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Resumo

Desenvolvimento de uma Interface ROS Integrada para o Sistema de Medição de Tempo

de Voo de um Sensor LiDAR

Com a evolução da condução autónoma e o desenvolvimento de tecnologias de automação e recolha

de dados, surge a necessidade do mapeamento digital preciso do mundo real. Um sensor LiDAR permite

o mapeamento 3D e a medição precisa de distância a obstáculos num cenário de interesse. O número

crescente de aplicações que requerem estas funcionalidades e a capacidade do LiDAR em fornecer de-

tecção confiável abrangendo curtas e longas distâncias, mesmo em condições desfavoráveis, torna este

sensor numa tecnologia cativante a explorar com fortes oportunidades de mercado.

O LiDAR ilumina um cenário recorrendo a luz laser, seguido pela medição do intervalo de tempo até

que o pulso de luz refletido seja detectado. Este intervalo de tempo, conhecido como Time-of-Flight, pode

ser medido usando Time-to-Digital Converters. O cálculo do ToF é fundamental para a viabilidade do

sensor e, por isso, o TDC usado deve ser o mais eficiente possível. Atualmente, o estado da arte em

TDCs não apresenta interfaces capazes de simples integração numa aplicação. O foco da maioria dos

trabalhos está na arquitetura do TDC, não fornecendo soluções de acesso nem visualização dos dados.

Esta dissertação apresenta um TDC baseado num oscilador de código de gray que apresenta um

duplo estágio de amostragem para melhorar a resolução e uma interface ROS para aprimorar a portabili-

dade e a capacidade de reutilização. Além disso, o Robotic Operating System permite ainda a visualização

dos dados do sensor LiDAR. A implementação foi efetuada num MPSoC contendo uma FPGA e um pro-

cessador. O TDC foi implementado na FPGA, e a interface ROS foi, numa fase inicial, desenvolvida no

processador. Posteriormente, é realizada uma prova de conceito da migração do ROS para hardware.

O TDC apresenta 59 ps de precisão e 69 ps RMS de resolução, permitindo ao sistema distinguir 1

cm em profundidade requerendo apenas 7 LUTs, 20 Flip-flops e 1 mW de potência por canal. O DNL e

INL atingem 1.76 LSB e 1.50 LSB pico a pico, respectivamente. A interface ROS em software permitiu,

no pior caso, uma nuvem de 36000 pontos ser atualizada a 10.32 FPS. A sua migração para hardware

revocou a necessidade do processador permitindo a redução da área em silício e diminuindo o consumo

em mais de 84%. A execução do ROS na FPGA resultou ainda num desempenho estável de 3.45 FPS.

palavras-chave: Field-programmable Gate Array (FPGA), Light Detection and Ranging (LiDAR), Medição

de Intervalo de Tempo, Robotic Operating System (ROS), Time-to-Digital Converter (TDC)
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Abstract

Development of an Integrated ROS Interface for a Time-of-Flight Measurement System of a

LiDAR Sensor

With the evolution of autonomous driving and the development of automation and data collection

technologies, the need for accurate real world digital mapping arises. A LiDAR sensor allows 3D map-

ping and precise measurement of distances to obstacles in a scene of interest. The increasing number

of applications requiring accurate real-world mapping solutions, and the ability of LiDAR to provide reli-

able detection and ranging over short to long distances, even in challenging conditions, makes it a truly

compelling technology to explore with strong market opportunities.

LiDAR operates by laser lighting the scene, followed by the time interval measurement until the

backscattered light is detected. This time interval, known as Time-of-Flight, can be measured using high-

resolution Time-to-Digital Converters. The Time-of-Flight calculation is critical for the viability of the sensor,

and, consequently, the TDC used should be as efficient as possible. Currently, the state-of-the-art on TDCs

does not present interfaces capable of simple integration with an application. The focus of most works is

on the TDC architecture, failing to provide accessibility and visualization solutions to the data.

This dissertation presents a TDC architecture based on a gray code oscillator that introduces a double-

sampling stage to improve resolution and an integrated ROS interface to enhance portability and reusability.

In addition, the Robotic Operating System allows the visualization of data from the LiDAR sensor. The

proposed system was implemented using an MPSoC containing an FPGA and a processor. The TDC

architecture was implemented in the FPGA, and the ROS interface is first developed in the processor.

Subsequently, a Proof of Concept of the ROS interface migration into hardware is developed.

The TDC presents 59 ps single-shot precision and 69 ps RMS resolution enabling the system to

distinguish 1 cm in depth while only requiring 7 LUTs, 20 Flip-flops, and 1 mW of power per channel. The

peak-to-peak DNL and INL reach 1.76 LSB and 1.50 LSB, respectively. In the worst-case scenario, the

software ROS interface allowed a point cloud frame of 36000 points to perform at 10.32 FPS. Its migration

to hardware revoked the need for the processor, thus reducing silicon area and decreasing consumption

by over 84%. Moreover, executing ROS on the FPGA resulted in a stable performance of 3.45 FPS.

keywords: Field-programmable Gate Array (FPGA), Light Detection and Ranging (LiDAR), Robotic

Operating System (ROS), Time Interval Measurement, Time-to-Digital Converter (TDC)
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Chapter 1: Introduction

Autonomous driving solutions are currently being intensively explored largely due to the evolution and

development of several crucial technologies. One of the key technologies is the LiDAR sensor, which allows

3D mapping and precise measurement of distances to obstacles in a scene of interest. A LiDAR emits

laser light into the surrounding environment and measures the time for the reflected light to return to

the sensor. The distance to objects is then calculated using this time interval, known as Time-of-Flight

(ToF), and the velocity of light. The Time-of-Flight calculation is critical for the viability of the sensor, and,

consequently, high-resolution and efficient Time-to-Digital Converters (TDCs) should be used.

Even though different types of LiDAR sensors are being developed, the requirements tend to be similar.

According to Druml et al. [1], a LiDAR sensor must have a minimum depth resolution of 20 cm and a

measurement range up to 200 m. This demands a TDC capable of measuring time intervals as short

as 1.33 ns, with a dynamic range of at least 1.34 µs (this conversion can be calculated with equation

2.1). Furthermore, several types of LiDAR sensors such as FLASH, fixed multi-beam, and MEMS require

multiple receivers [1]. Additionally, multiple ToF measurement units per receiver may be used to increase

the point cloud refresh rate by using the different measurement units sequentially, thus not having to wait

for a pulse in a measurement unit to be measured. Therefore, low resource and power consumption TDC

architectures with scalable capabilities are very important for LiDAR sensors.

Application-Specific Integrated Circuits (ASICs) are commonly used to implement TDCs since they

provide high performance, and no architecture limitations are imposed. However, since LiDAR is still under

exhaustive research, frequent design upgrades are part of its development cycle, making programable

hardware solutions, such as FPGAs, a valuable prototyping platform. Although ASIC platforms offer better

performance than FPGA, the technology gap between these two technologies has been decreasing over

the last few years [2]. Moreover, FPGA offers lower development time and faster prototyping, making it a

good solution [3].

To improve the usability of the LiDAR system and simplify access to the data, a standard way of

interfacing the ToF measurement unit must be given. The Robotic Operating System (ROS) [4] is an open-

source framework that offers plug and play capabilities, even between different platforms. Moreover, data

can be easily envisioned by using the integrated visualization tool (i.e., RVIZ). Since this tool is used in

several systems, including in LiDAR sensors, it will be used in this dissertation as interface for the ToF
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measurement unit.

This work is part of a research project exploring a 2D MEMS LiDAR sensor for automotive systems.

In this dissertation, the gray code oscillator TDC architecture is optimized, implemented and explored as

a solution for implementing the ToF measuring unit. In order to access the data, a ROS interface was

developed as a modular accessibility solution to the LiDAR point cloud.

1.1 Motivation

The increasing number of industries and applications requiring accurate real-world mapping solutions,

and the ability of LiDAR to provide reliable detection and ranging over short to long distances, even in

challenging conditions, makes it a truly compelling technology to explore [5]. For example, its use in

autonomous driving as one of the key enabler sensors provides strong market opportunities and is the

focus of several research works [6].

Due to the fact that a variety of LiDAR sensor types need multiple Time-of-Flight measurement units,

Time-to-Digital Converter scalable solutions requiring low resources and low power must be developed.

Additionally, since they are required to measure nanosecond or even picosecond time intervals, the preci-

sion and resolution of the TDC architecture are also important factors. As a result, and due to the recent

emergence of FPGA-based gray code oscillator TDCs, this architecture becomes an interesting research

path.

Currently, the literature on TDCs lacks an easy to mount interface capable of providing a seamless

integration with a visualization application. The focus of most works is on the TDC architecture, failing

to provide accessibility solutions. ROS gathers a collection of tools, libraries, and conventions that sim-

plify the development of software components and increase their reusability. This Meta-operating System

(Meta-OS) builts on top of an Operating System (OS) and allows different processes (i.e., nodes) to com-

municate with each other at runtime [7]. It is designed to operate as component-oriented to ease the

integration of modules even in different platforms while also providing a data visualization tool. As the

TDC will be implemented in an FPGA and since a processor running an Embedded Linux OS is required

to execute ROS, System on Chip (SoC) platforms are an ideal solution. These SoC platforms provide

Programmable Logic (PL) and Processing System (PS) in the same Integrated Circuit (IC). However, be-

cause of the ROS requirement of an Operating System, performance may be inferior when compared to an

FPGA-only implementation. Some research works have partially migrated ROS into hardware to avoid this

performance degradation. Thus being able to simplify access to data through a hardwired ROS interface
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while maintaining the TDC overall ToF measurement unit performance.

Finally, from a technical skill perspective, the proposed research was extremely rewarding due to

the large scope of the technologies involved, from sensor-level to application-level development. It also

allows development using System on Chips (SoCs) that require knowledge in Embedded Linux and logic

description at Register Transfer Level (RTL) with Hardware Description Languages (HDLs). Furthermore,

it is an excellent opportunity to work with emerging technologies that are a part of increasingly important

applications in a growing market sector.

1.2 Objectives

In this dissertation, it is intended to develop an integrated ROS interface for a Time-of-Flight measure-

ment system allowing the visualization of the data collected from a LiDAR sensor. For that, an FPGA-based

TDC will be developed to implement the ToF measurement unit. Different ROS interface architectures will

be implemented, accessed and compared. Thus, the proposed objectives for this dissertation are:

• Study of the literature focusing on TDC architectures to calculate the Time-of-Flight and interfaces

with a visualization tool capable of displaying the LiDAR data;

• Integration of an Operating System into the Processing System of the Zynq Ultrascale+ MPSoC

device;

• Embed most of the ROS functionalities into the MPSoC Operating System;

• Development of the ROS interface for the TDC peripheral in the MPSoC;

• Publish the data acquired by the TDC peripheral, via the ROS interface, into a ROS topic accessible

by a Host machine (i.e., PC);

• Display LiDAR data in the PC by reading the ROS topic and using the ROS visualization tool (i.e.,

RVIZ);

• Analysis and evaluation of the system performance with the Host and Zynq Ultrascale+ MPSoC

board;

• Development of a Proof of Concept (PoC) of the ROS interface migration from the Processing System

to the Programmable Logic;
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• Publish the data acquired by the TDC peripheral via the hardwired ROS interface, and display it

using the ROS visualization tool (Host machine);

• Analysis and evaluation of the hardwired ROS interface PoC performance on the Zynq Ultrascale+

MPSoC platform.

1.3 Methodology

Although the TDC design was based on the previously published gray code oscillator TDC architec-

tures research, an analysis of the state-of-the-art of the related topics was an essential factor for the

implementation of this dissertation since it provides improvements to previously published topics. This

work introduces a double-sampling stage to improve the TDC resolution and an integrated ROS interface

to enhance portability and reusability.

The developed TDC architecture aimed to have portability and scalability so that multiple TDC channels

could be implemented by replicating a channel’s placement and routing. At the same time, the perfor-

mance improvements were managed to be maintained across the different channels, avoiding the need

for calibration, further reducing the architecture resource utilization and power consumption. Moreover,

the development board was selected, taking into account the improvement expected when using superior

FPGA technology (i.e., 16 nm technology available in the Zynq UltraScale+ MPSoC) and considering the

requirement of having at least one processor core.

Once the board was selected and the TDC was implemented, the hardware file required for the Oper-

ating System generation was available. Thus, the Embedded Linux image generation tool was studied and

used to implement an Operating System containing ROS and other packages required by the system.

After having ROS running on the Operating System of the PS, the software ROS interface for the TDC

was developed. In the FPGA, an interface was developed to obtain the data from the TDC peripheral IP,

convert the gray code into binary and send the values through AXI to the processor. The ROS interface

accessed the AXI memory, converted the values into depth and published the data to any ROS platform. A

Host system (i.e., PC) with ROS was used to receive the information and display it with the RVIZ visualization

tool.

Finally, an in-depth analysis of the ROS asynchronous communications was made in order to design

and implement the hardware node. Based on the knowledge gathered and the intended functionalities,

the hardware ROS node was implemented with some adjustments. This system required a TCP/IP stack,

and the implementation method was chosen based on the central objective of building a hardwired ROS
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interface, consequently simplifying less essential parts of the system. Similarly to the software ROS inter-

face, a PC with ROS was used to display the LiDAR point cloud using RVIZ. Lastly, a comparison between

both ROS implementations was done, highlighting advantages and disadvantages.

The operating frequency of the FPGA was adjusted according to the needs of each module. For

instance, in the TDC, the 5-bit gray code oscillator was required to cover the period of one clock cycle.

However, this clock frequency was not supported by the AXI interface, which led to the use of a different

clock source. Moreover, an extra clock was required because of the frequency limitation of the component

implementing the TCP/IP stack. As a result of different clock sources being used between the several

modules and due to the exchange of data between them, a method to prevent metastability was also

developed.

1.4 Dissertation Structure

This dissertation is divided into a total of 6 chapters where the development is presented according

to the described methodology. The current Chapter presents an introduction and contextualization of the

proposed theme, as well as motivation, objectives to be accomplished, and the methodology used.

Chapter 2 provides an overview of the topics related to this dissertation and presents a brief state-of-

the-art review on Time-to-Digital Converters and FPGA accelerators integrated with ROS interfaces.

The developed Time-to-Digital Converter peripheral is explored in Chapter 3. Its design is thoroughly

presented, the implementation steps are described, and the tests and results are discussed.

In Chapter 4, its is presented the ROS interface design when coupled with the TDC. The process of

generating a Linux image and application with ROS is described. Then, the Publisher ROS node flow and

interconnection with the TDC are depicted, and the tests and results of the architecture are presented.

The Proof of Concept of the ROS interface migration into hardware is presented in Chapter 5. After

the design is presented, the ROS network is analyzed in depth so that it can be replicated into the FPGA.

Subsequently, some adjustments made to the ROS network are explained, and the steps to implement

the Publisher are depicted. Lastly, the tests and results are shown and compared to the software ROS

interface.

In the last Chapter, conclusions are drawn and future work steps are described with the goal of en-

hancing the proposed solution.

22



Chapter 2: State-of-the-Art

This chapter presents a review and analysis of the current works and technologies related to the

dissertation’s topic. Firstly, autonomous vehicle sensing systems are introduced. The LiDAR sensor is

analyzed along with the Time-of-Flight (ToF) principle. Time-to-Digital Converters are presented as a method

to measure ToF when using FPGAs as a development platform. A brief comparison between FPGA-based

TDC architectures is given, along with concepts and tools to design and program FPGAs. Then, a summary

of Operating Systems is presented, preceding the review of the ROS Meta-OS. The two ROS versions are

compared [8], [9], and a few alternatives are discussed. Additionally, a mechanism to manipulate and

visualize information is described alongside suitable data types for LiDAR data. Finally, implementations

of ROS in an FPGA are described, from Processing System to Programmable Logic solutions.

2.1 Autonomous Vehicles Sensing Systems

Similar to humans, autonomous vehicles need to sense the surrounding environment in order to

navigate safely. Humans use senses such as sight, hearing, and touch to move from point A to B. In the

same way, vehicles must use a variety of sensors to provide them with reliable information in different

weather and light conditions [10].

Proprioceptive sensors, or internal state sensors, measure the internal dynamic state of a system. For

instance, gyroscopes are used to measure acceleration and angular velocity. On the contrary, exteroceptive

sensors, or external state sensors, gather information from the system’s surroundings. For example, Radar

sensors are used to determine the distance and velocity of objects. In addition, sensors can be classified

as passive or active depending on their operational principle. Passive sensors, such as cameras, capture

physical inputs (e.g., light) from the surroundings to produce information. Whereas active sensors, such

as LiDAR, emit energy to the surroundings and measure the environmental response to that energy to

produce information [11].

An example of an autonomous vehicle external sensing system is given in Figure 2.1. Each sensor is

strategically placed according to its functionality to obtain a 360◦ view of the car’s surroundings. Typically,

as there are sensors with overlapping functionality, part of the resulting information is redundant. This

allows the system to have backup information in case of a sensor failure. Moreover, the system benefits
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from the strengths of different sensor types and, consequently, attenuates the system’s weaknesses [12].

Figure 2.1: Example autonomous vehicle external sensing system [11]

2.1.1 Light Detection and Ranging – LiDAR

Light Detection and Ranging (LiDAR) is an active remote sensing system that detects objects and

maps their distances [13]. It works by illuminating a target with an optical pulse and measuring the

characteristics of the reflected return signal. The optical pulse width ranges from a few nanoseconds to

several microseconds. The measured time between laser beam emission and return, known as Time-of-

Flight (ToF), is used to calculate the distance from the source.

A LiDAR system can be applied to different platforms. The more suitable type of LiDAR will differ

according to the application and its needs. For instance, an airborne LiDAR system may be used to

scan vast areas and retain valuable information to be applied in agriculture, military, or civil engineering.

On the other hand, a ground-based LiDAR system is more suitable for robotics and autonomous vehicle

applications.

The two main types of laser beam steering systems are mechanical and solid-state [13]. The me-

chanical LiDAR has a rotating mechanism in order to provide a wide Field of View but tends to have a

prominent structure as a result. The solid-state LiDAR has a fixed structure compromising the system FOV

but maintaining a more affordable price. Nevertheless, a 360◦ view can be obtained by placing multiple

channels and merging their data. Solid-state LiDARs have multiple implementation methods, for instance,

Microelectromechanical Systems (MEMS) and Flash LiDAR.
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The MEMS LiDAR consists of a laser beam pointed at a tiny mirror that pivots according to a stimulus

such as a voltage. Thus, it is an electromechanical equivalent to mechanical LiDARs. Even though aligning

the mirrors is not simple and the system becomes more sensitive to vibrations, a multiple dimension

system can be accomplished by cascading multiple mirrors and using them to steer the laser beam in

multiple directions. In a Flash LiDAR, a single large laser beam is fired, illuminating the frontal environment

and an array of photodetectors captures the backscattered light. The rate is far superior when compared

to the previous methods because the frontal environment is captured with the emission of a single laser

beam pulse. Nonetheless, the presence of retroreflectors in the environment can blind the entire sensor.

Moreover, the laser requires a large power peak to light the entire scene of interest with enough depth [13].

In a LiDAR sensor, from a single optical pulse, more than one return may be recorded. This can happen

whenever the illuminated target allows light to pass through (e.g., tree leaves), resulting in reflections from

multiple surfaces [14]. The distribution of energy that returns to the sensor creates a waveform. The

amount of energy that is returned to the LiDAR sensor is known as intensity. Figure 2.2 represents an

example of a LiDAR waveform.

Figure 2.2: Example LiDAR waveform [14]

The information provided by a LiDAR system can be captured as a discrete return or full waveform. A

discrete return records peak points in the waveform curve. A full waveform records a distribution of the

waveform curve, thus containing more information but being more complex to process [14]. Either way,

LiDAR data is often only available as a collection of discrete points known as a LiDAR point cloud. The

attributes of a point cloud can vary, but each data point should have an X and Y as location and a Z as

depth. Most LiDAR data points will also contain an intensity value, representing the amount of energy

captured.

As the technology evolves to a more compact and integrated system, the price has been significantly
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decreasing over the years. Features such as wide detection range and Field of View (FOV), high-resolution,

precise distance measure, and good performance under different weather conditions [13] made this a

viable solution to automotive and industrial applications [15]. As a result, according to Grand View Research

[16], the LiDAR market size was valued at USD 1.1 billion in 2019, and it is expected to have a Compound

Annual Growth Rate (CAGR) of 13.2% in the following years. Figure 2.3 presents the expected LiDAR market

growth from 2016 to 2027 in Europe.

Figure 2.3: Europe LiDAR market size from 2016 to 2027 [16]

Time-of-Flight - ToF

As explained in 2.1.1, Time-of-Flight is the time difference between the emission of a laser light signal

and its return to the source after being reflected by a target. Although the concept of ToF is simple, its

measure can be challenging to implement since to achieve a depth resolution of just a few centimeters,

picosecond resolutions in the time domain are required [13].

