utilization of multiple rounds in the free-rider detector mechanism. This means that even if
a node happens to be neighbors with multiple malicious nodes in a round, and receive a POC with the value 0
from each of them, this situation will be amortized by the other rounds that are also considered, minimizing the
impact from the current one. Another important factor that needs to be taken into consideration is that in this
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scenario malicious nodes are not colluding among themselves, and therefore the probability of a correct node
being targeted by many malicious nodes in the same round is decreased, contributing to the low rate of eviction
of correct nodes, even when the percentage of malicious nodes in the system is high.

Figure 16: Percentage of correct nodes evicted from the system as the percentage of colluding malicious nodes
in the overlay grows - Illegitimate POCs.

The next scenario that was tested, illustrated in Figure 16, was the possibility of an attacker controlling a
number of different peers, and having the possibility to join their efforts in order to cause harm in the overlay. In
this case, the attacker targets a single node, by sending it false POCs, with the value of 0, in order to make that
victim node be considered a free-rider and therefore be evicted from the overlay. When the attacker held less of
25% of the overlay under their influence, they were unable to successfully evict a correct node. This is due to the
fact that the nodes under his control were not in the view of the victim node enough times throughout the rounds
in order to be able to send the false POCs and bring the average reported effort of the node below the free-rider
threshold of 0.5.

As the attacker influences a higher portion of the overlay, however, the ratio of times that the attacker was
successful also grew, due to the fact that the number of times that one of the malicious nodes was in the view
of the attacker increased. When the attacker controlled 40% of the overlay, they were able to make a targeted
correct node be evicted 15% of the times, and this probability grew to 95% of the times, as the attacker held 60%
of the nodes under his influence.
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Figure 17: Percentage of correct nodes evicted from the system as the percentage of malicious nodes in the
overlay grows - Illegitimate accusations.

When we consider the second scenario of Byzantine behavior, the generation of false accusations by malicious
nodes, we can observe in Figure 17 that, just like it happened in the first attack, the eviction of correct nodes is
negligible even when 40% of the overlay nodes are performing the attack. The reason for the low impact of this
type of behavior is in part explained by the randomness of the overlay. Due to the utilization of random regular
graphs, the effects of this malicious behavior will be amortized by all nodes equally, therefore reducing the effect
on each one individually. Also, since the centralized authority also registers the node which made the accusation,
if malicious nodes excessively try to harm other nodes, by increasing the amount of accusations they send to
their neighbors, that will result in their eviction from the system. If in turn the malicious nodes reduce their false
accusation rate, the negative impact on the system will be even smaller.

Figure 18: Percentage of correct nodes evicted from the system as the percentage of colluding malicious nodes
in the overlay grows - Illegitimate accusations.
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When the malicious nodes collude with each other to find a specific victim, however, the efficiency of the attack,
just like it happened in the first scenario, increases. We can observe in Figure 18 that when 25% of the nodes in
the overlay were malicious and colluded with each other, they were successful in their attack to the victim node
only 2% of the time. In turn, when 30% of the nodes were malicious colluders, that percentage rose to 8,5%. The
probability of the success grows fast as the percentage of malicious colluders increases, and this is due to the
fact that the chance of the victim node having malicious nodes in its view grows, which will mean it will receive
more accusations.

The rise of efficiency when nodes collude among themselves is because the false accusations are more
spread out through correct nodes when the malicious nodes are not colluding, since even if two malicious peers
are in the neighborhood of a correct victim, they might not both choose to attack it, however if the malicious
nodes are colluding, every time a victim has a malicious node in its view, it will receive an accusation from that
node.

5.2.2 Resiliency against rational nodes

Figure 19: Resiliency of Bycast (average of the percentage of total messages received) as the percentage of
free-riders in the system grows.

Figure 19 shows the reliability of the algorithm, as the average percentage of the total messages that each node
received, for Bycast. For up to 35% of the entire overlay acting in a rational way, the reliability is close to 100%.
The reason why this happens is due to the fact that for the reliability to decrease it is necessary that the graph
that includes the nodes that are willing to forward messages for a certain broadcasting tree is not connected,
meaning that there will be at least one node that is surrounded in its view by neighbors who refuse to forward him
messages for that broadcasting tree. For low enough percentages of rational nodes in the system this situation
is extremely unlikely. As the percentage of rational nodes increases, however, the probability of this situation
happening increases rapidly, meaning that the overall average reliability will also decrease substantially.
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Figure 20: Observed probability of detection of a free-rider as the threshold_coefficient varies.