There are two types of ToF sensors: direct and indirect. Direct ToF sensors use a short pulse of light,

whereas indirect ToF sensors use a continuous modulated light [17]. To calculate the distance to an object,

the former simply calculates the time between emitted and received pulses, and the latter measures and

compares the phase of the source light with the reflected light (see Figure 2.4). Equation 2.1 is used to

calculate the distance in a direct ToF sensor, and equation 2.2 to calculate the distance in an indirect ToF

sensor (ϕ is the phase shift in radians, and f is the modulation frequency) [18].

distance =
time ∗ speed_of_light

2
(2.1)
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distance =
ϕ ∗ speed_of_light

2πf ∗ 2
(2.2)

Figure 2.4: Direct and Indirect Time-of-Flight operation [19]

2.2 Time-to-Digital Converter - TDC

In Time-of-Flight (ToF) applications, a Time-to-Digital Converter (TDC) can be used to measure the

time interval between the emission and reception of a laser pulse [20]. Application-Specific Integrated

Circuits (ASICs) are commonly used to implement TDCs, as they provide the best performance, and no

architecture limitations are imposed. However, the lower development time and fast prototyping, com-

bined with significant technology and development tools improvements, made programmable hardware

solutions, such as FPGAs, a valuable platform [3].

2.2.1 TDC in FPGA

Initially, FPGAs were only used for prototyping purposes. Over the years, FPGAs have also been

integrated into final products [21]. Therefore, research greatly increased, including applications of FPGA-

based TDC systems. Even though ASICs are still delivering better performance, due to some limitations

imposed by the hardware available on FPGAs, the technology gap between ASICs and FPGAs has been

decreasing over the last few years [2]. Nowadays, FPGA-based TDCs are achieving resolutions under 5

ps [22] or even 1 ps [23], depending on the implementation.

The main focus of researchers is on improving TDC resolution [24], but with new TDC applications

emerging, other important characteristics need to be improved, such as linearity and sample rate [25].

Additionally, for certain applications, power consumption and resource utilization are a decisive factor [26].

Recent developments and challenges have been studied in [25].
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A coarse counter can be considered the most basic TDC architecture [27]. Simplicity of implementa-

tion and low resources are the primary assets, thus it should be used whenever high-resolution is not a

requirement. To build this architecture, it is only needed a counter that is updated at each system clock

cycle and registers to store the value. Thus, the TDC resolution directly depends on the clock frequency.

Despite this, it is difficult to achieve high resolutions as the maximum reported clock frequencies are in

the range of 1 GHz, consequently enabling 1 ns resolution at best [28]. The size of the sampling registers

will determine the measurement range, but typically, high ranges can be achieved with the drawback of a

less linear TDC.

Phased clock TDCs can offer better resolution with slightly more complex architectures. For instance,

in [29], a resolution of 280 ps and a Differential Non-Linearity (DNL) of 0.13–0.31 LSB are achieved. PLLs

or clock manager blocks are often used as multiple clocks are required [30]. The two primary techniques

to implement a phased clock TDC are oversampling and phase detection. In essence, oversampling

implements multiple coarse counters with different clock phases. The final value is obtained by doing the

mean of the counter values multiplied by the clock frequency. As the phase difference between clocks

is the main feature of this architecture, issues such as clock skew1 and jitter2 can easily degrade the

measurement, resulting in phase overlaps that defeat the purpose of the architecture.

On the other hand, the phase detection technique uses the phased clocks as a delay to allow the

detection of the input signal positive and negative edges, as depicted in the operation principle example

of Figure 2.5. Therefore, resolution can be improved by introducing more clock phases. However, as in

the oversampling technique, the increased clock skew and jitter, resultant from the introduction of multiple

clock phases, may lead to the rising edge of a clock with phase n-1 arriving before the rising edge of a clock

with phase n. This phenomenon causes a pattern with bubbles that undermine the TDC linearity. These

architectures are often used together with a coarse counter to extend their range and a synchronization

stage to create a common clock domain avoiding metastability3 in the remaining of the system.

1Clock skew is a phenomenon in synchronous digital circuit systems in which the same sourced clock signal arrives at
different components at different times. The instantaneous difference between the readings of any two clocks is called their
skew [31].

2Jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal [32].
3A metastable state is one in which the output of a Flip-Flop inside of the FPGA is unknown, or non-deterministic. When a

metastable condition occurs, there is no way to tell if the output of the Flip-Flop is going to be a 1 or a 0. A metastable condition
occurs when setup or hold times are violated [33].
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Figure 2.5: Phase detection TDC operation principle [29]

From the numerous available TDC architectures, Tapped Delay Line (TDL) architectures are, the most

used and studied [25]. This architecture can achieve a very high resolution and precision with a relatively

simple implementation. Nevertheless, it requires considerable resources and, consequently, power. The

delay line is the core of the architecture as resolution and linearity are mainly defined by the cell properties.

Figure 2.6 presents the base structure of a TDL TDC. The signal to be measured is fed to the Delay Line

that propagates it throughout its cells. When a stop signal is generated, the Sample Flipflops store the

state of the Delay Line, which can also influence the system linearity. The value generated in the Delay

Line and stored by the Sample Flipflops is a thermometer code. This value is decoded into binary by

multiplying the delay of each cell element with the number of delay line cells that were traveled by the

signal. After obtaining the time representation, a calibration stage if often introduced, to increase linearity.

Within TDL TDCs, several typologies have been developed, such as Single TDL, Multichain TDL, and

Hybrid TDL. In order to improve performance, the different variants introduce more complex calibration

mechanisms, several delay lines, or are even integrated with other TDC architectures. For instance, the

Multichain TDL by Wang et al. [34] achieves a 3.9 RMS precision and 2.45 LSB resolution while using

2433 LUTs, 6258 flip-flops and 821 mW of power.

Figure 2.6: Tapped Delay Line base architecture [25]
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Differential delay line TDC architectures use the difference between two Tapped Delay Lines [25]. In

FPGAs, differential ring oscillators are often used because the resolution is based on the difference between

the two oscillators frequencies instead of the cell’s delay [25]. This causes linearity to be significantly better,

although highly depending on the stability and accuracy of the oscillators that also affects resolution [25].

Cui et al. [35] presents an implementation with 31 ps resolution and both DNL and INL below 0.1 LSB with

only 319 LUTs and 104 registers needed per channel. The oscillators are built as a loop using different size

delay lines [36]. Two main techniques have been explored, the first uses two counters that are incremented

by the oscillators and a phase detector [37], the second uses one counter (clocked by the slow oscillator)

that is counting while the fast oscillator is not able to surpass the slow oscillator [38]. As the cell’s rise

and fall times are not the same, an undesirable pulse shrinking/stretching effect can occur (solutions

have been studied in [36], [35]). Furthermore, these types of TDCs often require a long conversion time,

resulting in high dead time [25].

The previously mentioned pulse shrinking effect originated a new TDC architecture. Basically, a ring

oscillator will count at each oscillation cycle where a pulse can be detected. Because of the delay cell’s

rising and falling times mismatch, the pulse will continuously shrink until it becomes undetected [39].

Resolution is given by adding the difference between the rise and fall times of the delay cells. In [40], the

author reaches a resolution of 42 ps and an DNL within -0.98 and 0.5 LSB. However, as stated in [25],

the extra complexity introduced in this architecture does not justify its use in FPGA, as better performance

can be achieved with more straightforward implementations.

A recent TDC architecture based on a gray code oscillator has exhibited a good trade-off between

performance and resources. The novel scheme presented by Wu et al. [26] demonstrated that with a few

LUTs and flip-flops, a gray code sequence could be generated without being driven by a clock, thereby

originating a significantly faster gray code oscillator with low power consumption. Figure 2.7 presents the

gray code oscillator TDC scheme. Two primary parts can be identified, the combinational stage of the

gray code oscillator and a sequential stage to sample the gray code value. In this architecture, the signal

to be measured is fed to the OKOP signal, causing the oscillator to step through the gray code sequence.

The gray code sequence is sampled in the next clock rising edge, measuring the time from which OKOP

is active until the next rising edge of CLK. Finally, the FIN signal stops the gray code oscillator, preventing

the oscillator from running unnecessarily and causing extra power consumption.

Machado et al. [41] improves the architecture linearity and precision by manually routing the gray code

oscillator datapath. Moreover, the presented method allows for the simple replication of the TDC channel,

making the architecture suitable for applications where multiple channels are required.
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Figure 2.7: Gray code oscillator TDC scheme [26]

Table 2.1 compares ASIC TDCs with some implementations of the described FPGA TDC architectures.

Although ASICs and FPGAs usually serve different purposes because of their distinct assets, this com-

parison allows for an understanding of the performance achievable with each platform. Generally, TDCs

implemented in the superior technology FPGAs are able to meet the performance of TDC ASICs with aver-

age technology. While the best resolution achieved in FPGAs is around a picosecond, ASICs have already

surpassed this mark, for example, the work by Hussein et al. in a 65 nm ASIC presents a 450 femtosecond

resolution [42].

Table 2.1: Comparisson of TDC architectures

Parameter

ASIC TDC FPGA TDC Architecture

[43] [44]
Phased
Clocks
[29]

TDL
[34]

Differential
[35]

Pulse
Shrinking

[40]

Gray Code
Oscillator

[41]
Resources/
LUTs & FFs

0.08
mm2

0.195
mm2

4361 2433 319 - 7
5939 6258 104 - 10

Power (mW) 18 45 20 821 - - -
Dynamic
Range (us)

0.13 1.28 37 118 - 0.0115 >524

LSB (ps) 2 15 280 2.45 31 42 380.9
Precision
RMS/SSP

(ps)
1.44 20 80 3.9 35 56

290
290

DNL (LSB) [−1, 1] [-0.31:0.31] [0.13:0.31] [-1:5.5] [-0.08:0.073] [-0.98:0.5] [-0.38:0.38]
INL (LSB) [−1, 1.3] [-0.67:0.67] - 18.8 [-0.09:0.09] [-4.17:3.5] [0.01:0.7]
Technology 180 nm 180 nm 28 nm 28 nm 65 nm 90 nm 28 nm
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Field Programmable Gate Array - FPGA

A Field-programmable Gate Array (FPGA) [45], also referred to as Programmable Logic (PL), is a

semiconductor device composed of an array of programmable logic blocks. It is an integrated circuit

designed to be configured by a user after manufacturing, hence the term “field-programmable”.

FPGAs are truly parallel by nature, as each processing task can be assigned to a dedicated section of

the chip and can function autonomously without any influence from other logic blocks. This is a different

reality when compared to processors, as they execute one instruction at a time [46].

There are three types of FPGAs based on three different technologies: antifuse, flash, and SRAM.

The antifuse technology provides One-time Programmable (OTP) cells, resulting in a limited number of

applications like space and security applications. The advantage is that the routing delays and power

consumption tend to be lower. On the contrary, flash technology cells can be reprogrammed as required.

Moreover, they are tolerant to radiation, making them suitable for space application, and as antifuse cells,

they are nonvolatile, with small routing delays and lower power consumption. Finally, SRAM cells are also

reprogrammable but, of the three, it is the only volatile technology, meaning that the configuration is stored

in external memory and loaded during the power-up process. The routing delays are more significant, as

well as less power efficient. However, SRAM is the most commonly used technology since it uses a

standard fabrication process. As a result, the performance and efficiency have been improving over the

years.

Every FPGA has a limited number of resources available. The base package includes Configurable

Logic Blocks (CLBs), programmable interconnects, and I/O blocks. Later, to improve routing resources,

switch matrices were introduced [47]. Figure 2.8 presents the FPGA base structure.

Figure 2.8: FPGA base structure [48]
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Through time, different types of resources have been introduced. Nowadays, they also include Block

RAMs (BRAMs), Digital Signal Processing (DSP) blocks, Phase Lock Loops (PLLs), clock managers, and

multiple peripherals.

Configurable Logic Blocks (CLBs), also known as slices or logic cells, are the base element of an

FPGA [49]. They are composed of two fundamental components: Look-up Tables (LUTs) and Flip-flops.

Moreover, they may also contain function logic blocks such as multiplexers (see Figure 2.9). A 4-input LUT

can be configured to implement any 4-input logic function. Some FPGAs can have up to 8-input LUTs, like

the Stratix II family introduced by Altera in 2004 [50]. A register can operate either as a latch, which is

not recommended as it causes instability, or as a flip-flop.

Figure 2.9: Logic block base composition [49]

The interconnection resources are responsible for connecting the several CLBs, and the I/O cells are

used to bring signals into the chip or export signals from the device. Nowadays, some devices combine

processors and FPGAs into a single platform. These devices are divided into Processing System (PS)

and Programmable Logic (PL), forming a System on Chip (SoC). Communication between PS and PL is

typically realized through high-speed buses like AMBA and AXI.

Designing and Programming with FPGAs

In order to design systems to be implemented in FPGAs, engineers typically follow the design flow

presented in Figure 2.10. An abstraction level named Register Transfer Level (RTL) is used to define the

design logic, and it is usually captured using a Hardware Description Language (HDL) such as Verilog or

VHDL. After the design definition has been made, its behavioral functionality can be tested in simulation

to ensure its correctness.

Next, the designs are translated into a gate-level abstraction by synthesis tools, forming a netlist con-

taining the required logic elements and their interconnections. The circuit will constitute elements such
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as gates, flip-flops, and multiplexers. However, before converting the HDL, most synthesizers perform

a syntax check, followed by an optimization step where the logic is reduced or eliminated when redun-

dant. This process reduces the FPGA resources needed and accelerates the design implementation by

having simpler architectures. After synthesis, the functional simulation helps the user verify if the design

incorporates the intended features and capabilities.

The constraints inserted by the user together with the netlist files are processed into a physical level,

where the logic is placed and routed. Despite being the slowest to process, the timing simulation avail-

able after implementation is the most complete, providing detailed information such as the routing delay

between circuit elements. Finally, the generated configuration file (i.e., bitstream) is used to program the

FPGA.

Figure 2.10: FPGA design flow [49]

Each FPGA vendor has its own set of tools used to design and program FPGAs. Smaller vendors

may only offer a customized version of a tool from a specialist vendor. Some of the FPGA vendors also

offer High-level Synthesis (HLS) tools. These tools can interpret a higher level of abstraction in C, C++, or

OpenCL and convert them into RTL. The two leading manufacturers are Xilinx [51], recently acquired by

AMD [52] and Lattice Semiconductor [53].

Xilinx offers a set of advanced tools for each level of abstraction. Vivado Design Suite provides a

suitable environment for hardware developers programming at the Register Transfer Level [54]. The Vitis

Unified Software Platform is ideal for developers at a higher level of abstraction with HLS tools [55]. Also, it

can be used to program the Processing System of a SoC. Vitis AI allows the development of FPGA solutions
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for artificial intelligence [56]. Furthermore, Xilinx provides PetaLinux Tools to customize, build and deploy

Embedded Linux on the Processing System [57].

2.3 Operating System - OS

As previously mentioned, SoC devices integrate FPGAs and processors on the same platform. Com-

bining the high-level management of processors with the real-time data processing of FPGAs forms a

powerful embedded computing device. Often, processors are running an Operating System (OS), which

is software that interfaces a user with the hardware. It manages the computer hardware and software to

provide an environment ready to execute applications [58]. Most of the time, it is running several different

computer applications simultaneously, each of them requiring access to the computer Central Processing

Unit (CPU), memory, and storage. It is the Operating System’s responsibility to coordinate all available

resources, ensuring the correct functionality of each application [59]. Figure 2.11 illustrates an overview

of an operating system.

Hardware CPU RAM I/O

Software

Operating System

Application 
Software

System
Software

User 1 User 2 User 3

Figure 2.11: Operating System overview (adapted from [60])

Some of the most important tasks of an Operating System are memory management, application

management, device management, file management, and security. The most common general-purpose

Operating Systems are Microsoft Windows, macOS, and Linux. For dedicated devices, it is common to

use embedded Operating Systems such as Embedded Linux and Real-time Operating System (RTOS).
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2.3.1 Meta-operating System - Meta-OS

A Meta-operating System essentially is a middleware software framework that performs many of the

functionalities of an Operating System and requires a host OS to run [61]. It can provide an independent

layer of communication between threads and processes, hardware abstraction, low-level device control,

tools, and libraries to be executed in single or multiple platforms [4].

2.4 Robotic Operation System - ROS

The Robotic Operating System (ROS) [8] is an open-source framework gathering a collection of tools,

libraries, and conventions that aims to simplify the development of software components and increase

their reusability. This Meta-OS allows for different processes (nodes) to communicate with each other at

runtime and includes functionalities such as package management, hardware abstraction, and low-level

device control.

In runtime, ROS operates as a peer-to-peer loosely coupled network of nodes that can interact through

different communication protocols, including synchronous RPC-style communication over services, asyn-

chronous streaming of data over topics, and storage of data on a Parameter Server. These nodes can be

grouped into packages, which can be easily shared and distributed over different platforms.

The asynchronous communication model of ROS is based on Publish/Subscribe messaging [62],

where nodes interact through a topic [63] with other nodes (see Figure 2.12). The operation starts with each

node registering to the master and continues with data transmission through a communication channel

called topic. A publisher node publishes a message to a topic, and any Subscriber node, previously

subscribed to the topic, can receive the message. Thus, the publisher/subscribe model is appropriate to

one-way, many-to-many data transport. Since the ROS nodes are bound loosely, a node can be simply

added or removed at any time.

Figure 2.12: ROS nodes asynchronous communication [64]
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A ROS message [65] is a data structure containing type fields, for instance, the primitive types: integer,

floating-point, boolean, and string. Also, arrays and structures of primitive types are supported. On the

other hand, the synchronous communication model of ROS is useful for request/reply interactions. This

transaction is done via services, defined by a pair of message structures: one for the request and one for

the reply. A node firstly provides a named service, and a client uses the service by sending the request

message and awaiting the reply, as depicted in Figure 2.13.

Figure 2.13: ROS nodes synchronous communication [66]

ROS metrics [67], [68] provides a periodic analysis of the resource utilization by the community. The

different evaluated parameters expose the progressive usage by the users, as shown in Figure 2.14. As

it can be observed, the usage of the different ROS resources have been steadily increasing over the last

decade.

Figure 2.14: Number of ROS users over time [69]
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2.4.1 ROS 2

When ROS was initially created some of the most important requirements, such as real-time, safety,

certification, and security, were not considered. Moreover, these requirements are some of the most im-

portant in the industry, extending potential applications. Applying these features to the existing ROS system

would significantly improve it but would probably make it unstable. Thus, to address these concerns, ROS

2 was proposed [9].

With ROS 2, a single executable is now able to have more than one node with intra-process com-

munication. This is useful to reduce resource utilization and to improve communication performance.

This functionality was initially called Nodelet but is now named Component. Lifecycled nodes are also

introduced. They provide different states: unconfigured, inactive, active, and finalized. A node is initially

unconfigured, and when a transition is requested, a predefined callback is triggered inside the node. In the

previous version of ROS, before a node was executed, a ROS master was required. This existed, among

other purposes, to inform what current nodes and topics were available. In ROS 2, there is no ROS master,

being each node capable of discovering other nodes.

As described in 2.4, services in ROS 1 were only synchronous. When a client requested information

from a server, the execution was interrupted until the response arrived. With ROS 2, there is the possibility

of asynchronous services. A trigger is now generated to a callback function instead of a client being

interrupted until the server response arrives.

A new feature is Quality of Service (QoS). By default, ROS 2 communications work as in ROS 1, that is,

a Subscriber node will only receive messages published after subscribing, messages are guaranteed to be

delivered, and a queue size for delivered messages waiting to be processed can be configured. With the

new version, one can handle communications to improve performance over the loss or queuing of data,

and vice versa.

The extension of the supported Operating Systems is a significant improvement in the ROS 2 usability,

as proven by Figure 2.15. Regardless of the ROS 2 release, a substantial number of downloads can

be observed in Windows OS compared to Linux and macOS. Thereby, considering that ROS 1 is only

compatible with Linux and OS X, substantial growth can be expected in the number of users of ROS 2 in

the upcoming years.

38



Chapter 2. State-of-the-Art

Figure 2.15: Number of binary downloads per ROS 2 release, broken down by OS [70]

2.4.2 ROS Alternatives

There are several alternatives to ROS such as LCM [10], ZeroMQ [11], YARP [12], and OROCOS [13].

They all belong to the middleware layer and have a similar purpose, that is, to streamline development

through libraries or by simplifying inter-process and in-process communication.

One of the upsides of ROS is that it has developed an extensive community. Over the years, many

libraries and functionalities have been introduced to ROS due to contributors. Even some of the mentioned

alternatives support ROS interaction and are designed to be compatible with it. For instance, YARP enables

the user to interoperate with ROS topics, services, and parameter servers.

As ROS was not initially designed to operate as a real-time system, some lightweight alternatives might

be used instead, such as LCM and OROCOS. However, with ROS 2, this problem is mitigated. Furthermore,

ZeroMQ might be a good alternative for applications requiring languages such as Java, Ruby, NodeJS, and

Perl.

2.4.3 Manipulate and Visualize Information with ROS

ROS has a graphical interface named RVIZ that, through plugins, allows the visualization of the data in a

ROS topic. Moreover, ROS provides several packages definingmessages commonly used with sensors [71].

For instance, the point cloud from a LiDAR sensor can be assembled with the PointCloud2 message

type [72]. Figure 2.16 presents an example of a LiDAR point cloud.
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Figure 2.16: Example LiDAR point cloud [73]

The Point Cloud Library (PCL) [74] is a library included in ROS as a package [75]. Thus, it can be

used in nodes for point cloud processing. It offers several state-of-the-art algorithms such as filtering,

feature estimation, and segmentation. Combining these tools simplifies the development of applications

with ROS, for example, Willbev [76] creates a robot model that is integrated with a LiDAR sensor to always

face the selected object, even when the object is moving in the environment. The author uses Gazebo [77]

to create the robot model and the simulation environment (Figure 2.17). The simulation environment is

integrated with ROS and the Velodyne simulation package is used to include a LiDAR sensor. The point

cloud information is saved as a PointCloud2 ROS data type, and it is manipulated with the PCL library in a

ROS node. Lastly, RVIZ displays the LiDAR point cloud information. In conclusion, the Robotic Operating

System not only enabled the author to easily integrate a simulation environment but also enabled all the

processing required and visualization of the system.

Figure 2.17: Example Gazebo simulation environment integrated with ROS and displayed with RVIZ [78]
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2.4.4 ROS in FPGA

Asmentioned before, ROS aims to simplify the development of software components and increase their

reusability. Although its use is ideal for fast development, thereby increasing productivity, ROS software

components might suffer in performance when compared to other developing methods.

FPGAs, on the other hand, provide an ideal environment for high-demanding tasks with energy effi-

ciency requirements. When compared to CPUs or GPUs, which can also provide high-performance, FPGAs

are among the best performance per Watt devices [79]. Furthermore, they are excellent for applications

requiring low and consistent response time or high task parallelization. Despite this, FPGAs have consid-

erable development costs since they are primarily programmed with HDL.

Many applications would benefit from ROS and FPGA advantages combined. One could attenuate

the development costs of FPGAs with ROS simple and fast development cycle. The high-performance

achievable with FPGAs can significantly improve a ROS system performance while maintaining or improving

the system power consumption. The first state-of-the-art solutions involved using a programmable SoC with

the ROS system in the Processing System and acceleration of the user application in the Programmable

Logic. Recent works also include parts of the Robotic Operating System implemented in the PL. Both

approaches are described in the remaining of this section.

The authors in [80] developed an image labeling application that is encapsulated with a ROS-compliant

FPGA component defined as: “An FPGA component is ROS-compliant when the component conforms to

publish/subscribe messaging rule so that it can communicate with any other ROS nodes.”. For that, the

functionality and the input/output message interface between the ROS-compliant FPGA component and

software ROS node must be equivalent.

Figure 2.18 presents the ROS-compliant FPGA component structure. Communication with other ROS

nodes is done normally through ROS topics. Thus, it subscribes or publishes to a topic as any other ROS

node, and the data is still exchanged in a ROS message format. Received ROS messages are translated

into the FPGA expected data format and sent to the Programmable Logic. The FPGA-developed circuit

performs any processing required and sends back the result. The processed data is received on the

software side and translated back into any ROS message type. Finally, the ROS message is published on

any ROS topic. One could say, this mechanism simply encapsulates the FPGA circuit with a straightforward

ROS implementation while doing any necessary translations between the two parts.
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Figure 2.18: ROS-compliant FPGA component structure [80]

The author uses a programmable SoC containing an Arm processor and an FPGA. On the processor,

Linux OS is used with ROS, where the ROS master and nodes are executed, and the user application

processing is deployed into the FPGA. Three different architectures were compared using a programmable

SoC and a PC: A.1 ROS-compliant FPGA component (Arm + FPGA); A.2 Software only (Arm); A.3 Software

only (PC).

The used programmable SoC in A.1 and A.2 was a Zedboard ZC7Z020 with a dual-core Arm cortex-A9

(666 MHz) and a Xilinx Zynq-7020 FPGA. The Arm OS is Ubuntu 12.04 LTS from Xillinux-1.2-eval, and

the FPGA frequency is set to 100 MHz. The used PC in A.3 has an Intel Core i7 870 (2.93 GHz) with an

Ubuntu 12.10 OS.

The average processing time per frame of the architecture A.1 is 32ms, of which 6 ms are related to

the communication time between the Arm and FPGA. For architecture A.2, the average is 26 times slower,

and for architecture A.3, the average is 2.3 times slower. As for the total latency, in A.1, the latency is

1.99 seconds which is about 1.7 times faster than A.2 and about 5.7 times slower than A.3. A significant

part of the total latency in A.2 and A.3 results from the communication between ROS nodes. It is similar

in the two architectures as, in both cases, it is executed in the same Arm processor. Finally, in terms of

power consumption, the Xilinx tools used by the author estimated a total of 0.33 W.

In [81], the authors extend the evaluation of the case study presented in [80] with a more detailed

performance evaluation. The Zedboard power consumption report is added and compared to the high-

performance processor Intel Core i7, with consumptions of 6.1 W and 90 W, respectively, confirming the

expected improvement. A throughput/power efficiency assessment revealed that architecture A.1 is 2.51

times more efficient than the PC architecture A.3, and A.2 1.58 times more efficient. Furthermore, a

second case study demonstrates that the FPGA parallelization can achieve much lower latency (102 us)

than a pure software system (204 us). The work done on [82] demonstrates another case study (Visual

SLAM) of a ROS-compliant FPGA component.

An open-source tool to automatically generate a ROS-compliant FPGA component has been developed
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and studied in [83] and [84]. The tool known as cReComp was implemented to reduce the development

time of a ROS-compliant FPGA component. It generates the interface code for both the software and

hardware parts which are based on the Xillinux IP core [85]. The user has to provide the HDL files and

configure the tool using a Domain-specific Language (DSL) file. According to Ohkawa et al. [84], the tool

helps users with less experience to develop the component in about 2 hours and 30 minutes on average.

The reduction of the ROS communication latency on ROS-compliant FPGA component is studied in

[86]. As seen before, the communication latency between ROS nodes significantly impacts the total system

latency. Therefore, there is great potential for performance improvement when off-loaded to FPGA. In fact,

the ROS nodes communication in [86] represents 85 percent of the total 1.99 seconds of latency reported.

To implement ROS asynchronous publish/subscribe method, the authors analyzed the network packets

exchanged in a software ROS system with asynchronous messaging. The recorded steps are depicted in

Figure 2.19. For a more detailed description of each step, please refer to [86].

Figure 2.19: ROS asynchronous messaging procedure [86]

Upon analysis, two parts were identified, the node registration, using XmlRpc++ [87], and the data

transmission between nodes, using TCPROS [88]. Both protocols can be transmitted through a TCP/IP

connection. The implementation of a hardwired ROS-compliant FPGA component is structured as de-

picted in Figure 2.20. The Subscriber HW module subscribes to a topic and receives the respective ROS

messages. The Publisher HW module publishes ROS messages to a topic. As in [80], the application is

executed in the FPGA.
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Figure 2.20: Structure of an Hardware ROS-compliant FPGA component [86]

To establish a TCP/IP communication with the FPGA, an Ethernet connection is required and the

TCP/IP stack must be implemented in hardware. However, its functionality will be restricted because the

FPGA’s available resources are limited. As more functionality is added, like the ports number, sessions, and

corresponding protocols, more hardware resources are needed. Sugata et al. [86] used an implementation

of the TCP/IP stack with only one port and session and, consequently, only the TCPROS communication

was implemented in hardware. In summary, the following steps are followed, as presented in the sequence

diagrams of Figure 2.21 (please refer to [86] for the Publisher HW sequence diagram).

• Subscriber SW gets the IP address and port number and sends them to the Subscriber HW.

• Subscriber HW establishes a TCP connection to a publisher based on IP address and port number

given by Subscriber SW and receives the ROS message after sending the connection header.

Figure 2.21: Sequence diagram of Subscriber [86]

Figure 2.22 presents the hardware ROS-compliant FPGA component. The TCP/IP stack module (i.e.,

SiTCP [89]) enables communication through Ethernet. The destination IP address and port number are
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stored in RBCP_REG, and accessed whenever the Subscriber HW requests a TCP connection. The con-

nection header and the data is written to the FIFO, and sent through TCP packets. Finally, the Application

Logic module processes the data received by the Subscriber HW and sends the result to the Publisher

HW.

Figure 2.22: Hardware ROS-compliant FPGA component [86]

When compared to [80], although the FPGA board is not the same, the amount of used resources

remains interesting as the utilization ranges from 7 to 20 percent (note that no application logic is devel-

oped). In terms of latency, the PC architecture has 0.9 ms, whereas the latency of the Arm architecture

is 1 ms and, with the FPGA proposed solution, the ROS system runs with only 0.5 ms of latency.

In conclusion, when comparing the implementations of [80] and [86] it is clear that the system latency

is improved. By Doubling the resources used in [80], it is possible to obtain around half of the PC architec-

ture response time. However, the implementation complexity is greater. To reduce complexity, a similar

solution using High-level Synthesis (HLS) tools is presented in [14]. This solution is ideal for engineers

unfamiliar with HDL programming or even to decrease development costs.

Lastly, in [90] a modular method to fully migrate a ROS node into FPGA is presented. Whereas

in [86], only the TCPROS protocol was implemented in FPGA (due to the SiTCP limitation of a single

TCP/IP socket), in [90], the authors implement both XmlRpc++ and TCPROS protocols in FPGA, enabling

the implementation of a fully hardwired ROS node. To surpass the SiTCP limitation, the authors in [90]

used a WIZ820io module that implements the TCP/IP stack with up to eight different socket connections
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simultaneously. In essence, the presented use case works by receiving information from a sensor, which

is processed in the FPGA and later published by the hardwired ROS node. The ROS master runs in a PC

containing ROS and is connected with the ROS environment on the FPGA. After that, any Subscriber on

the PC or on the FPGA may receive the data. Therefore, this architecture allows an FPGA ROS node to

publish data without the need for a Processing System.

In summary, the works [80], [81], and [82] presented a method to encapsulate the FPGA logic with a

straightforward ROS implementation while doing the required translations between PL and PS. In [83] and

[84], a tool to generate the ROS encapsulation was explored. ROS was partially accelerated in hardware

in [86] and [14] due to the TCP/IP stack limitation of only one socket available. On the other hand, the

authors in [90] use a network module with several sockets to implement the TCP/IP stack and fully migrate

ROS into the FPGA.
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The previously implemented gray code oscillator TDC architectures described in 2.2.1, inspired the

double-sampling gray TDC architecture described in this section and also presented in [91]. The gray

code oscillator architecture on [26] was based on a Xilinx Kintex-7 board, whereas the work in [41] used a

Xilinx Zynq-7000 SoC. This work explores a Xilinx Ultrascale+ MPSoC and improves the gray code oscillator

architecture presented in [41]. The following subsections present the TDC design, implementation and

results.

3.1 Design

A typical binary counter combines a combinational stage where the value is incremented and a se-

quential stage where the value is stored until the next clock cycle. The sequential stage guarantees a

stable value for the next combinational stage calculation. This step is vital in a binary counter as multiple

bits may change from one iteration to another, resulting in multiple combinational path changes. As each

combinational path is likely to have a different routing delay, the counter might not have the expected

incremented value without the sequential stage. On the other hand, in the case of a gray code counter,

only a single bit may change from one iteration to another. Thus, it can operate without the sequential

stage of a binary counter (although it must be verified that the iteration delay of each single bit is always

inferior of the delay of two bits). Therefore, when adopting a gray code schema, the resolution is no longer

limited by the clock frequency but by the datapath delay between values.

According to Xilinx documentation [92], the Ultrascale architecture has 6-input LUTs. Therefore, in

order to implement a combinational function in a single LUT, a maximum 6-bit gray code counter could

be used. However, in order to reduce the gray code counter power consumption, an enable signal is

introduced to start or stop the counting. Thus, a 5-bit gray code counter, using a Reflected Binary Code

(RBC) scheme [93] and 1-bit enable signal was designed, resulting in a maximum of 32 interpolation

steps.

The block diagram in Figure 3.1 presents the designed TDC architecture. A binary counter with 12

bits, named coarse counter, is used to increase the TDC dynamic range, resulting in a maximum of 4096

steps. The gray code counter is used to implement the start and stop TDC channels, enabling the system
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to measure time intervals smaller than one clock cycle. The start and stop input stages ensure that the

gray counters are not enabled for more than one clock cycle, reducing power consumption. The coarse

counter value and both TDC channels are concatenated in the merge block resulting in a 32-bit value

saved into a FIFO memory. In the interface block, the different counter values are retrieved from the FIFO

and converted into their time representation in picoseconds. An AXI peripheral is then used to send this

value into the processor side. New values are only requested if the FIFO is not empty and whenever the

AXI-lite interface is ready. Firstly, a start signal has to be sent by the PS along with the conversion factors

for calculating the time in picoseconds (i.e., T and LSB from equation 3.1). With the start signal, a

value is drawn from the FIFO, and the time in picoseconds is calculated. The time values are calculated

in a pipeline stage designed with 5 clock cycles of latency. When the calculation is finished, a valid signal

is enabled, implementing a logic AND gate with the AXI read-ready signal. This mechanism delays an

AXI read transaction until the time value is ready and valid. By having a value ready 5 clock cycles after

the start signal, the following AXI read transaction will not be delayed as each AXI transaction could take

around 50 clock cycles to be completed.
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Figure 3.1: TDC IP block diagram

Compared to the one in [26], the main difference of this architecture is the double-sampling stage

instead of a single-sampling stage (see Figure 3.2). Moreover, to increase the maximum dynamic range,

a coarse counter instead of a bit extension circuit is used. The double-sampling method takes advantage

of the routing delay between the combinational and the sequential stage. The second sampling stage is

routed with at least double the first sampling stage’s delay, causing a value from the LUTs to take double
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the time to arrive at the second stage. Therefore, when a new value (G ) arrives at the first sampling

stage, the second sampling stage will contain the previous gray code value (G-1 ). Then, after the delay

difference, the new value (G ) arrives at the second sampling stage, meaning that both stages are now with

the same value. By adding both stages (after the gray to binary conversion), the first value is 2G-1 and

the second value is 2G, resulting in an incremental sequence. This results in a resolution approximately

twice as better.
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Figure 3.2: Double-sampling gray TDC channel schematic
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3.1. Design

The TDC state machine is presented in Figure 3.3. When a rising edge of the hit signal arrives, the

Start Input Stage enables the Start TDC Channel to sequence through the gray code counter until the next

clock rise edge. In the clock rise edge, the gray code counter is sampled, and if the value is different

from zero, the start_store signal is enabled. This signal is used to store the gray code value, store the

coarse counter, and reset the Start Input Stage, synchronizing both counting stages and avoiding the risk

of metastability. After converting the gray code values to binary, the final measurement value is calculated

according to 3.1:

fine_time = (start1 + start2)− (stop1 + stop2)

time =
coarse ∗ T + fine_time ∗ LSB

2

(3.1)

where start1, start2, stop1, stop2 are gray counter values converted to binary (depending on the TDC

channel and the sample stage). The fine measurement is given by fine_time multiplied by the TDC

resolution (LSB). The coarse value (coarse) is multiplied by the TDC clock period (T ) and added with

the fine measurement to produce the total time measurement.
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Figure 3.3: TDC state machine (top) and gray code start channel state machine (bottom)

When a falling edge of the hit signal occurs, the operation principle is the same but applied to the

stop channel (see Figure 3.4). In this case, the stop_store signal is enabled instead of the start_store,

indicating the end of measurement. Next, the values are merged and written to the FIFO memory, and

a reset is made to the coarse counter. Additionally, a count reset signal is generated, indicating that the

TDC is available for a new measurement. Since the designed architecture is targeting LiDAR applications,

to obtain the depth, the measured time interval needs to be divided by 2. The division is done in the FPGA

50



Chapter 3. Double-sampling Gray TDC

as it only requires a shift right.

The TDC operation principle is described in Figure 3.4. The TDC measures the time the hit signal is

in a high state (i.e. active). From the hit signal, two signals are originated: the hit start and the hit stop.

The first becomes active at the same time as the hit and is disabled at the next positive edge of the clock.

The second becomes active when the hit is disabled and is disabled at the next positive edge of the clock.

While either of these two signals is active, the gray code oscillator is counting. The first sampling stage

samples the gray code with a smaller routing delay, in this case it samples the value 5 (i.e. 6 in decimal).

Because of the bigger routing delay of the second sampling stage, the sampled value can either be the

same as the first sampling stage or the previous gray code value, which is the case in this example as the

value sampled is 7 (i.e. 5 in decimal). The decimal representation of these values are added, and the

same process is used for the stop channel. Then by subtracting the start and stop TDC channels, the gray

counter result is 6, and this value gets multiplied by the TDC resolution.

Finally, the coarse counter value is sampled in the first clock cycle that the hit signal is active and

stored in the next clock cycle, resulting in the value 2. Another value is sampled in the first clock cycle that

the hit signal becomes inactive and stored in the next clock cycle, resulting in the value 4. Note that once

the coarse counter is started by the hit signal, the counter is incremented in the positive edge of the free

running clock and the two sampled values work as timestamp. Therefore, to obtain the time difference,

these two values are subtracted originating the value 2, that is multiplied by the clock period and added

to the gray code result to build the final time representation.
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Figure 3.4: Double-sampling gray TDC operation principle
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3.2 Implementation

Preliminary tests on the Xilinx Ultrascale+ FPGA platform presented in research work [41] indicated

an average datapath step delay between 105-118 ps. An improvement of up to 50% is expected as a result

of the double-sampling stage. However, since the architecture requires the double of the flip-flops for a

single channel, it is also expected that fewer routing resources will be available, resulting in lower routing

uniformity, as less efficient paths need to be used. A system clock of 500 MHz was selected for this

implementation. Thus, considering the average 105 ps resolution, the 5-bit gray counter can fully cover

one clock cycle.

To implement the TDC architecture, the first step, after developing the HDL and synthesizing the

design, is to fix the placement of the LUTs and flip-flops of the gray code oscillator previously presented

in Figure 3.2. The placement and part of the routing of the gray code oscillator start channel in Vivado is

depicted in Figure 3.5. The first slice contains both the LUTs that implement the gray code counter and a

sample stage. The second sample stage is located in the second slice, providing the required path delay.

Lastly, the store registers are placed in the third slice. The stop channel is equally placed, two rows below,

to avoid restringing the other channel’s routing resources. As demonstrated in [41], only 8 of the 24 paths

affect the TDC resolution. These nets are used to build the gray code counter sequence, and they will be

explored to improve linearity. The design is implemented in Vivado with the Performance_NetDelay_low

strategy. Afterward, the gray code counter’s routing delays for both start and stop channels are noted, and

the routing paths are saved, together with the Name and BEL Pin of each LUT input.

...

Figure 3.5: Double-sampling gray TDC start channel placement and partial routing. Note that the LUTs
and Flip-flops from the TDC channel are highlighted in pink, and the routing between them is highlighted
in orange. Moreover, as the slice on the right side is originally placed further to the right, and the routing
is continuous, the image was concatenated, and the suspension points were introduced, allowing a bigger
scaled image.

A preliminary performance evaluation was performed for both start and stop channels. The results
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showcased a better TDC performance in the start channel. Therefore, the start channel’s routing path

was replicated into the stop channel with the set_property FIXED_ROUTE command. Similarly, the Name

and BEL Pin of the LUT’s input from the start channel was fixed and replicated into the stop channel with

the set_property LOCK_PINS command, preventing implementation variations in consecutive runs. Figure

3.6 presents an excerpt of the commands used in the implementation constraints.

Figure 3.6: Double-sampling gray TDC start channel implementation constraints excerpt

The manual routing approach proposed in [41] was also explored. Although the Xilinx Ultrascale+

architecture provides more routing options, it is also a more complex architecture. Alongside that, the

double-sampling stage proposed in this work, together with the lack of information regarding the FPGA’s

routing resources, further increased the complexity of the manual routing process. These turned manual

routing into a less viable solution. Therefore, this method was not implemented. Nevertheless, this could

be thoroughly explored in a future implementation.

The clock frequency for the interface is half the TDC clock frequency (250 MHz), complying with the

maximum AXI operating frequency of 333.333 MHz (a critical warning is displayed by Vivado whenever

the AXI operating frequency is set to a higher value). Finally, the HDL for the AXI-lite interface is based on

the implementation presented in [94].