In order to try to avoid suspicion, rational nodes can adjust their effort, by for example selecting a percentage
of the existing broadcasting trees which they will participate in the forwarding of information. The more a rational
node tries to reduce the forwarding of information, the easier it will be for them to be detected. In our simulations,
as shown in Figure 21, a node that made 20% of the effort of what would be expected from a correct node was
detected 100% of the time, this probability lowered to around 91% when the node worked 40% from what was
expected, and 20% when he contributed with 50% of what was expected. In our simulations, any node that made
an effort of 60% or more of what would be expected would be able to be undetected. One argument that can be
made is that even a probability of detection of 20% could be enough to deter a rational node from behaving in a
selfish way, due to the fear of being evicted, so it is reasonable to assume that the free-rider detection mechanism
is successful, for this configuration parameters, at convincing rational nodes to contribute with at least 50% of
what would be expected from a correct node.

Figure 21: Variation in average latency during a broadcasting round, when 50% of the nodes stop forwarding
messages at the middle of the round.



5.2. Results 64

Figure 21 shows the variation in latency during a broadcasting round (in hops from the source). At the middle
of the round, half the nodes, selected at random, start free-riding and therefore stop forwarding messages. It is
possible to see that even in a scenario where a huge restructuring of the broadcasting trees is caused, when
half of the peers stop forwarding messages, the latency has a spike of about 4 hops, during a few rounds, and
soon stabilizes again, this time to a slightly higher value of about 3.5 hops. The reason that the average latency
is slightly higher than before the nodes start free-riding, is because the fact that half the nodes stop forwarding
messages will cause the broadcasting trees to decrease in degree and increase in depth.

Figure 22: Variation in the number of messages exchanged during a broadcasting round, when 50% of the nodes
stop forwarding messages at the middle of the round.

Figure 22 shows the same scenario as above, but this time measuring the number of messages exchanged
during the round. At the beginning of the round there is a spike in the number of messages exchanged, and this
is due to the process of the construction of the broadcasting trees. As the tree construction process finishes,
the total number of messages stabilizes. During this time, the vast majority of messages exchanged are IHAVE
messages, since the messages which carry the payload (GOSSIP) messages are only flowing through the
broadcasting trees. Due to the stability in the network, during this time there are not any PRUNE or GRAFT
messages being exchanged. When half the nodes suddenly stop forwarding messages and therefore cease
participating in the broadcasting, the tree repair portion of the broadcasting algorithm is triggered, which justified
the increase in both GRAFT and PRUNE messages. After the tree repair process, it is possible to observe that
the number of GOSSIP messages remained the same as before the disruption however the number of IHAVE
messages decreased. This is due to the fact that the trees will be modified in a way that will still reach every
node (unless the node is partitioned from the overlay). The decrease of IHAVE messages is due to the lower
volume of links that are being used to forward messages.
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5.2.3 Performance of Bycast

Nodes Degree Plumtree average latency Bycast average latency

100 5 8.00 3.02

1000 10 14.33 3.28

5000 15 20.03 3.48

Table 2: Latency as hops from the source comparison between Bycast and Plumtree.

One of the advantages of the multi-tree approach is that every broadcasting tree is optimized for its source, and
that will provide vast improvements in latency over one shared tree among all broadcasters. As shown in Table
2, in an overlay of 100 nodes, with the degree of 5, the average latency for a receival of a message was of 8
hops in Plumtree, however it was only of 3,02 in Bycast. As the overlay and degree grows, the observed benefits
also increase. With an overlay of 1000 nodes with a degree of 10, the Plumtree average latency was of 14 hops,
while the Bycast latency was of only 3,28, almost 4 times smaller. For an overlay of 5000 nodes, with a degree
of 15, the Plumtree latency was of 20 hops while the Bycast latency was of 3,48 hops. Depending on the context
that the broadcasting algorithm is used, for example in video streaming, this gain in latency could translate into a
much better experience for the end user.