3.3 Tests and Results

To characterize the implemented TDC, a code density test was performed, being the start and stop sig-

nals generated using the Keysight 33600A Series waveform generator. According to the Keysight datasheet
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[38], it has a maximum edge jitter of 1 ps corresponding to less than 1.45% of the TDC resolution. There-

fore, the test results will not be influenced by the waveform generator. A total of 100 thousand measure-

ments were performed to reduce probabilistic errors. The tests were performed with the board at ambient

temperature. A pulse waveform was used with a 30% duty cycle and 0º phase at a frequency of 999173

Hz. This frequency is unrelated to the 500 MHz TDC clock, originating a sliding window effect on the TDC

interpolation steps. Figure 3.7 shows the tests setup using the Tektronix AFG1022 waveform generator.

Figure 3.7: TDC tests setup

Although the routing constraints from the TDC start channel were replicated into the TDC stop channel,

the results between channels are not expected to be similar as they are not measuring the same signal.

As previously presented in Figure 3.4, the start channel measures the hit start signal and the stop channel

the hit stop signal. Even if the two channels were measuring the same signal, the results could be slightly

different due to Process, Voltage and Temperature (PVT) variations. Similarly, the first and second sampling

stages (indicated as 1 and 2, respectively, in Figures 3.8, 3.9, and 3.10) may capture different values,

thus, obtaining different results (like explained in 3.1).

The start and stop channel’s code density test performed to extract the delay of each gray code

interpolation step is displayed in Figure 3.8 and obtained according to equation 3.2.

τi = Ni ∗
T

NTotal

(3.2)

where τi is the ith gray code oscillator step delay, Ni is the number of times the step i was sampled, T

is the TDC clock period, and NTotal is the total number of samples. The start total channel presents a

minimum bin size of 3.32 ps and a maximum of 124.78 ps. For the stop total channel, the minimum bin
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size is 7.1 ps, while the maximum reaches 175.04 ps. As the system clock period is 2000 ps (i.e. clock

frequency of 500 MHz) and there are 29 different bin cells, the TDC mean resolution is around 69 ps

RMS.
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1.76 LSB 1.50 LSB

167.94 ps 2.44 LSB
1.67 LSB167.94 ps 2.44 LSB
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1.50 LSB 1.67 LSB

121.46 ps 167.94 ps

Figure 3.8: TDC start and stop channel’s code density test. The 1, 2, and Total correspond to the first
sampling stage, second sampling stage, and both sampling stages combined, respectively.

The code density test results were used to calculate the non-linearities depicted in Figures 3.9 and

3.10. The Differential Non-Linearity (DNL) and the Integral Non-Linearity (INL) are calculated according to

3.3 and 3.4, respectively (normalized to one LSB).

DNLi = τi − τ (3.3)

INLi =
n∑

i=0

DNLi (3.4)
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whereDNLi is the DNL of step i and τ is the average step size. INLn is the addition of the DNL values

until step n. The start channel presents a DNL ranging from -0.95 to 0.81 and an INL ranging from -1.01

to 0.49. For the stop channel, the DNL ranges from -0.90 to 1.54, and the INL ranges from -0.45 to 1.22.
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Figure 3.9: TDC start and stop channel’s Differential Non-Linearity (DNL). The 1, 2, and Total correspond
to the first sampling stage, second sampling stage, and both sampling stages combined, respectively.
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Figure 3.10: TDC start and stop channel’s Integral Non-Linearity (INL). The 1, 2, and Total correspond to
the first sampling stage, second sampling stage, and both sampling stages combined, respectively.

A series of single-shot precision tests are presented in Figure 3.11. A bin-by-bin calibration and a

10-value average method were calculated in software. The single-shot precision results show a standard

deviation of 58.94 ps and 54.99 ps, before and after calibration being applied, proving that the calibra-

tion stage is not essential for this architecture. With the 10-value average method applied, the standard

deviation is 18.61 ps.
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Figure 3.11: TDC single-shot precision and standard deviation before and after calibration (top). 10-value
average single-shot precision and standard deviation before and after calibration (bottom).

According to Vivado’s resource usage report, each TDC channel requires 7 LUTs and 20 registers,

whereas the power consumption should be less than 1 mW. The complete TDC IP (including the FIFO and

Interface as represented in Figure 3.1) uses 482 LUTs, 409 registers, and consumes 22 mW. Finally, when

including all the IPs (e.g., interconnects, system resets, system management wizard, Zynq Ultrascale+

MPSoC), a total of 2064 LUTs and 2696 registers are used, and maximum power consumption of 2.087

W is recorded.

3.3.1 Discussion

Table 3.1 compares the presented gray code architecture [91] to the existent gray code TDC archi-

tectures [26], [41] and some of the TDL architectures [95], [22] [96]. In terms of resources and power

consumption, gray code TDCs have a substantial advantage as they are not resource hungry. For instance,

a TDC channel in this work only requires 7 LUTs, 20 Flip-flops, and less than 1 mW of power. Also, they

have an excellent dynamic range, covering a wide range of applications, and tend to have better linearity.

As for resolution and precision, TDL TDCs have the advantage with values reaching a few picoseconds.

However, this work provides 69 ps resolution meaning that 1 cm in depth can be distinguished which is

more than enough for the kind of applications being targeted (i.e., automotive LiDAR).

The results demonstrate that with a slight linearity compromise and a minor resource increase, this
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work provides significantly better resolution and single-shot precision when compared to the other gray

code TDCs. It is important to state that, while part of the performance improvement has been achieved

due to the FPGA process node technology used, simply porting the architecture in [41] would result on

a TDC resolution around 111 ps. Thus, the double-sampling architecture proposed allowed a resolution

improvement of about 38%. Moreover, since this design also offers high homogeneity and scalability and

is able to provide good linearity, even without manual routing, a multi-channel TDC implementation can

be easily accomplished by simply replicating the initial TDC channel and respective constraints.

Table 3.1: Comparisson of TDL TDCs with gray code TDCs

Parameter
Tapped Delay Line TDCs Gray Code TDCs

Wave Union
[95]

Multichain
[22]

Tuned [96] Work [26]
Work [41] This Work

[91]Default Manual

LUTs 2460 2433 216 8 7
7a

482b

Flip-flops 3463 6258 368 8 10
20a

409b

Power
(mW)

1030 821 164 - -
<1a

22b

Dynamic
Range

- - - 32 us >524 us 8.194 us

LSB (ps) 2.48 2.45 22.2 256-271
308-348
108-118

380.9 69

Precision
RMS/SSP

(ps)
3.63 3.9 26.04

160
64d

400
290c

290
290c

58.94
54.99c

18.61e

DNL (LSB) [−0.93, 1.68] - [−0.95, 1.19] [-0.61:0.95] [-0.65:0.55] [-0.38:0.38] [-0.95:0.81]
INL (LSB) [−1.78, 2.67] - [−2.75, 1.24] - [0.01:2.9] [0.01:0.7] [-1.01:0.49]
FPGA

Process
20 nm 28 nm 28 nm 28 nm 28 nm 16 nm

a Per TDC channel.
b Including 2 channels a FIFO and an Interface as represented in Figure 3.1.
c After bin-by-bin calibration.
d After 4 measurements average calibration.
e After 10-value average.
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This chapter explores the Robotic Operating System (ROS) as an interface for the developed TDC-based

ToF measurement unit to integrate with other systems requiring high-resolution time interval measure-

ment. The chapter starts with the description of the proposed design. Afterwards, the implementation is

presented, explaining the integration of the system in the development board. Finally, the tests and results

are presented and discussed.

4.1 Design

As previously described in section 2.4, ROS’s asynchronous communication model is based on pub-

lish/subscribe messaging [62], where nodes interact through a topic with other nodes [63] (see Figure

4.1). The communication starts with each node registration to the master and continues with data trans-

mission through a communication channel named topic. A publisher node publishes a message to a

topic, and any subscriber node, previously subscribed to the topic, can receive the message. Thus, the

publisher/subscriber model is appropriate for one-way, many-to-many data transport. Any ROS node can

operate as a publisher or subscriber, or both. Since ROS nodes are bound loosely, a node can be simply

added or removed at any time. These nodes can be grouped into packages, easily shared, and distributed

over different platforms. As described in [80], integrating an FPGA module into a ROS system must follow

some requirements to be compatible with other ROS nodes, namely:

• The functionality must be equivalent to the one implemented in software;

• The message type and data format used at the ROS node’s input and output must be equivalent to

those implemented in software.

ROS Master

Publisher 
Node 

Subscriber 
Node 

Registration Registration

ROS Topic
ROS 

Message
ROS 

Message

Figure 4.1: ROS asynchronous communication (adapted from [64])
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Based on these requirements, the ROS node should encapsulate the FPGA circuit, translate between

ROS messages and FPGA data ports, and publish or subscribe to a ROS topic. Figure 4.2 presents the ROS

interface architecture for the double-sampling gray code TDC. The FPGA part contains the TDC architecture

for ToF measurement. The interface accesses the FIFO memory of the TDC and converts the values into

a time representation in picoseconds. The processor runs a Linux OS with ROS, built with PetaLinux Tools

from Xilinx [57]. The time values are sequentially requested in the ROS node on the Arm through an AXI

interface. The time values are used to calculate the distance (i.e., depth) and build a point cloud frame.

Finally, the ROS node publishes the ROS PointCloud2 message type to a ROS topic accessible by any

subscriber, independently of the device in which the subscriber is running.
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Figure 4.2: Architecture of the ROS interface for the TDC

4.2 Implementation

This subsection starts by describing the process of generating an Embedded Linux OS image with

custom hardware and packages such as ROS. Then, it is explained the procedure to develop applications

for a specific Linux OS image. Lastly, a high-level implementation of the interface ROS node is provided.
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4.2.1 Linux OS Image

For including ROS in the PS Arm processor, an Embedded Linux image was developed using the Xilinx

tools version 2020.1 (i.e., PetaLinux, Vivado and Vitis) in a machine with an Ubuntu OS version 18.04.04.

In order to install PetaLinux, Vivado and Vitis need to be already installed, and some environment requisites

need to be met (see the PetaLinux documentation [97]). Vivado is used to generate the programmable

logic, which is then used in PetaLinux to build the Linux OS image with ROS and Vitis to build the ROS

publisher node.

The project size will vary depending on the included packages and features. In PetaLinux, a Board

Support Package (BSP) is a reference design for a specific board that includes all necessary design and

configuration files to make the image compatible with the board’s hardware. The board used is an Enclustra

Mars XU3 [98] with a Mars EB1 baseboard [99]. Xilinx does not officially support this board, however,

Enclustra has developed BSP files for their boards that can be used to create Linux images. Before

creating the project, a terminal must be opened in the desired directory. Next, the project is created and

preconfigured with the Board Support Package (BSP) from the Enclustra repository [100]. The project is

then modified to include the TDC hardware file generated by Vivado (i.e., .xsa file), as depicted in Code

4.1.

1 $ cd <project-directory >

2 $ petalinux -create -t project -n <project-name> -s <BSP-directory >/MA-XU3-3

EG-2I-D11_EB1_SD.bsp

3 $ cd ./<project-name>

4 $ petalinux -config --get-hw-description=<xsa-file-directory >

5 → Save and exit

Code 4.1: Create PetaLinux project and configure with the TDC hardware file

The next step is to download ROS into the project directory. The selected repository branch must be

zeus, since the PetaLinux packages are also built from the Yocto Project zeus branch. Yocto Project is

a collaborative open-source project that enables developers to create custom Linux images, and it is the

base of PetaLinux. Therefore, the ROS layer should be compatible with the Yocto layer so that the image

can be successfully built. Then, the project is configured with the ROS melodic layer and its dependencies

according to the order presented in Code 4.2. Each layer has its dependencies, and they can be verified

in OpenEmbedded [101].

1 $ cd project-spec/

2 $ git clone -b zeus https://github.com/ros/meta-ros.git
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3 $ cd ..

4 $ petalinux -config

5 → Yocto Settings → User Layers

6 → ${proot}/project-spec/meta-ros/meta-ros-common

7 → ${proot}/project-spec/meta-ros/meta-ros-backports -dunfell

8 → ${proot}/project-spec/meta-ros/meta-ros1

9 → ${proot}/project-spec/meta-ros/meta-ros1-melodic

10 → Save and exit

Code 4.2: Configure the PetaLinux project with the ROS melodic layer

In order to add ROS to the Linux OS image root filesystem, the user-rootfsconfig file needs to be

edited by inserting, in individual lines, the packages names preceded by “CONFIG_” as depicted in Code

4.3. The complete list of packages added to the user-rootfsconfig file are listed in Appendix A, Code A.1.

These packages will then be added into the root filesystem menu entry and accessed with the command

petalinux-config -c rootfs. In the “user packages” section of the menu, the packages to be included can be

selected. For this image, all packages are selected. Moreover, other packages with network functionalities

were added, such as iproute2 and net-tools, in order to establish Ethernet connections with other platforms.

For instance, net-tools will be used to assign an IP address to the board. After that, the project is prebuilt

so that the Linux Kernel can be configured. Note that the swap memory should be enabled in the Linux

build environment, so that the build process does not fail due to insufficient Random Access Memory.

Depending on the included packages, the necessary memory size can vary. For example, when including

the PCL library package, 10 GB of swap memory was not enough, but the project was built successfully

with 20 GB of space.

1 $ sudo nano ./project-spec/meta-user/conf/user-rootfsconfig

2 # ------------------------- user-rootfsconfig file ------------------------

3 CONFIG_nano

4 ...

5 CONFIG_rosboost -cfg

6 # -------------------------------------------------------------------------

7 → Save and exit

8 $ petalinux -config -c rootfs

9 → user packages

10 → [*] nano

11 ...

12 → [*] rosboost-cfg

13 → Filesystem Packages
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14 → base

15 → iproute2 → [*] iproute2

16 → netbase → [*] netbase

17 → console

18 → network

19 → ethtool

20 → [*] ethtool

21 → libs

22 → libmali-xlnx

23 → [*] libmali-xlnx

24 → [*] libmali-xlnx-dev

25 → misc

26 → net-tools

27 → [*] net-tools

28 → Save and exit

29 $ petalinux -build

Code 4.3: Configure the Linux image root filesystem with ROS

In the kernel configuration, the Userspace Input/Output drivers need to be activated with the options

depicted in Code 4.4. This will interconnect the AXI-lite registers to the UIO drivers on Linux OS, thus

enabling access to the AXI-lite registers from the ROS node into the PS. By using the [*] option instead

of the [y] option, the UIO module will automatically be loaded into the kernel on the board boot process.

When opting for the [y] option, the UIO module must be manually loaded into the kernel (before using any

of the UIO driver functionalities) using the modprobe command.

The image boot arguments need to be edited to include the UIO drivers, and the TDC module needs

to be declared compatible with them (so that the UIO drivers can be used to access the AXI-lite registers

of the TDC interface module). In order for the image to be properly configured, it is essential that the boot

arguments predefined by the BSP are maintained and that only the “uio_pdrv_genirq.of_id=generic-uio” is

appended. The petalinux-config command can be used to verify them in the Kernel Bootargs setting. The

UIO drivers are included by adding the “chosen{...}” item, and the the TDC module becomes compatible

with them by adding the “&SAXIL_grayTDC_0{...}” item. The second item should contain the exact FPGA

module ID that contains the AXI-lite, in this case, the TDC interface ID is SAXIL_grayTDC_0. Finally, the

project is rebuilt, securing the latest configurations, and assembling the required boot and root filesystem

files.

1 $ petalinux -config -c kernel

2 → Device Drivers
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3 → Userspace I/O drivers

4 → [*] Userspace I/O platform driver with generic IRQ handing

5 → [*] Userspace platform driver with generic irq and dynamic memory

6 → Save and exit

7 $ petalinux -config

8 → DTG Settings → Kernel Bootargs

9 → earlycon console=ttyPS0 ,115200 clk_ignore_unused root=/dev/mmcblk1p2

rw rootwait uio_pdrv_genirq.of_id=generic-uio

10 → Save and exit

11 $ sudo nano ./project-spec/meta-user/recipes-bsp/device-tree/files/system-

user.dtsi

12 # -------------------------- system-user.dtsi file ------------------------

13 /include/ "system-conf.dtsi"

14 / {

15 model = "Enclustra MA-XU3-3EG-2I-D11 SOM";

16 chosen {

17 bootargs = "earlycon console=ttyPS0 ,115200 clk_ignore_unused root=/dev/

mmcblk1p2 rw rootwait uio_pdrv_genirq.of_id=generic-uio";

18 stdout-path = "serial0:115200n8";

19 };

20 };

21

22 &SAXIL_grayTDC_0 {

23 compatible = "generic-uio";

24 };

25

26 #include "zynqmp_enclustra_common.dtsi"

27 #include "zynqmp_enclustra_mars_eb1.dtsi"

28 #include "zynqmp_enclustra_mars_xu3.dtsi"

29 # -------------------------------------------------------------------------

30 → Save and exit

31 $ petalinux -build

Code 4.4: Configure the Linux image kernel with UIO drivers

For deploying the Linux OS image, the petalinux-package command is used so that the BOOT.BIN file

is assembled with some of the generated files (i.e., fsbl, u-boot, pmufw, and the FPGA bitstream). The -

-force option guarantees that if this file was previously created, it is replaced with an updated version. The

commands from lines 3 and 4 of Code 4.5 are only required if a Linux application is going to be assembled
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with Vitis and are used to extract the generated root filesystem.

1 $ cd images/linux

2 $ petalinux -package --boot --fsbl ./zynqmp_fsbl.elf --u-boot ./u-boot.elf

--pmufw ./pmufw.elf --fpga ./system.bit --force

3 $ petalinux -build --sdk

4 $ petalinux -package --sysroot

Code 4.5: Assemble the BOOT.BIN file and extract the root filesystem

Finally, two partitions were created in a SD card, a BOOT partition in the FAT32 format and a ROOT

partition in the EXT4 format. The boot.scr, BOOT.BIN, and image.ub files need to be copied to the BOOT

partition, and the rootfs.tar.gz file needs to be extracted into the ROOT partition.

4.2.2 Linux Application

The process of creating an application compatible with the developed hardware and Linux image is

based on [102] and [103]. Before creating a new application in Vitis, a platform is created to simulate

the board environment and allow Vitis to cross-compile the application. The required files generated by

PetaLinux are organized into a folder structure, as depicted in Code 4.6.

1 $ cd <linux-platform-directory >

2 $ mkdir -p src/a53/xrt/image

3 $ mkdir src/boot

4 → Copy the image.ub, boot.scr and rootfs.tar.gz files from the PetaLinux

image/linux project folder to src/a53/xrt/image

5 → Copy the system.bit, bl31.elf, u-boot.elf, zynqmp_fsbl and pmufw.elf

files from the Petalinux image/linux project folder to src/boot

6 → Create the linux.bif file and save it to src/boot with the following

content:

7 # ----------------------------- linux.bif file ----------------------------

8 the_ROM_image:

9 {

10 [fsbl_config] a53_x64

11 [bootloader] <linux-platform -directory >/src/boot/zynqmp_fsbl.elf>

12 [pmufw_image] <linux-platform -directory >/src/boot/pmufw.elf>

13 [destination_device=pl] <linux-platform -directory >/src/boot/system.bit

14 [destination_cpu=a53-0, exception_level=el-3, trustzone] <linux-platform -

directory >/src/boot/bl31.elf

15 [destination_cpu=a53-0, exception_level=el-2] <linux-platform -directory >/

src/boot/u-boot.elf
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16 }

17 # -------------------------------------------------------------------------

Code 4.6: Preparing the required platform files generated by PetaLinux

With the folder structure completed, Vitis can be launched to create the platform project as demon-

strated in Figure 4.3. The required xsa file is the same previously used in the PetaLinux project configu-

ration (i.e., TDC hardware file generated by Vivado, mentioned in Code 4.1 line 4). Next, linux needs to

be selected as the Operating System and Generate boot components is deselect as the boot components

were already generated with PetaLinux.

Figure 4.3: Create a Vitis platform

To complete the configuration of the platform project, the remaining details are fulfilled with the

PetaLinux files previously prepared in the folder, along with the extracted root filesystem stored in the

images/linux directory of the PetaLinux project. The platform configuration is depicted in Figure 4.4.
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Figure 4.4: Configure the Vitis platform

Finally, the Vitis platform is built as presented in Figure 4.5. After the build, the platform is stored in

<platform-project-name>/export (in this case, the platform project name is platLinux_grayTDC_ROSnode).

Figure 4.5: Build the Vitis platform project

After these steps, the application project can be created as indicated in Figure 4.6. The platform

created is selected and the application settings such as Sysroot path, Root FS, and Kernel Image are

automatically imported from the selected platform. In Figure 4.7, the Empty Application (C++) template is

selected as a custom ROS node will be designed. Next, a new C++ file is added, and the application code
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is inserted (the ROS node implementation is explored in section 4.2.3).

Figure 4.6: Create the Vitis application

Figure 4.7: Add a file to the Vitis application
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The developed application requires some functionalities that are provided by packages included in the

generated Linux image. Thus, the include paths field needs to be edited to incorporate them. Code 4.7

presents the include paths required, and Figure 4.8 shows how to add them.

1 "${workspace_loc:/platLinux_DoubleSamplingGrayTDC_ROS_UIO/export/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/sw/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/linux_domain/sysroot/aarch64-

xilinx-linux/opt/ros/melodic/include}"

2 "${workspace_loc:/platLinux_DoubleSamplingGrayTDC_ROS_UIO/export/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/sw/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/linux_domain/sysroot/aarch64-

xilinx-linux/usr/include/eigen3}"

3 "${workspace_loc:/platLinux_DoubleSamplingGrayTDC_ROS_UIO/export/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/sw/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/linux_domain/sysroot/aarch64-

xilinx-linux/usr/include/pcl-1.8}"

4 "${workspace_loc:/platLinux_DoubleSamplingGrayTDC_ROS_UIO/export/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/sw/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/linux_domain/sysroot/aarch64-

xilinx-linux/opt/ros/melodic/lib}"

Code 4.7: Include paths required by the developed application

Figure 4.8: Configure the Vitis application include paths

Similarly, the required application libraries need to be included along with their paths. Code 4.8

displays the libraries added and their path, and Figure 4.9 demonstrates the procedure to include them.

Finally, the application project can be built.
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1 → Libraries:

2 pthread

3 actionlib

4 bondcpp

5 class_loader

6 cpp_common

7 cv_bridge

8 dynamic_reconfigure_config_init_mutex

9 eigen_conversions

10 message_filters

11 nodeletlib

12 pcl_ros_features

13 pcl_ros_filter

14 pcl_ros_filters

15 pcl_ros_io

16 pcl_ros_segmentation

17 pcl_ros_surface

18 pcl_ros_tf

19 rosbag_default_encryption_plugins

20 rosbag

21 rosbag_storage

22 rosconsole_backend_interface

23 rosconsole_bridge

24 rosconsole_log4cxx

25 rosconsole

26 roscpp_serialization

27 roscpp

28 roslib

29 roslz4

30 rospack

31 rostime

32 tf2_ros

33 tf2

34 tf

35 topic_tools

36 xmlrpcpp

37

38 → Library search path:

39 "${workspace_loc:/platLinux_DoubleSamplingGrayTDC_ROS_UIO/export/
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platLinux_DoubleSamplingGrayTDC_ROS_UIO/sw/

platLinux_DoubleSamplingGrayTDC_ROS_UIO/linux_domain/sysroot/aarch64-

xilinx-linux/opt/ros/melodic/lib}"

Code 4.8: Libraries required by the developed application and their path

Figure 4.9: Configure the Vitis application libraries and their paths

4.2.3 Publisher ROS node

The ROS node is responsible for creating a ROS publisher that publishes a PointCloud2 to a topic. For

manipulating the ROS PointCloud2 message type, the Point Cloud Library (PCL) [104] is used. The node

starts by configuring the PointCloud2 with X, Y, and Z coordinates for a frame with 360 columns by 100

rows. In a thread, a UIO device file is opened to allow access to the AXI-lite registers in the Linux User

Space. The start signal, T , and LSB are simultaneously sent through an AXI write transaction to the TDC

interface. Lastly, the thread enters an infinite loop where an AXI read transaction obtains the time value

in picoseconds and converts it to distance according to equation 4.1. The calculation result is assigned to

the Z coordinate of the point cloud. The frame rows and columns are assigned to the X and Y coordinates.

The complete PointCloud2 frame is published to a ROS topic, and the process is repeated. Figure 4.10

presents the publisher flowchart.

distance = time ∗ speed_of_light (4.1)
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Figure 4.10: ROS PointCloud2 publisher node flowchart

4.3 Tests and Results

To test the generated Linux image, the SD card was inserted into the board and the serial port con-

nected to the machine. With a terminal opened on the machine, a serial communication program was

executed (e.g., minicom) with the baud rate set to 115200 bps, as depicted in Figure 4.11. Then, after

verifying that the SD boot mode was selected, the board was powered on and the boot messages were

printed on the opened terminal. When the login message appeared, the username and password root

were inserted to enter with root privileges. At this point, it was checked if the selected image functionalities

were working correctly. For instance, it was confirmed if the ROS master could be executed by using the

commands in Code 4.9.

1 $ source /opt/ros/melodic/setup.bash

2 $ roscore

3 → Exit with Ctrl+C

Code 4.9: Commands to verify if the ROS master can be executed on the board
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Figure 4.11: Minicom configuration for connecting with the board

Previously, a serial port connection was sufficient to test the Linux image. However, in order to test

and execute the ROS node application, a master needs to be previously started at a separate terminal

console. Therefore, as only a single connection can be established with a serial port, an Ethernet connec-

tion between machine and board was also established. After connecting the Ethernet cable between the

machine and board, a terminal was opened, and the command nm-connection-editor was executed. Then,

the wired connection was selected, and in the Method of the IPv4 Settings, the Shared to other computers

option was selected and saved. Next, the arp command was executed to verify the board IP and later used

to connect with the machine through the Secure Shell (SSH) protocol (as depicted in Figure 4.12).

Figure 4.12: Connect the machine with the board through SSH

In order to test ROS modularity, two main architectures were explored. The first architecture requires

only the Zynq Ultrascale+ MPSoC, where ROS is executed in the PS (running a Linux OS). The second

architecture includes a PC with Ubuntu and ROS, making it available on both platforms. In both cases,

the ROS publisher is executed on the Zynq board. However, the ROS master and any subscriber can be

executed on either platform as long as they are connected (see Figure 4.2). To connect multiple machines

that contain ROS and form a single ROS system with a single master, the guide in [105] can be used. By

including a Ubuntu PC, one can easily display the point cloud information through RVIZ (see Figure 4.13).
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Figure 4.13: ROS PointCloud2 frame visualization with RVIZ

As the TDC implemented has only one channel, the LiDAR point cloud is built point by point, meaning

that a point can only be processed after the previous one is completed. As a result, the system performance

depends on the measured distance (i.e., duration of the hit signal). Figure 4.14 shows the frequency at

which the PointCloud2 topic is receiving new frames. For a complete frame, in the worst-case scenario

(i.e., time interval equal to 1.34 ns for the 36000 points), the average refresh rate is 10.32 FPS, the

minimum 10.10 FPS, and the maximum 10.53 FPS. For the scenario where the time interval is set to 40

ns, the average refresh rate is 97.42 FPS, for the same amount of points, with the minimum reaching

71.43 FPS, and a maximum of 142.86 FPS. The performance in both the Zynq only and the Zynq with

PC architectures is similar. Finally, with a time interval of 1.2 ns, the RVIZ tool shows that the minimum

received depth is 179.88 m, and the maximum is 180.04 m (during the ROS interface tests, a less precise

waveform generator was used, namely, the Tektronix AFG1022, which has a jitter up to 1 ns, which clearly

is influencing the measured depth range).
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Figure 4.14: ROS PointCloud2 frame refresh rate

4.3.1 Discussion

With a single TDC channel implementation and a full point cloud frame with all the points at 200 m

of depth, the ROS interface was able to meet LiDAR’s minimum 10 FPS requirement. The TDC-based

ToF measurement unit enables the system to measure depth with high resolution when integrated with

a LiDAR sensor. ROS enables a flexible interface for plug-and-play capabilities and high integration with

already established tools supporting ROS and PointCloud2 messages. The PCL library (or any other library)

can also be combined with ROS to effortlessly process the LiDAR data (i.e., point cloud). This system is

suitable for autonomous vehicles, but it could also be incorporated with any application requiring real-world

mapping. For instance, a robotic system like the one in [106], which requires a ToF-based navigation

system, would benefit from a LiDAR system that could provide point clouds through ROS as it is already

used for system processing.
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This chapter explores the migration of the Robotic Operating System (ROS) interface for the developed

TDC into hardware. The chapter starts by describing the proposed design and analyzing the ROS network.

Afterwards, the implementation is presented, explaining the adjustment of the interface to suit the FPGA.

Finally, the tests and results are presented, and the software and hardware ROS interfaces are compared

and discussed.

5.1 Design

Figure 5.1 presents the hardware ROS interface architecture for the Double-sampling Gray Code TDC.

The Processing System from the Zynq Ultrascale+ MPSoC is no longer necessary as the Publisher node is

implemented in the FPGA. In contrast to what was proposed in section 4.1, the FPGA is not only responsible

for retrieving the TDC values but also for doing all the necessary conversions from time in picoseconds

to the depth in meters. Therefore, the hardwired node will directly publish PointCloud2 frames that can

be received from a Subscriber in the Host PC. The same design requirements previously described in

section 4.1 are also needed to implement a hardware Publisher. Essentially, the hardware Publisher node

needs to replicate the messaging process used by ROS to communicate with other Subscriber nodes

asynchronously, and this process is detailed in section 5.1.1.
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InterfaceInterfaceInterface

Publisher 
Node 

ROS Topic
(PointCloud2)

Zynq Ultrascale+ MPSoC Host PC
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ROS Master

Registration
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Figure 5.1: Architecture of the hardware ROS interface for the TDC
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5.1.1 ROS Network Analysis

A general overview of ROS was provided in section 2.4. The ROS network is analyzed in more detail in

the current section since it is intended to be implemented in FPGA. The ROS Master, implemented with the

XmlRpc++ protocol, is responsible for gathering Publisher and Subscriber nodes and associating them with

their respective topics and services [107]. A node will be able to locate other nodes through the Master.

After that, nodes can directly communicate pee-to-peer. The Master has a Uniform Resource Identifier (URI)

stored in the ROS_MASTER_URI environment variable that corresponds to the host:port of the XmlRpc++

server it is running on (by default, the port is 11311). The host value will be inherited by either the

ROS_HOSTNAME or the ROS_IP environment variables (when both are defined, ROS_HOSTNAME takes

precedence). If neither is defined in the system, it inherits the local hostname or IP.

Like the Master, every node has a URI corresponding to the host:port of the XmlRpc++ server it is

running (any not reserved port may be used). This server is exclusively used to communicate with the

Master and negotiate connections with other ROS nodes. A Subscriber node will request a connection

to a Publisher node every time a publisherUpdate call from the Master is received, or if in the moment

of the Subscriber registration, there are already Publishers for the requested topic. In both cases, the

Master sends the requested topic name to the Subscriber and a list of Uniform Resource Identifiers (URIs)

corresponding to nodes that publish to that topic is returned. After that, the Subscriber should establish

a new negotiation connection for every listed Publisher. In each of these connections, the Subscriber

sends a list of supported protocols, and the Publisher selects the protocol to be adopted along with its

configuration (i.e., IP address and port number of a TCP/IP server socket). A separate connection is then

established (using the received protocol information) and used to transfer data from the Publisher to the

Subscriber.

ROS supports two transport layers: a TCP/IP-based (i.e., TCPROS) and a UDP-based (i.e., UDPROS).

TCPROS is the default transport protocol used in ROS, and it is the only protocol that client libraries are

required to support. It provides a reliable and straightforward communication stream where lost packets

are resent and always arrive at the destination in order. It should always be adopted in local or wired

Ethernet networks. On the other hand, UDPROS is more appropriate for lossy connections such as Wi-Fi,

in which the loss of packets is likely to occur [107]. Due to the lack of relevance of UDPROS in this work,

only TCPROS will be further explored.

Figure 5.2 demonstrates how a topic connection between two nodes is established. First, the Publisher

and Subscriber nodes are started and registered with the Master through the XmlRpc++ protocol. In the

registration process, the Publisher advertises that it is publishing to a “lidar_pcl2” topic with hostname
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“soc” and port number “1234”, and the Subscriber indicates that it is subscribing to a topic named

“soc”. At this point, the Master notices that a “soc” topic has already been advertised. Thus it responds

to the Subscriber with the topic hostname “soc” and port number “1234”. Now, the Subscriber sends a

connection request to the Publisher (using the hostname and port number received) and negotiates the

data transport protocol (i.e., TCPROS or UDPROS). The Publisher responds with the information for the

selected transport protocol (i.e., TCP server with hostname “soc” and port number “5678”). Finally, the

Subscriber connects to the Publisher using the selected TCP protocol, a connection header is exchanged

between them, and then data is continuously sent by the Publisher node and received by the Subscriber

node.

ROS Master

Subscriber 
Node 

connect(“lidar_pcl2”, TCP)

TCP server: soc:5678

connect(soc:5678)

PointCloud2 data messages

Publisher 
Node

XML/RPC - soc:1234

TCP data - soc:5678

Figure 5.2: Establishing a topic connection between ROS nodes (adapted from [107])

XmlRpc++

XmlRpc++ is an implementation of the XML-RPC protocol using the C++ programming language, which

is heavily modified from the package on SourceForge [108] so that it can support roscpp’s threading

model [87]. Therefore, ROS has its own source code (available in [109]). According to [107], this protocol

was primarily chosen because it is relatively lightweight, does not require a stateful connection1, and has

wide availability in a variety of programming languages.

The XML-RPC protocol is a remote procedure call protocol that uses XML to encode its calls and HTTP

as a transport mechanism [111]. When a client wants to communicate with a server through XML-RPC,

it uses the HTTP request POST method. On the server side, after the request has been received, the

XML content is analyzed, and an XML response is generated and sent as an HTTP response. XML-RPC

1Keeping state or being stateful means that some device is keeping track of another device or a connection, either temporarily
or over a long period of time [110].
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supports several data types for the transfer of its parameters, such as int or i4, string, array, double, and

boolean. A simple client-server communication example is given in Code 5.1 and 5.2.

1 <?xml version="1.0"?>

2 <methodCall>

3 <methodName>statustest</methodName>

4 <params>

5 <param>

6 <value><i4>10</i4></value>

7 </param>

8 </params>

9 </methodCall>

Code 5.1: Client HTTP request [112]

1 <?xml version="1.0"?>

2 <methodResponse>

3 <params>

4 <param>

5 <value><string>Status: OK</string></value>

6 </param>

7 </params>

8 </methodResponse>

Code 5.2: Server HTTP response [112]

TCPROS

In order to transmit data (i.e., ROS messages or services) between nodes, ROS uses a transport layer

named TCPROS [88]. Essentially, it consists of standard TCP/IP packets in which the data part contains

metadata (i.e., information about the data being transmitted) and the ROS message or service content.

When a connection is being established between two nodes, a ROS connection header containing

metadata is sent at the beginning of the transaction [113]. After that, each TCPROS packet contains data

and a header. The header generally contains information about the size of the transfer, however, depending

on the ROSmessage type, it can also have other relevant information. For instance, the PointCloud2 header

contains information such as height, width, and endianness. Code 5.3 provides an example connection

header of the string message type, and Code 5.4 the header and the message content.

1 b0 00 00 00 ( message h e a d e r l e n g t h i s 176 b y t e s )

2 20 00 00 00 ( m e s s a g e _ d e f i n i t i o n f i e l d l e n g t h i s 32 b y t e s )

80



Chapter 5. Hardware ROS Interface

3 6d 65 73 73 61 67 65 5 f 64 65 66 69 6e 69 74 69 6 f 6 e 3d 73 74 72

4 m e s s a g e _ d e f i n i t i o n = s t r

5 69 6 e 67 20 64 61 74 61 0a 0a

6 i n g d a t a \ n \ n

7 25 00 00 00 ( c a l l e r i d f i e l d l e n g t h i s 37 b y t e s )

8 63 61 6 c 6 c 65 72 69 64 3d 2 f 72 6 f 73 74 6 f 70 69 63 5 f 34 37 36

9 c a l l e r i d = / r o s t o p i c _ 4 7 6

10 37 5 f 31 33 31 36 39 31 32 37 34 31 35 35 37

11 7 _ 1 3 1 6 9 1 2 7 4 1 5 5 7

12 0a 00 00 00 ( l a t c h i n g f i e l d l e n g t h i s 10 b y t e s )

13 6 c 61 74 63 68 69 6e 67 3d 31

14 l a t c h i n g = 1

15 27 00 00 00 ( md5sum f i e l d l e n g t h i s 39 b y t e s )

16 6d 64 35 73 75 6d 3d 39 39 32 63 65 38 61 31 36 38 37 63 65 63 38

17 m d 5 s u m = 9 9 2 c e 8 a 1 6 8 7 c e c 8

18 63 38 62 64 38 38 33 65 63 37 33 63 61 34 31 64 31

19 c 8 b d 8 8 3 e c 7 3 c a 4 1 d 1

20 0e 00 00 00 ( t o p i c f i e l d l e n g t h i s 14 b y t e s )

21 74 6 f 70 69 63 3d 2 f 63 68 61 74 74 65 72

22 t o p i c = / c h a t t e r

23 14 00 00 00 ( message t y p e l e n g t h i s 20 b y t e s )

24 74 79 70 65 3d 73 74 64 5 f 6d 73 67 73 2 f 53 74 72 69 6e 67

25 t y p e = s t d _ m s g s / S t r i n g

Code 5.3: Example string connection header [113]

1 09 00 00 00 ( message bod y l e n g t h i s 9 b y t e s )

2 05 00 00 00 ( f i r s t f i e l d o f t h e s t d _ms g s / S t r i n g message i s 5 b y t e s )

3 68 65 6 c 6 c 6 f ( S t r i n g message )

4 h e l l o

Code 5.4: Example string header and message [113]

String Publisher/Subscriber Packet Analysis

To fully understand the ROS asynchronous communication, a simple Publisher/Subscriber messaging

system was constructed (similar to the one presented in [114], but using the NoRosout option to further

minimize the system complexity - nodes will not broadcast the rosconsole output to the /rosout topic [115]).

The topic message type chosen is the std_msgs::String, as it has a simple implementation and is briefly

interpreted in [113]. Wireshark [116] was utilized to analyze the network packets.
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The first step was to execute the roscore command that initializes the Master along with other essential

components and then start the Publisher node. Figure 5.3 shows the packets sent by the Publisher node

to the ROS Master in the registration process. A total of 5 HTTP POSTs are transmitted to the Master.

The final POST is the one registering the node as a Publisher to the Master (calling the registerPublisher

method), whereas the initial 4 POSTs give extra functionalities to the node such as a logger Service [117]

and checking Parameter Server existence [118] (with methods such as registerService, and hasParam).

Figure 5.3: Packets from the ROS Publisher registration to the Master

The registerPublisher HTTP POST and response are presented in more detail in Figure 5.4. The

method parameters are: caller_id, topic, topic_type, and caller_api [117]. Thus, the Publisher ID is

“talker” publishing to a “chatter” topic of type “std_msgs/String”, and socket “http://simon-ubuntu:35097”.

The Master responds with code “1”, statusMessage “Registered [/talker] as publisher of [/chatter]”, and

a list of current subscribers to the “chatter” topic (i.e., empty list as there are no current subscribers).

Hence, the Publisher completed a successful registration to the Master.
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Figure 5.4: ROS registerPublisher HTTP POST and response

The Subscriber node was subsequently started, as demonstrated by the registration process packets

sent to the Master in Figure 5.5. Comparably to the Publisher registration, the last HTTP POST registers

the node as a Subscriber (calling the registerSubscriber method), while the remaining 9 POSTs provide

extra functionalities with methods such as registerService and hasParam.

Figure 5.5: Packets from the ROS Subscriber registration to the Master
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The registerSubscriber HTTP POST and response are presented in more detail in Figure 5.6. The

Subscriber ID is “listener” subscribing to a “chatter” topic of type “std_msgs/String”, and the server socket

is “http://simon-ubuntu:39357/”. The Master responds with code “1”, statusMessage “Subscribed to

[/chatter]”, and a list of Publishers currently publishing to the “chatter” topic (i.e., the socket from the

“talker” Publisher is returned “http://simon-ubuntu:35097/”). Thus, the Subscriber successfully registers

to the Master and triggers the subscription process to the “chatter” topic.

Figure 5.6: ROS registerSusbcriber HTTP POST and response

Soon after, the Subscriber sends an HTTP POST requesting the “chatter” topic and suggesting the

TCPROS transport protocol (see Figure 5.7). The Publisher responds with “1” as the operation succeeded

and returns the transport protocol to be used along with the IP address and port number (i.e., TCPROS,

simon-ubuntu, and 47623, respectively). Notice that the Subscriber request was sent to the socket

previously provided in the HTTP POST response to the registerSubscriber method (i.e., “http://simon-

ubuntu:35097/”, where simon-ubuntu translates to the localhost IP address 127.0.0.1). The packets 82,

84, and 85, marked in black in Figure 5.8, correspond to the end of the connection (i.e., Finish (FIN))

between the sockets that negotiated the TCPROS data transmission transport layer.
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Figure 5.7: ROS requestTopic HTTP POST and response

Figure 5.8 presents the initial TCPROS packets exchanged between Publisher and Subscriber. Once

again, the Subscriber sent a connection request to the socket provided in the transport layer negotiation

previously showcased. A connection header, similar to the one depicted in Code 5.3, is forwarded by

the Subscriber. The caller id is the Subscriber name “listener”, then follows the message type md5sum,

the tcp_nodelay setting as “0”, the topic name “chatter”, and the message type std_msgs/String. Later,

the Publisher replies with a response connection header, where the caller id is “talker”, with a latching

value “0”, the same md5sum of the message type, a message definition defined as “string data” for the

“chatter” topic, and finally, the same std_msgs/String message type.
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Figure 5.8: TCPROS Connection Header exchange

At last, data transmission starts at packet 88, continues in packet 90, and stops when a shutdown

event occurs [119] (see Figure 5.9). The time between packets is approximately 1 second as the Publisher

was configured to send messages with a frequency of 1 Hz. The data content is identical to Code 5.4, but

in this case, there is a value being incremented at every new message.