Message type Plumtree Bycast

Prune 302 30200

Build - 30200

Gossip 2000302 2000000

Ihave 6039698 6009800

Total 8040302 8070200

Table 3: Total number of messages exchanged in a broadcasting round.

When it comes to the volume of messages that are exchanged in the overlay, Bycast presents a slight overhead
since it utilizes different broadcasting trees for each broadcaster, as depicted in Table 3. When a round starts,
in Plumtree, only one tree needs to be built, by using the Prune messages to move the links that will not be
part of the tree into Lazy Push mode. As Bycast uses one tree per broadcaster, this construction penalty will
happen for each one of the trees, justifying the increase in PRUNE messages on the Bycast side. However, while
Plumtree uses Gossip messages that will trigger the Prune messages and construction of the tree, in a flooding
strategy, in Bycast the first message that is broadcasted by each node is a “Build” message that does not contain
a payload. Therefore the total cost in terms of message count for the construction of the tree in Plumtree was
302 Gossip messages and 302 Prune messages, in Bycast the cost was of 30200 Prune messages and 30200
Build messages. While the difference is considerable, the fact that Bycast used messages without payload in
the tree construction process will mean that the bandwidth utilization of Bycast will be efficient. Apart from the
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tree construction process, the number of messages for Plumtree and Bycast are identical, which means that the
difference in terms of message count between Plumtree and Bycast will be smaller in percentage if the rounds
are bigger. In this case, considering a round in which each node broadcasted 200 messages, the total overhead
in terms of message count for Bycast was of only 0,3% when compared with Plumtree.

Figure 23: Variation in average latency during a broadcasting round, when 50% of the nodes leave the system at
the same time.

Figure 24: Variation in the number of messages exchanged during a broadcasting round, when 50% of the nodes
leave the system at the same time.

Figure 23 shows the number of messages exchanged throughout a round in a scenario where 50% of the
overlay nodes leave the system in the middle of a broadcasting round. It is possible to see a spike in the latency,
from around 3.1 hops to 4.0 hops. Due to the repair algorithm for the overlay, and also the repair algorithm for
broadcasting trees, this increase in latency is temporary and decreases back to normal after the overlays are
reconfigured and the trees are repaired. When it comes to the number of exchanged messages, shown in Figure
24, it is possible to see that when the nodes leave the system, a considerable amount of GRAFT and PRUNE
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messages are triggered in order to fix the broadcasting trees. This situation explains the instability of the number
of GOSSIP and IHAVE messages. After the overlay and broadcasting trees are repaired, the number of PRUNE
and GRAFT messages go back to zero. The reason why the overall number of messages exchanged after this
event is significantly lower is purely due to the lower number of nodes in the system.

Nodes Degree Time (in milliseconds)

100 5 0.0218

500 8 0.3411

1000 10 0.948

Table 4: Random regular graph algorithm measured time.

Nodes need to get the information from the views of every node in the system, for the current round, but also
the number of previous rounds that are considered by the free-rider detection mechanism, to provide verifiability
of the views, as well as to be able to verify the authenticity of the histories and POCs. Two approaches that can
be taken to get this information. The first one is for each node to keep in memory the graph that represents the
connections of every node in the overlay. This would mean that whenever a node needed to verify the legitimacy
of a POC for example, the node would check the graph to verify that the corresponding nodes were indeed in
each other’s views on that round. This approach has the disadvantage of occupying a large amount of memory,
especially for bigger overlays. If we consider an overlay of 1000 nodes, with view sizes of 10, and if we consider
that the total amount of rounds that are considered by the free-rider detection system is 5, then the amount of
memory that a node would spend on membership information would be of 136kB (assuming node id’s of 8 bytes
and utilization of adjacency lists).