Figure 5.9: TCPROS data transmission

Figure 5.10 presents the packets from the termination of both the Subscriber and the Publisher nodes

(starting at packet 126 and 144, respectively). Contrary to the registering process, the first HTTP POST

captured is responsible for unregistering the nodes from the Master (using the unregisterSubscriber and

unregisterPublisher methods). Then, for each node, both Services are unregistered, using the unregis-

terService method.
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Figure 5.10: Packets from the termination of the Subscriber and Publisher nodes

In the registerSubscriber method call presented in Figure 5.6, there was a socket provided that was

never used. This is because the Publisher node was published beforehand, and no other Publisher with the

same topic emerged after the Subscriber registration. However, this could have happened, and in such

cases, that server socket would have been used. Moreover, the Publisher would have needed another

client socket to execute the publisherUpdate method call. An example is given in Figure 5.11, note that

the server socket port number is not the one provided before, as a different one was generated after the

Subscriber was terminated and relaunched. In the HTTP POST, the values sent are “/master” (this value is

fixed according to the source code [120]), then the topic name “chatter”, and the Publisher transport layer

negotiation socket “http://simon-ubuntu:35943/”. The packets 72 to 74 (marked in black) correspond to

the initialization and establishment of a connection between the Subscriber client socket and the Publisher

server socket, which will be used to negotiate the transport protocol.
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Figure 5.11: ROS publisherUpdate method call

The analysis uncovered different TCP/IP port types for XmlRpc++ and TCPROS. Table 5.1 describes the

required sockets for establishing Publisher/Subscriber communication. A Publisher or Subscriber requires

a server and two client TCP/IP sockets of type XmlRpc++. Moreover, a Publisher requires a server TCPROS

socket and a Subscriber a TCPROS TCP/IP client socket. As a result, at least four TCP sockets are needed

for a ROS Publisher or Subscriber. For a single Publisher, the number of sockets required is given by 3+S

(S being the number of Subscribers to the Publisher’s topic). The same principle applies to the number

of sockets required by a single Subscriber (i.e., 3+P sockets, where P is the number of Publishers to the

Subscriber’s topic). Nonetheless, it is possible to reduce the number of sockets requirement by removing

the publisherUpdate method functionality, thus reaching a minimum requirement of 2+S or 2+P sockets.
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Table 5.1: TCP/IP sockets required to implement Publisher/Subscriber communication

Publisher Subscriber
Sockets Methods Sockets Methods

XmlRpc++ Server 1 requestTopic response 1 publisherUpdate response
XmlRpc++ Client 2 registerPublisher, publisherUpdate 2 registerSubscriber, requestTopic
TCPROS Server 1 Send ROS Messages - -
TCPROS Client - - 1 Receive ROS Messages

PointCloud2 Publisher/Subscriber Packet Analysis

Now that a simple ROS asynchronous communication with the String message type has been an-

alyzed, a more complex message type can be compared to understand their differences. Accordingly,

a similar Publisher/Subscriber system with the PointCloud2 message type has been built and analyzed

with Wireshark. The first detected divergence is shown in Figure 5.12. As it is expected, instead of the

“std_msgs/String” message type, both the Publisher and the Subscriber register the “pcl_chatter” topic

with the “sensor_msgs/PointCloud2” message type.

... ... ...

... ... ...

Figure 5.12: ROS PointCloud2 registerPublisher and registerSubscriber

Moreover, the type “sensor_msgs/PointCloud2” is sent in the Subscriber connection header. The Pub-

lisher response connection header not only has the type changed as also has a differentmessage_definition,

partially depicted in Figure 5.13. Because of the biggermessage_definition size, it also has a substantially

increased number of bytes. The complete response connection header is presented in Appendix B, Code

B.1, and the complete message_definition in Code B.2.
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... ... ...

... ... ...

Figure 5.13: ROS PointCloud2 connection headers

As observed in the message_definition of Code B.2, the ROS PointCloud2 message is substantially

more complex than the previously analyzed String message. Figure 5.14 presents the number of packets

necessary to send the complete PointCloud2 frame (18 packets marked in black, where the first 17 have

a data length of 32768 bytes, and the last packet with number 140, a data length of 65483).

Figure 5.14: ROS PointCloud2 message packets

Due to its size, only a fragment of the message is shown in Figure 5.15 (notice that packet 140 contains

the end of the first PointCloud2 frame and the beginning of the new frame). It is important to mention that

the length of the message will depend on the configuration provided in the Publisher node.
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... ... ...

... ... ...

Figure 5.15: Beginning of the ROS PointCloud2 message (left). End of the PointCloud2 message and start
of the next PointCloud2 frame (right).

The first frame of the PointCloud2 message in Figure 5.15 is analyzed in Code 5.5 (due to the frame

length, from the total 36000 points, only the first and last 3 points are dissected in lines 55-60, and

63-68, respectively). The message fields were deduced from the message_definition of Code 5.5, the raw

message definition from [72], and different experimental tests. As indicated in lines 47-48, the message

is sent in little endian, meaning that the first byte from each field is the least significant value in the

sequence. The x, y, and z values are stored as FLOAT32 (configuration in lines 23-24, 33-34, and 43-

44, respectively), and they represent the frame row, column, and depth, respectively (in this case, the

depth is a meaningless fixed value). Therefore, each floating point is stored according to the IEEE-754

standard [121]. From the information gathered in different tests, the value after the z coordinate (in lines

55-60, and 63-68), is always 1 in decimal.

1 5e ca 08 00 ( message b od y l e n g t h i n b y t e s )

2 576094 ( 0 x0008Ca5e )

3 da 02 00 00 ( s e q u e n c e I D )

4 730 ( 0 x000002da )

5 28 b2 e5 60 f 0 4 e 94 0 c ( t i m e s t am p )

6 ( s e c o n d s ) ( n a n o s e c o n d s )

7 0a 00 00 00 ( f r am e ID l e n g t h )

8 10 ( 0 x0000000a )

9 70 63 6 c 32 5 f 66 72 61 6d 65 ( f r am e ID )

10 p c l 2 _ f r a m e

11 64 00 00 00 ( f r ame h e i g h t )

12 100 ( 0 x00000064 )

13 68 01 00 00 ( f r ame w i d t h )

14 360 ( 0 x00000168 )

15 03 00 00 00 ( number o f f i e l d s )

16 3 ( 0 x00000003 )

17 01 00 00 00 ( f i e l d 1 name l e n g t h i n b y t e s )
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18 1 ( 0 x00000001 )

19 78 ( f i e l d name )

20 x

21 00 00 00 00 ( f i e l d o f f s e t i n b y t e s )

22 0 ( 0 x00000000 )

23 07 ( f i e l d d a t a t y p e )

24 7 ( FLOAT32 )

25 01 00 00 00 ( f i e l d c o u n t i n b y t e s )

26 1 ( 0 x00000001 )

27 01 00 00 00 ( f i e l d 2 name l e n g t h i n b y t e s )

28 1 ( 0 x00000001 )

29 79 ( f i e l d name )

30 y

31 04 00 00 00 ( f i e l d o f f s e t i n b y t e s )

32 4 ( 0 x00000004 )

33 07 ( f i e l d d a t a t y p e )

34 7 ( FLOAT32 )

35 01 00 00 00 ( f i e l d c o u n t i n b y t e s )

36 1 ( 0 x00000001 )

37 01 00 00 00 ( f i e l d 3 name l e n g t h i n b y t e s )

38 1 ( 0 x00000001 )

39 7a ( f i e l d name )

40 z

41 08 00 00 00 ( f i e l d o f f s e t i n b y t e s )

42 8 ( 0 x00000008 )

43 07 ( f i e l d d a t a t y p e )

44 7 ( FLOAT32 )

45 01 00 00 00 ( f i e l d c o u n t i n b y t e s )

46 1 ( 0 x00000001 )

47 00 ( i s b i g e n d i a n )

48 0 ( f a l s e −> l i t t l e e n d i a n )

49 10 00 00 00 ( p o i n t s t e p i n b y t e s )

50 16 ( 0 x00000010 )

51 80 16 00 00 ( r ow s t e p i n b y t e s )

52 5760 ( 0 x00001680 )

53 00 ca 08 00 ( c l o u d s t e p i n b y t e s )

54 576000 ( 0 x0008ca00 )

55 00 00 00 00 ( x ) 00 00 00 00 ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

56 0 ( 0 x00000000 ) 0 ( 0 x00000000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )
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57 00 00 00 00 ( x ) 00 00 80 3 f ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

58 0 ( 0 x00000000 ) 1 ( 0 x 3 f 800000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )

59 00 00 00 00 ( x ) 00 00 00 40 ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

60 0 ( 0 x00000000 ) 2 ( 0 x40000000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )

61 . . .

62 . . .

63 00 00 c6 42 ( x ) 00 80 b2 43 ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

64 99 ( 0 x42c60000 ) 357 (0 x43b28000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )

65 00 00 c6 42 ( x ) 00 00 b3 43 ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

66 99 ( 0 x42c60000 ) 358 (0 x43b30000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )

67 00 00 c6 42 ( x ) 00 80 b3 43 ( y ) 09 97 75 3d ( z ) 00 00 80 3 f

68 99 ( 0 x42c60000 ) 359 (0 x43b38000 ) 0 . 0 5 9 ( 0 x3d759709 ) 1 ( 0 x 3 f 800000 )

69 01 ( i s d e n s e )

70 1 ( t r u e −> d en s e )

Code 5.5: PointCloud2 header and message. Note that all the even-numbered lines do not correspond

to message bytes. Their role is to translate the transmitted bytes presented in the odd-numbered lines

(except for lines 61-62).

5.2 Implementation

As a result of the ROS asynchronous communication analysis provided in section 5.1.1, all the knowl-

edge needed to reproduce a Publisher node in hardware has been gathered. With that information noted,

some adjustments were made to the ROS network (see section 5.2.1). As mentioned in section ROS in

FPGA of the State-of-the-Art, a partial ROS implementation was achieved in [86] using a SiTCP [89] module

since it only provides a single socket. On the other hand, a complete ROS implementation was achieved

in [90] using a WIZ820io module, which can simultaneously implement up to eight different TCP/IP sock-

ets. In this work, a more recent version of the network module is used (i.e., WIZ850io module [122]).

As described in Table 5.1, each ROS node requires different socket configurations to be established, and

they are discussed in section 5.2.2. Finally, section 5.2.3 provides the last implementation details of the

hardwired ROS PointCloud2 Publisher.

5.2.1 ROS Network Adjustments

As previously analyzed in section 5.1.1, in order to implement a ROS Publisher capable of transmitting

messages to other nodes, only the communication features are required. Thus, as the main goal is
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to communicate with other ROS systems, development complexity can be reduced by only implementing

those functionalities. If extra ROS functionalities are later required, they can be introduced by encapsulating

the hardware Publisher with a software node that subscribes to the hardware topic and publishes its

messages, thereby working as a message relay.

Consequently, in the Publisher registration to the Master, only the registerPublisher HTTP POST will

be implemented. Figure 5.16 presents the packets from the registration of the hardware Publisher to the

Master. When compared to the PointCloud2 software Publisher of Figure 5.12, the following changes were

applied:

• The HTTPHost IP was changed from “localhost” to “192.168.1.3” (i.e., IP from themachine running

the Master; to avoid DNS resolution problems between the machine and the FPGA board, instead

of names, only IP addresses are used).

• The Publisher server socket was replaced with the IP from the FPGA board and an arbitrary port

number (i.e., since reserved port numbers should not be used, a port number previously captured

in the analysis was used).

Figure 5.16: Packets from the registration of the hardware Publisher to the Master
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Identical changes were applied to the hardware Publisher response to the requestTopic method, pre-

sented in Figure 5.17. The HTTP Host IP was changed from “localhost” to “192.168.1.10” (i.e., IP from

the board running the hardware Publisher). The “simon-ubuntu” name was replaced by the board IP

“192.168.1.10”, and an arbitrary port number was selected.

Figure 5.17: Hardware Publisher requestTopic response

The final required adaptations were made in the PointCloud2 messages. The message header is the

same as the one presented in 5.5, but the PointCloud2 z coordinate is now obtained from converting the

TDC values into the depth in meters (see section 5.2.3 for more details).

5.2.2 WIZ850io Network Module

The WIZ850iomodule [122] is a compact network module that includes a W5500 chip, a transformer,

and an RJ45 Ethernet connector (see Figure 5.18). It is compatible with the previous WIZ820io version

since they use the same hardware, only the firmware is different, and it can be updated in the older version.
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The W5500 chip [123] is a hardwired TCP/IP embedded Ethernet controller that can be programmed

through Serial Peripheral Interface (SPI), and it can be used to implement the TCP/IP stack, 10/100

Ethernet MAC, and PHY. The TCP/IP stack supports TCP, UDP, IPv4, ICMP, ARP, IGMP, and PPPoE. It

is capable of implementing up to 8 distinct sockets simultaneously, and it has power-saving features like

Wake-on-LAN and a power-down mode.

The module operates as an SPI Slave that must be controlled by a Host SPI Master using the bus

interface presented in Figure 5.18. The SPI protocol is a synchronous, full-duplex serial communication

bus interface specification [124]. A clock signal is provided by the Master (i.e., SCLK) to synchronize one

or more slaves, and data is serialized bit-by-bit through two data wires (i.e., MOSI to serialize data from the

Master to the Slave, and MISO to serialize data from the Slave to the Master). The Master controls the chip

select signal (i.e., SCSn) to inform which Slave device is going to be used. Although this standard is widely

adopted in many applications, it is also true that each device usually has particular adaptations that need

to be considered. In this case, there is also a reset signal (i.e., RSTn) and an INTn signal to communicate

interruptions from the Slave to the Master. Theoretically, the SPI in the W5500 chip could reach 80 MHz of

speed, however, the device only guarantees a stable connection with a maximum frequency of 33.3 MHz.

Figure 5.18: WIZ850io network module [122]

Two operation modes are available, the Variable Length Data and the Fixed Lenght Data. The former

enables more than one SPI Slave device connected to the bus interface. The latter enables only a single

SPI device, in which case, the SCSn signal is connected to the ground. Moreover, only 1, 2, or 4 bytes can

be transmitted in this mode, and for other data lengths, the Variable Length Data mode needs to be used.

In the Variable Length Data mode, the assertion of the SCSn signal indicates the beginning of an N-byte

transaction, and the de-assertion indicates its end.

The SPI modes 0 and 3 are supported by the W5500 chip, and they only differ in the polarity of SCLK.

In either mode, data is latched on the rising edge of the clock (i.e., SCLK signal) and output on the falling
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edge of the clock. Figure 5.19 presents the differences between the SPI modes 0 and 3. Both data signals

(i.e., MOSI and MISO) start transmitting bytes from the Most Significant Bit (MSB) to the Least Significant

Bit (LSB).

Figure 5.19: SPI mode 0 and 3 operation [125]

The W5500 chip can be controlled with SPI Frames transmitted by the Host (Figure 5.20 presents the

SPI Frame format). An SPI Frame consists of 3 phases: Address, Control, and Data. In the Address Phase,

a 16-bit offset address to access the configuration register or the TX/RX memory needs to be selected.

The 8-bit Control Phase specifies the offset block addressed in the Address Phase, the access mode (i.e.,

read or write operation), and the SPI operation mode (i.e., Variable Length Data or Fixed Length Data).

The blocks available are a common configuration register, a socket configuration register for each socket,

and a TX/RX buffer for each socket. Lastly, in the Data Phase, the data is specified with a length of 1, 2,

4, or N bytes, depending on the configuration provided in the SPI operation mode of the Control Phase

(“00” selects the Variable Length Data mode; “01”, “10”, “11” select the Fixed Length Data mode with

length 1, 2, and 4 bytes, respectively). In the Variable Length Data mode, data length is controlled by the

SCSn signal. Whenever the data has more than a byte, the offset address is automatically incremented

by 1 every 1 byte of data, allowing a sequential transmission or reception of data.

Figure 5.20: SPI Frame format [125]

The common register block configures the general properties of the W5500 chip, such as IP and MAC
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address, and the modes (e.g., Wake-on-LAN). Then, each socket has its own register block that defines,

among other things, the socket modes (e.g., TCP, UDP), port number, and destination IP and MAC address.

The module also has one 16 Kbyte TX memory and one 16 Kbyte RX memory shared among the sockets.

Each of the 8 sockets is initially configured with 2 KB of TX memory and 2 KB of RX memory. To change

the memory allocation, all the Sn_TXBUF_SIZE and Sn_RXBUF_SIZE registers need to be reconfigured,

and their total should not exceed the available 16 Kbyte for each memory. The TX memory is used to store

the data that will be transmitted, and the RX memory is used to store all the data received.

An example of data transmission and reception is given in the SPI Frame of Figure 5.21. Before

sending the address, the SCSn signal is activated and only deactivated after the last byte has been sent

or received. In the top example, a write operation to the socket 1 TX buffer (BSB is 00110) at address

0x0040 is made. The operation mode used is Variable Length Data, and 5 data bytes are sent (0x11,

0x22, 0x33, 0x44, 0x55). In the bottom example, a read operation from the socket 3 RX buffer (BSB is

01111) at address 0x0100 is made. The operation mode used is the same, and 5 data bytes are received

(0xAA, 0xBB, 0xCC, 0xDD, 0xEE).

5-Byte Data Write: 

5-Byte Data Read: 

Figure 5.21: Example SPI Frame of a 5-byte data transmission (top), and reception (bottom) (adapted
from [125])
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SPI Master

An SPI Master was developed in the FPGA to configure and control theW5500 SPI Slave. The principle

of operation of an SPI Master is generally the same, and only a few parameters related to the SPI mode

and clock frequency are required. However, the W5500 SPI adaptations introduced two extra signals (i.e.,

RSTn and INTn) that need to be considered. For example, according to the W5500 datasheet [125], a 1.5

ms reset should be generated before executing the first transaction (see Figure 5.22).
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Figure 5.22: SPI Master reset Finite State Machine

Figure 5.23 presents the SPI Master Finite State Machine (FSM) implemented in the FPGA to com-

municate with the WIZ850io module. When a start signal is received and the reset FSM has already been

executed, the systemmoves from the Idle state into the Address Phase, where the SCSn signal is activated,

and the address starts to be transmitted. At the last bit of the 16-bit address, the system changes to the

Control Phase state where the block select, access mode, and operation mode bits are sent. When the

LSB from the operation mode is transmitted, the system changes to the Data Phase where data bytes are

received by the MISO signal or transmitted to the MOSI signal. After the data transaction, in the Inactive

state, the SCSn signal is deactivated by a minimum of 30 ns (with the help of a counter being decre-

mented), respecting the timing characteristics presented in the datasheet. Then, the system returns to

the Idle state until a new start is received. The SPI Master operates in mode 0, and the clock generated

by the Master and used to synchronize the Slave runs at a frequency of approximately 30 MHz, slightly

under the 33.3 MHz, that according to the module datasheet, ensured a stable connection.
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Figure 5.23: SPI Master Finite State Machine

Building the ROS Publisher

In order to build the ROS Publisher, a series of configurations need to be made to the WIZ850io

module so that it emulates the ROS network previously explored. To execute those configurations, a series

of modules that control the SPI Master presented in Figure 5.23 will be used, and after that, only data is

transmitted until a stop request arrives.

Figure 5.24 presents theWIZ850io controller Finite State Machine. A start signal (when the reset is not

active) initiates the common register configurations (in the CR_Config state) of the W5500 chip. Then, as

presented in Table 5.1, a minimum of 3 sockets are required when implementing a Publisher without the

publisherUpdate feature (one client and two server sockets). The first socket required is a client, which is

responsible for starting connections with servers, and that is why a write transaction is executed (S0_Write

state) before they can read the response (S0_Read state). Conversely, the two server sockets stay in a

read state (S1_Read, and S2_Read states) until a client socket sends a connection request. Afterwards,

they reply to the request by writing back to the client socket (in the S1_Write, and S2_Write states). Lastly,

the system stays in the S2_Data state, where ROS messages are continuously transmitted until a stop

request is received.

This system was implemented using 5 modules on top of the SPI Master module. The FSM of Figure

5.24 represents the generalWIZ850io controller. Then, there is the module responsible for setting the gen-

eral configurations of the WIZ850io device (Figure 5.25 presents its Finite State Machine). The remaining

3 modules implement all the socket’s configurations and execute write and read transactions (their FSMs

are shown in Figures 5.26, 5.27, and 5.28, respectively). Thus, each socket uses the same module for its

configuration, as well as a single module to perform write transactions and another one to perform read

transactions. The finished signal becomes active whenever all the states of the running module FSM have

been executed (e.g., when the controller is in the CR_Config state, the finished signal will become active
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when all the states on Figure 5.25 have been executed).
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Figure 5.24: WIZ850io controller Finite State Machine

Figure 5.25 presents the FSM for the general configurations made to the WIZ850io module, which

are the gateway address, subnet mask address, MAC address, and IP address. For each configuration,

the configured address is then confirmed by reading from the value on that register. When they do not

match, the registers are reconfigured (this comparison is represented in Figure 5.25 as “RX == TX”). The

done signal becomes active when the data on the SPI Master has been transmitted/received (“TX_done

|| RX_done” in Figure 5.23).
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Figure 5.25: WIZ850io general configuration Finite State Machine
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The initial configuration made to each socket is their mode, in this case, all of them will be using

TCP/IP. Then, the TX memory size of the 8 available sockets is defined in the S0_Config state. Conse-

quently, this is no longer executed when running the same module for states S1_Config, and S2_Config.

The socket port is assigned next, and the destination IP and port are only defined when the socket type

is a client (i.e., socket 0). With the socket setup complete, the OPEN command is sent, and the socket

status is verified (after the OPEN command has been issued, the socket status must be INIT).
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Figure 5.26: WIZ850io socket configuration Finite State Machine

Whenever the socket is a client, a destination server needs to be defined by configuring the destination

IP and port registers. Then a connection request is made to that server, and when successful, the socket

status changes to ESTABLISHED (if not, the process is repeated). The next step (first step if the socket is

a server) is to verify the TX buffer free size, and as this value is 16-bit long when the second byte is read,

the previous one may have already changed. Therefore, it is recommended that this register is read at

least twice with the same value (meaning that the value has stabilized). After that, the initial TX memory

pointer address is obtained, and in the SnTXBUF_Write state, the memory starts to be written starting in

that initial address and incremented by 1 after each byte.

However, when sending PointCloud2 message data, if the source FIFO is not yet ready, an intermediate

state is used to wait for a valid signal from the FIFO. With the data already stored in the TX memory, the

final TX memory pointer is configured with the addition of the written data length with the initial TX memory
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pointer. Then, the SEND command is issued to transmit the saved data, starting in the initial pointer and

ending in the final pointer address. To understand if all the data has been sent, the initial pointer is read,

and when the value matches the previous configured final value, the transmission has been completed. As

the transmission length is limited to the size of the TX memory, data may need to be divided into packets

that need to be sent sequentially. When this is the case, the process starts again in the TX memory free

size verification, but when the packet sent is the last one (or the only one required to be sent), the system

returns to the initial Idle state.

The bytes that should be transmitted are the ones previously presented in the ROS network analysis

(section 5.1.1), with some adjustments due to the changes explained in section 5.2.1. Thus, the module

transmits the bytes corresponding to the registerPublisher (sent in the S0_Write state), requestTopic re-

sponse (sent in the S1_Write state), PointCloud2 connection header response (sent in the S2_Write state),

header (sent in the S2_Data state), and data (sent in the S2_Data state).
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Figure 5.27: WIZ850io socket data transmission Finite State Machine

If the socket is a server, it needs to wait for the client connection request and to place the socket in that
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state, the LISTEN command needs to be performed. Then, independently of the socket type, the received

data size saved on the RX memory is obtained (as this is a 16-bit address, the same principle of reading

at least twice the same value is applied here). Next, the initial read pointer is read and starting on that

address, the data received from the client socket is gathered. After all the data has been read, the initial

read pointer must be updated with an addition of the previous value with the reading size value. Lastly,

the RECV command is performed to indicate that the data has been received and to update the W5500

registers accordingly.

Similar to the data transmitted, the bytes that should be received are the ones previously presented in

the ROS network analysis (section 5.1.1), with some adjustments due to the changes explained in section

5.2.1. Thus, the module should receive bytes corresponding to the registerPublisher response (received

in the S0_Read state), the requestTopic method (received in the S1_Read state), and the PointCloud2

connection header (received in the S2_Read state).
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Figure 5.28: WIZ850io socket data reception Finite State Machine

Table 5.2 presents the configuration of the WIZ850io module. The configured addresses have been

selected to be in the same subnet of the Host machine so that they can detect each other, and more

importantly, communicate. The port numbers have arbitrary values previously captured in the ROS network

analysis. The destination IP address corresponds to the Hostmachine IP, and the destination port number,

to the ROS Master port number. As the TX memory size of socket 2 has been configured with 8 KB, the

5 remaining omitted sockets have been configured with 1 KB, except for socket 7 that has 0 KB because

there is only 16 Kbyte of TX memory available for all sockets. On the other hand, the RX memory size has
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been left with the default configuration of 2 KB for each of the 8 sockets.

Table 5.2: WIZ850io Configuration

WIZ850io General Socket 0 Socket 1 Socket 2
Gateway Address

(GAR)
192.168.1.9 - - -

Subnet Mask Address
(SUBR)

255.255.255.0 - - -

MAC Address
(SHAR)

0.8.220.1.2.3 - - -

IP Address
(SIPR)

192.168.1.10 - - -

Socket Type Client Server Server
Mode

(Sn_MR)
- TCP/IP TCP/IP TCP/IP

Port Number
(Sn_PORT)

- 53624 35793 45969

Destination IP Address
(Sn_DIPR)

- 192.168.1.3 - -

Destination Port Number
(Sn_DPORT)

- 11311 - -

TX Memory Size
(Sn_TXBUF_SIZE)

- 2 KB 2 KB 8 KB

RX Memory Size
(Sn_RXBUF_SIZE)

- 2 KB 2 KB 2 KB

5.2.3 ROS PointCloud2 Hardware Publisher

Figure 5.29 presents the Vivado block diagram of the ROS PointCloud2 Publisher. The Double-

sampling Gray TDC provides the ToF measurement data and stores it into a FIFO, as explained in section 3.

Then, the DSGrayTDC_Interface retrieves these values, converts them from gray code into binary, calcu-

lates the time representation in picoseconds, and sends them into the FIFO module PCL2_DEPTH_FIFO.

This module stores 36000 values before enabling the FIFO valid read signal, meaning that the module

gathering these values will be able to sequentially retrieve 36000 values without being interrupted. This

is important because it allows data to be continuously stored in the TX memory of the W5500 chip. The

ROS_PCL2_Publisher module is the one that controls the WIZ850io module, converts the time values in

picoseconds to depth (in meters), and builds and publishes the PointCloud2 messages to a Subscriber in

the Host machine.

The Zynq Ultrascale+ MPSoC module is only used to provide the 3 clocks and the asynchronous reset

signal of each of them (the Processing System is not required). The TDC operates at 500 MHz, its interface

at 250 MHz, and the Publisher at 30 MHz because of the SPI communication. As these modules operate

at different frequencies, FIFO interfaces between these modules are used to avoid metastability when

values cross clock domain.
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In the ROS_PCL2_Publisher IP, the Floating-point module from Xilinx [126] is utilized to comply with

the IEEE-754 standard, which is used to store the ROS FLOAT32 datatype (as described in section 5.1.1).

The x and y coordinates are generated and converted to the IEEE-754 standard. Likewise, to obtain the z

coordinate, the time values are obtained from the FIFO, converted into a float, and multiplied by the speed

of light in meters per picosecond (m/ps).
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Figure 5.29: Vivado block diagram

5.3 Tests and Results

The test setup is presented in Figure 5.30. The FPGA board is connected to the Tektronix AFG1022

waveform generator and theWIZ850io networkmodule through the I/O pinout. Subsequently, theWIZ850io

module is connected to the Host Ubuntu machine via serial port and Ethernet.

Figure 5.30: PointCloud2 hardware Publisher setup
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A similar connection to the one presented in section 4.3 is established between WIZ850io and the

Host, since the ROS Master is executed in the machine. However, the IP information is not the one

presented in Figure 4.12 but the one presented in Table 5.2. The ROS PointCloud2 frames produced by

the Publisher implemented in the FPGA can be visualized in Figure 5.31.
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Figure 5.31: RVIZ Visualization of the ROS PointCloud2 frames produced by the Publisher implemented
in the FPGA.

As it was the case previously, the Double-sampling Gray TDC has been implemented with a single

channel, and as a result, the 36000 time values of a frame are gathered sequentially. As explained in

the software ROS interface presented in section 4, this may interfere with the system performance. In

that case, the frame frequency ranged from over 10 FPS to an average maximum of around 97 FPS when

varying the waveform output from 1.34 ns to 40 ns, respectively. On the other hand, the frame frequency

is much more stable in the hardware ROS interface. Whereas the previous implementation used a base

Operating System, where the system execution is often briefly interrupted, FPGAs naturally provide very

stable performances as specific logic areas are dedicated to a system feature. This fact can be proved by

the frequency of which the PointCloud2 frames are being published (depicted in Figure 5.32).

Although the refresh rate is inferior to the one presented in the software ROS interface, only 10 ms

separates the minimum and maximum times recorded when the waveform generator ranges from the

same 1.34 ns to 40 ns. This drop in frame refresh rate was expected because the SPI interface used to

communicate with theWIZ850io network module introduces a bottleneck in the system performance. This
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is because the SPI protocol is being operated at a frequency substantially inferior to the FPGA capabilities

(30 MHz), and the data is serialized bit by bit. Nonetheless, like every PoC, there is room for improvement

as the TCP/IP stack can also be directly implemented in hardware, which would most likely significantly

improve the current PointCloud2 frame refresh rate of 3.45 FPS on average.

Figure 5.32: ROS hardware PointCloud2 frame refresh rate

According to Vivado’s resource usage report, the DoubleSamplingGrayTDC and DSGrayTDC_Interface

IPs are implemented using 399 LUTs, 444 Flip-flops, and consume a total of 33 mW. Therefore, the

resources are similar despite the slight adjustment made to the TDC interface to interact with the FIFO

instead of the AXI interface. The PCL2_DEPTH_FIFO consumes 47 mW and requires 344 LUTs, 822

Flip-flops, and 60 Block RAM tiles. Lastly, the ROS_PCL2_Publisher requires 1800 LUTs, 724 Flip-flops,

1 Block RAM tile, and 5 mW of power. The total system presented in Figure 5.29, including the Processor

System Reset and the Zynq Ultrascale+ MPSoC IPs, consumes a maximum of 2.103 W. However, if the

Zynq Ultrascale+ MPSoC IP was not used as a clock and reset source, only 0.331 W of that power would

be required. In terms of logic resources, the system utilizes 2579 LUTs, 2089 registers, and 61 BRAM

tiles.

5.3.1 Discussion

A successful hardware ROS Publisher Proof of Concept was implemented in this chapter. Table 5.3

compares the software ROS Interface of Chapter 4 with the hardware accelerated one. In summary, the

hardware implementation does not require the PS of the System on Chip to implement a Publisher since
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it is entirely hardwired in the FPGA. This improves the frame refresh rate stability previously obtained in

the software interface and reduces the system power consumption by over 84%. Moreover, the required

logic resources and registers are similar, but the hardwired version requires the use of BRAMs (Figure 5.33

presents the device view comparison).

Figure 5.33: Device implementation comparison between Software ROS Interface (left), and Hardware
ROS Interface (right).

The WIZ850io network module simplified the TCP/IP stack implementation. However, this implied the

introduction of a performance bottleneck in the SPI communication. Therefore, considering the significant

potential of improvement when implementing the TCP/IP stack directly on the FPGA and the substantial

power savings, the feasibility of a hardwired ROS Publisher has been successfully proven.

Table 5.3: Comparisson between the Software and Hardware ROS Interfaces

Software ROS Interface Hardware ROS Interface
FPGA Only X ✓a

Operating System for PS ✓ X
AXI Interface ✓ X

Room for Improvement + ++
FPS Stability + ++

Lower FPS Average 10.32 3.45
Total LUTs 2064 2579

Total Flip-flops 2696 2089
Total BRAM Tiles - 61

Total Power 2.087 W
2.103 W
0.331 Wb

a The PS IP is only used because there is no other clock source available internally.
b Power required without the PS IP.
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The purpose of this dissertation was to develop a Time-of-Flight measurement unit and a modular

interface for a LiDAR sensor implemented on an FPGA development board. The development started with

the implementation of the Time-of-Flight measurement unit that performs a precise measurement of the

time between laser beam emission and the detection of the return backscattered light originated from

reaching an object in the scene of interest. The ToF measurement unit was implemented using a gray

code TDC peripheral, on the FPGA PL. Next, the TDC peripheral was integrated with a ROS Publisher node

to improve the point cloud accessibility and allow the data to be available in any ROS platform. Lastly, the

ROS interface was analysez and migrated into hardware to reduce the required silicon area and test the

system feasibility.

To implement the ToF peripheral, this dissertation introduced a novel gray code oscillator TDC archi-

tecture that improves resolution by 73.05% and single-shot precision by 63.16% while sustaining similar

linearity over other gray code oscillator architectures [26], [25]. Although part of the resolution improve-

ment has been achieved due to the FPGA technology used, a significant part (38%) results from introducing

the novel double-sampling stage. This architecture is suitable for applications requiring multiple TDC chan-

nels, as it maintains the low resource and power consumption characteristic of the gray code oscillator

architectures. Moreover, its scalability and portability allow the TDC channel to be easily replicated and

ensure homogeneous performance across multiple channels. It also avoids the need for calibration, sav-

ing resources and power consumption. When compared to other TDCs, the Double-sampling Gray TDC is

one of the best performance per resource consumption architectures. The 69 ps resolution enables the

system to distinguish 1 cm in depth while only requiring 7 LUTs, 20 Flip-flops, and 1 mW of power per

channel. Thus, the implemented TDC is an ideal ToF measurement solution for LiDAR sensors. These

results were published in [91].

As part of the interface solution for the LiDAR sensor, a ROS interface was integrated with the Time-of-

Flight measurement unit. The proposed ROS interface allows the publication and visualization of the point

cloud frames in a simple and modular way. Two architectures were tested, one with only a Zynq Ultrascale+

MPSoC and the other with a Host PC included. In order to execute ROS, an Embedded Linux OS image

was generated as the base Operating System for the MPSoC, and the Ubuntu Linux OS distribution was

used in the Host PC. After connecting both ROS environments, the ROS master could be executed from
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either the PC or the Zynq board. To visualize the LiDAR point cloud data, the data is first obtained by

the TDC peripheral in the FPGA and converted into binary. Then the values are sent to the PS, converted

into depth in the ROS node and published to the PointCloud2 topic. Next, the topic is accessed by a ROS

subscriber on the PC and displayed using the ROS visualization tool (i.e., RVIZ). Any other ROS platform

could be easily added to access or visualize the point cloud frames. For the worst-case scenario of a full

point cloud frame at 200 m, the 10 FPS requirements are met with an average of 10.32 FPS. Nonetheless,

the system refresh rate could be easily increased with a second TDC channel.

It was previously proven in literature works that the partial ROS migration into hardware could improve

ROS performance, but it would require the TCP/IP stack implementation in hardware. However, most of

the open-source implementations only implement a single port, and as explained in this dissertation, a

fully hardwired Publisher would require a minimum of 3 sockets. Therefore, as the main objective was to

analyze and understand how the ROS asynchronous communication works, a more straightforward way of

implementing the TCP/IP protocol was chosen (via the WIZ850io network module). As a consequence, the

hardware version of the ROS interface was developed as a Proof of Concept, proving the system feasibility.

A downside of using the WIZ850io module is the requirement of using the SPI protocol to communicate

with the network module. This is because SPI works at relatively low frequencies compared to the FPGA

capabilities, and the data is exchanged one bit at a time. Due to the bottleneck introduced in the SPI

communication, a full point cloud frame with 36000 points has a 3.45 refresh rate, independently of the

depth. On the other hand, the system becomes significantly more stable in terms of frame refresh rate.

Moreover, the Processing System of the MPSoC is no longer required as well as no Operating System

image needs to be generated. Consequently, power consumption in the MPSoC is reduced by over 84%

as only the FPGA is used.

As for the required FPGA resources, the difference between the software and hardware ROS interfaces

is not significant despite the ROS implementation in the FPGA because the latter does not require an AXI

interface to communicate with the PS. Also, some extra functionality IPs used in the software version were

unnecessary (e.g., interconnects and system management wizard). Thus, the hardware ROS interface is

a valuable alternative, considering the low power consumption, frame rate stability, and reduction of the

silicon area required, along with the potential of improvement once the TCP/IP stack does not introduce

a bottleneck in the system performance. The TCP/IP can also be implemented in the FPGA, or a network

module with a faster interface could be used instead of the WIZ850io chip, which used the SPI protocol.

The work done on this dissertation has contributed to a research project exploring a 2D MEMS LiDAR

sensor for automotive systems, which is being explored in a partnership between Bosch Car Multimédia
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Portugal, S.A [127] and theUniversity of Minho [128]. Moreover, the experience earned by the development

of this dissertation has not only improved the knowledge of the authors as also contributed to the scientific

community with the published conference article in [91], being a second one under preparation.

6.1 Future Work

In terms of the TDC architecture, one of the improvements that could be made is the introduction of

more channels to prove the TDC scalability. Several channels could be used in different ways to achieve

distinct purposes. For example, if they were scattered across the FPGA, they could provide valuable in-

formation about the effect of the TDC location on the performance. Another use case would be using

several channels to calibrate the TDC by executing the mean between the different TDC channel values.

Finally, as previously mentioned, several channels could be used to improve the worst-case scenario per-

formance of the software ROS interface. This is because the system would be capable of processing a

new pulse without waiting for the previous Time-of-Flight to be calculated by a channel of the TDC periph-

eral. Moreover, despite the lack of information and the increased difficulty resulting from a more complex

FPGA architecture, and the introduction of a double-sampling stage in the TDC, manual routing could be

thoroughly explored in a future implementation. Similarly to other works, this could mainly improve the

linearity and overall performance of the TDC architecture.

The ROS Publisher node implemented on software is responsible for converting the time value into

depth. This step could have been implemented in the FPGA as it was done for the hardwired ROS Pub-

lisher, and it would probably slightly increase the point cloud refresh rate and stability. In the current

implementation, a PC is required to visualize the data because the generated Linux image does not in-

clude RVIZ. This is due to the fact that the ROS package for Embedded Linux is only experimental, and

some problems occur when including RVIZ and some other ROS packages into the Linux image. However,

if this problem was solved in the future, a display could be directly connected to the Zynq board.

The most significant improvement to the hardware ROS interface would be the TCP/IP protocol im-

plementation on the FPGA with a minimum of 3 sockets. Based on the results presented by previous

works, a good frame refresh rate improvement would be expected compared to the software ROS inter-

face. Thanks to the work done in this dissertation, the steps to implement a ROS Publisher are now very

clear. Thus, there would not be the same need for simplifying the remaining of the system in a future

implementation, as it was done here by using the WIZ850io network module to implement the TCP/IP

stack. Other improvements would be related to the addition of sockets that would allow for more features
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to be directly provided by the hardware Publisher. They would remove the need for a node working as a

message relay on the PC side. Lastly, some of the configuration fields could be made dynamic, allowing

the user to change the node according to his needs.

Now that the authors have a much better understanding of how ROS works, and due to the described

advantages provided by ROS 2, it would be interesting to apply a similar development approach to ROS 2.