An alternative around this memory intensive approach is for the node to run the algorithm that generates
the view graph using the seed of the corresponding round, that was provided by the central authority. This
way, whenever a node needs to verify a POC, it can simply generate the graph corresponding to the round of
the POC, and then verify that the connection is indeed authentic, and then dispose of the graph when it is no
longer necessary. In order to verify the feasibility of this approach the algorithm of the view generation was
implemented in the C++ language, and tested using a modern laptop. As shown in Table 4, even for overlays
with up to a thousand nodes, the cost of the algorithm in terms of computation effort is very low, and would
therefore enable this strategy. For even an overlay with a 1000 nodes and a degree of 10, it took a little less
of a millisecond to perform the generation of the view graph. A hybrid approach would also further optimize the
trade-off between memory utilization and computation effort spent on generating the view graph, and that is a
subject that could be studied in future work.
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C O N C L U S I O N A N D F U T U R E W O R K

6.1 C O N C L U S I O N

Peer-to-peer broadcasting algorithms are appealing due to their scalability potential without a significant increase
in costs and loss of performance. They use the resources from the members that are part of the network in order
to achieve their goal. However, most existing algorithms consider a model where all the nodes in the system
are fully cooperative, and therefore are open to exploitation when used in the real world. In reality, malicious
nodes can try to deteriorate the experience of other nodes or the system in general, and rational nodes seek to
maximize their utility from the system without contributing with their resources.

Bycast aims at creating a secure, reliable broadcasting algorithm that does not compromise performance to
reach a high level of security. It achieves this goal by employing a rigid structure to the overlay whose verifiability
prevents exploitation by malicious nodes, while not incurring in a big cost to the nodes of the system. The
conscious decision was made of making some strategic compromises, for example when it comes to the use of a
semi-closed full membership, and the consequent higher memory utilization. Bycast also uses a semi-centralized
coordinator, to guarantee strong security properties that allow for it to handle a great amount of malicious and
rational nodes, while still providing good reliability and latency guarantees. To achieve a high level of resiliency
without a significant increase in the bandwidth utilization, Bycast uses an adaptation of the Plumtree protocol as
its broadcasting algorithm. It combines the natural resiliency of gossip algorithms with a low overhead typical
of tree-based approaches. Furthermore, the use of multiple trees increases the fairness of the system, which
facilitates the detection of free-riding behavior. Bycast employs a hybrid auditing system where nodes monitor
the contribution of their neighbors. If a node contributes with less than a specified threshold then it will face
consequences such as eviction from the system. This auditing scheme is also resilient to attacks, by employing
an accusation system in order to detect maliciouus nodes that try to compromise the free-rider detection system.
The central coordinator is responsible by gathering accusations and issuing eviction notices when it determines
that a node has acted in an illegitimate way.

Due to the strong security properties, such as view verifiability, Bycast is able to handle up to 25% of colluding
byzantine nodes in the network, and up to 40% of non-colluding byzantine nodes. Bycast is also able to handle
up to 35% of free-riding nodes without it reflecting on its reliability, with 50% of free-riding nodes in the overlay
resulting in a reliability of over 95%. We believe even with the trade-offs that were made to reach this level of
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security, Bycast is be able to scale up to a few thousands of nodes. For bigger overlays, the main bottlenecks
would be firstly the existence of the centralized coordinator that manages access control and the departure of
nodes from the overlay, and also the memory utilization for each node. It is not clear if it is possible to achieve
a high level of security while not relying on the utilization of full memberships without employing expensive
security mechanisms like distributed consensus. Fireflies and BAR Gossip, for example, two of the most well
known algorithms in this area, rely on full memberships available to the nodes in order to ensure their security
properties.

In sum, Bycast takes a more conservative approach when it comes to the membership service properties,
that allows it to reach a high level of resiliency to byzantine behavior, while not compromising its scalability and
performance.

6.2 F U T U R E W O R K

In order to increase the degree of confidence of its security measure, Bycast can be tested in more complex and
realistic scenarios. Some of these scenarios include the heterogeneity of the system’s nodes when it comes to
the available resources and connection speed, and different strategies that malicious nodes can choose in order
to compromise the system. It would also be beneficial for Bycast to be implemented and tested in a real world
scenario, as opposed to simulated using a round-based approach. A real life test-bed would corroborate the
security mechanisms with a higher degree of confidence than a simulation.

This thesis presents two approaches when it comes to the verification of the views. Generating the overlay
graph from the seed every time a connection needs to be checked or maintaining the information of the overlay
graph constantly in memory. That trade-off should be studied in order to find the optimal strategy between
memory utilization and processing overhead.
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