This would also allow for an in-depth comparison of both ROS versions.
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Appendix A: Linux Image Configuration

1 # ------------------------- user-rootfsconfig file ------------------------
2 CONFIG_nano
3 CONFIG_python -pycryptodomex
4 CONFIG_catkin
5 CONFIG_cmake -modules
6 CONFIG_gencpp
7 CONFIG_ros
8 CONFIG_rosparam
9 CONFIG_rosbuild
10 CONFIG_rospack
11 CONFIG_rosgraph
12 CONFIG_rosgraph -msgs
13 CONFIG_ros -environment
14 CONFIG_rosbash
15 CONFIG_rosmake
16 CONFIG_rosboost -cfg
17 CONFIG_roslib
18 CONFIG_roscreate
19 CONFIG_rosclean
20 CONFIG_rosunit
21 CONFIG_roslang
22 CONFIG_roscpp
23 CONFIG_rosout
24 CONFIG_roscpp -serialization
25 CONFIG_roscpp -traits
26 CONFIG_rostest
27 CONFIG_rosservice
28 CONFIG_rostopic
29 CONFIG_rospy
30 CONFIG_ros -comm
31 CONFIG_rosconsole
32 CONFIG_rosconsole -bridge
33 CONFIG_rosgraph -msgs
34 CONFIG_rosnode
35 CONFIG_roslaunch
36 CONFIG_rosmaster
37 CONFIG_roswtf
38 CONFIG_rosbag -storage
39 CONFIG_rosbag
40 CONFIG_rosmsg
41 CONFIG_rostime
42 CONFIG_roslz4
43 CONFIG_genmsg
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44 CONFIG_message -runtime
45 CONFIG_std -msgs
46 CONFIG_xmlrpcpp
47 CONFIG_std -srvs
48 CONFIG_message -filters
49 CONFIG_gennodejs
50 CONFIG_cpp -common
51 CONFIG_message -generation
52 CONFIG_topic -tools
53 CONFIG_mk
54 CONFIG_genpy
55 CONFIG_roscpp -core
56 CONFIG_sensor -msgs
57 CONFIG_geometry -msgs
58 CONFIG_common -msgs
59 CONFIG_dynamic -reconfigure
60 CONFIG_cv -bridge
61 CONFIG_pcl
62 CONFIG_pcl -ros
63 CONFIG_pcl -msgs
64 CONFIG_pcl -conversions
65 CONFIG_perception -pcl
66 CONFIG_eigenpy
67 CONFIG_eigen -stl-containers
68 CONFIG_eigen -conversions
69 CONFIG_tf2 -eigen
70 CONFIG_ecl -eigen
71 CONFIG_boost
72 CONFIG_rosboost -cfg
73 # -------------------------------------------------------------------------

Code A.1: Complete list of packages added to the user-rootfsconfig file
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Appendix B: ROS PointCloud2 Message

1 0000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00 ..............E.
2 0010 09 8a 0d 43 40 00 40 06 25 29 7f 00 01 01 7f 00 ...C@.@.%)......
3 0020 00 01 eb c9 87 20 ff 5f f8 c8 0f fa 08 5f 80 18 ..... ._....._..
4 0030 02 00 08 7f 00 00 01 01 08 0a c6 5f 64 7c 51 ca ..........._d|Q.
5 0040 e3 db 52 09 00 00 14 00 00 00 63 61 6c 6c 65 72 ..R.......caller
6 0050 69 64 3d 2f 70 63 6c 5f 74 61 6c 6b 65 72 0a 00 id=/pcl_talker..
7 0060 00 00 6c 61 74 63 68 69 6e 67 3d 30 27 00 00 00 ..latching=0'...
8 0070 6d 64 35 73 75 6d 3d 31 31 35 38 64 34 38 36 64 md5sum=1158d486d
9 0080 64 35 31 64 36 38 33 63 65 32 66 31 62 65 36 35 d51d683ce2f1be65
10 0090 35 63 33 63 31 38 31 c7 08 00 00 6d 65 73 73 61 5c3c181....messa
11 00a0 67 65 5f 64 65 66 69 6e 69 74 69 6f 6e 3d 23 20 ge_definition=#
12 00b0 54 68 69 73 20 6d 65 73 73 61 67 65 20 68 6f 6c This message hol
13 00c0 64 73 20 61 20 63 6f 6c 6c 65 63 74 69 6f 6e 20 ds a collection
14 00d0 6f 66 20 4e 2d 64 69 6d 65 6e 73 69 6f 6e 61 6c of N-dimensional
15 00e0 20 70 6f 69 6e 74 73 2c 20 77 68 69 63 68 20 6d points, which m
16 00f0 61 79 0a 23 20 63 6f 6e 74 61 69 6e 20 61 64 64 ay.# contain add
17 0100 69 74 69 6f 6e 61 6c 20 69 6e 66 6f 72 6d 61 74 itional informat
18 0110 69 6f 6e 20 73 75 63 68 20 61 73 20 6e 6f 72 6d ion such as norm
19 0120 61 6c 73 2c 20 69 6e 74 65 6e 73 69 74 79 2c 20 als, intensity ,
20 0130 65 74 63 2e 20 54 68 65 0a 23 20 70 6f 69 6e 74 etc. The.# point
21 0140 20 64 61 74 61 20 69 73 20 73 74 6f 72 65 64 20 data is stored
22 0150 61 73 20 61 20 62 69 6e 61 72 79 20 62 6c 6f 62 as a binary blob
23 0160 2c 20 69 74 73 20 6c 61 79 6f 75 74 20 64 65 73 , its layout des
24 0170 63 72 69 62 65 64 20 62 79 20 74 68 65 0a 23 20 cribed by the.#
25 0180 63 6f 6e 74 65 6e 74 73 20 6f 66 20 74 68 65 20 contents of the
26 0190 22 66 69 65 6c 64 73 22 20 61 72 72 61 79 2e 0a "fields" array..
27 01a0 0a 23 20 54 68 65 20 70 6f 69 6e 74 20 63 6c 6f .# The point clo
28 01b0 75 64 20 64 61 74 61 20 6d 61 79 20 62 65 20 6f ud data may be o
29 01c0 72 67 61 6e 69 7a 65 64 20 32 64 20 28 69 6d 61 rganized 2d (ima
30 01d0 67 65 2d 6c 69 6b 65 29 20 6f 72 20 31 64 0a 23 ge-like) or 1d.#
31 01e0 20 28 75 6e 6f 72 64 65 72 65 64 29 2e 20 50 6f (unordered). Po
32 01f0 69 6e 74 20 63 6c 6f 75 64 73 20 6f 72 67 61 6e int clouds organ
33 0200 69 7a 65 64 20 61 73 20 32 64 20 69 6d 61 67 65 ized as 2d image
34 0210 73 20 6d 61 79 20 62 65 20 70 72 6f 64 75 63 65 s may be produce
35 0220 64 20 62 79 0a 23 20 63 61 6d 65 72 61 20 64 65 d by.# camera de
36 0230 70 74 68 20 73 65 6e 73 6f 72 73 20 73 75 63 68 pth sensors such
37 0240 20 61 73 20 73 74 65 72 65 6f 20 6f 72 20 74 69 as stereo or ti
38 0250 6d 65 2d 6f 66 2d 66 6c 69 67 68 74 2e 0a 0a 23 me-of-flight...#
39 0260 20 54 69 6d 65 20 6f 66 20 73 65 6e 73 6f 72 20 Time of sensor
40 0270 64 61 74 61 20 61 63 71 75 69 73 69 74 69 6f 6e data acquisition
41 0280 2c 20 61 6e 64 20 74 68 65 20 63 6f 6f 72 64 69 , and the coordi
42 0290 6e 61 74 65 20 66 72 61 6d 65 20 49 44 20 28 66 nate frame ID (f
43 02a0 6f 72 20 33 64 0a 23 20 70 6f 69 6e 74 73 29 2e or 3d.# points).
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44 02b0 0a 48 65 61 64 65 72 20 68 65 61 64 65 72 0a 0a .Header header..
45 02c0 23 20 32 44 20 73 74 72 75 63 74 75 72 65 20 6f # 2D structure o
46 02d0 66 20 74 68 65 20 70 6f 69 6e 74 20 63 6c 6f 75 f the point clou
47 02e0 64 2e 20 49 66 20 74 68 65 20 63 6c 6f 75 64 20 d. If the cloud
48 02f0 69 73 20 75 6e 6f 72 64 65 72 65 64 2c 20 68 65 is unordered , he
49 0300 69 67 68 74 20 69 73 0a 23 20 31 20 61 6e 64 20 ight is.# 1 and
50 0310 77 69 64 74 68 20 69 73 20 74 68 65 20 6c 65 6e width is the len
51 0320 67 74 68 20 6f 66 20 74 68 65 20 70 6f 69 6e 74 gth of the point
52 0330 20 63 6c 6f 75 64 2e 0a 75 69 6e 74 33 32 20 68 cloud..uint32 h
53 0340 65 69 67 68 74 0a 75 69 6e 74 33 32 20 77 69 64 eight.uint32 wid
54 0350 74 68 0a 0a 23 20 44 65 73 63 72 69 62 65 73 20 th..# Describes
55 0360 74 68 65 20 63 68 61 6e 6e 65 6c 73 20 61 6e 64 the channels and
56 0370 20 74 68 65 69 72 20 6c 61 79 6f 75 74 20 69 6e their layout in
57 0380 20 74 68 65 20 62 69 6e 61 72 79 20 64 61 74 61 the binary data
58 0390 20 62 6c 6f 62 2e 0a 50 6f 69 6e 74 46 69 65 6c blob..PointFiel
59 03a0 64 5b 5d 20 66 69 65 6c 64 73 0a 0a 62 6f 6f 6c d[] fields..bool
60 03b0 20 20 20 20 69 73 5f 62 69 67 65 6e 64 69 61 6e is_bigendian
61 03c0 20 23 20 49 73 20 74 68 69 73 20 64 61 74 61 20 # Is this data
62 03d0 62 69 67 65 6e 64 69 61 6e 3f 0a 75 69 6e 74 33 bigendian?.uint3
63 03e0 32 20 20 70 6f 69 6e 74 5f 73 74 65 70 20 20 20 2 point_step
64 03f0 23 20 4c 65 6e 67 74 68 20 6f 66 20 61 20 70 6f # Length of a po
65 0400 69 6e 74 20 69 6e 20 62 79 74 65 73 0a 75 69 6e int in bytes.uin
66 0410 74 33 32 20 20 72 6f 77 5f 73 74 65 70 20 20 20 t32 row_step
67 0420 20 20 23 20 4c 65 6e 67 74 68 20 6f 66 20 61 20 # Length of a
68 0430 72 6f 77 20 69 6e 20 62 79 74 65 73 0a 75 69 6e row in bytes.uin
69 0440 74 38 5b 5d 20 64 61 74 61 20 20 20 20 20 20 20 t8[] data
70 0450 20 20 23 20 41 63 74 75 61 6c 20 70 6f 69 6e 74 # Actual point
71 0460 20 64 61 74 61 2c 20 73 69 7a 65 20 69 73 20 28 data, size is (
72 0470 72 6f 77 5f 73 74 65 70 2a 68 65 69 67 68 74 29 row_step*height)
73 0480 0a 0a 62 6f 6f 6c 20 69 73 5f 64 65 6e 73 65 20 ..bool is_dense
74 0490 20 20 20 20 20 20 20 23 20 54 72 75 65 20 69 66 # True if
75 04a0 20 74 68 65 72 65 20 61 72 65 20 6e 6f 20 69 6e there are no in
76 04b0 76 61 6c 69 64 20 70 6f 69 6e 74 73 0a 0a 3d 3d valid points..==
77 04c0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
78 04d0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
79 04e0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
80 04f0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
81 0500 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 4d ==============.M
82 0510 53 47 3a 20 73 74 64 5f 6d 73 67 73 2f 48 65 61 SG: std_msgs/Hea
83 0520 64 65 72 0a 23 20 53 74 61 6e 64 61 72 64 20 6d der.# Standard m
84 0530 65 74 61 64 61 74 61 20 66 6f 72 20 68 69 67 68 etadata for high
85 0540 65 72 2d 6c 65 76 65 6c 20 73 74 61 6d 70 65 64 er-level stamped
86 0550 20 64 61 74 61 20 74 79 70 65 73 2e 0a 23 20 54 data types..# T
87 0560 68 69 73 20 69 73 20 67 65 6e 65 72 61 6c 6c 79 his is generally
88 0570 20 75 73 65 64 20 74 6f 20 63 6f 6d 6d 75 6e 69 used to communi
89 0580 63 61 74 65 20 74 69 6d 65 73 74 61 6d 70 65 64 cate timestamped
90 0590 20 64 61 74 61 20 0a 23 20 69 6e 20 61 20 70 61 data .# in a pa
91 05a0 72 74 69 63 75 6c 61 72 20 63 6f 6f 72 64 69 6e rticular coordin
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Appendix B. ROS PointCloud2 Message

92 05b0 61 74 65 20 66 72 61 6d 65 2e 0a 23 20 0a 23 20 ate frame..# .#
93 05c0 73 65 71 75 65 6e 63 65 20 49 44 3a 20 63 6f 6e sequence ID: con
94 05d0 73 65 63 75 74 69 76 65 6c 79 20 69 6e 63 72 65 secutively incre
95 05e0 61 73 69 6e 67 20 49 44 20 0a 75 69 6e 74 33 32 asing ID .uint32
96 05f0 20 73 65 71 0a 23 54 77 6f 2d 69 6e 74 65 67 65 seq.#Two-intege
97 0600 72 20 74 69 6d 65 73 74 61 6d 70 20 74 68 61 74 r timestamp that
98 0610 20 69 73 20 65 78 70 72 65 73 73 65 64 20 61 73 is expressed as
99 0620 3a 0a 23 20 2a 20 73 74 61 6d 70 2e 73 65 63 3a :.# * stamp.sec:
100 0630 20 73 65 63 6f 6e 64 73 20 28 73 74 61 6d 70 5f seconds (stamp_
101 0640 73 65 63 73 29 20 73 69 6e 63 65 20 65 70 6f 63 secs) since epoc
102 0650 68 20 28 69 6e 20 50 79 74 68 6f 6e 20 74 68 65 h (in Python the
103 0660 20 76 61 72 69 61 62 6c 65 20 69 73 20 63 61 6c variable is cal
104 0670 6c 65 64 20 27 73 65 63 73 27 29 0a 23 20 2a 20 led 'secs').# *
105 0680 73 74 61 6d 70 2e 6e 73 65 63 3a 20 6e 61 6e 6f stamp.nsec: nano
106 0690 73 65 63 6f 6e 64 73 20 73 69 6e 63 65 20 73 74 seconds since st
107 06a0 61 6d 70 5f 73 65 63 73 20 28 69 6e 20 50 79 74 amp_secs (in Pyt
108 06b0 68 6f 6e 20 74 68 65 20 76 61 72 69 61 62 6c 65 hon the variable
109 06c0 20 69 73 20 63 61 6c 6c 65 64 20 27 6e 73 65 63 is called 'nsec
110 06d0 73 27 29 0a 23 20 74 69 6d 65 2d 68 61 6e 64 6c s').# time-handl
111 06e0 69 6e 67 20 73 75 67 61 72 20 69 73 20 70 72 6f ing sugar is pro
112 06f0 76 69 64 65 64 20 62 79 20 74 68 65 20 63 6c 69 vided by the cli
113 0700 65 6e 74 20 6c 69 62 72 61 72 79 0a 74 69 6d 65 ent library.time
114 0710 20 73 74 61 6d 70 0a 23 46 72 61 6d 65 20 74 68 stamp.#Frame th
115 0720 69 73 20 64 61 74 61 20 69 73 20 61 73 73 6f 63 is data is assoc
116 0730 69 61 74 65 64 20 77 69 74 68 0a 73 74 72 69 6e iated with.strin
117 0740 67 20 66 72 61 6d 65 5f 69 64 0a 0a 3d 3d 3d 3d g frame_id..====
118 0750 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
119 0760 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
120 0770 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
121 0780 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d ================
122 0790 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 4d 53 47 ============.MSG
123 07a0 3a 20 73 65 6e 73 6f 72 5f 6d 73 67 73 2f 50 6f : sensor_msgs/Po
124 07b0 69 6e 74 46 69 65 6c 64 0a 23 20 54 68 69 73 20 intField.# This
125 07c0 6d 65 73 73 61 67 65 20 68 6f 6c 64 73 20 74 68 message holds th
126 07d0 65 20 64 65 73 63 72 69 70 74 69 6f 6e 20 6f 66 e description of
127 07e0 20 6f 6e 65 20 70 6f 69 6e 74 20 65 6e 74 72 79 one point entry
128 07f0 20 69 6e 20 74 68 65 0a 23 20 50 6f 69 6e 74 43 in the.# PointC
129 0800 6c 6f 75 64 32 20 6d 65 73 73 61 67 65 20 66 6f loud2 message fo
130 0810 72 6d 61 74 2e 0a 75 69 6e 74 38 20 49 4e 54 38 rmat..uint8 INT8
131 0820 20 20 20 20 3d 20 31 0a 75 69 6e 74 38 20 55 49 = 1.uint8 UI
132 0830 4e 54 38 20 20 20 3d 20 32 0a 75 69 6e 74 38 20 NT8 = 2.uint8
133 0840 49 4e 54 31 36 20 20 20 3d 20 33 0a 75 69 6e 74 INT16 = 3.uint
134 0850 38 20 55 49 4e 54 31 36 20 20 3d 20 34 0a 75 69 8 UINT16 = 4.ui
135 0860 6e 74 38 20 49 4e 54 33 32 20 20 20 3d 20 35 0a nt8 INT32 = 5.
136 0870 75 69 6e 74 38 20 55 49 4e 54 33 32 20 20 3d 20 uint8 UINT32 =
137 0880 36 0a 75 69 6e 74 38 20 46 4c 4f 41 54 33 32 20 6.uint8 FLOAT32
138 0890 3d 20 37 0a 75 69 6e 74 38 20 46 4c 4f 41 54 36 = 7.uint8 FLOAT6
139 08a0 34 20 3d 20 38 0a 0a 73 74 72 69 6e 67 20 6e 61 4 = 8..string na
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140 08b0 6d 65 20 20 20 20 20 20 23 20 4e 61 6d 65 20 6f me # Name o
141 08c0 66 20 66 69 65 6c 64 0a 75 69 6e 74 33 32 20 6f f field.uint32 o
142 08d0 66 66 73 65 74 20 20 20 20 23 20 4f 66 66 73 65 ffset # Offse
143 08e0 74 20 66 72 6f 6d 20 73 74 61 72 74 20 6f 66 20 t from start of
144 08f0 70 6f 69 6e 74 20 73 74 72 75 63 74 0a 75 69 6e point struct.uin
145 0900 74 38 20 20 64 61 74 61 74 79 70 65 20 20 23 20 t8 datatype #
146 0910 44 61 74 61 74 79 70 65 20 65 6e 75 6d 65 72 61 Datatype enumera
147 0920 74 69 6f 6e 2c 20 73 65 65 20 61 62 6f 76 65 0a tion, see above.
148 0930 75 69 6e 74 33 32 20 63 6f 75 6e 74 20 20 20 20 uint32 count
149 0940 20 23 20 48 6f 77 20 6d 61 6e 79 20 65 6c 65 6d # How many elem
150 0950 65 6e 74 73 20 69 6e 20 74 68 65 20 66 69 65 6c ents in the fiel
151 0960 64 0a 12 00 00 00 74 6f 70 69 63 3d 2f 70 63 6c d.....topic=/pcl
152 0970 5f 63 68 61 74 74 65 72 1c 00 00 00 74 79 70 65 _chatter....type
153 0980 3d 73 65 6e 73 6f 72 5f 6d 73 67 73 2f 50 6f 69 =sensor_msgs/Poi
154 0990 6e 74 43 6c 6f 75 64 32 ntCloud2

Code B.1: Complete PointCloud2 response connection header sent by the Publisher

1 message_definition=# This message holds a collection of N-dimensional
points, which may

2 # contain additional information such as normals, intensity , etc. The
3 # point data is stored as a binary blob, its layout described by the
4 # contents of the "fields" array.
5

6 # The point cloud data may be organized 2d (image-like) or 1d
7 # (unordered). Point clouds organized as 2d images may be produced by
8 # camera depth sensors such as stereo or time-of-flight.
9

10 # Time of sensor data acquisition , and the coordinate frame ID (for 3d
11 # points).
12 Header header
13

14 # 2D structure of the point cloud. If the cloud is unordered , height is
15 # 1 and width is the length of the point cloud.
16 uint32 height
17 uint32 width
18

19 # Describes the channels and their layout in the binary data blob.
20 PointField[] fields
21

22 bool is_bigendian # Is this data bigendian?
23 uint32 point_step # Length of a point in bytes
24 uint32 row_step # Length of a row in bytes
25 uint8[] data # Actual point data, size is (row_step*height)
26

27 bool is_dense # True if there are no invalid points
28

29 ============================================================================
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Appendix B. ROS PointCloud2 Message

30 MSG: std_msgs/Header
31 # Standard metadata for higher-level stamped data types.
32 # This is generally used to communicate timestamped data
33 # in a particular coordinate frame.
34 #
35 # sequence ID: consecutively increasing ID
36 uint32 seq
37 #Two-integer timestamp that is expressed as:
38 # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is

called 'secs')
39 # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is

called 'nsecs')
40 # time-handling sugar is provided by the client library
41 time stamp
42 #Frame this data is associated with
43 string frame_id
44

45 ============================================================================

46 MSG: sensor_msgs/PointField
47 # This message holds the description of one point entry in the
48 # PointCloud2 message format.
49 uint8 INT8 = 1
50 uint8 UINT8 = 2
51 uint8 INT16 = 3
52 uint8 UINT16 = 4
53 uint8 INT32 = 5
54 uint8 UINT32 = 6
55 uint8 FLOAT32 = 7
56 uint8 FLOAT64 = 8
57

58 string name # Name of field
59 uint32 offset # Offset from start of point struct
60 uint8 datatype # Datatype enumeration , see above
61 uint32 count # How many elements in the field

Code B.2: PointCloud2 connection header message_definition. Lines 29 and 45 where slightly adjusted

to fit the page (4 “=” characters were removed from each line).
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